xref: /openbmc/linux/drivers/media/rc/st_rc.c (revision e3d786a3)
1 /*
2  * Copyright (C) 2013 STMicroelectronics Limited
3  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 #include <linux/kernel.h>
11 #include <linux/clk.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <media/rc-core.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_wakeirq.h>
20 
21 struct st_rc_device {
22 	struct device			*dev;
23 	int				irq;
24 	int				irq_wake;
25 	struct clk			*sys_clock;
26 	void __iomem			*base;	/* Register base address */
27 	void __iomem			*rx_base;/* RX Register base address */
28 	struct rc_dev			*rdev;
29 	bool				overclocking;
30 	int				sample_mult;
31 	int				sample_div;
32 	bool				rxuhfmode;
33 	struct	reset_control		*rstc;
34 };
35 
36 /* Registers */
37 #define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
38 #define IRB_CLOCK_SEL		0x70	/* clock select       */
39 #define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
40 /* IRB IR/UHF receiver registers */
41 #define IRB_RX_ON               0x40	/* pulse time capture */
42 #define IRB_RX_SYS              0X44	/* sym period capture */
43 #define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
44 #define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
45 #define IRB_RX_EN               0x50	/* Receive enable     */
46 #define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
47 #define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
48 #define IRB_RX_STATUS           0x6c	/* receive status     */
49 #define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
50 #define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */
51 
52 /*
53  * IRQ set: Enable full FIFO                 1  -> bit  3;
54  *          Enable overrun IRQ               1  -> bit  2;
55  *          Enable last symbol IRQ           1  -> bit  1:
56  *          Enable RX interrupt              1  -> bit  0;
57  */
58 #define IRB_RX_INTS		0x0f
59 #define IRB_RX_OVERRUN_INT	0x04
60  /* maximum symbol period (microsecs),timeout to detect end of symbol train */
61 #define MAX_SYMB_TIME		0x5000
62 #define IRB_SAMPLE_FREQ		10000000
63 #define	IRB_FIFO_NOT_EMPTY	0xff00
64 #define IRB_OVERFLOW		0x4
65 #define IRB_TIMEOUT		0xffff
66 #define IR_ST_NAME "st-rc"
67 
68 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
69 {
70 	struct ir_raw_event ev = { .timeout = true, .duration = rdev->timeout };
71 	ir_raw_event_store(rdev, &ev);
72 }
73 
74 /*
75  * RX graphical example to better understand the difference between ST IR block
76  * output and standard definition used by LIRC (and most of the world!)
77  *
78  *           mark                                     mark
79  *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
80  *      ___  ___  ___                            ___  ___  ___             _
81  *      | |  | |  | |                            | |  | |  | |             |
82  *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
83  * _____| |__| |__| |____________________________| |__| |__| |_____________|
84  *
85  *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
86  *
87  *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
88  *
89  * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
90  * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
91  * The mark time represents the amount of time the carrier (usually 36-40kHz)
92  * is detected.The above examples shows Pulse Width Modulation encoding where
93  * bit 0 is represented by space>mark.
94  */
95 
96 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
97 {
98 	unsigned long timeout;
99 	unsigned int symbol, mark = 0;
100 	struct st_rc_device *dev = data;
101 	int last_symbol = 0;
102 	u32 status, int_status;
103 	struct ir_raw_event ev = {};
104 
105 	if (dev->irq_wake)
106 		pm_wakeup_event(dev->dev, 0);
107 
108 	/* FIXME: is 10ms good enough ? */
109 	timeout = jiffies +  msecs_to_jiffies(10);
110 	do {
111 		status  = readl(dev->rx_base + IRB_RX_STATUS);
112 		if (!(status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)))
113 			break;
114 
115 		int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
