xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision fb960bd2)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <media/rc-core.h>
18 #include <linux/bsearch.h>
19 #include <linux/spinlock.h>
20 #include <linux/delay.h>
21 #include <linux/input.h>
22 #include <linux/leds.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/device.h>
26 #include <linux/module.h>
27 #include "rc-core-priv.h"
28 
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE	256
31 #define IR_TAB_MAX_SIZE	8192
32 #define RC_DEV_MAX	256
33 
34 static const struct {
35 	const char *name;
36 	unsigned int repeat_period;
37 	unsigned int scancode_bits;
38 } protocols[] = {
39 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
40 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
41 	[RC_PROTO_RC5] = { .name = "rc-5",
42 		.scancode_bits = 0x1f7f, .repeat_period = 164 },
43 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
44 		.scancode_bits = 0x1f7f3f, .repeat_period = 164 },
45 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
46 		.scancode_bits = 0x2fff, .repeat_period = 164 },
47 	[RC_PROTO_JVC] = { .name = "jvc",
48 		.scancode_bits = 0xffff, .repeat_period = 250 },
49 	[RC_PROTO_SONY12] = { .name = "sony-12",
50 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
51 	[RC_PROTO_SONY15] = { .name = "sony-15",
52 		.scancode_bits = 0xff007f, .repeat_period = 100 },
53 	[RC_PROTO_SONY20] = { .name = "sony-20",
54 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
55 	[RC_PROTO_NEC] = { .name = "nec",
56 		.scancode_bits = 0xffff, .repeat_period = 160 },
57 	[RC_PROTO_NECX] = { .name = "nec-x",
58 		.scancode_bits = 0xffffff, .repeat_period = 160 },
59 	[RC_PROTO_NEC32] = { .name = "nec-32",
60 		.scancode_bits = 0xffffffff, .repeat_period = 160 },
61 	[RC_PROTO_SANYO] = { .name = "sanyo",
62 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
63 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
64 		.scancode_bits = 0xffff, .repeat_period = 150 },
65 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
66 		.scancode_bits = 0x1fffff, .repeat_period = 150 },
67 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
68 		.scancode_bits = 0xffff, .repeat_period = 164 },
69 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
70 		.scancode_bits = 0xfffff, .repeat_period = 164 },
71 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
72 		.scancode_bits = 0xffffff, .repeat_period = 164 },
73 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
74 		.scancode_bits = 0xffffffff, .repeat_period = 164 },
75 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
76 		.scancode_bits = 0xffff7fff, .repeat_period = 164 },
77 	[RC_PROTO_SHARP] = { .name = "sharp",
78 		.scancode_bits = 0x1fff, .repeat_period = 250 },
79 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
80 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
81 };
82 
83 /* Used to keep track of known keymaps */
84 static LIST_HEAD(rc_map_list);
85 static DEFINE_SPINLOCK(rc_map_lock);
86 static struct led_trigger *led_feedback;
87 
88 /* Used to keep track of rc devices */
89 static DEFINE_IDA(rc_ida);
90 
91 static struct rc_map_list *seek_rc_map(const char *name)
92 {
93 	struct rc_map_list *map = NULL;
94 
95 	spin_lock(&rc_map_lock);
96 	list_for_each_entry(map, &rc_map_list, list) {
97 		if (!strcmp(name, map->map.name)) {
98 			spin_unlock(&rc_map_lock);
99 			return map;
100 		}
101 	}
102 	spin_unlock(&rc_map_lock);
103 
104 	return NULL;
105 }
106 
107 struct rc_map *rc_map_get(const char *name)
108 {
109 
110 	struct rc_map_list *map;
111 
112 	map = seek_rc_map(name);
113 #ifdef CONFIG_MODULES
114 	if (!map) {
115 		int rc = request_module("%s", name);
116 		if (rc < 0) {
117 			pr_err("Couldn't load IR keymap %s\n", name);
118 			return NULL;
119 		}
120 		msleep(20);	/* Give some time for IR to register */
121 
122 		map = seek_rc_map(name);
123 	}
124 #endif
125 	if (!map) {
126 		pr_err("IR keymap %s not found\n", name);
127 		return NULL;
128 	}
129 
130 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
131 
132 	return &map->map;
133 }
134 EXPORT_SYMBOL_GPL(rc_map_get);
135 
136 int rc_map_register(struct rc_map_list *map)
137 {
138 	spin_lock(&rc_map_lock);
139 	list_add_tail(&map->list, &rc_map_list);
140 	spin_unlock(&rc_map_lock);
141 	return 0;
142 }
143 EXPORT_SYMBOL_GPL(rc_map_register);
144 
145 void rc_map_unregister(struct rc_map_list *map)
146 {
147 	spin_lock(&rc_map_lock);
148 	list_del(&map->list);
149 	spin_unlock(&rc_map_lock);
150 }
151 EXPORT_SYMBOL_GPL(rc_map_unregister);
152 
153 
154 static struct rc_map_table empty[] = {
155 	{ 0x2a, KEY_COFFEE },
156 };
157 
158 static struct rc_map_list empty_map = {
159 	.map = {
160 		.scan     = empty,
161 		.size     = ARRAY_SIZE(empty),
162 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
163 		.name     = RC_MAP_EMPTY,
164 	}
165 };
166 
167 /**
168  * ir_create_table() - initializes a scancode table
169  * @rc_map:	the rc_map to initialize
170  * @name:	name to assign to the table
171  * @rc_proto:	ir type to assign to the new table
172  * @size:	initial size of the table
173  * @return:	zero on success or a negative error code
174  *
175  * This routine will initialize the rc_map and will allocate
176  * memory to hold at least the specified number of elements.
177  */
178 static int ir_create_table(struct rc_map *rc_map,
179 			   const char *name, u64 rc_proto, size_t size)
180 {
181 	rc_map->name = kstrdup(name, GFP_KERNEL);
182 	if (!rc_map->name)
183 		return -ENOMEM;
184 	rc_map->rc_proto = rc_proto;
185 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
186 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
187 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
188 	if (!rc_map->scan) {
189 		kfree(rc_map->name);
190 		rc_map->name = NULL;
191 		return -ENOMEM;
192 	}
193 
194 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
195 		   rc_map->size, rc_map->alloc);
196 	return 0;
197 }
198 
199 /**
200  * ir_free_table() - frees memory allocated by a scancode table
201  * @rc_map:	the table whose mappings need to be freed
202  *
203  * This routine will free memory alloctaed for key mappings used by given
204  * scancode table.
205  */
206 static void ir_free_table(struct rc_map *rc_map)
207 {
208 	rc_map->size = 0;
209 	kfree(rc_map->name);
210 	rc_map->name = NULL;
211 	kfree(rc_map->scan);
212 	rc_map->scan = NULL;
213 }
214 
215 /**
216  * ir_resize_table() - resizes a scancode table if necessary
217  * @rc_map:	the rc_map to resize
218  * @gfp_flags:	gfp flags to use when allocating memory
219  * @return:	zero on success or a negative error code
220  *
221  * This routine will shrink the rc_map if it has lots of
222  * unused entries and grow it if it is full.
