xref: /openbmc/linux/drivers/media/rc/st_rc.c (revision d2f4a190)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 STMicroelectronics Limited
4  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
5  */
6 #include <linux/kernel.h>
7 #include <linux/clk.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/reset.h>
13 #include <media/rc-core.h>
14 #include <linux/pinctrl/consumer.h>
15 #include <linux/pm_wakeirq.h>
16 
17 struct st_rc_device {
18 	struct device			*dev;
19 	int				irq;
20 	int				irq_wake;
21 	struct clk			*sys_clock;
22 	void __iomem			*base;	/* Register base address */
23 	void __iomem			*rx_base;/* RX Register base address */
24 	struct rc_dev			*rdev;
25 	bool				overclocking;
26 	int				sample_mult;
27 	int				sample_div;
28 	bool				rxuhfmode;
29 	struct	reset_control		*rstc;
30 };
31 
32 /* Registers */
33 #define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
34 #define IRB_CLOCK_SEL		0x70	/* clock select       */
35 #define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
36 /* IRB IR/UHF receiver registers */
37 #define IRB_RX_ON               0x40	/* pulse time capture */
38 #define IRB_RX_SYS              0X44	/* sym period capture */
39 #define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
40 #define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
41 #define IRB_RX_EN               0x50	/* Receive enable     */
42 #define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
43 #define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
44 #define IRB_RX_STATUS           0x6c	/* receive status     */
45 #define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
46 #define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */
47 
48 /*
49  * IRQ set: Enable full FIFO                 1  -> bit  3;
50  *          Enable overrun IRQ               1  -> bit  2;
51  *          Enable last symbol IRQ           1  -> bit  1:
52  *          Enable RX interrupt              1  -> bit  0;
53  */
54 #define IRB_RX_INTS		0x0f
55 #define IRB_RX_OVERRUN_INT	0x04
56  /* maximum symbol period (microsecs),timeout to detect end of symbol train */
57 #define MAX_SYMB_TIME		0x5000
58 #define IRB_SAMPLE_FREQ		10000000
59 #define	IRB_FIFO_NOT_EMPTY	0xff00
60 #define IRB_OVERFLOW		0x4
61 #define IRB_TIMEOUT		0xffff
62 #define IR_ST_NAME "st-rc"
63 
64 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
65 {
66 	struct ir_raw_event ev = { .timeout = true, .duration = rdev->timeout };
67 	ir_raw_event_store(rdev, &ev);
68 }
69 
70 /*
71  * RX graphical example to better understand the difference between ST IR block
72  * output and standard definition used by LIRC (and most of the world!)
73  *
74  *           mark                                     mark
75  *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
76  *      ___  ___  ___                            ___  ___  ___             _
77  *      | |  | |  | |                            | |  | |  | |             |
78  *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
79  * _____| |__| |__| |____________________________| |__| |__| |_____________|
80  *
81  *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
82  *
83  *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
84  *
85  * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
86  * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
87  * The mark time represents the amount of time the carrier (usually 36-40kHz)
88  * is detected.The above examples shows Pulse Width Modulation encoding where
89  * bit 0 is represented by space>mark.
90  */
91 
92 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
93 {
94 	unsigned long timeout;
95 	unsigned int symbol, mark = 0;
96 	struct st_rc_device *dev = data;
97 	int last_symbol = 0;
98 	u32 status, int_status;
99 	struct ir_raw_event ev = {};
100 
101 	if (dev->irq_wake)
102 		pm_wakeup_event(dev->dev, 0);
103 
104 	/* FIXME: is 10ms good enough ? */
105 	timeout = jiffies +  msecs_to_jiffies(10);
106 	do {
107 		status  = readl(dev->rx_base + IRB_RX_STATUS);
108 		if (!(status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)))
109 			break;
110 
111 		int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
