1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/spinlock.h> 17 #include <linux/delay.h> 18 #include <linux/input.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include <linux/module.h> 22 #include "rc-core-priv.h" 23 24 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 25 #define IR_TAB_MIN_SIZE 256 26 #define IR_TAB_MAX_SIZE 8192 27 28 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 29 #define IR_KEYPRESS_TIMEOUT 250 30 31 /* Used to keep track of known keymaps */ 32 static LIST_HEAD(rc_map_list); 33 static DEFINE_SPINLOCK(rc_map_lock); 34 35 static struct rc_map_list *seek_rc_map(const char *name) 36 { 37 struct rc_map_list *map = NULL; 38 39 spin_lock(&rc_map_lock); 40 list_for_each_entry(map, &rc_map_list, list) { 41 if (!strcmp(name, map->map.name)) { 42 spin_unlock(&rc_map_lock); 43 return map; 44 } 45 } 46 spin_unlock(&rc_map_lock); 47 48 return NULL; 49 } 50 51 struct rc_map *rc_map_get(const char *name) 52 { 53 54 struct rc_map_list *map; 55 56 map = seek_rc_map(name); 57 #ifdef MODULE 58 if (!map) { 59 int rc = request_module(name); 60 if (rc < 0) { 61 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 62 return NULL; 63 } 64 msleep(20); /* Give some time for IR to register */ 65 66 map = seek_rc_map(name); 67 } 68 #endif 69 if (!map) { 70 printk(KERN_ERR "IR keymap %s not found\n", name); 71 return NULL; 72 } 73 74 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 75 76 return &map->map; 77 } 78 EXPORT_SYMBOL_GPL(rc_map_get); 79 80 int rc_map_register(struct rc_map_list *map) 81 { 82 spin_lock(&rc_map_lock); 83 list_add_tail(&map->list, &rc_map_list); 84 spin_unlock(&rc_map_lock); 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(rc_map_register); 88 89 void rc_map_unregister(struct rc_map_list *map) 90 { 91 spin_lock(&rc_map_lock); 92 list_del(&map->list); 93 spin_unlock(&rc_map_lock); 94 } 95 EXPORT_SYMBOL_GPL(rc_map_unregister); 96 97 98 static struct rc_map_table empty[] = { 99 { 0x2a, KEY_COFFEE }, 100 }; 101 102 static struct rc_map_list empty_map = { 103 .map = { 104 .scan = empty, 105 .size = ARRAY_SIZE(empty), 106 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 107 .name = RC_MAP_EMPTY, 108 } 109 }; 110 111 /** 112 * ir_create_table() - initializes a scancode table 113 * @rc_map: the rc_map to initialize 114 * @name: name to assign to the table 115 * @rc_type: ir type to assign to the new table 116 * @size: initial size of the table 117 * @return: zero on success or a negative error code 118 * 119 * This routine will initialize the rc_map and will allocate 120 * memory to hold at least the specified number of elements. 121 */ 122 static int ir_create_table(struct rc_map *rc_map, 123 const char *name, u64 rc_type, size_t size) 124 { 125 rc_map->name = name; 126 rc_map->rc_type = rc_type; 127 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 128 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 129 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 130 if (!rc_map->scan) 131 return -ENOMEM; 132 133 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 134 rc_map->size, rc_map->alloc); 135 return 0; 136 } 137 138 /** 139 * ir_free_table() - frees memory allocated by a scancode table 140 * @rc_map: the table whose mappings need to be freed 141 * 142 * This routine will free memory alloctaed for key mappings used by given 143 * scancode table. 144 */ 145 static void ir_free_table(struct rc_map *rc_map) 146 { 147 rc_map->size = 0; 148 kfree(rc_map->scan); 149 rc_map->scan = NULL; 150 } 151 152 /** 153 * ir_resize_table() - resizes a scancode table if necessary 154 * @rc_map: the rc_map to resize 155 * @gfp_flags: gfp flags to use when allocating memory 156 * @return: zero on success or a negative error code 157 * 158 * This routine will shrink the rc_map if it has lots of 159 * unused entries and grow it if it is full. 160 */ 161 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 162 { 163 unsigned int oldalloc = rc_map->alloc; 164 unsigned int newalloc = oldalloc; 165 struct rc_map_table *oldscan = rc_map->scan; 166 struct rc_map_table *newscan; 167 168 if (rc_map->size == rc_map->len) { 169 /* All entries in use -> grow keytable */ 170 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 