223  */
224 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
225 {
226 	unsigned int oldalloc = rc_map->alloc;
227 	unsigned int newalloc = oldalloc;
228 	struct rc_map_table *oldscan = rc_map->scan;
229 	struct rc_map_table *newscan;
230 
231 	if (rc_map->size == rc_map->len) {
232 		/* All entries in use -> grow keytable */
233 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
234 			return -ENOMEM;
235 
236 		newalloc *= 2;
237 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
238 	}
239 
240 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
241 		/* Less than 1/3 of entries in use -> shrink keytable */
242 		newalloc /= 2;
243 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
244 	}
245 
246 	if (newalloc == oldalloc)
247 		return 0;
248 
249 	newscan = kmalloc(newalloc, gfp_flags);
250 	if (!newscan) {
251 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
252 		return -ENOMEM;
253 	}
254 
255 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
256 	rc_map->scan = newscan;
257 	rc_map->alloc = newalloc;
258 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
259 	kfree(oldscan);
260 	return 0;
261 }
262 
263 /**
264  * ir_update_mapping() - set a keycode in the scancode->keycode table
265  * @dev:	the struct rc_dev device descriptor
266  * @rc_map:	scancode table to be adjusted
267  * @index:	index of the mapping that needs to be updated
268  * @keycode:	the desired keycode
269  * @return:	previous keycode assigned to the mapping
270  *
271  * This routine is used to update scancode->keycode mapping at given
272  * position.
273  */
274 static unsigned int ir_update_mapping(struct rc_dev *dev,
275 				      struct rc_map *rc_map,
276 				      unsigned int index,
277 				      unsigned int new_keycode)
278 {
279 	int old_keycode = rc_map->scan[index].keycode;
280 	int i;
281 
282 	/* Did the user wish to remove the mapping? */
283 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
284 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
285 			   index, rc_map->scan[index].scancode);
286 		rc_map->len--;
287 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
288 			(rc_map->len - index) * sizeof(struct rc_map_table));
289 	} else {
290 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
291 			   index,
292 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
293 			   rc_map->scan[index].scancode, new_keycode);
294 		rc_map->scan[index].keycode = new_keycode;
295 		__set_bit(new_keycode, dev->input_dev->keybit);
296 	}
297 
298 	if (old_keycode != KEY_RESERVED) {
299 		/* A previous mapping was updated... */
300 		__clear_bit(old_keycode, dev->input_dev->keybit);
301 		/* ... but another scancode might use the same keycode */
302 		for (i = 0; i < rc_map->len; i++) {
303 			if (rc_map->scan[i].keycode == old_keycode) {
304 				__set_bit(old_keycode, dev->input_dev->keybit);
305 				break;
306 			}
307 		}
308 
309 		/* Possibly shrink the keytable, failure is not a problem */
310 		ir_resize_table(rc_map, GFP_ATOMIC);
311 	}
312 
313 	return old_keycode;
314 }
315 
316 /**
317  * ir_establish_scancode() - set a keycode in the scancode->keycode table
318  * @dev:	the struct rc_dev device descriptor
319  * @rc_map:	scancode table to be searched
320  * @scancode:	the desired scancode
321  * @resize:	controls whether we allowed to resize the table to
322  *		accommodate not yet present scancodes
323  * @return:	index of the mapping containing scancode in question
324  *		or -1U in case of failure.
325  *
326  * This routine is used to locate given scancode in rc_map.
327  * If scancode is not yet present the routine will allocate a new slot
328  * for it.
329  */
330 static unsigned int ir_establish_scancode(struct rc_dev *dev,
331 					  struct rc_map *rc_map,
332 					  unsigned int scancode,
333 					  bool resize)
334 {
335 	unsigned int i;
336 
337 	/*
338 	 * Unfortunately, some hardware-based IR decoders don't provide
339 	 * all bits for the complete IR code. In general, they provide only
340 	 * the command part of the IR code. Yet, as it is possible to replace
341 	 * the provided IR with another one, it is needed to allow loading
342 	 * IR tables from other remotes. So, we support specifying a mask to
343 	 * indicate the valid bits of the scancodes.
344 	 */
345 	if (dev->scancode_mask)
346 		scancode &= dev->scancode_mask;
347 
348 	/* First check if we already have a mapping for this ir command */
349 	for (i = 0; i < rc_map->len; i++) {
350 		if (rc_map->scan[i].scancode == scancode)
351 			return i;
352 
353 		/* Keytable is sorted from lowest to highest scancode */
354 		if (rc_map->scan[i].scancode >= scancode)
355 			break;
356 	}
357 
358 	/* No previous mapping found, we might need to grow the table */
359 	if (rc_map->size == rc_map->len) {
360 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
361 			return -1U;
362 	}
363 
364 	/* i is the proper index to insert our new keycode */
365 	if (i < rc_map->len)
366 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
367 			(rc_map->len - i) * sizeof(struct rc_map_table));
368 	rc_map->scan[i].scancode = scancode;
369 	rc_map->scan[i].keycode = KEY_RESERVED;
370 	rc_map->len++;
371 
372 	return i;
373 }
374 
375 /**
376  * ir_setkeycode() - set a keycode in the scancode->keycode table
377  * @idev:	the struct input_dev device descriptor
378  * @scancode:	the desired scancode
379  * @keycode:	result
380  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
381  *
382  * This routine is used to handle evdev EVIOCSKEY ioctl.
383  */
384 static int ir_setkeycode(struct input_dev *idev,
385 			 const struct input_keymap_entry *ke,
386 			 unsigned int *old_keycode)
387 {
388 	struct rc_dev *rdev = input_get_drvdata(idev);
389 	struct rc_map *rc_map = &rdev->rc_map;
390 	unsigned int index;
391 	unsigned int scancode;
392 	int retval = 0;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&rc_map->lock, flags);
396 
397 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
398 		index = ke->index;
399 		if (index >= rc_map->len) {
400 			retval = -EINVAL;
401 			goto out;
402 		}
403 	} else {
404 		retval = input_scancode_to_scalar(ke, &scancode);
405 		if (retval)
406 			goto out;
407 
408 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
409 		if (index >= rc_map->len) {
410 			retval = -ENOMEM;
411 			goto out;
412 		}
413 	}
414 
415 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
416 
417 out:
418 	spin_unlock_irqrestore(&rc_map->lock, flags);
419 	return retval;
420 }
421 
422 /**
423  * ir_setkeytable() - sets several entries in the scancode->keycode table
424  * @dev:	the struct rc_dev device descriptor
425  * @to:		the struct rc_map to copy entries to
426  * @from:	the struct rc_map to copy entries from
427  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
428  *
429  * This routine is used to handle table initialization.
430  */
431 static int ir_setkeytable(struct rc_dev *dev,
432 			  const struct rc_map *from)
433 {
434 	struct rc_map *rc_map = &dev->rc_map;
435 	unsigned int i, index;
436 	int rc;
437 
438 	rc = ir_create_table(rc_map, from->name,
439 			     from->rc_proto, from->size);
440 	if (rc)
441 		return rc;
442 
443 	for (i = 0; i < from->size; i++) {
444 		index = ir_establish_scancode(dev, rc_map,
445 					      from->scan[i].scancode, false);
446 		if (index >= rc_map->len) {
447 			rc = -ENOMEM;
448 			break;
449 		}
450 
451 		ir_update_mapping(dev, rc_map, index,
452 				  from->scan[i].keycode);
453 	}
454 
455 	if (rc)
456 		ir_free_table(rc_map);
457 
458 	return rc;
459 }
460 
461 static int rc_map_cmp(const void *key, const void *elt)
462 {
463 	const unsigned int *scancode = key;
464 	const struct rc_map_table *e = elt;
465 
466 	if (*scancode < e->scancode)
467 		return -1;
468 	else if (*scancode > e->scancode)
469 		return 1;
470 	return 0;
471 }
472 
473 /**
474  * ir_lookup_by_scancode() - locate mapping by scancode
475  * @rc_map:	the struct rc_map to search
476  * @scancode:	scancode to look for in the table
477  * @return:	index in the table, -1U if not found
478  *
479  * This routine performs binary search in RC keykeymap table for
480  * given scancode.
