1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <media/rc-core.h> 18 #include <linux/bsearch.h> 19 #include <linux/spinlock.h> 20 #include <linux/delay.h> 21 #include <linux/input.h> 22 #include <linux/leds.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/device.h> 26 #include <linux/module.h> 27 #include "rc-core-priv.h" 28 29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 30 #define IR_TAB_MIN_SIZE 256 31 #define IR_TAB_MAX_SIZE 8192 32 #define RC_DEV_MAX 256 33 34 static const struct { 35 const char *name; 36 unsigned int repeat_period; 37 unsigned int scancode_bits; 38 } protocols[] = { 39 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 }, 40 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 }, 41 [RC_PROTO_RC5] = { .name = "rc-5", 42 .scancode_bits = 0x1f7f, .repeat_period = 164 }, 43 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", 44 .scancode_bits = 0x1f7f3f, .repeat_period = 164 }, 45 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", 46 .scancode_bits = 0x2fff, .repeat_period = 164 }, 47 [RC_PROTO_JVC] = { .name = "jvc", 48 .scancode_bits = 0xffff, .repeat_period = 250 }, 49 [RC_PROTO_SONY12] = { .name = "sony-12", 50 .scancode_bits = 0x1f007f, .repeat_period = 100 }, 51 [RC_PROTO_SONY15] = { .name = "sony-15", 52 .scancode_bits = 0xff007f, .repeat_period = 100 }, 53 [RC_PROTO_SONY20] = { .name = "sony-20", 54 .scancode_bits = 0x1fff7f, .repeat_period = 100 }, 55 [RC_PROTO_NEC] = { .name = "nec", 56 .scancode_bits = 0xffff, .repeat_period = 160 }, 57 [RC_PROTO_NECX] = { .name = "nec-x", 58 .scancode_bits = 0xffffff, .repeat_period = 160 }, 59 [RC_PROTO_NEC32] = { .name = "nec-32", 60 .scancode_bits = 0xffffffff, .repeat_period = 160 }, 61 [RC_PROTO_SANYO] = { .name = "sanyo", 62 .scancode_bits = 0x1fffff, .repeat_period = 250 }, 63 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", 64 .scancode_bits = 0xffff, .repeat_period = 150 }, 65 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", 66 .scancode_bits = 0x1fffff, .repeat_period = 150 }, 67 [RC_PROTO_RC6_0] = { .name = "rc-6-0", 68 .scancode_bits = 0xffff, .repeat_period = 164 }, 69 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", 70 .scancode_bits = 0xfffff, .repeat_period = 164 }, 71 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", 72 .scancode_bits = 0xffffff, .repeat_period = 164 }, 73 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", 74 .scancode_bits = 0xffffffff, .repeat_period = 164 }, 75 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", 76 .scancode_bits = 0xffff7fff, .repeat_period = 164 }, 77 [RC_PROTO_SHARP] = { .name = "sharp", 78 .scancode_bits = 0x1fff, .repeat_period = 250 }, 79 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 }, 80 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 }, 81 }; 82 83 /* Used to keep track of known keymaps */ 84 static LIST_HEAD(rc_map_list); 85 static DEFINE_SPINLOCK(rc_map_lock); 86 static struct led_trigger *led_feedback; 87 88 /* Used to keep track of rc devices */ 89 static DEFINE_IDA(rc_ida); 90 91 static struct rc_map_list *seek_rc_map(const char *name) 92 { 93 struct rc_map_list *map = NULL; 94 95 spin_lock(&rc_map_lock); 96 list_for_each_entry(map, &rc_map_list, list) { 97 if (!strcmp(name, map->map.name)) { 98 spin_unlock(&rc_map_lock); 99 return map; 100 } 101 } 102 spin_unlock(&rc_map_lock); 103 104 return NULL; 105 } 106 107 struct rc_map *rc_map_get(const char *name) 108 { 109 110 struct rc_map_list *map; 111 112 map = seek_rc_map(name); 113 #ifdef CONFIG_MODULES 114 if (!map) { 115 int rc = request_module("%s", name); 116 if (rc < 0) { 117 pr_err("Couldn't load IR keymap %s\n", name); 118 return NULL; 119 } 120 msleep(20); /* Give some time for IR to register */ 121 122 map = seek_rc_map(name); 123 } 124 #endif 125 if (!map) { 126 pr_err("IR keymap %s not found\n", name); 127 return NULL; 128 } 129 130 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 131 132 return &map->map; 133 } 134 EXPORT_SYMBOL_GPL(rc_map_get); 135 136 int rc_map_register(struct rc_map_list *map) 137 { 138 spin_lock(&rc_map_lock); 139 list_add_tail(&map->list, &rc_map_list); 140 spin_unlock(&rc_map_lock); 141 return 0; 142 } 143 EXPORT_SYMBOL_GPL(rc_map_register); 144 145 void rc_map_unregister(struct rc_map_list *map) 146 { 147 spin_lock(&rc_map_lock); 148 list_del(&map->list); 149 spin_unlock(&rc_map_lock); 150 } 151 EXPORT_SYMBOL_GPL(rc_map_unregister); 152 153 154 static struct rc_map_table empty[] = { 155 { 0x2a, KEY_COFFEE }, 156 }; 157 158 static struct rc_map_list empty_map = { 159 .map = { 160 .scan = empty, 161 .size = ARRAY_SIZE(empty), 162 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ 163 .name = RC_MAP_EMPTY, 164 } 165 }; 166 167 /** 168 * ir_create_table() - initializes a scancode table 169 * @rc_map: the rc_map to initialize 170 * @name: name to assign to the table 171 * @rc_proto: ir type to assign to the new table 172 * @size: initial size of the table 173 * @return: zero on success or a negative error code 174 * 175 * This routine will initialize the rc_map and will allocate 176 * memory to hold at least the specified number of elements. 177 */ 178 static int ir_create_table(struct rc_map *rc_map, 179 const char *name, u64 rc_proto, size_t size) 180 { 181 rc_map->name = kstrdup(name, GFP_KERNEL); 182 if (!rc_map->name) 183 return -ENOMEM; 184 rc_map->rc_proto = rc_proto; 185 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 186 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 187 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 188 if (!rc_map->scan) { 189 kfree(rc_map->name); 190 rc_map->name = NULL; 191 return -ENOMEM; 192 } 193 194 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 195 rc_map->size, rc_map->alloc); 196 return 0; 197 } 198 199 /** 200 * ir_free_table() - frees memory allocated by a scancode table 201 * @rc_map: the table whose mappings need to be freed 202 * 203 * This routine will free memory alloctaed for key mappings used by given 204 * scancode table. 