171 return -ENOMEM; 172 173 newalloc *= 2; 174 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 175 } 176 177 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 178 /* Less than 1/3 of entries in use -> shrink keytable */ 179 newalloc /= 2; 180 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 181 } 182 183 if (newalloc == oldalloc) 184 return 0; 185 186 newscan = kmalloc(newalloc, gfp_flags); 187 if (!newscan) { 188 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 189 return -ENOMEM; 190 } 191 192 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 193 rc_map->scan = newscan; 194 rc_map->alloc = newalloc; 195 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 196 kfree(oldscan); 197 return 0; 198 } 199 200 /** 201 * ir_update_mapping() - set a keycode in the scancode->keycode table 202 * @dev: the struct rc_dev device descriptor 203 * @rc_map: scancode table to be adjusted 204 * @index: index of the mapping that needs to be updated 205 * @keycode: the desired keycode 206 * @return: previous keycode assigned to the mapping 207 * 208 * This routine is used to update scancode->keycode mapping at given 209 * position. 210 */ 211 static unsigned int ir_update_mapping(struct rc_dev *dev, 212 struct rc_map *rc_map, 213 unsigned int index, 214 unsigned int new_keycode) 215 { 216 int old_keycode = rc_map->scan[index].keycode; 217 int i; 218 219 /* Did the user wish to remove the mapping? */ 220 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 221 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 222 index, rc_map->scan[index].scancode); 223 rc_map->len--; 224 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 225 (rc_map->len - index) * sizeof(struct rc_map_table)); 226 } else { 227 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 228 index, 229 old_keycode == KEY_RESERVED ? "New" : "Replacing", 230 rc_map->scan[index].scancode, new_keycode); 231 rc_map->scan[index].keycode = new_keycode; 232 __set_bit(new_keycode, dev->input_dev->keybit); 233 } 234 235 if (old_keycode != KEY_RESERVED) { 236 /* A previous mapping was updated... */ 237 __clear_bit(old_keycode, dev->input_dev->keybit); 238 /* ... but another scancode might use the same keycode */ 239 for (i = 0; i < rc_map->len; i++) { 240 if (rc_map->scan[i].keycode == old_keycode) { 241 __set_bit(old_keycode, dev->input_dev->keybit); 242 break; 243 } 244 } 245 246 /* Possibly shrink the keytable, failure is not a problem */ 247 ir_resize_table(rc_map, GFP_ATOMIC); 248 } 249 250 return old_keycode; 251 } 252 253 /** 254 * ir_establish_scancode() - set a keycode in the scancode->keycode table 255 * @dev: the struct rc_dev device descriptor 256 * @rc_map: scancode table to be searched 257 * @scancode: the desired scancode 258 * @resize: controls whether we allowed to resize the table to 259 * accommodate not yet present scancodes 260 * @return: index of the mapping containing scancode in question 261 * or -1U in case of failure. 262 * 263 * This routine is used to locate given scancode in rc_map. 264 * If scancode is not yet present the routine will allocate a new slot 265 * for it. 266 */ 267 static unsigned int ir_establish_scancode(struct rc_dev *dev, 268 struct rc_map *rc_map, 269 unsigned int scancode, 270 bool resize) 271 { 272 unsigned int i; 273 274 /* 275 * Unfortunately, some hardware-based IR decoders don't provide 276 * all bits for the complete IR code. In general, they provide only 277 * the command part of the IR code. Yet, as it is possible to replace 278 * the provided IR with another one, it is needed to allow loading 279 * IR tables from other remotes. So, we support specifying a mask to 280 * indicate the valid bits of the scancodes. 