481  */
482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 					  unsigned int scancode)
484 {
485 	struct rc_map_table *res;
486 
487 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 		      sizeof(struct rc_map_table), rc_map_cmp);
489 	if (!res)
490 		return -1U;
491 	else
492 		return res - rc_map->scan;
493 }
494 
495 /**
496  * ir_getkeycode() - get a keycode from the scancode->keycode table
497  * @idev:	the struct input_dev device descriptor
498  * @scancode:	the desired scancode
499  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
500  * @return:	always returns zero.
501  *
502  * This routine is used to handle evdev EVIOCGKEY ioctl.
503  */
504 static int ir_getkeycode(struct input_dev *idev,
505 			 struct input_keymap_entry *ke)
506 {
507 	struct rc_dev *rdev = input_get_drvdata(idev);
508 	struct rc_map *rc_map = &rdev->rc_map;
509 	struct rc_map_table *entry;
510 	unsigned long flags;
511 	unsigned int index;
512 	unsigned int scancode;
513 	int retval;
514 
515 	spin_lock_irqsave(&rc_map->lock, flags);
516 
517 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 		index = ke->index;
519 	} else {
520 		retval = input_scancode_to_scalar(ke, &scancode);
521 		if (retval)
522 			goto out;
523 
524 		index = ir_lookup_by_scancode(rc_map, scancode);
525 	}
526 
527 	if (index < rc_map->len) {
528 		entry = &rc_map->scan[index];
529 
530 		ke->index = index;
531 		ke->keycode = entry->keycode;
532 		ke->len = sizeof(entry->scancode);
533 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
534 
535 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
536 		/*
537 		 * We do not really know the valid range of scancodes
538 		 * so let's respond with KEY_RESERVED to anything we
539 		 * do not have mapping for [yet].
540 		 */
541 		ke->index = index;
542 		ke->keycode = KEY_RESERVED;
543 	} else {
544 		retval = -EINVAL;
545 		goto out;
546 	}
547 
548 	retval = 0;
549 
550 out:
551 	spin_unlock_irqrestore(&rc_map->lock, flags);
552 	return retval;
553 }
554 
555 /**
556  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557  * @dev:	the struct rc_dev descriptor of the device
558  * @scancode:	the scancode to look for
559  * @return:	the corresponding keycode, or KEY_RESERVED
560  *
561  * This routine is used by drivers which need to convert a scancode to a
562  * keycode. Normally it should not be used since drivers should have no
563  * interest in keycodes.
564  */
565 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
566 {
567 	struct rc_map *rc_map = &dev->rc_map;
568 	unsigned int keycode;
569 	unsigned int index;
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&rc_map->lock, flags);
573 
574 	index = ir_lookup_by_scancode(rc_map, scancode);
575 	keycode = index < rc_map->len ?
576 			rc_map->scan[index].keycode : KEY_RESERVED;
577 
578 	spin_unlock_irqrestore(&rc_map->lock, flags);
579 
580 	if (keycode != KEY_RESERVED)
581 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
582 			   dev->device_name, scancode, keycode);
583 
584 	return keycode;
585 }
586 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
587 
588 /**
589  * ir_do_keyup() - internal function to signal the release of a keypress
590  * @dev:	the struct rc_dev descriptor of the device
591  * @sync:	whether or not to call input_sync
592  *
593  * This function is used internally to release a keypress, it must be
594  * called with keylock held.
595  */
596 static void ir_do_keyup(struct rc_dev *dev, bool sync)
597 {
598 	if (!dev->keypressed)
599 		return;
600 
601 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
602 	input_report_key(dev->input_dev, dev->last_keycode, 0);
603 	led_trigger_event(led_feedback, LED_OFF);
604 	if (sync)
605 		input_sync(dev->input_dev);
606 	dev->keypressed = false;
607 }
608 
609 /**
610  * rc_keyup() - signals the release of a keypress
611  * @dev:	the struct rc_dev descriptor of the device
612  *
613  * This routine is used to signal that a key has been released on the
614  * remote control.
615  */
616 void rc_keyup(struct rc_dev *dev)
617 {
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&dev->keylock, flags);
621 	ir_do_keyup(dev, true);
622 	spin_unlock_irqrestore(&dev->keylock, flags);
623 }
624 EXPORT_SYMBOL_GPL(rc_keyup);
625 
626 /**
627  * ir_timer_keyup() - generates a keyup event after a timeout
628  * @cookie:	a pointer to the struct rc_dev for the device
629  *
630  * This routine will generate a keyup event some time after a keydown event
631  * is generated when no further activity has been detected.
632  */
633 static void ir_timer_keyup(struct timer_list *t)
634 {
635 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
636 	unsigned long flags;
637 
638 	/*
639 	 * ir->keyup_jiffies is used to prevent a race condition if a
640 	 * hardware interrupt occurs at this point and the keyup timer
641 	 * event is moved further into the future as a result.
642 	 *
643 	 * The timer will then be reactivated and this function called
644 	 * again in the future. We need to exit gracefully in that case
645 	 * to allow the input subsystem to do its auto-repeat magic or
646 	 * a keyup event might follow immediately after the keydown.
647 	 */
648 	spin_lock_irqsave(&dev->keylock, flags);
649 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
650 		ir_do_keyup(dev, true);
651 	spin_unlock_irqrestore(&dev->keylock, flags);
652 }
653 
654 /**
655  * rc_repeat() - signals that a key is still pressed
656  * @dev:	the struct rc_dev descriptor of the device
657  *
658  * This routine is used by IR decoders when a repeat message which does
659  * not include the necessary bits to reproduce the scancode has been
660  * received.
661  */
662 void rc_repeat(struct rc_dev *dev)
663 {
664 	unsigned long flags;
665 	unsigned int timeout = protocols[dev->last_protocol].repeat_period;
666 
667 	spin_lock_irqsave(&dev->keylock, flags);
668 
669 	if (!dev->keypressed)
670 		goto out;
671 
672 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
673 	input_sync(dev->input_dev);
674 
675 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
676 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
677 
678 out:
679 	spin_unlock_irqrestore(&dev->keylock, flags);
680 }
681 EXPORT_SYMBOL_GPL(rc_repeat);
682 
683 /**
684  * ir_do_keydown() - internal function to process a keypress
685  * @dev:	the struct rc_dev descriptor of the device
686  * @protocol:	the protocol of the keypress
687  * @scancode:   the scancode of the keypress
688  * @keycode:    the keycode of the keypress
689  * @toggle:     the toggle value of the keypress
690  *
691  * This function is used internally to register a keypress, it must be
692  * called with keylock held.