205 */ 206 static void ir_free_table(struct rc_map *rc_map) 207 { 208 rc_map->size = 0; 209 kfree(rc_map->name); 210 rc_map->name = NULL; 211 kfree(rc_map->scan); 212 rc_map->scan = NULL; 213 } 214 215 /** 216 * ir_resize_table() - resizes a scancode table if necessary 217 * @rc_map: the rc_map to resize 218 * @gfp_flags: gfp flags to use when allocating memory 219 * @return: zero on success or a negative error code 220 * 221 * This routine will shrink the rc_map if it has lots of 222 * unused entries and grow it if it is full. 223 */ 224 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 225 { 226 unsigned int oldalloc = rc_map->alloc; 227 unsigned int newalloc = oldalloc; 228 struct rc_map_table *oldscan = rc_map->scan; 229 struct rc_map_table *newscan; 230 231 if (rc_map->size == rc_map->len) { 232 /* All entries in use -> grow keytable */ 233 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 234 return -ENOMEM; 235 236 newalloc *= 2; 237 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 238 } 239 240 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 241 /* Less than 1/3 of entries in use -> shrink keytable */ 242 newalloc /= 2; 243 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 244 } 245 246 if (newalloc == oldalloc) 247 return 0; 248 249 newscan = kmalloc(newalloc, gfp_flags); 250 if (!newscan) { 251 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 252 return -ENOMEM; 253 } 254 255 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 256 rc_map->scan = newscan; 257 rc_map->alloc = newalloc; 258 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 259 kfree(oldscan); 260 return 0; 261 } 262 263 /** 264 * ir_update_mapping() - set a keycode in the scancode->keycode table 265 * @dev: the struct rc_dev device descriptor 266 * @rc_map: scancode table to be adjusted 267 * @index: index of the mapping that needs to be updated 268 * @keycode: the desired keycode 269 * @return: previous keycode assigned to the mapping 270 * 271 * This routine is used to update scancode->keycode mapping at given 272 * position. 273 */ 274 static unsigned int ir_update_mapping(struct rc_dev *dev, 275 struct rc_map *rc_map, 276 unsigned int index, 277 unsigned int new_keycode) 278 { 279 int old_keycode = rc_map->scan[index].keycode; 280 int i; 281 282 /* Did the user wish to remove the mapping? */ 283 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 284 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 285 index, rc_map->scan[index].scancode); 286 rc_map->len--; 287 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 288 (rc_map->len - index) * sizeof(struct rc_map_table)); 289 } else { 290 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 291 index, 292 old_keycode == KEY_RESERVED ? "New" : "Replacing", 293 rc_map->scan[index].scancode, new_keycode); 294 rc_map->scan[index].keycode = new_keycode; 295 __set_bit(new_keycode, dev->input_dev->keybit); 296 } 297 298 if (old_keycode != KEY_RESERVED) { 299 /* A previous mapping was updated... */ 300 __clear_bit(old_keycode, dev->input_dev->keybit); 301 /* ... but another scancode might use the same keycode */ 302 for (i = 0; i < rc_map->len; i++) { 303 if (rc_map->scan[i].keycode == old_keycode) { 304 __set_bit(old_keycode, dev->input_dev->keybit); 305 break; 306 } 307 } 308 309 /* Possibly shrink the keytable, failure is not a problem */ 310 ir_resize_table(rc_map, GFP_ATOMIC); 311 } 312 313 return old_keycode; 314 } 315 316 /** 317 * ir_establish_scancode() - set a keycode in the scancode->keycode table 318 * @dev: the struct rc_dev device descriptor 319 * @rc_map: scancode table to be searched 320 * @scancode: the desired scancode 321 * @resize: controls whether we allowed to resize the table to 322 * accommodate not yet present scancodes 323 * @return: index of the mapping containing scancode in question 324 * or -1U in case of failure. 325 * 326 * This routine is used to locate given scancode in rc_map. 327 * If scancode is not yet present the routine will allocate a new slot 328 * for it. 329 */ 330 static unsigned int ir_establish_scancode(struct rc_dev *dev, 331 struct rc_map *rc_map, 332 unsigned int scancode, 333 bool resize) 334 { 335 unsigned int i; 336 337 /* 338 * Unfortunately, some hardware-based IR decoders don't provide 339 * all bits for the complete IR code. In general, they provide only 340 * the command part of the IR code. Yet, as it is possible to replace 341 * the provided IR with another one, it is needed to allow loading 342 * IR tables from other remotes. So, we support specifying a mask to 343 * indicate the valid bits of the scancodes. 344 */ 345 if (dev->scancode_mask) 346 scancode &= dev->scancode_mask; 347 348 /* First check if we already have a mapping for this ir command */ 349 for (i = 0; i < rc_map->len; i++) { 350 if (rc_map->scan[i].scancode == scancode) 351 return i; 352 353 /* Keytable is sorted from lowest to highest scancode */ 354 if (rc_map->scan[i].scancode >= scancode) 355 break; 356 } 357 358 /* No previous mapping found, we might need to grow the table */ 359 if (rc_map->size == rc_map->len) { 360 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 361 return -1U; 362 } 363 364 /* i is the proper index to insert our new keycode */ 365 if (i < rc_map->len) 366 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 367 (rc_map->len - i) * sizeof(struct rc_map_table)); 368 rc_map->scan[i].scancode = scancode; 369 rc_map->scan[i].keycode = KEY_RESERVED; 370 rc_map->len++; 371 372 return i; 373 } 374 375 /** 376 * ir_setkeycode() - set a keycode in the scancode->keycode table 377 * @idev: the struct input_dev device descriptor 378 * @scancode: the desired scancode 379 * @keycode: result 380 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 381 * 382 * This routine is used to handle evdev EVIOCSKEY ioctl. 383 */ 384 static int ir_setkeycode(struct input_dev *idev, 385 const struct input_keymap_entry *ke, 386 unsigned int *old_keycode) 387 { 388 struct rc_dev *rdev = input_get_drvdata(idev); 389 struct rc_map *rc_map = &rdev->rc_map; 390 unsigned int index; 391 unsigned int scancode; 392 int retval = 0; 393 unsigned long flags; 394 395 spin_lock_irqsave(&rc_map->lock, flags); 396 397 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 398 index = ke->index; 399 if (index >= rc_map->len) { 400 retval = -EINVAL; 401 goto out; 402 } 403 } else { 404 retval = input_scancode_to_scalar(ke, &scancode); 405 if (retval) 406 goto out; 407 408 index = ir_establish_scancode(rdev, rc_map, scancode, true); 409 if (index >= rc_map->len) { 410 retval = -ENOMEM; 411 goto out; 412 } 413 } 414 415 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 416 417 out: 418 spin_unlock_irqrestore(&rc_map->lock, flags); 419 return retval; 420 } 421 422 /** 423 * ir_setkeytable() - sets several entries in the scancode->keycode table 424 * @dev: the struct rc_dev device descriptor 425 * @to: the struct rc_map to copy entries to 426 * @from: the struct rc_map to copy entries from 427 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 428 * 429 * This routine is used to handle table initialization. 