112 		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
113 			/* discard the entire collection in case of errors!  */
114 			ir_raw_event_overflow(dev->rdev);
115 			dev_info(dev->dev, "IR RX overrun\n");
116 			writel(IRB_RX_OVERRUN_INT,
117 					dev->rx_base + IRB_RX_INT_CLEAR);
118 			continue;
119 		}
120 
121 		symbol = readl(dev->rx_base + IRB_RX_SYS);
122 		mark = readl(dev->rx_base + IRB_RX_ON);
123 
124 		if (symbol == IRB_TIMEOUT)
125 			last_symbol = 1;
126 
127 		 /* Ignore any noise */
128 		if ((mark > 2) && (symbol > 1)) {
129 			symbol -= mark;
130 			if (dev->overclocking) { /* adjustments to timings */
131 				symbol *= dev->sample_mult;
132 				symbol /= dev->sample_div;
133 				mark *= dev->sample_mult;
134 				mark /= dev->sample_div;
135 			}
136 
137 			ev.duration = mark;
138 			ev.pulse = true;
139 			ir_raw_event_store(dev->rdev, &ev);
140 
141 			if (!last_symbol) {
142 				ev.duration = symbol;
143 				ev.pulse = false;
144 				ir_raw_event_store(dev->rdev, &ev);
145 			} else  {
146 				st_rc_send_lirc_timeout(dev->rdev);
147 			}
148 
149 		}
150 		last_symbol = 0;
151 	} while (time_is_after_jiffies(timeout));
152 
153 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
154 
155 	/* Empty software fifo */
156 	ir_raw_event_handle(dev->rdev);
157 	return IRQ_HANDLED;
158 }
159 
160 static int st_rc_hardware_init(struct st_rc_device *dev)
161 {
162 	int ret;
163 	int baseclock, freqdiff;
164 	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
165 	unsigned int rx_sampling_freq_div;
166 
167 	/* Enable the IP */
168 	reset_control_deassert(dev->rstc);
169 
170 	ret = clk_prepare_enable(dev->sys_clock);
171 	if (ret) {
172 		dev_err(dev->dev, "Failed to prepare/enable system clock\n");
173 		return ret;
174 	}
175 
176 	baseclock = clk_get_rate(dev->sys_clock);
177 
178 	/* IRB input pins are inverted internally from high to low. */
179 	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
180 
181 	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
182 	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
183 
184 	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
185 	if (freqdiff) { /* over clocking, workout the adjustment factors */
186 		dev->overclocking = true;
187 		dev->sample_mult = 1000;
188 		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
189 		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
190 	}
191 
192 	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
193 
194 	return 0;
195 }
196 
197 static void st_rc_remove(struct platform_device *pdev)
198 {
199 	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
200 
201 	dev_pm_clear_wake_irq(&pdev->dev);
202 	device_init_wakeup(&pdev->dev, false);
203 	clk_disable_unprepare(rc_dev->sys_clock);
204 	rc_unregister_device(rc_dev->rdev);
205 }
206 
207 static int st_rc_open(struct rc_dev *rdev)
208 {
209 	struct st_rc_device *dev = rdev->priv;
210 	unsigned long flags;
211 	local_irq_save(flags);
212 	/* enable interrupts and receiver */
213 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
214 	writel(0x01, dev->rx_base + IRB_RX_EN);
215 	local_irq_restore(flags);
216 
217 	return 0;
218 }
219 
220 static void st_rc_close(struct rc_dev *rdev)
221 {
222 	struct st_rc_device *dev = rdev->priv;
223 	/* disable interrupts and receiver */
224 	writel(0x00, dev->rx_base + IRB_RX_EN);
225 	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
226 }
227 
228 static int st_rc_probe(struct platform_device *pdev)
229 {
230 	int ret = -EINVAL;
231 	struct rc_dev *rdev;
232 	struct device *dev = &pdev->dev;
233 	struct st_rc_device *rc_dev;
234 	struct device_node *np = pdev->dev.of_node;
235 	const char *rx_mode;
236 
237 	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
238 
239 	if (!rc_dev)
240 		return -ENOMEM;
241 
242 	rdev = rc_allocate_device(RC_DRIVER_IR_RAW);
243 
244 	if (!rdev)
245 		return -ENOMEM;
246 
247 	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
248 
249 		if (!strcmp(rx_mode, "uhf")) {
250 			rc_dev->rxuhfmode = true;
251 		} else if (!strcmp(rx_mode, "infrared")) {
252 			rc_dev->rxuhfmode = false;
253 		} else {
254 			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
255 			goto err;
256 		}
257 
