1 // SPDX-License-Identifier: GPL-2.0 2 // rc-main.c - Remote Controller core module 3 // 4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <media/rc-core.h> 9 #include <linux/bsearch.h> 10 #include <linux/spinlock.h> 11 #include <linux/delay.h> 12 #include <linux/input.h> 13 #include <linux/leds.h> 14 #include <linux/slab.h> 15 #include <linux/idr.h> 16 #include <linux/device.h> 17 #include <linux/module.h> 18 #include "rc-core-priv.h" 19 20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 21 #define IR_TAB_MIN_SIZE 256 22 #define IR_TAB_MAX_SIZE 8192 23 24 static const struct { 25 const char *name; 26 unsigned int repeat_period; 27 unsigned int scancode_bits; 28 } protocols[] = { 29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 }, 30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 }, 31 [RC_PROTO_RC5] = { .name = "rc-5", 32 .scancode_bits = 0x1f7f, .repeat_period = 114 }, 33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", 34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 }, 35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", 36 .scancode_bits = 0x2fff, .repeat_period = 114 }, 37 [RC_PROTO_JVC] = { .name = "jvc", 38 .scancode_bits = 0xffff, .repeat_period = 125 }, 39 [RC_PROTO_SONY12] = { .name = "sony-12", 40 .scancode_bits = 0x1f007f, .repeat_period = 100 }, 41 [RC_PROTO_SONY15] = { .name = "sony-15", 42 .scancode_bits = 0xff007f, .repeat_period = 100 }, 43 [RC_PROTO_SONY20] = { .name = "sony-20", 44 .scancode_bits = 0x1fff7f, .repeat_period = 100 }, 45 [RC_PROTO_NEC] = { .name = "nec", 46 .scancode_bits = 0xffff, .repeat_period = 110 }, 47 [RC_PROTO_NECX] = { .name = "nec-x", 48 .scancode_bits = 0xffffff, .repeat_period = 110 }, 49 [RC_PROTO_NEC32] = { .name = "nec-32", 50 .scancode_bits = 0xffffffff, .repeat_period = 110 }, 51 [RC_PROTO_SANYO] = { .name = "sanyo", 52 .scancode_bits = 0x1fffff, .repeat_period = 125 }, 53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", 54 .scancode_bits = 0xffffff, .repeat_period = 100 }, 55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", 56 .scancode_bits = 0x1fffff, .repeat_period = 100 }, 57 [RC_PROTO_RC6_0] = { .name = "rc-6-0", 58 .scancode_bits = 0xffff, .repeat_period = 114 }, 59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", 60 .scancode_bits = 0xfffff, .repeat_period = 114 }, 61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", 62 .scancode_bits = 0xffffff, .repeat_period = 114 }, 63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", 64 .scancode_bits = 0xffffffff, .repeat_period = 114 }, 65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", 66 .scancode_bits = 0xffff7fff, .repeat_period = 114 }, 67 [RC_PROTO_SHARP] = { .name = "sharp", 68 .scancode_bits = 0x1fff, .repeat_period = 125 }, 69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 }, 70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 }, 71 [RC_PROTO_IMON] = { .name = "imon", 72 .scancode_bits = 0x7fffffff, .repeat_period = 114 }, 73 [RC_PROTO_RCMM12] = { .name = "rc-mm-12", 74 .scancode_bits = 0x00000fff, .repeat_period = 114 }, 75 [RC_PROTO_RCMM24] = { .name = "rc-mm-24", 76 .scancode_bits = 0x00ffffff, .repeat_period = 114 }, 77 [RC_PROTO_RCMM32] = { .name = "rc-mm-32", 78 .scancode_bits = 0xffffffff, .repeat_period = 114 }, 79 [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 }, 80 }; 81 82 /* Used to keep track of known keymaps */ 83 static LIST_HEAD(rc_map_list); 84 static DEFINE_SPINLOCK(rc_map_lock); 85 static struct led_trigger *led_feedback; 86 87 /* Used to keep track of rc devices */ 88 static DEFINE_IDA(rc_ida); 89 90 static struct rc_map_list *seek_rc_map(const char *name) 91 { 92 struct rc_map_list *map = NULL; 93 94 spin_lock(&rc_map_lock); 95 list_for_each_entry(map, &rc_map_list, list) { 96 if (!strcmp(name, map->map.name)) { 97 spin_unlock(&rc_map_lock); 98 return map; 99 } 100 } 101 spin_unlock(&rc_map_lock); 