430 */ 431 static int ir_setkeytable(struct rc_dev *dev, 432 const struct rc_map *from) 433 { 434 struct rc_map *rc_map = &dev->rc_map; 435 unsigned int i, index; 436 int rc; 437 438 rc = ir_create_table(rc_map, from->name, 439 from->rc_proto, from->size); 440 if (rc) 441 return rc; 442 443 for (i = 0; i < from->size; i++) { 444 index = ir_establish_scancode(dev, rc_map, 445 from->scan[i].scancode, false); 446 if (index >= rc_map->len) { 447 rc = -ENOMEM; 448 break; 449 } 450 451 ir_update_mapping(dev, rc_map, index, 452 from->scan[i].keycode); 453 } 454 455 if (rc) 456 ir_free_table(rc_map); 457 458 return rc; 459 } 460 461 static int rc_map_cmp(const void *key, const void *elt) 462 { 463 const unsigned int *scancode = key; 464 const struct rc_map_table *e = elt; 465 466 if (*scancode < e->scancode) 467 return -1; 468 else if (*scancode > e->scancode) 469 return 1; 470 return 0; 471 } 472 473 /** 474 * ir_lookup_by_scancode() - locate mapping by scancode 475 * @rc_map: the struct rc_map to search 476 * @scancode: scancode to look for in the table 477 * @return: index in the table, -1U if not found 478 * 479 * This routine performs binary search in RC keykeymap table for 480 * given scancode. 481 */ 482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 483 unsigned int scancode) 484 { 485 struct rc_map_table *res; 486 487 res = bsearch(&scancode, rc_map->scan, rc_map->len, 488 sizeof(struct rc_map_table), rc_map_cmp); 489 if (!res) 490 return -1U; 491 else 492 return res - rc_map->scan; 493 } 494 495 /** 496 * ir_getkeycode() - get a keycode from the scancode->keycode table 497 * @idev: the struct input_dev device descriptor 498 * @scancode: the desired scancode 499 * @keycode: used to return the keycode, if found, or KEY_RESERVED 500 * @return: always returns zero. 501 * 502 * This routine is used to handle evdev EVIOCGKEY ioctl. 503 */ 504 static int ir_getkeycode(struct input_dev *idev, 505 struct input_keymap_entry *ke) 506 { 507 struct rc_dev *rdev = input_get_drvdata(idev); 508 struct rc_map *rc_map = &rdev->rc_map; 509 struct rc_map_table *entry; 510 unsigned long flags; 511 unsigned int index; 512 unsigned int scancode; 513 int retval; 514 515 spin_lock_irqsave(&rc_map->lock, flags); 516 517 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 518 index = ke->index; 519 } else { 520 retval = input_scancode_to_scalar(ke, &scancode); 521 if (retval) 522 goto out; 523 524 index = ir_lookup_by_scancode(rc_map, scancode); 525 } 526 527 if (index < rc_map->len) { 528 entry = &rc_map->scan[index]; 529 530 ke->index = index; 531 ke->keycode = entry->keycode; 532 ke->len = sizeof(entry->scancode); 533 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 534 535 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 536 /* 537 * We do not really know the valid range of scancodes 538 * so let's respond with KEY_RESERVED to anything we 539 * do not have mapping for [yet]. 540 */ 541 ke->index = index; 542 ke->keycode = KEY_RESERVED; 543 } else { 544 retval = -EINVAL; 545 goto out; 546 } 547 548 retval = 0; 549 550 out: 551 spin_unlock_irqrestore(&rc_map->lock, flags); 552 return retval; 553 } 554 555 /** 556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 557 * @dev: the struct rc_dev descriptor of the device 558 * @scancode: the scancode to look for 559 * @return: the corresponding keycode, or KEY_RESERVED 560 * 561 * This routine is used by drivers which need to convert a scancode to a 562 * keycode. Normally it should not be used since drivers should have no 563 * interest in keycodes. 564 */ 565 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 566 { 567 struct rc_map *rc_map = &dev->rc_map; 568 unsigned int keycode; 569 unsigned int index; 570 unsigned long flags; 571 572 spin_lock_irqsave(&rc_map->lock, flags); 573 574 index = ir_lookup_by_scancode(rc_map, scancode); 575 keycode = index < rc_map->len ? 576 rc_map->scan[index].keycode : KEY_RESERVED; 577 578 spin_unlock_irqrestore(&rc_map->lock, flags); 579 580 if (keycode != KEY_RESERVED) 581 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 582 dev->device_name, scancode, keycode); 583 584 return keycode; 585 } 586 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 587 588 /** 589 * ir_do_keyup() - internal function to signal the release of a keypress 590 * @dev: the struct rc_dev descriptor of the device 591 * @sync: whether or not to call input_sync 592 * 593 * This function is used internally to release a keypress, it must be 594 * called with keylock held. 595 */ 596 static void ir_do_keyup(struct rc_dev *dev, bool sync) 597 { 598 if (!dev->keypressed) 599 return; 600 601 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 602 input_report_key(dev->input_dev, dev->last_keycode, 0); 603 led_trigger_event(led_feedback, LED_OFF); 604 if (sync) 605 input_sync(dev->input_dev); 606 dev->keypressed = false; 607 } 608 609 /** 610 * rc_keyup() - signals the release of a keypress 611 * @dev: the struct rc_dev descriptor of the device 612 * 613 * This routine is used to signal that a key has been released on the 614 * remote control. 615 */ 616 void rc_keyup(struct rc_dev *dev) 617 { 618 unsigned long flags; 619 620 spin_lock_irqsave(&dev->keylock, flags); 621 ir_do_keyup(dev, true); 622 spin_unlock_irqrestore(&dev->keylock, flags); 623 } 624 EXPORT_SYMBOL_GPL(rc_keyup); 625 626 /** 627 * ir_timer_keyup() - generates a keyup event after a timeout 628 * @cookie: a pointer to the struct rc_dev for the device 629 * 630 * This routine will generate a keyup event some time after a keydown event 631 * is generated when no further activity has been detected. 632 */ 633 static void ir_timer_keyup(struct timer_list *t) 634 { 635 struct rc_dev *dev = from_timer(dev, t, timer_keyup); 636 unsigned long flags; 637 638 /* 639 * ir->keyup_jiffies is used to prevent a race condition if a 640 * hardware interrupt occurs at this point and the keyup timer 641 * event is moved further into the future as a result. 642 * 643 * The timer will then be reactivated and this function called 644 * again in the future. We need to exit gracefully in that case 645 * to allow the input subsystem to do its auto-repeat magic or 646 * a keyup event might follow immediately after the keydown. 647 */ 648 spin_lock_irqsave(&dev->keylock, flags); 649 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 650 ir_do_keyup(dev, true); 651 spin_unlock_irqrestore(&dev->keylock, flags); 652 } 653 654 /** 655 * rc_repeat() - signals that a key is still pressed 656 * @dev: the struct rc_dev descriptor of the device 657 * 658 * This routine is used by IR decoders when a repeat message which does 659 * not include the necessary bits to reproduce the scancode has been 660 * received. 