693  */
694 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
695 			  u32 scancode, u32 keycode, u8 toggle)
696 {
697 	bool new_event = (!dev->keypressed		 ||
698 			  dev->last_protocol != protocol ||
699 			  dev->last_scancode != scancode ||
700 			  dev->last_toggle   != toggle);
701 
702 	if (new_event && dev->keypressed)
703 		ir_do_keyup(dev, false);
704 
705 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
706 
707 	if (new_event && keycode != KEY_RESERVED) {
708 		/* Register a keypress */
709 		dev->keypressed = true;
710 		dev->last_protocol = protocol;
711 		dev->last_scancode = scancode;
712 		dev->last_toggle = toggle;
713 		dev->last_keycode = keycode;
714 
715 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
716 			   dev->device_name, keycode, protocol, scancode);
717 		input_report_key(dev->input_dev, keycode, 1);
718 
719 		led_trigger_event(led_feedback, LED_FULL);
720 	}
721 
722 	input_sync(dev->input_dev);
723 }
724 
725 /**
726  * rc_keydown() - generates input event for a key press
727  * @dev:	the struct rc_dev descriptor of the device
728  * @protocol:	the protocol for the keypress
729  * @scancode:	the scancode for the keypress
730  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
731  *              support toggle values, this should be set to zero)
732  *
733  * This routine is used to signal that a key has been pressed on the
734  * remote control.
735  */
736 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
737 		u8 toggle)
738 {
739 	unsigned long flags;
740 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
741 
742 	spin_lock_irqsave(&dev->keylock, flags);
743 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
744 
745 	if (dev->keypressed) {
746 		dev->keyup_jiffies = jiffies +
747 			msecs_to_jiffies(protocols[protocol].repeat_period);
748 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
749 	}
750 	spin_unlock_irqrestore(&dev->keylock, flags);
751 }
752 EXPORT_SYMBOL_GPL(rc_keydown);
753 
754 /**
755  * rc_keydown_notimeout() - generates input event for a key press without
756  *                          an automatic keyup event at a later time
757  * @dev:	the struct rc_dev descriptor of the device
758  * @protocol:	the protocol for the keypress
759  * @scancode:	the scancode for the keypress
760  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
761  *              support toggle values, this should be set to zero)
762  *
763  * This routine is used to signal that a key has been pressed on the
764  * remote control. The driver must manually call rc_keyup() at a later stage.
765  */
766 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
767 			  u32 scancode, u8 toggle)
768 {
769 	unsigned long flags;
770 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
771 
772 	spin_lock_irqsave(&dev->keylock, flags);
773 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
774 	spin_unlock_irqrestore(&dev->keylock, flags);
775 }
776 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
777 
778 /**
779  * rc_validate_filter() - checks that the scancode and mask are valid and
780  *			  provides sensible defaults
781  * @dev:	the struct rc_dev descriptor of the device
782  * @filter:	the scancode and mask
783  * @return:	0 or -EINVAL if the filter is not valid
784  */
785 static int rc_validate_filter(struct rc_dev *dev,
786 			      struct rc_scancode_filter *filter)
787 {
788 	u32 mask, s = filter->data;
789 	enum rc_proto protocol = dev->wakeup_protocol;
790 
791 	if (protocol >= ARRAY_SIZE(protocols))
792 		return -EINVAL;
793 
794 	mask = protocols[protocol].scancode_bits;
795 
796 	switch (protocol) {
797 	case RC_PROTO_NECX:
798 		if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
799 			return -EINVAL;
800 		break;
801 	case RC_PROTO_NEC32:
802 		if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
803 			return -EINVAL;
804 		break;
805 	case RC_PROTO_RC6_MCE:
806 		if ((s & 0xffff0000) != 0x800f0000)
807 			return -EINVAL;
808 		break;
809 	case RC_PROTO_RC6_6A_32:
810 		if ((s & 0xffff0000) == 0x800f0000)
811 			return -EINVAL;
812 		break;
813 	default:
814 		break;
815 	}
816 
817 	filter->data &= mask;
818 	filter->mask &= mask;
819 
820 	/*
821 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
822 	 */
823 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
824 		return -EINVAL;
825 
826 	return 0;
827 }
828 
829 int rc_open(struct rc_dev *rdev)
830 {
831 	int rval = 0;
832 
833 	if (!rdev)
834 		return -EINVAL;
835 
836 	mutex_lock(&rdev->lock);
837 
838 	if (!rdev->users++ && rdev->open != NULL)
839 		rval = rdev->open(rdev);
840 
841 	if (rval)
842 		rdev->users--;
843 
844 	mutex_unlock(&rdev->lock);
845 
846 	return rval;
847 }
848 EXPORT_SYMBOL_GPL(rc_open);
849 
850 static int ir_open(struct input_dev *idev)
851 {
852 	struct rc_dev *rdev = input_get_drvdata(idev);
853 
854 	return rc_open(rdev);
855 }
856 
857 void rc_close(struct rc_dev *rdev)
858 {
859 	if (rdev) {
860 		mutex_lock(&rdev->lock);
861 
862 		if (!--rdev->users && rdev->close != NULL)
863 			rdev->close(rdev);
864 
865 		mutex_unlock(&rdev->lock);
866 	}
867 }
868 EXPORT_SYMBOL_GPL(rc_close);
869 
870 static void ir_close(struct input_dev *idev)
871 {
872 	struct rc_dev *rdev = input_get_drvdata(idev);
873 	rc_close(rdev);
874 }
875 
876 /* class for /sys/class/rc */
877 static char *rc_devnode(struct device *dev, umode_t *mode)
878 {
879 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
880 }
881 
882 static struct class rc_class = {
883 	.name		= "rc",
884 	.devnode	= rc_devnode,
885 };
886 
887 /*
888  * These are the protocol textual descriptions that are
889  * used by the sysfs protocols file. Note that the order
890  * of the entries is relevant.
891  */
892 static const struct {
893 	u64	type;
894 	const char	*name;
895 	const char	*module_name;
896 } proto_names[] = {
897 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
898 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
899 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
900 	{ RC_PROTO_BIT_RC5 |
901 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
902 	{ RC_PROTO_BIT_NEC |
903 	  RC_PROTO_BIT_NECX |
904 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
905 	{ RC_PROTO_BIT_RC6_0 |
906 	  RC_PROTO_BIT_RC6_6A_20 |
907 	  RC_PROTO_BIT_RC6_6A_24 |
908 	  RC_PROTO_BIT_RC6_6A_32 |
909 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
910 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
911 	{ RC_PROTO_BIT_SONY12 |
912 	  RC_PROTO_BIT_SONY15 |
913 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
914 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
915 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
916 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
917 	{ RC_PROTO_BIT_MCIR2_KBD |
918 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
919 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
920 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
921 };
922 
923 /**
924  * struct rc_filter_attribute - Device attribute relating to a filter type.
925  * @attr:	Device attribute.
926  * @type:	Filter type.
927  * @mask:	false for filter value, true for filter mask.