102 103 return NULL; 104 } 105 106 struct rc_map *rc_map_get(const char *name) 107 { 108 109 struct rc_map_list *map; 110 111 map = seek_rc_map(name); 112 #ifdef CONFIG_MODULES 113 if (!map) { 114 int rc = request_module("%s", name); 115 if (rc < 0) { 116 pr_err("Couldn't load IR keymap %s\n", name); 117 return NULL; 118 } 119 msleep(20); /* Give some time for IR to register */ 120 121 map = seek_rc_map(name); 122 } 123 #endif 124 if (!map) { 125 pr_err("IR keymap %s not found\n", name); 126 return NULL; 127 } 128 129 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 130 131 return &map->map; 132 } 133 EXPORT_SYMBOL_GPL(rc_map_get); 134 135 int rc_map_register(struct rc_map_list *map) 136 { 137 spin_lock(&rc_map_lock); 138 list_add_tail(&map->list, &rc_map_list); 139 spin_unlock(&rc_map_lock); 140 return 0; 141 } 142 EXPORT_SYMBOL_GPL(rc_map_register); 143 144 void rc_map_unregister(struct rc_map_list *map) 145 { 146 spin_lock(&rc_map_lock); 147 list_del(&map->list); 148 spin_unlock(&rc_map_lock); 149 } 150 EXPORT_SYMBOL_GPL(rc_map_unregister); 151 152 153 static struct rc_map_table empty[] = { 154 { 0x2a, KEY_COFFEE }, 155 }; 156 157 static struct rc_map_list empty_map = { 158 .map = { 159 .scan = empty, 160 .size = ARRAY_SIZE(empty), 161 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ 162 .name = RC_MAP_EMPTY, 163 } 164 }; 165 166 /** 167 * ir_create_table() - initializes a scancode table 168 * @dev: the rc_dev device 169 * @rc_map: the rc_map to initialize 170 * @name: name to assign to the table 171 * @rc_proto: ir type to assign to the new table 172 * @size: initial size of the table 173 * 174 * This routine will initialize the rc_map and will allocate 175 * memory to hold at least the specified number of elements. 176 * 177 * return: zero on success or a negative error code 178 */ 179 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, 180 const char *name, u64 rc_proto, size_t size) 181 { 182 rc_map->name = kstrdup(name, GFP_KERNEL); 183 if (!rc_map->name) 184 return -ENOMEM; 185 rc_map->rc_proto = rc_proto; 186 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 187 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 188 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 189 if (!rc_map->scan) { 190 kfree(rc_map->name); 191 rc_map->name = NULL; 192 return -ENOMEM; 193 } 194 195 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", 196 rc_map->size, rc_map->alloc); 197 return 0; 198 } 199 200 /** 201 * ir_free_table() - frees memory allocated by a scancode table 202 * @rc_map: the table whose mappings need to be freed 203 * 204 * This routine will free memory alloctaed for key mappings used by given 205 * scancode table. 206 */ 207 static void ir_free_table(struct rc_map *rc_map) 208 { 209 rc_map->size = 0; 210 kfree(rc_map->name); 211 rc_map->name = NULL; 212 kfree(rc_map->scan); 213 rc_map->scan = NULL; 214 } 215 216 /** 217 * ir_resize_table() - resizes a scancode table if necessary 218 * @dev: the rc_dev device 219 * @rc_map: the rc_map to resize 220 * @gfp_flags: gfp flags to use when allocating memory 221 * 222 * This routine will shrink the rc_map if it has lots of 223 * unused entries and grow it if it is full. 224 * 225 * return: zero on success or a negative error code 226 */ 227 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, 228 gfp_t gfp_flags) 229 { 230 unsigned int oldalloc = rc_map->alloc; 231 unsigned int newalloc = oldalloc; 232 struct rc_map_table *oldscan = rc_map->scan; 233 struct rc_map_table *newscan; 234 235 if (rc_map->size == rc_map->len) { 236 /* All entries in use -> grow keytable */ 237 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 238 return -ENOMEM; 239 240 newalloc *= 2; 241 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); 242 } 243 244 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 245 /* Less than 1/3 of entries in use -> shrink keytable */ 246 newalloc /= 2; 247 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); 248 } 249 250 if (newalloc == oldalloc) 251 return 0; 252 253 newscan = kmalloc(newalloc, gfp_flags); 254 if (!newscan) 255 return -ENOMEM; 256 257 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 258 rc_map->scan = newscan; 259 rc_map->alloc = newalloc; 260 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 261 kfree(oldscan); 262 return 0; 263 } 264 265 /** 266 * ir_update_mapping() - set a keycode in the scancode->keycode table 267 * @dev: the struct rc_dev device descriptor 268 * @rc_map: scancode table to be adjusted 269 * @index: index of the mapping that needs to be updated 270 * @new_keycode: the desired keycode 271 * 272 * This routine is used to update scancode->keycode mapping at given 273 * position. 274 * 275 * return: previous keycode assigned to the mapping 276 * 277 */ 278 static unsigned int ir_update_mapping(struct rc_dev *dev, 279 struct rc_map *rc_map, 280 unsigned int index, 281 unsigned int new_keycode) 282 { 283 int old_keycode = rc_map->scan[index].keycode; 284 int i; 285 286 /* Did the user wish to remove the mapping? */ 287 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 288 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n", 289 index, rc_map->scan[index].scancode); 290 rc_map->len--; 291 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 292 (rc_map->len - index) * sizeof(struct rc_map_table)); 293 } else { 294 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n", 295 index, 296 old_keycode == KEY_RESERVED ? "New" : "Replacing", 297 rc_map->scan[index].scancode, new_keycode); 298 rc_map->scan[index].keycode = new_keycode; 299 __set_bit(new_keycode, dev->input_dev->keybit); 300 } 301 302 if (old_keycode != KEY_RESERVED) { 303 /* A previous mapping was updated... */ 304 __clear_bit(old_keycode, dev->input_dev->keybit); 305 /* ... but another scancode might use the same keycode */ 306 for (i = 0; i < rc_map->len; i++) { 307 if (rc_map->scan[i].keycode == old_keycode) { 308 __set_bit(old_keycode, dev->input_dev->keybit); 309 break; 310 } 311 } 312 313 /* Possibly shrink the keytable, failure is not a problem */ 314 ir_resize_table(dev, rc_map, GFP_ATOMIC); 315 } 316 317 return old_keycode; 318 } 319 320 /** 321 * ir_establish_scancode() - set a keycode in the scancode->keycode table 322 * @dev: the struct rc_dev device descriptor 323 * @rc_map: scancode table to be searched 324 * @scancode: the desired scancode 325 * @resize: controls whether we allowed to resize the table to 326 * accommodate not yet present scancodes 327 * 328 * This routine is used to locate given scancode in rc_map. 329 * If scancode is not yet present the routine will allocate a new slot 330 * for it. 331 * 332 * return: index of the mapping containing scancode in question 333 * or -1U in case of failure. 334 */ 335 static unsigned int ir_establish_scancode(struct rc_dev *dev, 336 struct rc_map *rc_map, 337 unsigned int scancode, 338 bool resize) 339 { 340 unsigned int i; 341 342 /* 343 * Unfortunately, some hardware-based IR decoders don't provide 344 * all bits for the complete IR code. In general, they provide only 345 * the command part of the IR code. Yet, as it is possible to replace 346 * the provided IR with another one, it is needed to allow loading 347 * IR tables from other remotes. So, we support specifying a mask to 348 * indicate the valid bits of the scancodes. 