661 */ 662 void rc_repeat(struct rc_dev *dev) 663 { 664 unsigned long flags; 665 unsigned int timeout = protocols[dev->last_protocol].repeat_period; 666 667 spin_lock_irqsave(&dev->keylock, flags); 668 669 if (!dev->keypressed) 670 goto out; 671 672 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 673 input_sync(dev->input_dev); 674 675 dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout); 676 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 677 678 out: 679 spin_unlock_irqrestore(&dev->keylock, flags); 680 } 681 EXPORT_SYMBOL_GPL(rc_repeat); 682 683 /** 684 * ir_do_keydown() - internal function to process a keypress 685 * @dev: the struct rc_dev descriptor of the device 686 * @protocol: the protocol of the keypress 687 * @scancode: the scancode of the keypress 688 * @keycode: the keycode of the keypress 689 * @toggle: the toggle value of the keypress 690 * 691 * This function is used internally to register a keypress, it must be 692 * called with keylock held. 693 */ 694 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, 695 u32 scancode, u32 keycode, u8 toggle) 696 { 697 bool new_event = (!dev->keypressed || 698 dev->last_protocol != protocol || 699 dev->last_scancode != scancode || 700 dev->last_toggle != toggle); 701 702 if (new_event && dev->keypressed) 703 ir_do_keyup(dev, false); 704 705 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 706 707 if (new_event && keycode != KEY_RESERVED) { 708 /* Register a keypress */ 709 dev->keypressed = true; 710 dev->last_protocol = protocol; 711 dev->last_scancode = scancode; 712 dev->last_toggle = toggle; 713 dev->last_keycode = keycode; 714 715 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 716 dev->device_name, keycode, protocol, scancode); 717 input_report_key(dev->input_dev, keycode, 1); 718 719 led_trigger_event(led_feedback, LED_FULL); 720 } 721 722 input_sync(dev->input_dev); 723 } 724 725 /** 726 * rc_keydown() - generates input event for a key press 727 * @dev: the struct rc_dev descriptor of the device 728 * @protocol: the protocol for the keypress 729 * @scancode: the scancode for the keypress 730 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 731 * support toggle values, this should be set to zero) 732 * 733 * This routine is used to signal that a key has been pressed on the 734 * remote control. 735 */ 736 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, 737 u8 toggle) 738 { 739 unsigned long flags; 740 u32 keycode = rc_g_keycode_from_table(dev, scancode); 741 742 spin_lock_irqsave(&dev->keylock, flags); 743 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 744 745 if (dev->keypressed) { 746 dev->keyup_jiffies = jiffies + 747 msecs_to_jiffies(protocols[protocol].repeat_period); 748 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 749 } 750 spin_unlock_irqrestore(&dev->keylock, flags); 751 } 752 EXPORT_SYMBOL_GPL(rc_keydown); 753 754 /** 755 * rc_keydown_notimeout() - generates input event for a key press without 756 * an automatic keyup event at a later time 757 * @dev: the struct rc_dev descriptor of the device 758 * @protocol: the protocol for the keypress 759 * @scancode: the scancode for the keypress 760 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 761 * support toggle values, this should be set to zero) 762 * 763 * This routine is used to signal that a key has been pressed on the 764 * remote control. The driver must manually call rc_keyup() at a later stage. 765 */ 766 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, 767 u32 scancode, u8 toggle) 768 { 769 unsigned long flags; 770 u32 keycode = rc_g_keycode_from_table(dev, scancode); 771 772 spin_lock_irqsave(&dev->keylock, flags); 773 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 774 spin_unlock_irqrestore(&dev->keylock, flags); 775 } 776 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 777 778 /** 779 * rc_validate_filter() - checks that the scancode and mask are valid and 780 * provides sensible defaults 781 * @dev: the struct rc_dev descriptor of the device 782 * @filter: the scancode and mask 783 * @return: 0 or -EINVAL if the filter is not valid 784 */ 785 static int rc_validate_filter(struct rc_dev *dev, 786 struct rc_scancode_filter *filter) 787 { 788 u32 mask, s = filter->data; 789 enum rc_proto protocol = dev->wakeup_protocol; 790 791 if (protocol >= ARRAY_SIZE(protocols)) 792 return -EINVAL; 793 794 mask = protocols[protocol].scancode_bits; 795 796 switch (protocol) { 797 case RC_PROTO_NECX: 798 if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0) 799 return -EINVAL; 800 break; 801 case RC_PROTO_NEC32: 802 if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0) 803 return -EINVAL; 804 break; 805 case RC_PROTO_RC6_MCE: 806 if ((s & 0xffff0000) != 0x800f0000) 807 return -EINVAL; 808 break; 809 case RC_PROTO_RC6_6A_32: 810 if ((s & 0xffff0000) == 0x800f0000) 811 return -EINVAL; 812 break; 813 default: 814 break; 815 } 816 817 filter->data &= mask; 818 filter->mask &= mask; 819 820 /* 821 * If we have to raw encode the IR for wakeup, we cannot have a mask 822 */ 823 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) 824 return -EINVAL; 825 826 return 0; 827 } 828 829 int rc_open(struct rc_dev *rdev) 830 { 831 int rval = 0; 832 833 if (!rdev) 834 return -EINVAL; 835 836 mutex_lock(&rdev->lock); 837 838 if (!rdev->users++ && rdev->open != NULL) 839 rval = rdev->open(rdev); 840 841 if (rval) 842 rdev->users--; 843 844 mutex_unlock(&rdev->lock); 845 846 return rval; 847 } 848 EXPORT_SYMBOL_GPL(rc_open); 849 850 static int ir_open(struct input_dev *idev) 851 { 852 struct rc_dev *rdev = input_get_drvdata(idev); 853 854 return rc_open(rdev); 855 } 856 857 void rc_close(struct rc_dev *rdev) 858 { 859 if (rdev) { 860 mutex_lock(&rdev->lock); 861 862 if (!--rdev->users && rdev->close != NULL) 863 rdev->close(rdev); 864 865 mutex_unlock(&rdev->lock); 866 } 867 } 868 EXPORT_SYMBOL_GPL(rc_close); 869 870 static void ir_close(struct input_dev *idev) 871 { 872 struct rc_dev *rdev = input_get_drvdata(idev); 873 rc_close(rdev); 874 } 875 876 /* class for /sys/class/rc */ 877 static char *rc_devnode(struct device *dev, umode_t *mode) 878 { 879 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 880 } 881 882 static struct class rc_class = { 883 .name = "rc", 884 .devnode = rc_devnode, 885 }; 886 887 /* 888 * These are the protocol textual descriptions that are 889 * used by the sysfs protocols file. Note that the order 890 * of the entries is relevant. 891 */ 892 static const struct { 893 u64 type; 894 const char *name; 895 const char *module_name; 896 } proto_names[] = { 897 { RC_PROTO_BIT_NONE, "none", NULL }, 898 { RC_PROTO_BIT_OTHER, "other", NULL }, 899 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, 900 { RC_PROTO_BIT_RC5 | 901 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, 902 { RC_PROTO_BIT_NEC | 903 RC_PROTO_BIT_NECX | 904 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, 905 { RC_PROTO_BIT_RC6_0 | 906 RC_PROTO_BIT_RC6_6A_20 | 907 RC_PROTO_BIT_RC6_6A_24 | 908 RC_PROTO_BIT_RC6_6A_32 | 909 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 910 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, 911 { RC_PROTO_BIT_SONY12 | 912 RC_PROTO_BIT_SONY15 | 913 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, 914 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 915 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 916 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 917 { RC_PROTO_BIT_MCIR2_KBD | 918 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, 919 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, 920 { RC_PROTO_BIT_CEC, "cec", NULL }, 921 }; 922 923 /** 924 * struct rc_filter_attribute - Device attribute relating to a filter type. 925 * @attr: Device attribute. 