928  */
929 struct rc_filter_attribute {
930 	struct device_attribute		attr;
931 	enum rc_filter_type		type;
932 	bool				mask;
933 };
934 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
935 
936 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
937 	struct rc_filter_attribute dev_attr_##_name = {			\
938 		.attr = __ATTR(_name, _mode, _show, _store),		\
939 		.type = (_type),					\
940 		.mask = (_mask),					\
941 	}
942 
943 static bool lirc_is_present(void)
944 {
945 #if defined(CONFIG_LIRC_MODULE)
946 	struct module *lirc;
947 
948 	mutex_lock(&module_mutex);
949 	lirc = find_module("lirc_dev");
950 	mutex_unlock(&module_mutex);
951 
952 	return lirc ? true : false;
953 #elif defined(CONFIG_LIRC)
954 	return true;
955 #else
956 	return false;
957 #endif
958 }
959 
960 /**
961  * show_protocols() - shows the current IR protocol(s)
962  * @device:	the device descriptor
963  * @mattr:	the device attribute struct
964  * @buf:	a pointer to the output buffer
965  *
966  * This routine is a callback routine for input read the IR protocol type(s).
967  * it is trigged by reading /sys/class/rc/rc?/protocols.
968  * It returns the protocol names of supported protocols.
969  * Enabled protocols are printed in brackets.
970  *
971  * dev->lock is taken to guard against races between
972  * store_protocols and show_protocols.
973  */
974 static ssize_t show_protocols(struct device *device,
975 			      struct device_attribute *mattr, char *buf)
976 {
977 	struct rc_dev *dev = to_rc_dev(device);
978 	u64 allowed, enabled;
979 	char *tmp = buf;
980 	int i;
981 
982 	mutex_lock(&dev->lock);
983 
984 	enabled = dev->enabled_protocols;
985 	allowed = dev->allowed_protocols;
986 	if (dev->raw && !allowed)
987 		allowed = ir_raw_get_allowed_protocols();
988 
989 	mutex_unlock(&dev->lock);
990 
991 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
992 		   __func__, (long long)allowed, (long long)enabled);
993 
994 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
995 		if (allowed & enabled & proto_names[i].type)
996 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
997 		else if (allowed & proto_names[i].type)
998 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
999 
1000 		if (allowed & proto_names[i].type)
1001 			allowed &= ~proto_names[i].type;
1002 	}
1003 
1004 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
1005 		tmp += sprintf(tmp, "[lirc] ");
1006 
1007 	if (tmp != buf)
1008 		tmp--;
1009 	*tmp = '\n';
1010 
1011 	return tmp + 1 - buf;
1012 }
1013 
1014 /**
1015  * parse_protocol_change() - parses a protocol change request
1016  * @protocols:	pointer to the bitmask of current protocols
1017  * @buf:	pointer to the buffer with a list of changes
1018  *
1019  * Writing "+proto" will add a protocol to the protocol mask.
1020  * Writing "-proto" will remove a protocol from protocol mask.
1021  * Writing "proto" will enable only "proto".
1022  * Writing "none" will disable all protocols.
1023  * Returns the number of changes performed or a negative error code.
1024  */
1025 static int parse_protocol_change(u64 *protocols, const char *buf)
1026 {
1027 	const char *tmp;
1028 	unsigned count = 0;
1029 	bool enable, disable;
1030 	u64 mask;
1031 	int i;
1032 
1033 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1034 		if (!*tmp)
1035 			break;
1036 
1037 		if (*tmp == '+') {
1038 			enable = true;
1039 			disable = false;
1040 			tmp++;
1041 		} else if (*tmp == '-') {
1042 			enable = false;
1043 			disable = true;
1044 			tmp++;
1045 		} else {
1046 			enable = false;
1047 			disable = false;
1048 		}
1049 
1050 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1051 			if (!strcasecmp(tmp, proto_names[i].name)) {
1052 				mask = proto_names[i].type;
1053 				break;
1054 			}
1055 		}
1056 
1057 		if (i == ARRAY_SIZE(proto_names)) {
1058 			if (!strcasecmp(tmp, "lirc"))
1059 				mask = 0;
1060 			else {
1061 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1062 				return -EINVAL;
1063 			}
1064 		}
1065 
1066 		count++;
1067 
1068 		if (enable)
1069 			*protocols |= mask;
1070 		else if (disable)
1071 			*protocols &= ~mask;
1072 		else
1073 			*protocols = mask;
1074 	}
1075 
1076 	if (!count) {
1077 		IR_dprintk(1, "Protocol not specified\n");
1078 		return -EINVAL;
1079 	}
1080 
1081 	return count;
1082 }
1083 
1084 static void ir_raw_load_modules(u64 *protocols)
1085 {
1086 	u64 available;
1087 	int i, ret;
1088 
1089 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1090 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1091 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1092 					   RC_PROTO_BIT_UNKNOWN))
1093 			continue;
1094 
1095 		available = ir_raw_get_allowed_protocols();
1096 		if (!(*protocols & proto_names[i].type & ~available))
1097 			continue;
1098 
1099 		if (!proto_names[i].module_name) {
1100 			pr_err("Can't enable IR protocol %s\n",
1101 			       proto_names[i].name);
1102 			*protocols &= ~proto_names[i].type;
1103 			continue;
1104 		}
1105 
1106 		ret = request_module("%s", proto_names[i].module_name);
1107 		if (ret < 0) {
1108 			pr_err("Couldn't load IR protocol module %s\n",
1109 			       proto_names[i].module_name);
1110 			*protocols &= ~proto_names[i].type;
1111 			continue;
1112 		}
1113 		msleep(20);
1114 		available = ir_raw_get_allowed_protocols();
1115 		if (!(*protocols & proto_names[i].type & ~available))
1116 			continue;
1117 
1118 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1119 		       proto_names[i].module_name,
1120 		       proto_names[i].name);
1121 		*protocols &= ~proto_names[i].type;
1122 	}
1123 }
1124 
1125 /**
1126  * store_protocols() - changes the current/wakeup IR protocol(s)
1127  * @device:	the device descriptor
1128  * @mattr:	the device attribute struct
1129  * @buf:	a pointer to the input buffer
1130  * @len:	length of the input buffer
1131  *
1132  * This routine is for changing the IR protocol type.
1133  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1134  * See parse_protocol_change() for the valid commands.
1135  * Returns @len on success or a negative error code.
1136  *
1137  * dev->lock is taken to guard against races between
1138  * store_protocols and show_protocols.
1139  */
1140 static ssize_t store_protocols(struct device *device,
1141 			       struct device_attribute *mattr,
1142 			       const char *buf, size_t len)
1143 {
1144 	struct rc_dev *dev = to_rc_dev(device);
1145 	u64 *current_protocols;
1146 	struct rc_scancode_filter *filter;
1147 	u64 old_protocols, new_protocols;
1148 	ssize_t rc;
1149 
1150 	IR_dprintk(1, "Normal protocol change requested\n");
1151 	current_protocols = &dev->enabled_protocols;
1152 	filter = &dev->scancode_filter;
1153 
1154 	if (!dev->change_protocol) {
1155 		IR_dprintk(1, "Protocol switching not supported\n");
1156 		return -EINVAL;
1157 	}
1158 
1159 	mutex_lock(&dev->lock);
1160 
1161 	old_protocols = *current_protocols;
1162 	new_protocols = old_protocols;
1163 	rc = parse_protocol_change(&new_protocols, buf);
1164 	if (rc < 0)
1165 		goto out;
1166 
1167 	rc = dev->change_protocol(dev, &new_protocols);
1168 	if (rc < 0) {
1169 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1170 			   (long long)new_protocols);
1171 		goto out;
1172 	}
1173 
1174 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1175 		ir_raw_load_modules(&new_protocols);
1176 
1177 	if (new_protocols != old_protocols) {
1178 		*current_protocols = new_protocols;
1179 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1180 			   (long long)new_protocols);
1181 	}
1182 
1183 	/*
1184 	 * If a protocol change was attempted the filter may need updating, even
1185 	 * if the actual protocol mask hasn't changed (since the driver may have
1186 	 * cleared the filter).