349 */ 350 if (dev->scancode_mask) 351 scancode &= dev->scancode_mask; 352 353 /* First check if we already have a mapping for this ir command */ 354 for (i = 0; i < rc_map->len; i++) { 355 if (rc_map->scan[i].scancode == scancode) 356 return i; 357 358 /* Keytable is sorted from lowest to highest scancode */ 359 if (rc_map->scan[i].scancode >= scancode) 360 break; 361 } 362 363 /* No previous mapping found, we might need to grow the table */ 364 if (rc_map->size == rc_map->len) { 365 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) 366 return -1U; 367 } 368 369 /* i is the proper index to insert our new keycode */ 370 if (i < rc_map->len) 371 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 372 (rc_map->len - i) * sizeof(struct rc_map_table)); 373 rc_map->scan[i].scancode = scancode; 374 rc_map->scan[i].keycode = KEY_RESERVED; 375 rc_map->len++; 376 377 return i; 378 } 379 380 /** 381 * ir_setkeycode() - set a keycode in the scancode->keycode table 382 * @idev: the struct input_dev device descriptor 383 * @ke: Input keymap entry 384 * @old_keycode: result 385 * 386 * This routine is used to handle evdev EVIOCSKEY ioctl. 387 * 388 * return: -EINVAL if the keycode could not be inserted, otherwise zero. 389 */ 390 static int ir_setkeycode(struct input_dev *idev, 391 const struct input_keymap_entry *ke, 392 unsigned int *old_keycode) 393 { 394 struct rc_dev *rdev = input_get_drvdata(idev); 395 struct rc_map *rc_map = &rdev->rc_map; 396 unsigned int index; 397 unsigned int scancode; 398 int retval = 0; 399 unsigned long flags; 400 401 spin_lock_irqsave(&rc_map->lock, flags); 402 403 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 404 index = ke->index; 405 if (index >= rc_map->len) { 406 retval = -EINVAL; 407 goto out; 408 } 409 } else { 410 retval = input_scancode_to_scalar(ke, &scancode); 411 if (retval) 412 goto out; 413 414 index = ir_establish_scancode(rdev, rc_map, scancode, true); 415 if (index >= rc_map->len) { 416 retval = -ENOMEM; 417 goto out; 418 } 419 } 420 421 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 422 423 out: 424 spin_unlock_irqrestore(&rc_map->lock, flags); 425 return retval; 426 } 427 428 /** 429 * ir_setkeytable() - sets several entries in the scancode->keycode table 430 * @dev: the struct rc_dev device descriptor 431 * @from: the struct rc_map to copy entries from 432 * 433 * This routine is used to handle table initialization. 434 * 435 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 436 */ 437 static int ir_setkeytable(struct rc_dev *dev, 438 const struct rc_map *from) 439 { 440 struct rc_map *rc_map = &dev->rc_map; 441 unsigned int i, index; 442 int rc; 443 444 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, 445 from->size); 446 if (rc) 447 return rc; 448 449 for (i = 0; i < from->size; i++) { 450 index = ir_establish_scancode(dev, rc_map, 451 from->scan[i].scancode, false); 452 if (index >= rc_map->len) { 453 rc = -ENOMEM; 454 break; 455 } 456 457 ir_update_mapping(dev, rc_map, index, 458 from->scan[i].keycode); 459 } 460 461 if (rc) 462 ir_free_table(rc_map); 463 464 return rc; 465 } 466 467 static int rc_map_cmp(const void *key, const void *elt) 468 { 469 const unsigned int *scancode = key; 470 const struct rc_map_table *e = elt; 471 472 if (*scancode < e->scancode) 473 return -1; 474 else if (*scancode > e->scancode) 475 return 1; 476 return 0; 477 } 478 479 /** 480 * ir_lookup_by_scancode() - locate mapping by scancode 481 * @rc_map: the struct rc_map to search 482 * @scancode: scancode to look for in the table 483 * 484 * This routine performs binary search in RC keykeymap table for 485 * given scancode. 486 * 487 * return: index in the table, -1U if not found 488 */ 489 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 490 unsigned int scancode) 491 { 492 struct rc_map_table *res; 493 494 res = bsearch(&scancode, rc_map->scan, rc_map->len, 495 sizeof(struct rc_map_table), rc_map_cmp); 496 if (!res) 497 return -1U; 498 else 499 return res - rc_map->scan; 500 } 501 502 /** 503 * ir_getkeycode() - get a keycode from the scancode->keycode table 504 * @idev: the struct input_dev device descriptor 505 * @ke: Input keymap entry 506 * 507 * This routine is used to handle evdev EVIOCGKEY ioctl. 