926 * @type: Filter type. 927 * @mask: false for filter value, true for filter mask. 928 */ 929 struct rc_filter_attribute { 930 struct device_attribute attr; 931 enum rc_filter_type type; 932 bool mask; 933 }; 934 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 935 936 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 937 struct rc_filter_attribute dev_attr_##_name = { \ 938 .attr = __ATTR(_name, _mode, _show, _store), \ 939 .type = (_type), \ 940 .mask = (_mask), \ 941 } 942 943 static bool lirc_is_present(void) 944 { 945 #if defined(CONFIG_LIRC_MODULE) 946 struct module *lirc; 947 948 mutex_lock(&module_mutex); 949 lirc = find_module("lirc_dev"); 950 mutex_unlock(&module_mutex); 951 952 return lirc ? true : false; 953 #elif defined(CONFIG_LIRC) 954 return true; 955 #else 956 return false; 957 #endif 958 } 959 960 /** 961 * show_protocols() - shows the current IR protocol(s) 962 * @device: the device descriptor 963 * @mattr: the device attribute struct 964 * @buf: a pointer to the output buffer 965 * 966 * This routine is a callback routine for input read the IR protocol type(s). 967 * it is trigged by reading /sys/class/rc/rc?/protocols. 968 * It returns the protocol names of supported protocols. 969 * Enabled protocols are printed in brackets. 970 * 971 * dev->lock is taken to guard against races between 972 * store_protocols and show_protocols. 973 */ 974 static ssize_t show_protocols(struct device *device, 975 struct device_attribute *mattr, char *buf) 976 { 977 struct rc_dev *dev = to_rc_dev(device); 978 u64 allowed, enabled; 979 char *tmp = buf; 980 int i; 981 982 mutex_lock(&dev->lock); 983 984 enabled = dev->enabled_protocols; 985 allowed = dev->allowed_protocols; 986 if (dev->raw && !allowed) 987 allowed = ir_raw_get_allowed_protocols(); 988 989 mutex_unlock(&dev->lock); 990 991 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 992 __func__, (long long)allowed, (long long)enabled); 993 994 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 995 if (allowed & enabled & proto_names[i].type) 996 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 997 else if (allowed & proto_names[i].type) 998 tmp += sprintf(tmp, "%s ", proto_names[i].name); 999 1000 if (allowed & proto_names[i].type) 1001 allowed &= ~proto_names[i].type; 1002 } 1003 1004 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present()) 1005 tmp += sprintf(tmp, "[lirc] "); 1006 1007 if (tmp != buf) 1008 tmp--; 1009 *tmp = '\n'; 1010 1011 return tmp + 1 - buf; 1012 } 1013 1014 /** 1015 * parse_protocol_change() - parses a protocol change request 1016 * @protocols: pointer to the bitmask of current protocols 1017 * @buf: pointer to the buffer with a list of changes 1018 * 1019 * Writing "+proto" will add a protocol to the protocol mask. 1020 * Writing "-proto" will remove a protocol from protocol mask. 1021 * Writing "proto" will enable only "proto". 1022 * Writing "none" will disable all protocols. 1023 * Returns the number of changes performed or a negative error code. 1024 */ 1025 static int parse_protocol_change(u64 *protocols, const char *buf) 1026 { 1027 const char *tmp; 1028 unsigned count = 0; 1029 bool enable, disable; 1030 u64 mask; 1031 int i; 1032 1033 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 1034 if (!*tmp) 1035 break; 1036 1037 if (*tmp == '+') { 1038 enable = true; 1039 disable = false; 1040 tmp++; 1041 } else if (*tmp == '-') { 1042 enable = false; 1043 disable = true; 1044 tmp++; 1045 } else { 1046 enable = false; 1047 disable = false; 1048 } 1049 1050 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1051 if (!strcasecmp(tmp, proto_names[i].name)) { 1052 mask = proto_names[i].type; 1053 break; 1054 } 1055 } 1056 1057 if (i == ARRAY_SIZE(proto_names)) { 1058 if (!strcasecmp(tmp, "lirc")) 1059 mask = 0; 1060 else { 1061 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 1062 return -EINVAL; 1063 } 1064 } 1065 1066 count++; 1067 1068 if (enable) 1069 *protocols |= mask; 1070 else if (disable) 1071 *protocols &= ~mask; 1072 else 1073 *protocols = mask; 1074 } 1075 1076 if (!count) { 1077 IR_dprintk(1, "Protocol not specified\n"); 1078 return -EINVAL; 1079 } 1080 1081 return count; 1082 } 1083 1084 static void ir_raw_load_modules(u64 *protocols) 1085 { 1086 u64 available; 1087 int i, ret; 1088 1089 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1090 if (proto_names[i].type == RC_PROTO_BIT_NONE || 1091 proto_names[i].type & (RC_PROTO_BIT_OTHER | 1092 RC_PROTO_BIT_UNKNOWN)) 1093 continue; 1094 1095 available = ir_raw_get_allowed_protocols(); 1096 if (!(*protocols & proto_names[i].type & ~available)) 1097 continue; 1098 1099 if (!proto_names[i].module_name) { 1100 pr_err("Can't enable IR protocol %s\n", 1101 proto_names[i].name); 1102 *protocols &= ~proto_names[i].type; 1103 continue; 1104 } 1105 1106 ret = request_module("%s", proto_names[i].module_name); 1107 if (ret < 0) { 1108 pr_err("Couldn't load IR protocol module %s\n", 1109 proto_names[i].module_name); 1110 *protocols &= ~proto_names[i].type; 1111 continue; 1112 } 1113 msleep(20); 1114 available = ir_raw_get_allowed_protocols(); 1115 if (!(*protocols & proto_names[i].type & ~available)) 1116 continue; 1117 1118 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", 1119 proto_names[i].module_name, 1120 proto_names[i].name); 1121 *protocols &= ~proto_names[i].type; 1122 } 1123 } 1124 1125 /** 1126 * store_protocols() - changes the current/wakeup IR protocol(s) 1127 * @device: the device descriptor 1128 * @mattr: the device attribute struct 1129 * @buf: a pointer to the input buffer 1130 * @len: length of the input buffer 1131 * 1132 * This routine is for changing the IR protocol type. 1133 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1134 * See parse_protocol_change() for the valid commands. 1135 * Returns @len on success or a negative error code. 1136 * 1137 * dev->lock is taken to guard against races between 1138 * store_protocols and show_protocols. 