1 /* 2 * Copyright (C) 2013 STMicroelectronics Limited 3 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/clk.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/reset.h> 17 #include <media/rc-core.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/pm_wakeirq.h> 20 21 struct st_rc_device { 22 struct device *dev; 23 int irq; 24 int irq_wake; 25 struct clk *sys_clock; 26 void __iomem *base; /* Register base address */ 27 void __iomem *rx_base;/* RX Register base address */ 28 struct rc_dev *rdev; 29 bool overclocking; 30 int sample_mult; 31 int sample_div; 32 bool rxuhfmode; 33 struct reset_control *rstc; 34 }; 35 36 /* Registers */ 37 #define IRB_SAMPLE_RATE_COMM 0x64 /* sample freq divisor*/ 38 #define IRB_CLOCK_SEL 0x70 /* clock select */ 39 #define IRB_CLOCK_SEL_STATUS 0x74 /* clock status */ 40 /* IRB IR/UHF receiver registers */ 41 #define IRB_RX_ON 0x40 /* pulse time capture */ 42 #define IRB_RX_SYS 0X44 /* sym period capture */ 43 #define IRB_RX_INT_EN 0x48 /* IRQ enable (R/W) */ 44 #define IRB_RX_INT_STATUS 0x4c /* IRQ status (R/W) */ 45 #define IRB_RX_EN 0x50 /* Receive enable */ 46 #define IRB_MAX_SYM_PERIOD 0x54 /* max sym value */ 47 #define IRB_RX_INT_CLEAR 0x58 /* overrun status */ 48 #define IRB_RX_STATUS 0x6c /* receive status */ 49 #define IRB_RX_NOISE_SUPPR 0x5c /* noise suppression */ 50 #define IRB_RX_POLARITY_INV 0x68 /* polarity inverter */ 51 52 /** 53 * IRQ set: Enable full FIFO 1 -> bit 3; 54 * Enable overrun IRQ 1 -> bit 2; 55 * Enable last symbol IRQ 1 -> bit 1: 56 * Enable RX interrupt 1 -> bit 0; 57 */ 58 #define IRB_RX_INTS 0x0f 59 #define IRB_RX_OVERRUN_INT 0x04 60 /* maximum symbol period (microsecs),timeout to detect end of symbol train */ 61 #define MAX_SYMB_TIME 0x5000 62 #define IRB_SAMPLE_FREQ 10000000 63 #define IRB_FIFO_NOT_EMPTY 0xff00 64 #define IRB_OVERFLOW 0x4 65 #define IRB_TIMEOUT 0xffff 66 #define IR_ST_NAME "st-rc" 67 68 static void st_rc_send_lirc_timeout(struct rc_dev *rdev) 69 { 70 DEFINE_IR_RAW_EVENT(ev); 71 ev.timeout = true; 72 ir_raw_event_store(rdev, &ev); 73 } 74 75 /** 76 * RX graphical example to better understand the difference between ST IR block 77 * output and standard definition used by LIRC (and most of the world!) 78 * 79 * mark mark 80 * |-IRB_RX_ON-| |-IRB_RX_ON-| 81 * ___ ___ ___ ___ ___ ___ _ 82 * | | | | | | | | | | | | | 83 * | | | | | | space 0 | | | | | | space 1 | 84 * _____| |__| |__| |____________________________| |__| |__| |_____________| 85 * 86 * |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------| 87 * 88 * |------------- encoding bit 0 -----------|---- encoding bit 1 -----| 89 * 90 * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so 91 * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark) 92 * The mark time represents the amount of time the carrier (usually 36-40kHz) 93 * is detected.The above examples shows Pulse Width Modulation encoding where 94 * bit 0 is represented by space>mark. 95 */ 96 97 static irqreturn_t st_rc_rx_interrupt(int irq, void *data) 98 { 99 unsigned int symbol, mark = 0; 100 struct st_rc_device *dev = data; 101 int last_symbol = 0; 102 u32 status; 103 DEFINE_IR_RAW_EVENT(ev); 104 105 if (dev->irq_wake) 106 pm_wakeup_event(dev->dev, 0); 107 108 status = readl(dev->rx_base + IRB_RX_STATUS); 109 110 while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) { 111 u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS); 112 if (unlikely(int_status & IRB_RX_OVERRUN_INT)) { 113 /* discard the entire collection in case of errors! */ 114 ir_raw_event_reset(dev->rdev); 115 dev_info(dev->dev, "IR RX overrun\n"); 116 writel(IRB_RX_OVERRUN_INT, 117 dev->rx_base + IRB_RX_INT_CLEAR); 118 continue; 119 } 120 121 symbol = readl(dev->rx_base + IRB_RX_SYS); 122 mark = readl(dev->rx_base + IRB_RX_ON); 123 124 if (symbol == IRB_TIMEOUT) 125 last_symbol = 1; 126 127 /* Ignore any noise */ 128 if ((mark > 2) && (symbol > 1)) { 129 symbol -= mark; 130 if (dev->overclocking) { /* adjustments to timings */ 131 symbol *= dev->sample_mult; 132 symbol /= dev->sample_div; 133 mark *= dev->sample_mult; 134 mark /= dev->sample_div; 135 } 136 137 ev.duration = US_TO_NS(mark); 138 ev.pulse = true; 139 ir_raw_event_store(dev->rdev, &ev); 140 141 if (!last_symbol) { 142 ev.duration = US_TO_NS(symbol); 143 ev.pulse = false; 144 ir_raw_event_store(dev->rdev, &ev); 145 } else { 146 st_rc_send_lirc_timeout(dev->rdev); 147 } 148 149 } 150 last_symbol = 0; 151 status = readl(dev->rx_base + IRB_RX_STATUS); 152 } 153 154 writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR); 155 156 /* Empty software fifo */ 157 ir_raw_event_handle(dev->rdev); 158 return IRQ_HANDLED; 159 } 160 161 static void st_rc_hardware_init(struct st_rc_device *dev) 162 { 163 int baseclock, freqdiff; 164 unsigned int rx_max_symbol_per = MAX_SYMB_TIME; 165 unsigned int rx_sampling_freq_div; 166 167 /* Enable the IP */ 168 if (dev->rstc) 169 reset_control_deassert(dev->rstc); 170 171 clk_prepare_enable(dev->sys_clock); 172 baseclock = clk_get_rate(dev->sys_clock); 173 174 /* IRB input pins are inverted internally from high to low. */ 175 writel(1, dev->rx_base + IRB_RX_POLARITY_INV); 176 177 rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ; 178 writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM); 179 180 freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ); 181 if (freqdiff) { /* over clocking, workout the adjustment factors */ 182 dev->overclocking = true; 183 dev->sample_mult = 1000; 184 dev->sample_div = baseclock / (10000 * rx_sampling_freq_div); 185 rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div; 186 } 187 188 writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD); 189 } 190 191 static int st_rc_remove(struct platform_device *pdev) 192 { 193 struct st_rc_device *rc_dev = platform_get_drvdata(pdev); 194 195 dev_pm_clear_wake_irq(&pdev->dev); 196 device_init_wakeup(&pdev->dev, false); 197 clk_disable_unprepare(rc_dev->sys_clock); 198 rc_unregister_device(rc_dev->rdev); 199 return 0; 200 } 201 202 static int st_rc_open(struct rc_dev *rdev) 203 { 204 struct st_rc_device *dev = rdev->priv; 205 unsigned long flags; 206 local_irq_save(flags); 207 /* enable interrupts and receiver */ 208 writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN); 209 writel(0x01, dev->rx_base + IRB_RX_EN); 210 local_irq_restore(flags); 211 212 return 0; 213 } 214 215 static void st_rc_close(struct rc_dev *rdev) 216 { 217 struct st_rc_device *dev = rdev->priv; 218 /* disable interrupts and receiver */ 219 writel(0x00, dev->rx_base + IRB_RX_EN); 220 writel(0x00, dev->rx_base + IRB_RX_INT_EN); 221 } 222 223 static int st_rc_probe(struct platform_device *pdev) 224 { 225 int ret = -EINVAL; 226 struct rc_dev *rdev; 227 struct device *dev = &pdev->dev; 228 struct resource *res; 229 struct st_rc_device *rc_dev; 230 struct device_node *np = pdev->dev.of_node; 231 const char *rx_mode; 232 233 rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL); 234 235 if (!rc_dev) 236 return -ENOMEM; 237 238 rdev = rc_allocate_device(); 239 240 if (!rdev) 241 return -ENOMEM; 242 243 if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) { 244 245 if (!strcmp(rx_mode, "uhf")) { 246 rc_dev->rxuhfmode = true; 247 } else if (!strcmp(rx_mode, "infrared")) { 248 rc_dev->rxuhfmode = false; 249 } else { 250 dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode); 251 goto err; 252 } 253 254 } else { 255 goto err; 256 } 257 258 rc_dev->sys_clock = devm_clk_get(dev, NULL); 259 if (IS_ERR(rc_dev->sys_clock)) { 260 dev_err(dev, "System clock not found\n"); 261 ret = PTR_ERR(rc_dev->sys_clock); 262 goto