116 		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
117 			/* discard the entire collection in case of errors!  */
118 			ir_raw_event_reset(dev->rdev);
119 			dev_info(dev->dev, "IR RX overrun\n");
120 			writel(IRB_RX_OVERRUN_INT,
121 					dev->rx_base + IRB_RX_INT_CLEAR);
122 			continue;
123 		}
124 
125 		symbol = readl(dev->rx_base + IRB_RX_SYS);
126 		mark = readl(dev->rx_base + IRB_RX_ON);
127 
128 		if (symbol == IRB_TIMEOUT)
129 			last_symbol = 1;
130 
131 		 /* Ignore any noise */
132 		if ((mark > 2) && (symbol > 1)) {
133 			symbol -= mark;
134 			if (dev->overclocking) { /* adjustments to timings */
135 				symbol *= dev->sample_mult;
136 				symbol /= dev->sample_div;
137 				mark *= dev->sample_mult;
138 				mark /= dev->sample_div;
139 			}
140 
141 			ev.duration = US_TO_NS(mark);
142 			ev.pulse = true;
143 			ir_raw_event_store(dev->rdev, &ev);
144 
145 			if (!last_symbol) {
146 				ev.duration = US_TO_NS(symbol);
147 				ev.pulse = false;
148 				ir_raw_event_store(dev->rdev, &ev);
149 			} else  {
150 				st_rc_send_lirc_timeout(dev->rdev);
151 			}
152 
153 		}
154 		last_symbol = 0;
155 	} while (time_is_after_jiffies(timeout));
156 
157 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
158 
159 	/* Empty software fifo */
160 	ir_raw_event_handle(dev->rdev);
161 	return IRQ_HANDLED;
162 }
163 
164 static void st_rc_hardware_init(struct st_rc_device *dev)
165 {
166 	int baseclock, freqdiff;
167 	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
168 	unsigned int rx_sampling_freq_div;
169 
170 	/* Enable the IP */
171 	reset_control_deassert(dev->rstc);
172 
173 	clk_prepare_enable(dev->sys_clock);
174 	baseclock = clk_get_rate(dev->sys_clock);
175 
176 	/* IRB input pins are inverted internally from high to low. */
177 	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
178 
179 	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
180 	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
181 
182 	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
183 	if (freqdiff) { /* over clocking, workout the adjustment factors */
184 		dev->overclocking = true;
185 		dev->sample_mult = 1000;
186 		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
187 		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
188 	}
189 
190 	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
191 }
192 
193 static int st_rc_remove(struct platform_device *pdev)
194 {
195 	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
196 
197 	dev_pm_clear_wake_irq(&pdev->dev);
198 	device_init_wakeup(&pdev->dev, false);
199 	clk_disable_unprepare(rc_dev->sys_clock);
200 	rc_unregister_device(rc_dev->rdev);
201 	return 0;
202 }
203 
204 static int st_rc_open(struct rc_dev *rdev)
205 {
206 	struct st_rc_device *dev = rdev->priv;
207 	unsigned long flags;
208 	local_irq_save(flags);
209 	/* enable interrupts and receiver */
210 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
211 	writel(0x01, dev->rx_base + IRB_RX_EN);
212 	local_irq_restore(flags);
213 
214 	return 0;
215 }
216 
217 static void st_rc_close(struct rc_dev *rdev)
218 {
219 	struct st_rc_device *dev = rdev->priv;
220 	/* disable interrupts and receiver */
221 	writel(0x00, dev->rx_base + IRB_RX_EN);
222 	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
223 }
224 
225 static int st_rc_probe(struct platform_device *pdev)
226 {
227 	int ret = -EINVAL;
228 	struct rc_dev *rdev;
229 	struct device *dev = &pdev->dev;
230 	struct resource *res;
231 	struct st_rc_device *rc_dev;
232 	struct device_node *np = pdev->dev.of_node;
233 	const char *rx_mode;
234 
235 	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
236 
237 	if (!rc_dev)
238 		return -ENOMEM;
239 
240 	rdev = rc_allocate_device(RC_DRIVER_IR_RAW);
241 
242 	if (!rdev)
243 		return -ENOMEM;
244 
245 	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
246 
247 		if (!strcmp(rx_mode, "uhf")) {
248 			rc_dev->rxuhfmode = true;
249 		} else if (!strcmp(rx_mode, "infrared")) {
250 			rc_dev->rxuhfmode = false;
251 		} else {
252 			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
253 			goto err;
254 		}
255 
256 	} else {
257 		goto err;
258 	}