1187 	 * Try setting the same filter with the new protocol (if any).
1188 	 * Fall back to clearing the filter.
1189 	 */
1190 	if (dev->s_filter && filter->mask) {
1191 		if (new_protocols)
1192 			rc = dev->s_filter(dev, filter);
1193 		else
1194 			rc = -1;
1195 
1196 		if (rc < 0) {
1197 			filter->data = 0;
1198 			filter->mask = 0;
1199 			dev->s_filter(dev, filter);
1200 		}
1201 	}
1202 
1203 	rc = len;
1204 
1205 out:
1206 	mutex_unlock(&dev->lock);
1207 	return rc;
1208 }
1209 
1210 /**
1211  * show_filter() - shows the current scancode filter value or mask
1212  * @device:	the device descriptor
1213  * @attr:	the device attribute struct
1214  * @buf:	a pointer to the output buffer
1215  *
1216  * This routine is a callback routine to read a scancode filter value or mask.
1217  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1218  * It prints the current scancode filter value or mask of the appropriate filter
1219  * type in hexadecimal into @buf and returns the size of the buffer.
1220  *
1221  * Bits of the filter value corresponding to set bits in the filter mask are
1222  * compared against input scancodes and non-matching scancodes are discarded.
1223  *
1224  * dev->lock is taken to guard against races between
1225  * store_filter and show_filter.
1226  */
1227 static ssize_t show_filter(struct device *device,
1228 			   struct device_attribute *attr,
1229 			   char *buf)
1230 {
1231 	struct rc_dev *dev = to_rc_dev(device);
1232 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1233 	struct rc_scancode_filter *filter;
1234 	u32 val;
1235 
1236 	mutex_lock(&dev->lock);
1237 
1238 	if (fattr->type == RC_FILTER_NORMAL)
1239 		filter = &dev->scancode_filter;
1240 	else
1241 		filter = &dev->scancode_wakeup_filter;
1242 
1243 	if (fattr->mask)
1244 		val = filter->mask;
1245 	else
1246 		val = filter->data;
1247 	mutex_unlock(&dev->lock);
1248 
1249 	return sprintf(buf, "%#x\n", val);
1250 }
1251 
1252 /**
1253  * store_filter() - changes the scancode filter value
1254  * @device:	the device descriptor
1255  * @attr:	the device attribute struct
1256  * @buf:	a pointer to the input buffer
1257  * @len:	length of the input buffer
1258  *
1259  * This routine is for changing a scancode filter value or mask.
1260  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1261  * Returns -EINVAL if an invalid filter value for the current protocol was
1262  * specified or if scancode filtering is not supported by the driver, otherwise
1263  * returns @len.
1264  *
1265  * Bits of the filter value corresponding to set bits in the filter mask are
1266  * compared against input scancodes and non-matching scancodes are discarded.
1267  *
1268  * dev->lock is taken to guard against races between
1269  * store_filter and show_filter.
1270  */
1271 static ssize_t store_filter(struct device *device,
1272 			    struct device_attribute *attr,
1273 			    const char *buf, size_t len)
1274 {
1275 	struct rc_dev *dev = to_rc_dev(device);
1276 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1277 	struct rc_scancode_filter new_filter, *filter;
1278 	int ret;
1279 	unsigned long val;
1280 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1281 
1282 	ret = kstrtoul(buf, 0, &val);
1283 	if (ret < 0)
1284 		return ret;
1285 
1286 	if (fattr->type == RC_FILTER_NORMAL) {
1287 		set_filter = dev->s_filter;
1288 		filter = &dev->scancode_filter;
1289 	} else {
1290 		set_filter = dev->s_wakeup_filter;
1291 		filter = &dev->scancode_wakeup_filter;
1292 	}
1293 
1294 	if (!set_filter)
1295 		return -EINVAL;
1296 
1297 	mutex_lock(&dev->lock);
1298 
1299 	new_filter = *filter;
1300 	if (fattr->mask)
1301 		new_filter.mask = val;
1302 	else
1303 		new_filter.data = val;
1304 
1305 	if (fattr->type == RC_FILTER_WAKEUP) {
1306 		/*
1307 		 * Refuse to set a filter unless a protocol is enabled
1308 		 * and the filter is valid for that protocol
1309 		 */
1310 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1311 			ret = rc_validate_filter(dev, &new_filter);
1312 		else
1313 			ret = -EINVAL;
1314 
1315 		if (ret != 0)
1316 			goto unlock;
1317 	}
1318 
1319 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1320 	    val) {
1321 		/* refuse to set a filter unless a protocol is enabled */
1322 		ret = -EINVAL;
1323 		goto unlock;
1324 	}
1325 
1326 	ret = set_filter(dev, &new_filter);
1327 	if (ret < 0)
1328 		goto unlock;
1329 
1330 	*filter = new_filter;
1331 
1332 unlock:
1333 	mutex_unlock(&dev->lock);
1334 	return (ret < 0) ? ret : len;
1335 }
1336 
1337 /**
1338  * show_wakeup_protocols() - shows the wakeup IR protocol
1339  * @device:	the device descriptor
1340  * @mattr:	the device attribute struct
1341  * @buf:	a pointer to the output buffer
1342  *
1343  * This routine is a callback routine for input read the IR protocol type(s).
1344  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1345  * It returns the protocol names of supported protocols.
1346  * The enabled protocols are printed in brackets.
1347  *
1348  * dev->lock is taken to guard against races between
1349  * store_wakeup_protocols and show_wakeup_protocols.
1350  */
1351 static ssize_t show_wakeup_protocols(struct device *device,
1352 				     struct device_attribute *mattr,
1353 				     char *buf)
1354 {
1355 	struct rc_dev *dev = to_rc_dev(device);
1356 	u64 allowed;
1357 	enum rc_proto enabled;
1358 	char *tmp = buf;
1359 	int i;
1360 
1361 	mutex_lock(&dev->lock);
1362 
1363 	allowed = dev->allowed_wakeup_protocols;
1364 	enabled = dev->wakeup_protocol;
1365 
1366 	mutex_unlock(&dev->lock);
1367 
1368 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1369 		   __func__, (long long)allowed, enabled);
1370 
1371 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1372 		if (allowed & (1ULL << i)) {
1373 			if (i == enabled)
1374 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1375 			else
1376 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1377 		}
1378 	}
1379 
1380 	if (tmp != buf)
1381 		tmp--;
1382 	*tmp = '\n';
1383 
1384 	return tmp + 1 - buf;
1385 }
1386 
1387 /**
1388  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1389  * @device:	the device descriptor
1390  * @mattr:	the device attribute struct
1391  * @buf:	a pointer to the input buffer
1392  * @len:	length of the input buffer
1393  *
1394  * This routine is for changing the IR protocol type.