281 */ 282 if (dev->scanmask) 283 scancode &= dev->scanmask; 284 285 /* First check if we already have a mapping for this ir command */ 286 for (i = 0; i < rc_map->len; i++) { 287 if (rc_map->scan[i].scancode == scancode) 288 return i; 289 290 /* Keytable is sorted from lowest to highest scancode */ 291 if (rc_map->scan[i].scancode >= scancode) 292 break; 293 } 294 295 /* No previous mapping found, we might need to grow the table */ 296 if (rc_map->size == rc_map->len) { 297 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 298 return -1U; 299 } 300 301 /* i is the proper index to insert our new keycode */ 302 if (i < rc_map->len) 303 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 304 (rc_map->len - i) * sizeof(struct rc_map_table)); 305 rc_map->scan[i].scancode = scancode; 306 rc_map->scan[i].keycode = KEY_RESERVED; 307 rc_map->len++; 308 309 return i; 310 } 311 312 /** 313 * ir_setkeycode() - set a keycode in the scancode->keycode table 314 * @idev: the struct input_dev device descriptor 315 * @scancode: the desired scancode 316 * @keycode: result 317 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 318 * 319 * This routine is used to handle evdev EVIOCSKEY ioctl. 320 */ 321 static int ir_setkeycode(struct input_dev *idev, 322 const struct input_keymap_entry *ke, 323 unsigned int *old_keycode) 324 { 325 struct rc_dev *rdev = input_get_drvdata(idev); 326 struct rc_map *rc_map = &rdev->rc_map; 327 unsigned int index; 328 unsigned int scancode; 329 int retval = 0; 330 unsigned long flags; 331 332 spin_lock_irqsave(&rc_map->lock, flags); 333 334 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 335 index = ke->index; 336 if (index >= rc_map->len) { 337 retval = -EINVAL; 338 goto out; 339 } 340 } else { 341 retval = input_scancode_to_scalar(ke, &scancode); 342 if (retval) 343 goto out; 344 345 index = ir_establish_scancode(rdev, rc_map, scancode, true); 346 if (index >= rc_map->len) { 347 retval = -ENOMEM; 348 goto out; 349 } 350 } 351 352 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 353 354 out: 355 spin_unlock_irqrestore(&rc_map->lock, flags); 356 return retval; 357 } 358 359 /** 360 * ir_setkeytable() - sets several entries in the scancode->keycode table 361 * @dev: the struct rc_dev device descriptor 362 * @to: the struct rc_map to copy entries to 363 * @from: the struct rc_map to copy entries from 364 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 365 * 366 * This routine is used to handle table initialization. 367 */ 368 static int ir_setkeytable(struct rc_dev *dev, 369 const struct rc_map *from) 370 { 371 struct rc_map *rc_map = &dev->rc_map; 372 unsigned int i, index; 373 int rc; 374 375 rc = ir_create_table(rc_map, from->name, 376 from->rc_type, from->size); 377 if (rc) 378 return rc; 379 380 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 381 rc_map->size, rc_map->alloc); 382 383 for (i = 0; i < from->size; i++) { 384 index = ir_establish_scancode(dev, rc_map, 385 from->scan[i].scancode, false); 386 if (index >= rc_map->len) { 387 rc = -ENOMEM; 388 break; 389 } 390 391 ir_update_mapping(dev, rc_map, index, 392 from->scan[i].keycode); 393 } 394 395 if (rc) 396 ir_free_table(rc_map); 397 398 return rc; 399 } 400 401 /** 402 * ir_lookup_by_scancode() - locate mapping by scancode 403 * @rc_map: the struct rc_map to search 404 * @scancode: scancode to look for in the table 405 * @return: index in the table, -1U if not found 406 * 407 * This routine performs binary search in RC keykeymap table for 408 * given scancode. 409 */ 410 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 411 unsigned int scancode) 412 { 413 int start = 0; 414 int end = rc_map->len - 1; 415 int mid; 416 417 while (start <= end) { 418 mid = (start + end) / 2; 419 if (rc_map->scan[mid].scancode < scancode) 420 start = mid + 1; 421 else if (rc_map->scan[mid].scancode > scancode) 422 end = mid - 1; 423 else 424 return mid; 425 } 426 427 return -1U; 428 } 429 430 /** 431 * ir_getkeycode() - get a keycode from the scancode->keycode table 432 * @idev: the struct input_dev device descriptor 433 * @scancode: the desired scancode 434 * @keycode: used to return the keycode, if found, or KEY_RESERVED 435 * @return: always returns zero. 436 * 437 * This routine is used to handle evdev EVIOCGKEY ioctl. 