259 
260 	rc_dev->sys_clock = devm_clk_get(dev, NULL);
261 	if (IS_ERR(rc_dev->sys_clock)) {
262 		dev_err(dev, "System clock not found\n");
263 		ret = PTR_ERR(rc_dev->sys_clock);
264 		goto err;
265 	}
266 
267 	rc_dev->irq = platform_get_irq(pdev, 0);
268 	if (rc_dev->irq < 0) {
269 		ret = rc_dev->irq;
270 		goto err;
271 	}
272 
273 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
274 
275 	rc_dev->base = devm_ioremap_resource(dev, res);
276 	if (IS_ERR(rc_dev->base)) {
277 		ret = PTR_ERR(rc_dev->base);
278 		goto err;
279 	}
280 
281 	if (rc_dev->rxuhfmode)
282 		rc_dev->rx_base = rc_dev->base + 0x40;
283 	else
284 		rc_dev->rx_base = rc_dev->base;
285 
286 	rc_dev->rstc = reset_control_get_optional_exclusive(dev, NULL);
287 	if (IS_ERR(rc_dev->rstc)) {
288 		ret = PTR_ERR(rc_dev->rstc);
289 		goto err;
290 	}
291 
292 	rc_dev->dev = dev;
293 	platform_set_drvdata(pdev, rc_dev);
294 	st_rc_hardware_init(rc_dev);
295 
296 	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
297 	/* rx sampling rate is 10Mhz */
298 	rdev->rx_resolution = 100;
299 	rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
300 	rdev->priv = rc_dev;
301 	rdev->open = st_rc_open;
302 	rdev->close = st_rc_close;
303 	rdev->driver_name = IR_ST_NAME;
304 	rdev->map_name = RC_MAP_EMPTY;
305 	rdev->device_name = "ST Remote Control Receiver";
306 
307 	ret = rc_register_device(rdev);
308 	if (ret < 0)
309 		goto clkerr;
310 
311 	rc_dev->rdev = rdev;
312 	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
313 			     0, IR_ST_NAME, rc_dev) < 0) {
314 		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
315 		ret = -EINVAL;
316 		goto rcerr;
317 	}
318 
319 	/* enable wake via this device */
320 	device_init_wakeup(dev, true);
321 	dev_pm_set_wake_irq(dev, rc_dev->irq);
322 
323 	/*
324 	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
325 	 * lircd expects a long space first before a signal train to sync.
326 	 */
327 	st_rc_send_lirc_timeout(rdev);
328 
329 	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
330 
331 	return ret;
332 rcerr:
333 	rc_unregister_device(rdev);
334 	rdev = NULL;
335 clkerr:
336 	clk_disable_unprepare(rc_dev->sys_clock);
337 err:
338 	rc_free_device(rdev);
339 	dev_err(dev, "Unable to register device (%d)\n", ret);
340 	return ret;
341 }
342 
343 #ifdef CONFIG_PM_SLEEP
344 static int st_rc_suspend(struct device *dev)
345 {
346 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
347 
348 	if (device_may_wakeup(dev)) {
349 		if (!enable_irq_wake(rc_dev->irq))
350 			rc_dev->irq_wake = 1;
351 		else
352 			return -EINVAL;
353 	} else {
354 		pinctrl_pm_select_sleep_state(dev);
355 		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
356 		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
357 		clk_disable_unprepare(rc_dev->sys_clock);
358 		reset_control_assert(rc_dev->rstc);
359 	}
360 
361 	return 0;
362 }
363 
364 static int st_rc_resume(struct device *dev)
365 {
366 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
367 	struct rc_dev	*rdev = rc_dev->rdev;
368 
369 	if (rc_dev->irq_wake) {
370 		disable_irq_wake(rc_dev->irq);
371 		rc_dev->irq_wake = 0;
372 	} else {
373 		pinctrl_pm_select_default_state(dev);
374 		st_rc_hardware_init(rc_dev);
375 		if (rdev->users) {
376 			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
377 			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
378 		}
379 	}
380 
381 	return 0;
382 }
383 
384 #endif
385 
386 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
387 
388 #ifdef CONFIG_OF
389 static const struct of_device_id st_rc_match[] = {
390 	{ .compatible = "st,comms-irb", },
391 	{},
392 };
393 
394 MODULE_DEVICE_TABLE(of, st_rc_match);
395 #endif
396 
397 static struct platform_driver st_rc_driver = {
398 	.driver = {
399 		.name = IR_ST_NAME,
400 		.of_match_table = of_match_ptr(st_rc_match),
401 		.pm     = &st_rc_pm_ops,
402 	},
403 	.probe = st_rc_probe,
404 	.remove = st_rc_remove,
405 };
406 
407 module_platform_driver(st_rc_driver);
408 
409 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
410 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
411 MODULE_LICENSE("GPL");
412