1395  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1396  * Returns @len on success or a negative error code.
1397  *
1398  * dev->lock is taken to guard against races between
1399  * store_wakeup_protocols and show_wakeup_protocols.
1400  */
1401 static ssize_t store_wakeup_protocols(struct device *device,
1402 				      struct device_attribute *mattr,
1403 				      const char *buf, size_t len)
1404 {
1405 	struct rc_dev *dev = to_rc_dev(device);
1406 	enum rc_proto protocol;
1407 	ssize_t rc;
1408 	u64 allowed;
1409 	int i;
1410 
1411 	mutex_lock(&dev->lock);
1412 
1413 	allowed = dev->allowed_wakeup_protocols;
1414 
1415 	if (sysfs_streq(buf, "none")) {
1416 		protocol = RC_PROTO_UNKNOWN;
1417 	} else {
1418 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1419 			if ((allowed & (1ULL << i)) &&
1420 			    sysfs_streq(buf, protocols[i].name)) {
1421 				protocol = i;
1422 				break;
1423 			}
1424 		}
1425 
1426 		if (i == ARRAY_SIZE(protocols)) {
1427 			rc = -EINVAL;
1428 			goto out;
1429 		}
1430 
1431 		if (dev->encode_wakeup) {
1432 			u64 mask = 1ULL << protocol;
1433 
1434 			ir_raw_load_modules(&mask);
1435 			if (!mask) {
1436 				rc = -EINVAL;
1437 				goto out;
1438 			}
1439 		}
1440 	}
1441 
1442 	if (dev->wakeup_protocol != protocol) {
1443 		dev->wakeup_protocol = protocol;
1444 		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1445 
1446 		if (protocol == RC_PROTO_RC6_MCE)
1447 			dev->scancode_wakeup_filter.data = 0x800f0000;
1448 		else
1449 			dev->scancode_wakeup_filter.data = 0;
1450 		dev->scancode_wakeup_filter.mask = 0;
1451 
1452 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1453 		if (rc == 0)
1454 			rc = len;
1455 	} else {
1456 		rc = len;
1457 	}
1458 
1459 out:
1460 	mutex_unlock(&dev->lock);
1461 	return rc;
1462 }
1463 
1464 static void rc_dev_release(struct device *device)
1465 {
1466 	struct rc_dev *dev = to_rc_dev(device);
1467 
1468 	kfree(dev);
1469 }
1470 
1471 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1472 	do {								\
1473 		int err = add_uevent_var(env, fmt, val);		\
1474 		if (err)						\
1475 			return err;					\
1476 	} while (0)
1477 
1478 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1479 {
1480 	struct rc_dev *dev = to_rc_dev(device);
1481 
1482 	if (dev->rc_map.name)
1483 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1484 	if (dev->driver_name)
1485 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1486 	if (dev->device_name)
1487 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1488 
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Static device attribute struct with the sysfs attributes for IR's
1494  */
1495 static struct device_attribute dev_attr_ro_protocols =
1496 __ATTR(protocols, 0444, show_protocols, NULL);
1497 static struct device_attribute dev_attr_rw_protocols =
1498 __ATTR(protocols, 0644, show_protocols, store_protocols);
1499 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1500 		   store_wakeup_protocols);
1501 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1502 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1503 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1504 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1505 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1506 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1507 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1508 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1509 
1510 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1511 	&dev_attr_rw_protocols.attr,
1512 	NULL,
1513 };
1514 
1515 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1516 	.attrs	= rc_dev_rw_protocol_attrs,
1517 };
1518 
1519 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1520 	&dev_attr_ro_protocols.attr,
1521 	NULL,
1522 };
1523 
1524 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1525 	.attrs	= rc_dev_ro_protocol_attrs,
1526 };
1527 
1528 static struct attribute *rc_dev_filter_attrs[] = {
1529 	&dev_attr_filter.attr.attr,
1530 	&dev_attr_filter_mask.attr.attr,
1531 	NULL,
1532 };
1533 
1534 static const struct attribute_group rc_dev_filter_attr_grp = {
1535 	.attrs	= rc_dev_filter_attrs,
1536 };
1537 
1538 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1539 	&dev_attr_wakeup_filter.attr.attr,
1540 	&dev_attr_wakeup_filter_mask.attr.attr,
1541 	&dev_attr_wakeup_protocols.attr,
1542 	NULL,
1543 };
1544 
1545 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1546 	.attrs	= rc_dev_wakeup_filter_attrs,
1547 };
1548 
1549 static const struct device_type rc_dev_type = {
1550 	.release	= rc_dev_release,
1551 	.uevent		= rc_dev_uevent,
1552 };
1553 
1554 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1555 {
1556 	struct rc_dev *dev;
1557 
1558 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1559 	if (!dev)
1560 		return NULL;
1561 
1562 	if (type != RC_DRIVER_IR_RAW_TX) {
1563 		dev->input_dev = input_allocate_device();
1564 		if (!dev->input_dev) {
1565 			kfree(dev);
1566 			return NULL;
1567 		}
1568 
1569 		dev->input_dev->getkeycode = ir_getkeycode;
1570 		dev->input_dev->setkeycode = ir_setkeycode;
1571 		input_set_drvdata(dev->input_dev, dev);
1572 
1573 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1574 
1575 		spin_lock_init(&dev->rc_map.lock);
1576 		spin_lock_init(&dev->keylock);
1577 	}
1578 	mutex_init(&dev->lock);
1579 
1580 	dev->dev.type = &rc_dev_type;
1581 	dev->dev.class = &rc_class;
1582 	device_initialize(&dev->dev);
1583 
1584 	dev->driver_type = type;
1585 
1586 	__module_get(THIS_MODULE);
1587 	return dev;
1588 }
1589 EXPORT_SYMBOL_GPL(rc_allocate_device);
1590 
1591 void rc_free_device(struct rc_dev *dev)
1592 {
1593 	if (!dev)
1594 		return;
1595 
1596 	input_free_device(dev->input_dev);
1597 
1598 	put_device(&dev->dev);
1599 
1600 	/* kfree(dev) will be called by the callback function
1601 	   rc_dev_release() */
1602 
1603 	module_put(THIS_MODULE);
1604 }
1605 EXPORT_SYMBOL_GPL(rc_free_device);
1606 
1607 static void devm_rc_alloc_release(struct device *dev, void *res)
1608 {
1609 	rc_free_device(*(struct rc_dev **)res);
1610 }
1611 
1612 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1613 				       enum rc_driver_type type)
1614 {
1615 	struct rc_dev **dr, *rc;
1616 
1617 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1618 	if (!dr)
1619 		return NULL;
1620 
1621 	rc = rc_allocate_device(type);
1622 	if (!rc) {
1623 		devres_free(dr);
1624 		return NULL;
1625 	}
1626 
1627 	rc->dev.parent = dev;
1628 	rc->managed_alloc = true;
1629 	*dr = rc;
1630 	devres_add(dev, dr);
1631 
1632 	return rc;
1633 }
1634 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1635 
1636 static int rc_prepare_rx_device(struct rc_dev *dev)
1637 {
1638 	int rc;
1639 	struct rc_map *rc_map;
1640 	u64 rc_proto;
1641 
1642 	if (!dev->map_name)
1643 		return -EINVAL;
1644 
1645 	rc_map = rc_map_get(dev->map_name);
1646 	if (!rc_map)
1647 		rc_map = rc_map_get(RC_MAP_EMPTY);
1648 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1649 		return -EINVAL;
1650 
1651 	rc = ir_setkeytable(dev, rc_map);
1652 	if (rc)
1653 		return rc;
1654 
1655 	rc_proto = BIT_ULL(rc_map->rc_proto);
1656 
1657 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1658 		dev->enabled_protocols = dev->allowed_protocols;
1659 
1660 	if (dev->change_protocol) {
1661 		rc = dev->change_protocol(dev, &rc_proto);
1662 		if (rc < 0)
1663 			goto out_table;
1664 		dev->enabled_protocols = rc_proto;
1665 	}
1666 
1667 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1668 		ir_raw_load_modules(&rc_proto);
1669 
1670 	set_bit(EV_KEY, dev->input_dev->evbit);
1671 	set_bit(EV_REP, dev->input_dev->evbit);
1672 	set_bit(EV_MSC, dev->input_dev->evbit);
1673 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1674 	if (dev->open)
1675 		dev->input_dev->open = ir_open;
1676 	if (dev->close)
1677 		dev->input_dev->close = ir_close;
1678 
1679 	dev->input_dev->dev.parent = &dev->dev;
1680 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1681 	dev->input_dev->phys = dev->input_phys;
1682 	dev->input_dev->name = dev->device_name;
1683 
1684 	return 0;
1685 
1686 out_table:
1687 	ir_free_table(&dev->rc_map);
1688 
1689 	return rc;
1690 }
1691 
1692 static int rc_setup_rx_device(struct rc_dev *dev)
1693 {
1694 	int rc;
1695 
1696 	/* rc_open will be called here */
1697 	rc = input_register_device(dev->input_dev);
1698 	if (rc)
1699 		return rc;
1700 
1701 	/*
1702 	 * Default delay of 250ms is too short for some protocols, especially
1703 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1704 	 * to avoid wrong repetition of the keycodes. Note that this must be
1705 	 * set after the call to input_register_device().