438 */ 439 static int ir_getkeycode(struct input_dev *idev, 440 struct input_keymap_entry *ke) 441 { 442 struct rc_dev *rdev = input_get_drvdata(idev); 443 struct rc_map *rc_map = &rdev->rc_map; 444 struct rc_map_table *entry; 445 unsigned long flags; 446 unsigned int index; 447 unsigned int scancode; 448 int retval; 449 450 spin_lock_irqsave(&rc_map->lock, flags); 451 452 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 453 index = ke->index; 454 } else { 455 retval = input_scancode_to_scalar(ke, &scancode); 456 if (retval) 457 goto out; 458 459 index = ir_lookup_by_scancode(rc_map, scancode); 460 } 461 462 if (index < rc_map->len) { 463 entry = &rc_map->scan[index]; 464 465 ke->index = index; 466 ke->keycode = entry->keycode; 467 ke->len = sizeof(entry->scancode); 468 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 469 470 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 471 /* 472 * We do not really know the valid range of scancodes 473 * so let's respond with KEY_RESERVED to anything we 474 * do not have mapping for [yet]. 475 */ 476 ke->index = index; 477 ke->keycode = KEY_RESERVED; 478 } else { 479 retval = -EINVAL; 480 goto out; 481 } 482 483 retval = 0; 484 485 out: 486 spin_unlock_irqrestore(&rc_map->lock, flags); 487 return retval; 488 } 489 490 /** 491 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 492 * @dev: the struct rc_dev descriptor of the device 493 * @scancode: the scancode to look for 494 * @return: the corresponding keycode, or KEY_RESERVED 495 * 496 * This routine is used by drivers which need to convert a scancode to a 497 * keycode. Normally it should not be used since drivers should have no 498 * interest in keycodes. 499 */ 500 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 501 { 502 struct rc_map *rc_map = &dev->rc_map; 503 unsigned int keycode; 504 unsigned int index; 505 unsigned long flags; 506 507 spin_lock_irqsave(&rc_map->lock, flags); 508 509 index = ir_lookup_by_scancode(rc_map, scancode); 510 keycode = index < rc_map->len ? 511 rc_map->scan[index].keycode : KEY_RESERVED; 512 513 spin_unlock_irqrestore(&rc_map->lock, flags); 514 515 if (keycode != KEY_RESERVED) 516 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 517 dev->input_name, scancode, keycode); 518 519 return keycode; 520 } 521 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 522 523 /** 524 * ir_do_keyup() - internal function to signal the release of a keypress 525 * @dev: the struct rc_dev descriptor of the device 526 * @sync: whether or not to call input_sync 527 * 528 * This function is used internally to release a keypress, it must be 529 * called with keylock held. 530 */ 531 static void ir_do_keyup(struct rc_dev *dev, bool sync) 532 { 533 if (!dev->keypressed) 534 return; 535 536 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 537 input_report_key(dev->input_dev, dev->last_keycode, 0); 538 if (sync) 539 input_sync(dev->input_dev); 540 dev->keypressed = false; 541 } 542 543 /** 544 * rc_keyup() - signals the release of a keypress 545 * @dev: the struct rc_dev descriptor of the device 546 * 547 * This routine is used to signal that a key has been released on the 548 * remote control. 549 */ 550 void rc_keyup(struct rc_dev *dev) 551 { 552 unsigned long flags; 553 554 spin_lock_irqsave(&dev->keylock, flags); 555 ir_do_keyup(dev, true); 556 spin_unlock_irqrestore(&dev->keylock, flags); 557 } 558 EXPORT_SYMBOL_GPL(rc_keyup); 559 560 /** 561 * ir_timer_keyup() - generates a keyup event after a timeout 562 * @cookie: a pointer to the struct rc_dev for the device 563 * 564 * This routine will generate a keyup event some time after a keydown event 565 * is generated when no further activity has been detected. 566 */ 567 static void ir_timer_keyup(unsigned long cookie) 568 { 569 struct rc_dev *dev = (struct rc_dev *)cookie; 570 unsigned long flags; 571 572 /* 573 * ir->keyup_jiffies is used to prevent a race condition if a 574 * hardware interrupt occurs at this point and the keyup timer 575 * event is moved further into the future as a result. 576 * 577 * The timer will then be reactivated and this function called 578 * again in the future. We need to exit gracefully in that case 579 * to allow the input subsystem to do its auto-repeat magic or 580 * a keyup event might follow immediately after the keydown. 581 */ 582 spin_lock_irqsave(&dev->keylock, flags); 583 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 584 ir_do_keyup(dev, true); 585 spin_unlock_irqrestore(&dev->keylock, flags); 586 } 587 588 /** 589 * rc_repeat() - signals that a key is still pressed 590 * @dev: the struct rc_dev descriptor of the device 591 * 592 * This routine is used by IR decoders when a repeat message which does 593 * not include the necessary bits to reproduce the scancode has been 594 * received. 