508 * 509 * return: always returns zero. 510 */ 511 static int ir_getkeycode(struct input_dev *idev, 512 struct input_keymap_entry *ke) 513 { 514 struct rc_dev *rdev = input_get_drvdata(idev); 515 struct rc_map *rc_map = &rdev->rc_map; 516 struct rc_map_table *entry; 517 unsigned long flags; 518 unsigned int index; 519 unsigned int scancode; 520 int retval; 521 522 spin_lock_irqsave(&rc_map->lock, flags); 523 524 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 525 index = ke->index; 526 } else { 527 retval = input_scancode_to_scalar(ke, &scancode); 528 if (retval) 529 goto out; 530 531 index = ir_lookup_by_scancode(rc_map, scancode); 532 } 533 534 if (index < rc_map->len) { 535 entry = &rc_map->scan[index]; 536 537 ke->index = index; 538 ke->keycode = entry->keycode; 539 ke->len = sizeof(entry->scancode); 540 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 541 542 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 543 /* 544 * We do not really know the valid range of scancodes 545 * so let's respond with KEY_RESERVED to anything we 546 * do not have mapping for [yet]. 547 */ 548 ke->index = index; 549 ke->keycode = KEY_RESERVED; 550 } else { 551 retval = -EINVAL; 552 goto out; 553 } 554 555 retval = 0; 556 557 out: 558 spin_unlock_irqrestore(&rc_map->lock, flags); 559 return retval; 560 } 561 562 /** 563 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 564 * @dev: the struct rc_dev descriptor of the device 565 * @scancode: the scancode to look for 566 * 567 * This routine is used by drivers which need to convert a scancode to a 568 * keycode. Normally it should not be used since drivers should have no 569 * interest in keycodes. 570 * 571 * return: the corresponding keycode, or KEY_RESERVED 572 */ 573 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 574 { 575 struct rc_map *rc_map = &dev->rc_map; 576 unsigned int keycode; 577 unsigned int index; 578 unsigned long flags; 579 580 spin_lock_irqsave(&rc_map->lock, flags); 581 582 index = ir_lookup_by_scancode(rc_map, scancode); 583 keycode = index < rc_map->len ? 584 rc_map->scan[index].keycode : KEY_RESERVED; 585 586 spin_unlock_irqrestore(&rc_map->lock, flags); 587 588 if (keycode != KEY_RESERVED) 589 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n", 590 dev->device_name, scancode, keycode); 591 592 return keycode; 593 } 594 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 595 596 /** 597 * ir_do_keyup() - internal function to signal the release of a keypress 598 * @dev: the struct rc_dev descriptor of the device 599 * @sync: whether or not to call input_sync 600 * 601 * This function is used internally to release a keypress, it must be 602 * called with keylock held. 603 */ 604 static void ir_do_keyup(struct rc_dev *dev, bool sync) 605 { 606 if (!dev->keypressed) 607 return; 608 609 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); 610 del_timer(&dev->timer_repeat); 611 input_report_key(dev->input_dev, dev->last_keycode, 0); 612 led_trigger_event(led_feedback, LED_OFF); 613 if (sync) 614 input_sync(dev->input_dev); 615 dev->keypressed = false; 616 } 617 618 /** 619 * rc_keyup() - signals the release of a keypress 620 * @dev: the struct rc_dev descriptor of the device 621 * 622 * This routine is used to signal that a key has been released on the 623 * remote control. 624 */ 625 void rc_keyup(struct rc_dev *dev) 626 { 627 unsigned long flags; 628 629 spin_lock_irqsave(&dev->keylock, flags); 630 ir_do_keyup(dev, true); 631 spin_unlock_irqrestore(&dev->keylock, flags); 632 } 633 EXPORT_SYMBOL_GPL(rc_keyup); 634 635 /** 636 * ir_timer_keyup() - generates a keyup event after a timeout 637 * 638 * @t: a pointer to the struct timer_list 639 * 640 * This routine will generate a keyup event some time after a keydown event 641 * is generated when no further activity has been detected. 