1706 	 */
1707 	dev->input_dev->rep[REP_DELAY] = 500;
1708 
1709 	/*
1710 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1711 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1712 	 * to do.
1713 	 */
1714 	dev->input_dev->rep[REP_PERIOD] = 125;
1715 
1716 	return 0;
1717 }
1718 
1719 static void rc_free_rx_device(struct rc_dev *dev)
1720 {
1721 	if (!dev)
1722 		return;
1723 
1724 	if (dev->input_dev) {
1725 		input_unregister_device(dev->input_dev);
1726 		dev->input_dev = NULL;
1727 	}
1728 
1729 	ir_free_table(&dev->rc_map);
1730 }
1731 
1732 int rc_register_device(struct rc_dev *dev)
1733 {
1734 	const char *path;
1735 	int attr = 0;
1736 	int minor;
1737 	int rc;
1738 
1739 	if (!dev)
1740 		return -EINVAL;
1741 
1742 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1743 	if (minor < 0)
1744 		return minor;
1745 
1746 	dev->minor = minor;
1747 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1748 	dev_set_drvdata(&dev->dev, dev);
1749 
1750 	dev->dev.groups = dev->sysfs_groups;
1751 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1752 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1753 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1754 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1755 	if (dev->s_filter)
1756 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1757 	if (dev->s_wakeup_filter)
1758 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1759 	dev->sysfs_groups[attr++] = NULL;
1760 
1761 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1762 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1763 		rc = ir_raw_event_prepare(dev);
1764 		if (rc < 0)
1765 			goto out_minor;
1766 	}
1767 
1768 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1769 		rc = rc_prepare_rx_device(dev);
1770 		if (rc)
1771 			goto out_raw;
1772 	}
1773 
1774 	rc = device_add(&dev->dev);
1775 	if (rc)
1776 		goto out_rx_free;
1777 
1778 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1779 	dev_info(&dev->dev, "%s as %s\n",
1780 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1781 	kfree(path);
1782 
1783 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1784 		rc = rc_setup_rx_device(dev);
1785 		if (rc)
1786 			goto out_dev;
1787 	}
1788 
1789 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1790 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1791 		rc = ir_raw_event_register(dev);
1792 		if (rc < 0)
1793 			goto out_rx;
1794 	}
1795 
1796 	IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1797 		   dev->minor,
1798 		   dev->driver_name ? dev->driver_name : "unknown");
1799 
1800 	return 0;
1801 
1802 out_rx:
1803 	rc_free_rx_device(dev);
1804 out_dev:
1805 	device_del(&dev->dev);
1806 out_rx_free:
1807 	ir_free_table(&dev->rc_map);
1808 out_raw:
1809 	ir_raw_event_free(dev);
1810 out_minor:
1811 	ida_simple_remove(&rc_ida, minor);
1812 	return rc;
1813 }
1814 EXPORT_SYMBOL_GPL(rc_register_device);
1815 
1816 static void devm_rc_release(struct device *dev, void *res)
1817 {
1818 	rc_unregister_device(*(struct rc_dev **)res);
1819 }
1820 
1821 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1822 {
1823 	struct rc_dev **dr;
1824 	int ret;
1825 
1826 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1827 	if (!dr)
1828 		return -ENOMEM;
1829 
1830 	ret = rc_register_device(dev);
1831 	if (ret) {
1832 		devres_free(dr);
1833 		return ret;
1834 	}
1835 
1836 	*dr = dev;
1837 	devres_add(parent, dr);
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1842 
1843 void rc_unregister_device(struct rc_dev *dev)
1844 {
1845 	if (!dev)
1846 		return;
1847 
1848 	del_timer_sync(&dev->timer_keyup);
1849 
1850 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1851 		ir_raw_event_unregister(dev);
1852 
1853 	rc_free_rx_device(dev);
1854 
1855 	device_del(&dev->dev);
1856 
1857 	ida_simple_remove(&rc_ida, dev->minor);
1858 
1859 	if (!dev->managed_alloc)
1860 		rc_free_device(dev);
1861 }
1862 
1863 EXPORT_SYMBOL_GPL(rc_unregister_device);
1864 
1865 /*
1866  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1867  */
1868 
1869 static int __init rc_core_init(void)
1870 {
1871 	int rc = class_register(&rc_class);
1872 	if (rc) {
1873 		pr_err("rc_core: unable to register rc class\n");
1874 		return rc;
1875 	}
1876 
1877 	led_trigger_register_simple("rc-feedback", &led_feedback);
1878 	rc_map_register(&empty_map);
1879 
1880 	return 0;
1881 }
1882 
1883 static void __exit rc_core_exit(void)
1884 {
1885 	class_unregister(&rc_class);
1886 	led_trigger_unregister_simple(led_feedback);
1887 	rc_map_unregister(&empty_map);
1888 }
1889 
1890 subsys_initcall(rc_core_init);
1891 module_exit(rc_core_exit);
1892 
1893 int rc_core_debug;    /* ir_debug level (0,1,2) */
1894 EXPORT_SYMBOL_GPL(rc_core_debug);
1895 module_param_named(debug, rc_core_debug, int, 0644);
1896 
1897 MODULE_AUTHOR("Mauro Carvalho Chehab");
1898 MODULE_LICENSE("GPL");
1899