1139 */ 1140 static ssize_t store_protocols(struct device *device, 1141 struct device_attribute *mattr, 1142 const char *buf, size_t len) 1143 { 1144 struct rc_dev *dev = to_rc_dev(device); 1145 u64 *current_protocols; 1146 struct rc_scancode_filter *filter; 1147 u64 old_protocols, new_protocols; 1148 ssize_t rc; 1149 1150 IR_dprintk(1, "Normal protocol change requested\n"); 1151 current_protocols = &dev->enabled_protocols; 1152 filter = &dev->scancode_filter; 1153 1154 if (!dev->change_protocol) { 1155 IR_dprintk(1, "Protocol switching not supported\n"); 1156 return -EINVAL; 1157 } 1158 1159 mutex_lock(&dev->lock); 1160 1161 old_protocols = *current_protocols; 1162 new_protocols = old_protocols; 1163 rc = parse_protocol_change(&new_protocols, buf); 1164 if (rc < 0) 1165 goto out; 1166 1167 rc = dev->change_protocol(dev, &new_protocols); 1168 if (rc < 0) { 1169 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 1170 (long long)new_protocols); 1171 goto out; 1172 } 1173 1174 if (dev->driver_type == RC_DRIVER_IR_RAW) 1175 ir_raw_load_modules(&new_protocols); 1176 1177 if (new_protocols != old_protocols) { 1178 *current_protocols = new_protocols; 1179 IR_dprintk(1, "Protocols changed to 0x%llx\n", 1180 (long long)new_protocols); 1181 } 1182 1183 /* 1184 * If a protocol change was attempted the filter may need updating, even 1185 * if the actual protocol mask hasn't changed (since the driver may have 1186 * cleared the filter). 1187 * Try setting the same filter with the new protocol (if any). 1188 * Fall back to clearing the filter. 1189 */ 1190 if (dev->s_filter && filter->mask) { 1191 if (new_protocols) 1192 rc = dev->s_filter(dev, filter); 1193 else 1194 rc = -1; 1195 1196 if (rc < 0) { 1197 filter->data = 0; 1198 filter->mask = 0; 1199 dev->s_filter(dev, filter); 1200 } 1201 } 1202 1203 rc = len; 1204 1205 out: 1206 mutex_unlock(&dev->lock); 1207 return rc; 1208 } 1209 1210 /** 1211 * show_filter() - shows the current scancode filter value or mask 1212 * @device: the device descriptor 1213 * @attr: the device attribute struct 1214 * @buf: a pointer to the output buffer 1215 * 1216 * This routine is a callback routine to read a scancode filter value or mask. 1217 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1218 * It prints the current scancode filter value or mask of the appropriate filter 1219 * type in hexadecimal into @buf and returns the size of the buffer. 1220 * 1221 * Bits of the filter value corresponding to set bits in the filter mask are 1222 * compared against input scancodes and non-matching scancodes are discarded. 1223 * 1224 * dev->lock is taken to guard against races between 1225 * store_filter and show_filter. 1226 */ 1227 static ssize_t show_filter(struct device *device, 1228 struct device_attribute *attr, 1229 char *buf) 1230 { 1231 struct rc_dev *dev = to_rc_dev(device); 1232 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1233 struct rc_scancode_filter *filter; 1234 u32 val; 1235 1236 mutex_lock(&dev->lock); 1237 1238 if (fattr->type == RC_FILTER_NORMAL) 1239 filter = &dev->scancode_filter; 1240 else 1241 filter = &dev->scancode_wakeup_filter; 1242 1243 if (fattr->mask) 1244 val = filter->mask; 1245 else 1246 val = filter->data; 1247 mutex_unlock(&dev->lock); 1248 1249 return sprintf(buf, "%#x\n", val); 1250 } 1251 1252 /** 1253 * store_filter() - changes the scancode filter value 1254 * @device: the device descriptor 1255 * @attr: the device attribute struct 1256 * @buf: a pointer to the input buffer 1257 * @len: length of the input buffer 1258 * 1259 * This routine is for changing a scancode filter value or mask. 1260 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1261 * Returns -EINVAL if an invalid filter value for the current protocol was 1262 * specified or if scancode filtering is not supported by the driver, otherwise 1263 * returns @len. 1264 * 1265 * Bits of the filter value corresponding to set bits in the filter mask are 1266 * compared against input scancodes and non-matching scancodes are discarded. 1267 * 1268 * dev->lock is taken to guard against races between 1269 * store_filter and show_filter. 1270 */ 1271 static ssize_t store_filter(struct device *device, 1272 struct device_attribute *attr, 1273 const char *buf, size_t len) 1274 { 1275 struct rc_dev *dev = to_rc_dev(device); 1276 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1277 struct rc_scancode_filter new_filter, *filter; 1278 int ret; 1279 unsigned long val; 1280 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1281 1282 ret = kstrtoul(buf, 0, &val); 1283 if (ret < 0) 1284 return ret; 1285 1286 if (fattr->type == RC_FILTER_NORMAL) { 1287 set_filter = dev->s_filter; 1288 filter = &dev->scancode_filter; 1289 } else { 1290 set_filter = dev->s_wakeup_filter; 1291 filter = &dev->scancode_wakeup_filter; 1292 } 1293 1294 if (!set_filter) 1295 return -EINVAL; 1296 1297 mutex_lock(&dev->lock); 1298 1299 new_filter = *filter; 1300 if (fattr->mask) 1301 new_filter.mask = val; 1302 else 1303 new_filter.data = val; 1304 1305 if (fattr->type == RC_FILTER_WAKEUP) { 1306 /* 1307 * Refuse to set a filter unless a protocol is enabled 1308 * and the filter is valid for that protocol 1309 */ 1310 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) 1311 ret = rc_validate_filter(dev, &new_filter); 1312 else 1313 ret = -EINVAL; 1314 1315 if (ret != 0) 1316 goto unlock; 1317 } 1318 1319 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && 1320 val) { 1321 /* refuse to set a filter unless a protocol is enabled */ 1322 ret = -EINVAL; 1323 goto unlock; 1324 } 1325 1326 ret = set_filter(dev, &new_filter); 1327 if (ret < 0) 1328 goto unlock; 1329 1330 *filter = new_filter; 1331 1332 unlock: 1333 mutex_unlock(&dev->lock); 1334 return (ret < 0) ? ret : len; 1335 } 1336 1337 /** 1338 * show_wakeup_protocols() - shows the wakeup IR protocol 1339 * @device: the device descriptor 1340 * @mattr: the device attribute struct 1341 * @buf: a pointer to the output buffer 1342 * 1343 * This routine is a callback routine for input read the IR protocol type(s). 1344 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols. 1345 * It returns the protocol names of supported protocols. 1346 * The enabled protocols are printed in brackets. 1347 * 1348 * dev->lock is taken to guard against races between 1349 * store_wakeup_protocols and show_wakeup_protocols. 1350 */ 1351 static ssize_t show_wakeup_protocols(struct device *device, 1352 struct device_attribute *mattr, 1353 char *buf) 1354 { 1355 struct rc_dev *dev = to_rc_dev(device); 1356 u64 allowed; 1357 enum rc_proto enabled; 1358 char *tmp = buf; 1359 int i; 1360 1361 mutex_lock(&dev->lock); 1362 1363 allowed = dev->allowed_wakeup_protocols; 1364 enabled = dev->wakeup_protocol; 1365 1366 mutex_unlock(&dev->lock); 1367 1368 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n", 1369 __func__, (long long)allowed, enabled); 1370 1371 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1372 if (allowed & (1ULL << i)) { 1373 if (i == enabled) 1374 tmp += sprintf(tmp, "[%s] ", protocols[i].name); 1375 else 1376 tmp += sprintf(tmp, "%s ", protocols[i].name); 1377 } 1378 } 1379 1380 if (tmp != buf) 1381 tmp--; 1382 *tmp = '\n'; 1383 1384 return tmp + 1 - buf; 1385 } 1386 1387 /** 1388 * store_wakeup_protocols() - changes the wakeup IR protocol(s) 1389 * @device: the device descriptor 1390 * @mattr: the device attribute struct 1391 * @buf: a pointer to the input buffer 1392 * @len: length of the input buffer 1393 * 1394 * This routine is for changing the IR protocol type. 1395 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols. 1396 * Returns @len on success or a negative error code. 1397 * 1398 * dev->lock is taken to guard against races between 1399 * store_wakeup_protocols and show_wakeup_protocols. 