642 */ 643 static void ir_timer_keyup(struct timer_list *t) 644 { 645 struct rc_dev *dev = from_timer(dev, t, timer_keyup); 646 unsigned long flags; 647 648 /* 649 * ir->keyup_jiffies is used to prevent a race condition if a 650 * hardware interrupt occurs at this point and the keyup timer 651 * event is moved further into the future as a result. 652 * 653 * The timer will then be reactivated and this function called 654 * again in the future. We need to exit gracefully in that case 655 * to allow the input subsystem to do its auto-repeat magic or 656 * a keyup event might follow immediately after the keydown. 657 */ 658 spin_lock_irqsave(&dev->keylock, flags); 659 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 660 ir_do_keyup(dev, true); 661 spin_unlock_irqrestore(&dev->keylock, flags); 662 } 663 664 /** 665 * ir_timer_repeat() - generates a repeat event after a timeout 666 * 667 * @t: a pointer to the struct timer_list 668 * 669 * This routine will generate a soft repeat event every REP_PERIOD 670 * milliseconds. 671 */ 672 static void ir_timer_repeat(struct timer_list *t) 673 { 674 struct rc_dev *dev = from_timer(dev, t, timer_repeat); 675 struct input_dev *input = dev->input_dev; 676 unsigned long flags; 677 678 spin_lock_irqsave(&dev->keylock, flags); 679 if (dev->keypressed) { 680 input_event(input, EV_KEY, dev->last_keycode, 2); 681 input_sync(input); 682 if (input->rep[REP_PERIOD]) 683 mod_timer(&dev->timer_repeat, jiffies + 684 msecs_to_jiffies(input->rep[REP_PERIOD])); 685 } 686 spin_unlock_irqrestore(&dev->keylock, flags); 687 } 688 689 static unsigned int repeat_period(int protocol) 690 { 691 if (protocol >= ARRAY_SIZE(protocols)) 692 return 100; 693 694 return protocols[protocol].repeat_period; 695 } 696 697 /** 698 * rc_repeat() - signals that a key is still pressed 699 * @dev: the struct rc_dev descriptor of the device 700 * 701 * This routine is used by IR decoders when a repeat message which does 702 * not include the necessary bits to reproduce the scancode has been 703 * received. 704 */ 705 void rc_repeat(struct rc_dev *dev) 706 { 707 unsigned long flags; 708 unsigned int timeout = nsecs_to_jiffies(dev->timeout) + 709 msecs_to_jiffies(repeat_period(dev->last_protocol)); 710 struct lirc_scancode sc = { 711 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, 712 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, 713 .flags = LIRC_SCANCODE_FLAG_REPEAT | 714 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) 715 }; 716 717 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 718 ir_lirc_scancode_event(dev, &sc); 719 720 spin_lock_irqsave(&dev->keylock, flags); 721 722 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 723 input_sync(dev->input_dev); 724 725 if (dev->keypressed) { 726 dev->keyup_jiffies = jiffies + timeout; 727 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 728 } 729 730 spin_unlock_irqrestore(&dev->keylock, flags); 731 } 732 EXPORT_SYMBOL_GPL(rc_repeat); 733 734 /** 735 * ir_do_keydown() - internal function to process a keypress 736 * @dev: the struct rc_dev descriptor of the device 737 * @protocol: the protocol of the keypress 738 * @scancode: the scancode of the keypress 739 * @keycode: the keycode of the keypress 740 * @toggle: the toggle value of the keypress 741 * 742 * This function is used internally to register a keypress, it must be 743 * called with keylock held. 744 */ 745 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, 746 u32 scancode, u32 keycode, u8 toggle) 747 { 748 bool new_event = (!dev->keypressed || 749 dev->last_protocol != protocol || 750 dev->last_scancode != scancode || 751 dev->last_toggle != toggle); 752 struct lirc_scancode sc = { 753 .scancode = scancode, .rc_proto = protocol, 754 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, 755 .keycode = keycode 756 }; 757 758 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 759 ir_lirc_scancode_event(dev, &sc); 760 761 if (new_event && dev->keypressed) 762 ir_do_keyup(dev, false); 763 764 