595 */ 596 void rc_repeat(struct rc_dev *dev) 597 { 598 unsigned long flags; 599 600 spin_lock_irqsave(&dev->keylock, flags); 601 602 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 603 input_sync(dev->input_dev); 604 605 if (!dev->keypressed) 606 goto out; 607 608 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 609 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 610 611 out: 612 spin_unlock_irqrestore(&dev->keylock, flags); 613 } 614 EXPORT_SYMBOL_GPL(rc_repeat); 615 616 /** 617 * ir_do_keydown() - internal function to process a keypress 618 * @dev: the struct rc_dev descriptor of the device 619 * @scancode: the scancode of the keypress 620 * @keycode: the keycode of the keypress 621 * @toggle: the toggle value of the keypress 622 * 623 * This function is used internally to register a keypress, it must be 624 * called with keylock held. 625 */ 626 static void ir_do_keydown(struct rc_dev *dev, int scancode, 627 u32 keycode, u8 toggle) 628 { 629 bool new_event = !dev->keypressed || 630 dev->last_scancode != scancode || 631 dev->last_toggle != toggle; 632 633 if (new_event && dev->keypressed) 634 ir_do_keyup(dev, false); 635 636 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 637 638 if (new_event && keycode != KEY_RESERVED) { 639 /* Register a keypress */ 640 dev->keypressed = true; 641 dev->last_scancode = scancode; 642 dev->last_toggle = toggle; 643 dev->last_keycode = keycode; 644 645 IR_dprintk(1, "%s: key down event, " 646 "key 0x%04x, scancode 0x%04x\n", 647 dev->input_name, keycode, scancode); 648 input_report_key(dev->input_dev, keycode, 1); 649 } 650 651 input_sync(dev->input_dev); 652 } 653 654 /** 655 * rc_keydown() - generates input event for a key press 656 * @dev: the struct rc_dev descriptor of the device 657 * @scancode: the scancode that we're seeking 658 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 659 * support toggle values, this should be set to zero) 660 * 661 * This routine is used to signal that a key has been pressed on the 662 * remote control. 663 */ 664 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle) 665 { 666 unsigned long flags; 667 u32 keycode = rc_g_keycode_from_table(dev, scancode); 668 669 spin_lock_irqsave(&dev->keylock, flags); 670 ir_do_keydown(dev, scancode, keycode, toggle); 671 672 if (dev->keypressed) { 673 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 674 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 675 } 676 spin_unlock_irqrestore(&dev->keylock, flags); 677 } 678 EXPORT_SYMBOL_GPL(rc_keydown); 679 680 /** 681 * rc_keydown_notimeout() - generates input event for a key press without 682 * an automatic keyup event at a later time 683 * @dev: the struct rc_dev descriptor of the device 684 * @scancode: the scancode that we're seeking 685 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 686 * support toggle values, this should be set to zero) 687 * 688 * This routine is used to signal that a key has been pressed on the 689 * remote control. The driver must manually call rc_keyup() at a later stage. 690 */ 691 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle) 692 { 693 unsigned long flags; 694 u32 keycode = rc_g_keycode_from_table(dev, scancode); 695 696 spin_lock_irqsave(&dev->keylock, flags); 697 ir_do_keydown(dev, scancode, keycode, toggle); 698 spin_unlock_irqrestore(&dev->keylock, flags); 699 } 700 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 701 702 static int ir_open(struct input_dev *idev) 703 { 704 struct rc_dev *rdev = input_get_drvdata(idev); 705 706 return rdev->open(rdev); 707 } 708 709 static void ir_close(struct input_dev *idev) 710 { 711 struct rc_dev *rdev = input_get_drvdata(idev); 712 713 if (rdev) 714 rdev->close(rdev); 715 } 716 717 /* class for /sys/class/rc */ 718 static char *rc_devnode(struct device *dev, umode_t *mode) 719 { 720 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 721 } 722 723 static struct class rc_class = { 724 .name = "rc", 725 .devnode = rc_devnode, 726 }; 727 728 /* 729 * These are the protocol textual descriptions that are 730 * used by the sysfs protocols file. Note that the order 731 * of the entries is relevant. 