258 	} else {
259 		goto err;
260 	}
261 
262 	rc_dev->sys_clock = devm_clk_get(dev, NULL);
263 	if (IS_ERR(rc_dev->sys_clock)) {
264 		dev_err(dev, "System clock not found\n");
265 		ret = PTR_ERR(rc_dev->sys_clock);
266 		goto err;
267 	}
268 
269 	rc_dev->irq = platform_get_irq(pdev, 0);
270 	if (rc_dev->irq < 0) {
271 		ret = rc_dev->irq;
272 		goto err;
273 	}
274 
275 	rc_dev->base = devm_platform_ioremap_resource(pdev, 0);
276 	if (IS_ERR(rc_dev->base)) {
277 		ret = PTR_ERR(rc_dev->base);
278 		goto err;
279 	}
280 
281 	if (rc_dev->rxuhfmode)
282 		rc_dev->rx_base = rc_dev->base + 0x40;
283 	else
284 		rc_dev->rx_base = rc_dev->base;
285 
286 	rc_dev->rstc = reset_control_get_optional_exclusive(dev, NULL);
287 	if (IS_ERR(rc_dev->rstc)) {
288 		ret = PTR_ERR(rc_dev->rstc);
289 		goto err;
290 	}
291 
292 	rc_dev->dev = dev;
293 	platform_set_drvdata(pdev, rc_dev);
294 	ret = st_rc_hardware_init(rc_dev);
295 	if (ret)
296 		goto err;
297 
298 	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
299 	/* rx sampling rate is 10Mhz */
300 	rdev->rx_resolution = 100;
301 	rdev->timeout = MAX_SYMB_TIME;
302 	rdev->priv = rc_dev;
303 	rdev->open = st_rc_open;
304 	rdev->close = st_rc_close;
305 	rdev->driver_name = IR_ST_NAME;
306 	rdev->map_name = RC_MAP_EMPTY;
307 	rdev->device_name = "ST Remote Control Receiver";
308 
309 	ret = rc_register_device(rdev);
310 	if (ret < 0)
311 		goto clkerr;
312 
313 	rc_dev->rdev = rdev;
314 	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
315 			     0, IR_ST_NAME, rc_dev) < 0) {
316 		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
317 		ret = -EINVAL;
318 		goto rcerr;
319 	}
320 
321 	/* enable wake via this device */
322 	device_init_wakeup(dev, true);
323 	dev_pm_set_wake_irq(dev, rc_dev->irq);
324 
325 	/*
326 	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
327 	 * lircd expects a long space first before a signal train to sync.
328 	 */
329 	st_rc_send_lirc_timeout(rdev);
330 
331 	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
332 
333 	return ret;
334 rcerr:
335 	rc_unregister_device(rdev);
336 	rdev = NULL;
337 clkerr:
338 	clk_disable_unprepare(rc_dev->sys_clock);
339 err:
340 	rc_free_device(rdev);
341 	dev_err(dev, "Unable to register device (%d)\n", ret);
342 	return ret;
343 }
344 
345 #ifdef CONFIG_PM_SLEEP
346 static int st_rc_suspend(struct device *dev)
347 {
348 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
349 
350 	if (device_may_wakeup(dev)) {
351 		if (!enable_irq_wake(rc_dev->irq))
352 			rc_dev->irq_wake = 1;
353 		else
354 			return -EINVAL;
355 	} else {
356 		pinctrl_pm_select_sleep_state(dev);
357 		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
358 		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
359 		clk_disable_unprepare(rc_dev->sys_clock);
360 		reset_control_assert(rc_dev->rstc);
361 	}
362 
363 	return 0;
364 }
365 
366 static int st_rc_resume(struct device *dev)
367 {
368 	int ret;
369 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
370 	struct rc_dev	*rdev = rc_dev->rdev;
371 
372 	if (rc_dev->irq_wake) {
373 		disable_irq_wake(rc_dev->irq);
374 		rc_dev->irq_wake = 0;
375 	} else {
376 		pinctrl_pm_select_default_state(dev);
377 		ret = st_rc_hardware_init(rc_dev);
378 		if (ret)
379 			return ret;
380 
381 		if (rdev->users) {
382 			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
383 			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
384 		}
385 	}
386 
387 	return 0;
388 }
389 
390 #endif
391 
392 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
393 
394 #ifdef CONFIG_OF
395 static const struct of_device_id st_rc_match[] = {
396 	{ .compatible = "st,comms-irb", },
397 	{},
398 };
399 
400 MODULE_DEVICE_TABLE(of, st_rc_match);
401 #endif
402 
403 static struct platform_driver st_rc_driver = {
404 	.driver = {
405 		.name = IR_ST_NAME,
406 		.of_match_table = of_match_ptr(st_rc_match),
407 		.pm     = &st_rc_pm_ops,
408 	},
409 	.probe = st_rc_probe,
410 	.remove_new = st_rc_remove,
411 };
412 
413 module_platform_driver(st_rc_driver);
414 
415 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
416 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
417 MODULE_LICENSE("GPL");
418