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 765 766 dev->last_protocol = protocol; 767 dev->last_scancode = scancode; 768 dev->last_toggle = toggle; 769 dev->last_keycode = keycode; 770 771 if (new_event && keycode != KEY_RESERVED) { 772 /* Register a keypress */ 773 dev->keypressed = true; 774 775 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 776 dev->device_name, keycode, protocol, scancode); 777 input_report_key(dev->input_dev, keycode, 1); 778 779 led_trigger_event(led_feedback, LED_FULL); 780 } 781 782 /* 783 * For CEC, start sending repeat messages as soon as the first 784 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD 785 * is non-zero. Otherwise, the input layer will generate repeat 786 * messages. 787 */ 788 if (!new_event && keycode != KEY_RESERVED && 789 dev->allowed_protocols == RC_PROTO_BIT_CEC && 790 !timer_pending(&dev->timer_repeat) && 791 dev->input_dev->rep[REP_PERIOD] && 792 !dev->input_dev->rep[REP_DELAY]) { 793 input_event(dev->input_dev, EV_KEY, keycode, 2); 794 mod_timer(&dev->timer_repeat, jiffies + 795 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); 796 } 797 798 input_sync(dev->input_dev); 799 } 800 801 /** 802 * rc_keydown() - generates input event for a key press 803 * @dev: the struct rc_dev descriptor of the device 804 * @protocol: the protocol for the keypress 805 * @scancode: the scancode for the keypress 806 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 807 * support toggle values, this should be set to zero) 808 * 809 * This routine is used to signal that a key has been pressed on the 810 * remote control. 811 */ 812 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, 813 u8 toggle) 814 { 815 unsigned long flags; 816 u32 keycode = rc_g_keycode_from_table(dev, scancode); 817 818 spin_lock_irqsave(&dev->keylock, flags); 819 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 820 821 if (dev->keypressed) { 822 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) + 823 msecs_to_jiffies(repeat_period(protocol)); 824 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 825 } 826 spin_unlock_irqrestore(&dev->keylock, flags); 827 } 828 EXPORT_SYMBOL_GPL(rc_keydown); 829 830 /** 831 * rc_keydown_notimeout() - generates input event for a key press without 832 * an automatic keyup event at a later time 833 * @dev: the struct rc_dev descriptor of the device 834 * @protocol: the protocol for the keypress 835 * @scancode: the scancode for the keypress 836 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 837 * support toggle values, this should be set to zero) 838 * 839 * This routine is used to signal that a key has been pressed on the 840 * remote control. The driver must manually call rc_keyup() at a later stage. 841 */ 842 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, 843 u32 scancode, u8 toggle) 844 { 845 unsigned long flags; 846 u32 keycode = rc_g_keycode_from_table(dev, scancode); 847 848 spin_lock_irqsave(&dev->keylock, flags); 849 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 850 spin_unlock_irqrestore(&dev->keylock, flags); 851 } 852 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 853 854 /** 855 * rc_validate_scancode() - checks that a scancode is valid for a protocol. 856 * For nec, it should do the opposite of ir_nec_bytes_to_scancode() 857 * @proto: protocol 858 * @scancode: scancode 859 */ 860 bool rc_validate_scancode(enum rc_proto proto, u32 scancode) 861 { 862 switch (proto) { 863 /* 864 * NECX has a 16-bit address; if the lower 8 bits match the upper 865 * 8 bits inverted, then the address would match regular nec. 866 */ 867 case RC_PROTO_NECX: 868 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) 869 return false; 870 break; 871 /* 872 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits 873 * of the command match the upper 8 bits inverted, then it would 874 * be either NEC or NECX. 875 */ 876 case