732 */ 733 static struct { 734 u64 type; 735 char *name; 736 } proto_names[] = { 737 { RC_BIT_NONE, "none" }, 738 { RC_BIT_OTHER, "other" }, 739 { RC_BIT_UNKNOWN, "unknown" }, 740 { RC_BIT_RC5 | 741 RC_BIT_RC5X, "rc-5" }, 742 { RC_BIT_NEC, "nec" }, 743 { RC_BIT_RC6_0 | 744 RC_BIT_RC6_6A_20 | 745 RC_BIT_RC6_6A_24 | 746 RC_BIT_RC6_6A_32 | 747 RC_BIT_RC6_MCE, "rc-6" }, 748 { RC_BIT_JVC, "jvc" }, 749 { RC_BIT_SONY12 | 750 RC_BIT_SONY15 | 751 RC_BIT_SONY20, "sony" }, 752 { RC_BIT_RC5_SZ, "rc-5-sz" }, 753 { RC_BIT_SANYO, "sanyo" }, 754 { RC_BIT_MCE_KBD, "mce_kbd" }, 755 { RC_BIT_LIRC, "lirc" }, 756 }; 757 758 /** 759 * show_protocols() - shows the current IR protocol(s) 760 * @device: the device descriptor 761 * @mattr: the device attribute struct (unused) 762 * @buf: a pointer to the output buffer 763 * 764 * This routine is a callback routine for input read the IR protocol type(s). 765 * it is trigged by reading /sys/class/rc/rc?/protocols. 766 * It returns the protocol names of supported protocols. 767 * Enabled protocols are printed in brackets. 768 * 769 * dev->lock is taken to guard against races between device 770 * registration, store_protocols and show_protocols. 771 */ 772 static ssize_t show_protocols(struct device *device, 773 struct device_attribute *mattr, char *buf) 774 { 775 struct rc_dev *dev = to_rc_dev(device); 776 u64 allowed, enabled; 777 char *tmp = buf; 778 int i; 779 780 /* Device is being removed */ 781 if (!dev) 782 return -EINVAL; 783 784 mutex_lock(&dev->lock); 785 786 enabled = dev->enabled_protocols; 787 if (dev->driver_type == RC_DRIVER_SCANCODE) 788 allowed = dev->allowed_protos; 789 else if (dev->raw) 790 allowed = ir_raw_get_allowed_protocols(); 791 else { 792 mutex_unlock(&dev->lock); 793 return -ENODEV; 794 } 795 796 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n", 797 (long long)allowed, 798 (long long)enabled); 799 800 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 801 if (allowed & enabled & proto_names[i].type) 802 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 803 else if (allowed & proto_names[i].type) 804 tmp += sprintf(tmp, "%s ", proto_names[i].name); 805 806 if (allowed & proto_names[i].type) 807 allowed &= ~proto_names[i].type; 808 } 809 810 if (tmp != buf) 811 tmp--; 812 *tmp = '\n'; 813 814 mutex_unlock(&dev->lock); 815 816 return tmp + 1 - buf; 817 } 818 819 /** 820 * store_protocols() - changes the current IR protocol(s) 821 * @device: the device descriptor 822 * @mattr: the device attribute struct (unused) 823 * @buf: a pointer to the input buffer 824 * @len: length of the input buffer 825 * 826 * This routine is for changing the IR protocol type. 827 * It is trigged by writing to /sys/class/rc/rc?/protocols. 828 * Writing "+proto" will add a protocol to the list of enabled protocols. 829 * Writing "-proto" will remove a protocol from the list of enabled protocols. 830 * Writing "proto" will enable only "proto". 831 * Writing "none" will disable all protocols. 832 * Returns -EINVAL if an invalid protocol combination or unknown protocol name 833 * is used, otherwise @len. 834 * 835 * dev->lock is taken to guard against races between device 836 * registration, store_protocols and show_protocols. 837 */ 838 static ssize_t store_protocols(struct device *device, 839 struct device_attribute *mattr, 840 const char *data, 841 size_t len) 842 { 843 struct rc_dev *dev = to_rc_dev(device); 844 bool enable, disable; 845 const char *tmp; 846 u64 type; 847 u64 mask; 848 int rc, i, count = 0; 849 ssize_t ret; 850 851 /* Device is being removed */ 852 if (!dev) 853 return -EINVAL; 854 855 mutex_lock(&dev->lock); 856 857 if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) { 858 IR_dprintk(1, "Protocol switching not supported\n"); 859 ret = -EINVAL; 860 goto out; 861 } 862 type = dev->enabled_protocols; 863 864 while ((tmp = strsep((char **) &data, " \n")) != NULL) { 865 if (!