1400 */ 1401 static ssize_t store_wakeup_protocols(struct device *device, 1402 struct device_attribute *mattr, 1403 const char *buf, size_t len) 1404 { 1405 struct rc_dev *dev = to_rc_dev(device); 1406 enum rc_proto protocol; 1407 ssize_t rc; 1408 u64 allowed; 1409 int i; 1410 1411 mutex_lock(&dev->lock); 1412 1413 allowed = dev->allowed_wakeup_protocols; 1414 1415 if (sysfs_streq(buf, "none")) { 1416 protocol = RC_PROTO_UNKNOWN; 1417 } else { 1418 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1419 if ((allowed & (1ULL << i)) && 1420 sysfs_streq(buf, protocols[i].name)) { 1421 protocol = i; 1422 break; 1423 } 1424 } 1425 1426 if (i == ARRAY_SIZE(protocols)) { 1427 rc = -EINVAL; 1428 goto out; 1429 } 1430 1431 if (dev->encode_wakeup) { 1432 u64 mask = 1ULL << protocol; 1433 1434 ir_raw_load_modules(&mask); 1435 if (!mask) { 1436 rc = -EINVAL; 1437 goto out; 1438 } 1439 } 1440 } 1441 1442 if (dev->wakeup_protocol != protocol) { 1443 dev->wakeup_protocol = protocol; 1444 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol); 1445 1446 if (protocol == RC_PROTO_RC6_MCE) 1447 dev->scancode_wakeup_filter.data = 0x800f0000; 1448 else 1449 dev->scancode_wakeup_filter.data = 0; 1450 dev->scancode_wakeup_filter.mask = 0; 1451 1452 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); 1453 if (rc == 0) 1454 rc = len; 1455 } else { 1456 rc = len; 1457 } 1458 1459 out: 1460 mutex_unlock(&dev->lock); 1461 return rc; 1462 } 1463 1464 static void rc_dev_release(struct device *device) 1465 { 1466 struct rc_dev *dev = to_rc_dev(device); 1467 1468 kfree(dev); 1469 } 1470 1471 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1472 do { \ 1473 int err = add_uevent_var(env, fmt, val); \ 1474 if (err) \ 1475 return err; \ 1476 } while (0) 1477 1478 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1479 { 1480 struct rc_dev *dev = to_rc_dev(device); 1481 1482 if (dev->rc_map.name) 1483 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1484 if (dev->driver_name) 1485 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1486 if (dev->device_name) 1487 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); 1488 1489 return 0; 1490 } 1491 1492 /* 1493 * Static device attribute struct with the sysfs attributes for IR's 1494 */ 1495 static struct device_attribute dev_attr_ro_protocols = 1496 __ATTR(protocols, 0444, show_protocols, NULL); 1497 static struct device_attribute dev_attr_rw_protocols = 1498 __ATTR(protocols, 0644, show_protocols, store_protocols); 1499 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, 1500 store_wakeup_protocols); 1501 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1502 show_filter, store_filter, RC_FILTER_NORMAL, false); 1503 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1504 show_filter, store_filter, RC_FILTER_NORMAL, true); 1505 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1506 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1507 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1508 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1509 1510 static struct attribute *rc_dev_rw_protocol_attrs[] = { 1511 &dev_attr_rw_protocols.attr, 1512 NULL, 1513 }; 1514 1515 static const struct attribute_group rc_dev_rw_protocol_attr_grp = { 1516 .attrs = rc_dev_rw_protocol_attrs, 1517 }; 1518 1519 static struct attribute *rc_dev_ro_protocol_attrs[] = { 1520 &dev_attr_ro_protocols.attr, 1521 NULL, 1522 }; 1523 1524 static const struct attribute_group rc_dev_ro_protocol_attr_grp = { 1525 .attrs = rc_dev_ro_protocol_attrs, 1526 }; 1527 1528 static struct attribute *rc_dev_filter_attrs[] = { 1529 &dev_attr_filter.attr.attr, 1530 &dev_attr_filter_mask.attr.attr, 1531 NULL, 1532 }; 1533 1534 static const struct attribute_group rc_dev_filter_attr_grp = { 1535 .attrs = rc_dev_filter_attrs, 1536 }; 1537 1538 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1539 &dev_attr_wakeup_filter.attr.attr, 1540 &dev_attr_wakeup_filter_mask.attr.attr, 1541 &dev_attr_wakeup_protocols.attr, 1542 NULL, 1543 }; 1544 1545 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1546 .attrs = rc_dev_wakeup_filter_attrs, 1547 }; 1548 1549 static const struct device_type rc_dev_type = { 1550 .release = rc_dev_release, 1551 .uevent = rc_dev_uevent, 1552 }; 1553 1554 struct rc_dev *rc_allocate_device(enum rc_driver_type type) 1555 { 1556 struct rc_dev *dev; 1557 1558 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1559 if (!dev) 1560 return NULL; 1561 1562 if (type != RC_DRIVER_IR_RAW_TX) { 1563 dev->input_dev = input_allocate_device(); 1564 if (!dev->input_dev) { 1565 kfree(dev); 1566 return NULL; 1567 } 1568 1569 dev->input_dev->getkeycode = ir_getkeycode; 1570 dev->input_dev->setkeycode = ir_setkeycode; 1571 input_set_drvdata(dev->input_dev, dev); 1572 1573 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); 1574 1575 spin_lock_init(&dev->rc_map.lock); 1576 spin_lock_init(&dev->keylock); 1577 } 1578 mutex_init(&dev->lock); 1579 1580 dev->dev.type = &rc_dev_type; 1581 dev->dev.class = &rc_class; 1582 device_initialize(&dev->dev); 1583 1584 dev->driver_type = type; 1585 1586 __module_get(THIS_MODULE); 1587 return dev; 1588 } 1589 EXPORT_SYMBOL_GPL(rc_allocate_device); 1590 1591 void rc_free_device(struct rc_dev *dev) 1592 { 1593 if (!dev) 1594 return; 1595 1596 input_free_device(dev->input_dev); 1597 1598 put_device(&dev->dev); 1599 1600 /* kfree(dev) will be called by the callback function 1601 rc_dev_release() */ 1602 1603 module_put(THIS_MODULE); 1604 } 1605 EXPORT_SYMBOL_GPL(rc_free_device); 1606 1607 static void devm_rc_alloc_release(struct device *dev, void *res) 1608 { 1609 rc_free_device(*(struct rc_dev **)res); 1610 } 1611 1612 struct rc_dev *devm_rc_allocate_device(struct device *dev, 1613 enum rc_driver_type type) 1614 { 1615 struct rc_dev **dr, *rc; 1616 1617 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1618 if (!dr) 1619 return NULL; 1620 1621 rc = rc_allocate_device(type); 1622 if (!rc) { 1623 devres_free(dr); 1624 return NULL; 1625 } 1626 1627 rc->dev.parent = dev; 1628 rc->managed_alloc = true; 1629 *dr = rc; 