err; 263 } 264 265 rc_dev->irq = platform_get_irq(pdev, 0); 266 if (rc_dev->irq < 0) { 267 ret = rc_dev->irq; 268 goto err; 269 } 270 271 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 272 273 rc_dev->base = devm_ioremap_resource(dev, res); 274 if (IS_ERR(rc_dev->base)) { 275 ret = PTR_ERR(rc_dev->base); 276 goto err; 277 } 278 279 if (rc_dev->rxuhfmode) 280 rc_dev->rx_base = rc_dev->base + 0x40; 281 else 282 rc_dev->rx_base = rc_dev->base; 283 284 285 rc_dev->rstc = reset_control_get_optional(dev, NULL); 286 if (IS_ERR(rc_dev->rstc)) 287 rc_dev->rstc = NULL; 288 289 rc_dev->dev = dev; 290 platform_set_drvdata(pdev, rc_dev); 291 st_rc_hardware_init(rc_dev); 292 293 rdev->driver_type = RC_DRIVER_IR_RAW; 294 rdev->allowed_protocols = RC_BIT_ALL; 295 /* rx sampling rate is 10Mhz */ 296 rdev->rx_resolution = 100; 297 rdev->timeout = US_TO_NS(MAX_SYMB_TIME); 298 rdev->priv = rc_dev; 299 rdev->open = st_rc_open; 300 rdev->close = st_rc_close; 301 rdev->driver_name = IR_ST_NAME; 302 rdev->map_name = RC_MAP_LIRC; 303 rdev->input_name = "ST Remote Control Receiver"; 304 305 ret = rc_register_device(rdev); 306 if (ret < 0) 307 goto clkerr; 308 309 rc_dev->rdev = rdev; 310 if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt, 311 0, IR_ST_NAME, rc_dev) < 0) { 312 dev_err(dev, "IRQ %d register failed\n", rc_dev->irq); 313 ret = -EINVAL; 314 goto rcerr; 315 } 316 317 /* enable wake via this device */ 318 device_init_wakeup(dev, true); 319 dev_pm_set_wake_irq(dev, rc_dev->irq); 320 321 /** 322 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW 323 * lircd expects a long space first before a signal train to sync. 324 */ 325 st_rc_send_lirc_timeout(rdev); 326 327 dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR"); 328 329 return ret; 330 rcerr: 331 rc_unregister_device(rdev); 332 rdev = NULL; 333 clkerr: 334 clk_disable_unprepare(rc_dev->sys_clock); 335 err: 336 rc_free_device(rdev); 337 dev_err(dev, "Unable to register device (%d)\n", ret); 338 return ret; 339 } 340 341 #ifdef CONFIG_PM_SLEEP 342 static int st_rc_suspend(struct device *dev) 343 { 344 struct st_rc_device *rc_dev = dev_get_drvdata(dev); 345 346 if (device_may_wakeup(dev)) { 347 if (!enable_irq_wake(rc_dev->irq)) 348 rc_dev->irq_wake = 1; 349 else 350 return -EINVAL; 351 } else { 352 pinctrl_pm_select_sleep_state(dev); 353 writel(0x00, rc_dev->rx_base + IRB_RX_EN); 354 writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN); 355 clk_disable_unprepare(rc_dev->sys_clock); 356 if (rc_dev->rstc) 357 reset_control_assert(rc_dev->rstc); 358 } 359 360 return 0; 361 } 362 363 static int st_rc_resume(struct device *dev) 364 { 365 struct st_rc_device *rc_dev = dev_get_drvdata(dev); 366 struct rc_dev *rdev = rc_dev->rdev; 367 368 if (rc_dev->irq_wake) { 369 disable_irq_wake(rc_dev->irq); 370 rc_dev->irq_wake = 0; 371 } else { 372 pinctrl_pm_select_default_state(dev); 373 st_rc_hardware_init(rc_dev); 374 if (rdev->users) { 375 writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN); 376 writel(0x01, rc_dev->rx_base + IRB_RX_EN); 377 } 378 } 379 380 return 0; 381 } 382 383 #endif 384 385 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume); 386 387 #ifdef CONFIG_OF 388 static const struct of_device_id st_rc_match[] = { 389 { .compatible = "st,comms-irb", }, 390 {}, 391 }; 392 393 MODULE_DEVICE_TABLE(of, st_rc_match); 394 #endif 395 396 static struct platform_driver st_rc_driver = { 397 .driver = { 398 .name = IR_ST_NAME, 399 .of_match_table = of_match_ptr(st_rc_match), 400 .pm = &st_rc_pm_ops, 401 }, 402 .probe = st_rc_probe, 403 .remove = st_rc_remove, 404 }; 405 406 module_platform_driver(st_rc_driver); 407 408 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms"); 409 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd"); 410 MODULE_LICENSE("GPL"); 411