*tmp) 866 break; 867 868 if (*tmp == '+') { 869 enable = true; 870 disable = false; 871 tmp++; 872 } else if (*tmp == '-') { 873 enable = false; 874 disable = true; 875 tmp++; 876 } else { 877 enable = false; 878 disable = false; 879 } 880 881 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 882 if (!strcasecmp(tmp, proto_names[i].name)) { 883 mask = proto_names[i].type; 884 break; 885 } 886 } 887 888 if (i == ARRAY_SIZE(proto_names)) { 889 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 890 ret = -EINVAL; 891 goto out; 892 } 893 894 count++; 895 896 if (enable) 897 type |= mask; 898 else if (disable) 899 type &= ~mask; 900 else 901 type = mask; 902 } 903 904 if (!count) { 905 IR_dprintk(1, "Protocol not specified\n"); 906 ret = -EINVAL; 907 goto out; 908 } 909 910 if (dev->change_protocol) { 911 rc = dev->change_protocol(dev, &type); 912 if (rc < 0) { 913 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 914 (long long)type); 915 ret = -EINVAL; 916 goto out; 917 } 918 } 919 920 dev->enabled_protocols = type; 921 IR_dprintk(1, "Current protocol(s): 0x%llx\n", 922 (long long)type); 923 924 ret = len; 925 926 out: 927 mutex_unlock(&dev->lock); 928 return ret; 929 } 930 931 static void rc_dev_release(struct device *device) 932 { 933 } 934 935 #define ADD_HOTPLUG_VAR(fmt, val...) \ 936 do { \ 937 int err = add_uevent_var(env, fmt, val); \ 938 if (err) \ 939 return err; \ 940 } while (0) 941 942 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 943 { 944 struct rc_dev *dev = to_rc_dev(device); 945 946 if (!dev || !dev->input_dev) 947 return -ENODEV; 948 949 if (dev->rc_map.name) 950 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 951 if (dev->driver_name) 952 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 953 954 return 0; 955 } 956 957 /* 958 * Static device attribute struct with the sysfs attributes for IR's 959 */ 960 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR, 961 show_protocols, store_protocols); 962 963 static struct attribute *rc_dev_attrs[] = { 964 &dev_attr_protocols.attr, 965 NULL, 966 }; 967 968 static struct attribute_group rc_dev_attr_grp = { 969 .attrs = rc_dev_attrs, 970 }; 971 972 static const struct attribute_group *rc_dev_attr_groups[] = { 973 &rc_dev_attr_grp, 974 NULL 975 }; 976 977 static struct device_type rc_dev_type = { 978 .groups = rc_dev_attr_groups, 979 .release = rc_dev_release, 980 .uevent = rc_dev_uevent, 981 }; 982 983 struct rc_dev *rc_allocate_device(void) 984 { 985 struct rc_dev *dev; 986 987 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 988 if (!dev) 989 return NULL; 990 991 dev->input_dev = input_allocate_device(); 992 if (!dev->input_dev) { 993 kfree(dev); 994 return NULL; 995 } 996 997 dev->input_dev->getkeycode = ir_getkeycode; 998 dev->input_dev->setkeycode = ir_setkeycode; 999 input_set_drvdata(dev->input_dev, dev); 1000 1001 spin_lock_init(&dev->rc_map.lock); 1002 spin_lock_init(&dev->keylock); 1003 mutex_init(&dev->lock); 1004 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1005 1006 dev->dev.type = &rc_dev_type; 1007 dev->dev.class = &rc_class; 1008 device_initialize(&dev->dev); 1009 1010 __module_get(THIS_MODULE); 1011 return dev; 1012 } 1013 EXPORT_SYMBOL_GPL(rc_allocate_device); 1014 1015 void rc_free_device(struct rc_dev *dev) 1016 { 1017 if (!dev) 1018 return; 1019 1020 if (dev->input_dev) 1021 input_free_device(dev->input_dev); 1022 1023 put_device(&dev->dev); 1024 1025 kfree(dev); 1026 module_put(THIS_MODULE); 1027 } 1028 EXPORT_SYMBOL_GPL(rc_free_device); 1029 1030 int rc_register_device(struct rc_dev *dev) 1031 { 1032 static bool raw_init = false; /* raw decoders loaded? */ 1033 static atomic_t devno = ATOMIC_INIT(0); 1034 struct rc_map *rc_map; 1035 const char *path; 1036 int rc; 1037 1038 if (!dev || !dev->map_name) 1039 return -EINVAL; 1040 1041 rc_map = rc_map_get(dev->map_name); 1042 if (!rc_map) 1043 rc_map = rc_map_get(RC_MAP_EMPTY); 1044 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1045 return -EINVAL; 1046 1047 set_bit(EV_KEY, dev->input_dev->evbit); 1048 set_bit(EV_REP, dev->input_dev->evbit); 1049 set_bit(EV_MSC, dev->input_dev->evbit); 1050 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1051 if (dev->open) 1052 dev->input_dev->open = ir_open; 1053 if (dev->close) 1054 dev->input_dev->close = ir_close; 1055 1056 /* 1057 * Take the lock here, as the device sysfs node will appear 1058 * when device_add() is called, which may trigger an ir-keytable udev 1059 * rule, which will in turn call show_protocols and access 1060 * dev->enabled_protocols before it has been initialized. 