1630 devres_add(dev, dr); 1631 1632 return rc; 1633 } 1634 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1635 1636 static int rc_prepare_rx_device(struct rc_dev *dev) 1637 { 1638 int rc; 1639 struct rc_map *rc_map; 1640 u64 rc_proto; 1641 1642 if (!dev->map_name) 1643 return -EINVAL; 1644 1645 rc_map = rc_map_get(dev->map_name); 1646 if (!rc_map) 1647 rc_map = rc_map_get(RC_MAP_EMPTY); 1648 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1649 return -EINVAL; 1650 1651 rc = ir_setkeytable(dev, rc_map); 1652 if (rc) 1653 return rc; 1654 1655 rc_proto = BIT_ULL(rc_map->rc_proto); 1656 1657 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1658 dev->enabled_protocols = dev->allowed_protocols; 1659 1660 if (dev->change_protocol) { 1661 rc = dev->change_protocol(dev, &rc_proto); 1662 if (rc < 0) 1663 goto out_table; 1664 dev->enabled_protocols = rc_proto; 1665 } 1666 1667 if (dev->driver_type == RC_DRIVER_IR_RAW) 1668 ir_raw_load_modules(&rc_proto); 1669 1670 set_bit(EV_KEY, dev->input_dev->evbit); 1671 set_bit(EV_REP, dev->input_dev->evbit); 1672 set_bit(EV_MSC, dev->input_dev->evbit); 1673 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1674 if (dev->open) 1675 dev->input_dev->open = ir_open; 1676 if (dev->close) 1677 dev->input_dev->close = ir_close; 1678 1679 dev->input_dev->dev.parent = &dev->dev; 1680 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1681 dev->input_dev->phys = dev->input_phys; 1682 dev->input_dev->name = dev->device_name; 1683 1684 return 0; 1685 1686 out_table: 1687 ir_free_table(&dev->rc_map); 1688 1689 return rc; 1690 } 1691 1692 static int rc_setup_rx_device(struct rc_dev *dev) 1693 { 1694 int rc; 1695 1696 /* rc_open will be called here */ 1697 rc = input_register_device(dev->input_dev); 1698 if (rc) 1699 return rc; 1700 1701 /* 1702 * Default delay of 250ms is too short for some protocols, especially 1703 * since the timeout is currently set to 250ms. Increase it to 500ms, 1704 * to avoid wrong repetition of the keycodes. Note that this must be 1705 * set after the call to input_register_device(). 1706 */ 1707 dev->input_dev->rep[REP_DELAY] = 500; 1708 1709 /* 1710 * As a repeat event on protocols like RC-5 and NEC take as long as 1711 * 110/114ms, using 33ms as a repeat period is not the right thing 1712 * to do. 1713 */ 1714 dev->input_dev->rep[REP_PERIOD] = 125; 1715 1716 return 0; 1717 } 1718 1719 static void rc_free_rx_device(struct rc_dev *dev) 1720 { 1721 if (!dev) 1722 return; 1723 1724 if (dev->input_dev) { 1725 input_unregister_device(dev->input_dev); 1726 dev->input_dev = NULL; 1727 } 1728 1729 ir_free_table(&dev->rc_map); 1730 } 1731 1732 int rc_register_device(struct rc_dev *dev) 1733 { 1734 const char *path; 1735 int attr = 0; 1736 int minor; 1737 int rc; 1738 1739 if (!dev) 1740 return -EINVAL; 1741 1742 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1743 if (minor < 0) 1744 return minor; 1745 1746 dev->minor = minor; 1747 dev_set_name(&dev->dev, "rc%u", dev->minor); 1748 dev_set_drvdata(&dev->dev, dev); 1749 1750 dev->dev.groups = dev->sysfs_groups; 1751 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1752 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; 1753 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) 1754 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; 1755 if (dev->s_filter) 1756 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1757 if (dev->s_wakeup_filter) 1758 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1759 dev->sysfs_groups[attr++] = NULL; 1760 1761 if (dev->driver_type == RC_DRIVER_IR_RAW || 1762 dev->driver_type == RC_DRIVER_IR_RAW_TX) { 1763 rc = ir_raw_event_prepare(dev); 1764 if (rc < 0) 1765 goto out_minor; 1766 } 1767 1768 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1769 rc = rc_prepare_rx_device(dev); 1770 if (rc) 1771 goto out_raw; 1772 } 1773 1774 rc = device_add(&dev->dev); 1775 if (rc) 1776 goto out_rx_free; 1777 1778 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1779 dev_info(&dev->dev, "%s as %s\n", 1780 dev->device_name ?: "Unspecified device", path ?: "N/A"); 1781 kfree(path); 1782 1783 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1784 rc = rc_setup_rx_device(dev); 1785 if (rc) 1786 goto out_dev; 1787 } 1788 1789 if (dev->driver_type == RC_DRIVER_IR_RAW || 1790 dev->driver_type == RC_DRIVER_IR_RAW_TX) { 1791 rc = ir_raw_event_register(dev); 1792 if (rc < 0) 1793 goto out_rx; 1794 } 1795 1796 IR_dprintk(1, "Registered rc%u (driver: %s)\n", 1797 dev->minor, 1798 dev->driver_name ? dev->driver_name : "unknown"); 1799 1800 return 0; 1801 1802 out_rx: 1803 rc_free_rx_device(dev); 1804 out_dev: 1805 device_del(&dev->dev); 1806 out_rx_free: 1807 ir_free_table(&dev->rc_map); 1808 out_raw: 1809 ir_raw_event_free(dev); 1810 out_minor: 1811 ida_simple_remove(&rc_ida, minor); 1812 return rc; 1813 } 1814 EXPORT_SYMBOL_GPL(rc_register_device); 1815 1816 static void devm_rc_release(struct device *dev, void *res) 1817 { 1818 rc_unregister_device(*(struct rc_dev **)res); 1819 } 1820 1821 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1822 { 1823 struct rc_dev **dr; 1824 int ret; 1825 1826 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1827 if (!dr) 1828 return -ENOMEM; 1829 1830 ret = rc_register_device(dev); 1831 if (ret) { 1832 devres_free(dr); 1833 return ret; 1834 } 1835 1836 *dr = dev; 1837 devres_add(parent, dr); 1838 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1842 1843 void rc_unregister_device(struct rc_dev *dev) 1844 { 1845 if (!dev) 1846 return; 1847 1848 del_timer_sync(&dev->timer_keyup); 1849 1850 if (dev->driver_type == RC_DRIVER_IR_RAW) 1851 ir_raw_event_unregister(dev); 1852 1853 rc_free_rx_device(dev); 1854 1855 device_del(&dev->dev); 1856 1857 ida_simple_remove(&rc_ida, dev->minor); 1858 1859 if (!dev->managed_alloc) 1860 rc_free_device(dev); 1861 } 1862 1863 EXPORT_SYMBOL_GPL(rc_unregister_device); 1864 1865 /* 1866 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1867 */ 1868 1869 static int __init rc_core_init(void) 1870 { 1871 int rc = class_register(&rc_class); 1872 if (rc) { 1873 pr_err("rc_core: unable to register rc class\n"); 1874 return rc; 1875 } 1876 1877 led_trigger_register_simple("rc-feedback", &led_feedback); 1878 rc_map_register(&empty_map); 1879 1880 return 0; 1881 } 1882 1883 static void __exit rc_core_exit(void) 1884 { 1885 class_unregister(&rc_class); 1886 led_trigger_unregister_simple(led_feedback); 1887 rc_map_unregister(&empty_map); 1888 } 1889 1890 subsys_initcall(rc_core_init); 1891 module_exit(rc_core_exit); 1892 1893 int rc_core_debug; /* ir_debug level (0,1,2) */ 1894 EXPORT_SYMBOL_GPL(rc_core_debug); 1895 module_param_named(debug, rc_core_debug, int, 0644); 1896 1897 MODULE_AUTHOR("Mauro Carvalho Chehab"); 1898 MODULE_LICENSE("GPL"); 1899