1061 */ 1062 mutex_lock(&dev->lock); 1063 1064 dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1); 1065 dev_set_name(&dev->dev, "rc%ld", dev->devno); 1066 dev_set_drvdata(&dev->dev, dev); 1067 rc = device_add(&dev->dev); 1068 if (rc) 1069 goto out_unlock; 1070 1071 rc = ir_setkeytable(dev, rc_map); 1072 if (rc) 1073 goto out_dev; 1074 1075 dev->input_dev->dev.parent = &dev->dev; 1076 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1077 dev->input_dev->phys = dev->input_phys; 1078 dev->input_dev->name = dev->input_name; 1079 rc = input_register_device(dev->input_dev); 1080 if (rc) 1081 goto out_table; 1082 1083 /* 1084 * Default delay of 250ms is too short for some protocols, especially 1085 * since the timeout is currently set to 250ms. Increase it to 500ms, 1086 * to avoid wrong repetition of the keycodes. Note that this must be 1087 * set after the call to input_register_device(). 1088 */ 1089 dev->input_dev->rep[REP_DELAY] = 500; 1090 1091 /* 1092 * As a repeat event on protocols like RC-5 and NEC take as long as 1093 * 110/114ms, using 33ms as a repeat period is not the right thing 1094 * to do. 1095 */ 1096 dev->input_dev->rep[REP_PERIOD] = 125; 1097 1098 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1099 printk(KERN_INFO "%s: %s as %s\n", 1100 dev_name(&dev->dev), 1101 dev->input_name ? dev->input_name : "Unspecified device", 1102 path ? path : "N/A"); 1103 kfree(path); 1104 1105 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1106 /* Load raw decoders, if they aren't already */ 1107 if (!raw_init) { 1108 IR_dprintk(1, "Loading raw decoders\n"); 1109 ir_raw_init(); 1110 raw_init = true; 1111 } 1112 rc = ir_raw_event_register(dev); 1113 if (rc < 0) 1114 goto out_input; 1115 } 1116 1117 if (dev->change_protocol) { 1118 u64 rc_type = (1 << rc_map->rc_type); 1119 rc = dev->change_protocol(dev, &rc_type); 1120 if (rc < 0) 1121 goto out_raw; 1122 dev->enabled_protocols = rc_type; 1123 } 1124 1125 mutex_unlock(&dev->lock); 1126 1127 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n", 1128 dev->devno, 1129 dev->driver_name ? dev->driver_name : "unknown", 1130 rc_map->name ? rc_map->name : "unknown", 1131 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1132 1133 return 0; 1134 1135 out_raw: 1136 if (dev->driver_type == RC_DRIVER_IR_RAW) 1137 ir_raw_event_unregister(dev); 1138 out_input: 1139 input_unregister_device(dev->input_dev); 1140 dev->input_dev = NULL; 1141 out_table: 1142 ir_free_table(&dev->rc_map); 1143 out_dev: 1144 device_del(&dev->dev); 1145 out_unlock: 1146 mutex_unlock(&dev->lock); 1147 return rc; 1148 } 1149 EXPORT_SYMBOL_GPL(rc_register_device); 1150 1151 void rc_unregister_device(struct rc_dev *dev) 1152 { 1153 if (!dev) 1154 return; 1155 1156 del_timer_sync(&dev->timer_keyup); 1157 1158 if (dev->driver_type == RC_DRIVER_IR_RAW) 1159 ir_raw_event_unregister(dev); 1160 1161 /* Freeing the table should also call the stop callback */ 1162 ir_free_table(&dev->rc_map); 1163 IR_dprintk(1, "Freed keycode table\n"); 1164 1165 input_unregister_device(dev->input_dev); 1166 dev->input_dev = NULL; 1167 1168 device_del(&dev->dev); 1169 1170 rc_free_device(dev); 1171 } 1172 1173 EXPORT_SYMBOL_GPL(rc_unregister_device); 1174 1175 /* 1176 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1177 */ 1178 1179 static int __init rc_core_init(void) 1180 { 1181 int rc = class_register(&rc_class); 1182 if (rc) { 1183 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1184 return rc; 1185 } 1186 1187 rc_map_register(&empty_map); 1188 1189 return 0; 1190 } 1191 1192 static void __exit rc_core_exit(void) 1193 { 1194 class_unregister(&rc_class); 1195 rc_map_unregister(&empty_map); 1196 } 1197 1198 subsys_initcall(rc_core_init); 1199 module_exit(rc_core_exit); 1200 1201 int rc_core_debug; /* ir_debug level (0,1,2) */ 1202 EXPORT_SYMBOL_GPL(rc_core_debug); 1203 module_param_named(debug, rc_core_debug, int, 0644); 1204 1205 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); 1206 MODULE_LICENSE("GPL"); 1207