RC_PROTO_NEC32: 877 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) 878 return false; 879 break; 880 /* 881 * If the customer code (top 32-bit) is 0x800f, it is MCE else it 882 * is regular mode-6a 32 bit 883 */ 884 case RC_PROTO_RC6_MCE: 885 if ((scancode & 0xffff0000) != 0x800f0000) 886 return false; 887 break; 888 case RC_PROTO_RC6_6A_32: 889 if ((scancode & 0xffff0000) == 0x800f0000) 890 return false; 891 break; 892 default: 893 break; 894 } 895 896 return true; 897 } 898 899 /** 900 * rc_validate_filter() - checks that the scancode and mask are valid and 901 * provides sensible defaults 902 * @dev: the struct rc_dev descriptor of the device 903 * @filter: the scancode and mask 904 * 905 * return: 0 or -EINVAL if the filter is not valid 906 */ 907 static int rc_validate_filter(struct rc_dev *dev, 908 struct rc_scancode_filter *filter) 909 { 910 u32 mask, s = filter->data; 911 enum rc_proto protocol = dev->wakeup_protocol; 912 913 if (protocol >= ARRAY_SIZE(protocols)) 914 return -EINVAL; 915 916 mask = protocols[protocol].scancode_bits; 917 918 if (!rc_validate_scancode(protocol, s)) 919 return -EINVAL; 920 921 filter->data &= mask; 922 filter->mask &= mask; 923 924 /* 925 * If we have to raw encode the IR for wakeup, we cannot have a mask 926 */ 927 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) 928 return -EINVAL; 929 930 return 0; 931 } 932 933 int rc_open(struct rc_dev *rdev) 934 { 935 int rval = 0; 936 937 if (!rdev) 938 return -EINVAL; 939 940 mutex_lock(&rdev->lock); 941 942 if (!rdev->registered) { 943 rval = -ENODEV; 944 } else { 945 if (!rdev->users++ && rdev->open) 946 rval = rdev->open(rdev); 947 948 if (rval) 949 rdev->users--; 950 } 951 952 mutex_unlock(&rdev->lock); 953 954 return rval; 955 } 956 957 static int ir_open(struct input_dev *idev) 958 { 959 struct rc_dev *rdev = input_get_drvdata(idev); 960 961 return rc_open(rdev); 962 } 963 964 void rc_close(struct rc_dev *rdev) 965 { 966 if (rdev) { 967 mutex_lock(&rdev->lock); 968 969 if (!--rdev->users && rdev->close && rdev->registered) 970 rdev->close(rdev); 971 972 mutex_unlock(&rdev->lock); 973 } 974 } 975 976 static void ir_close(struct input_dev *idev) 977 { 978 struct rc_dev *rdev = input_get_drvdata(idev); 979 rc_close(rdev); 980 } 981 982 /* class for /sys/class/rc */ 983 static char *rc_devnode(struct device *dev, umode_t *mode) 984 { 985 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 986 } 987 988 static struct class rc_class = { 989 .name = "rc", 990 .devnode = rc_devnode, 991 }; 992 993 /* 994 * These are the protocol textual descriptions that are 995 * used by the sysfs protocols file. Note that the order 996 * of the entries is relevant. 997 */ 998 static const struct { 999 u64 type; 1000 const char *name; 1001 const char *module_name; 1002 } proto_names[] = { 1003 { RC_PROTO_BIT_NONE, "none", NULL }, 1004 { RC_PROTO_BIT_OTHER, "other", NULL }, 1005 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, 1006 { RC_PROTO_BIT_RC5 | 1007 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, 1008 { RC_PROTO_BIT_NEC | 1009 RC_PROTO_BIT_NECX | 1010 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, 1011 { RC_PROTO_BIT_RC6_0 | 1012 RC_PROTO_BIT_RC6_6A_20 | 1013 RC_PROTO_BIT_RC6_6A_24 | 1014 RC_PROTO_BIT_RC6_6A_32 | 1015 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 1016 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, 1017 { RC_PROTO_BIT_SONY12 | 1018 RC_PROTO_BIT_SONY15 | 1019 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, 1020 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 1021 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 1022 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 1023 { RC_PROTO_BIT_MCIR2_KBD | 1024 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, 1025 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, 1026 { RC_PROTO_BIT_CEC, "cec", NULL }, 1027 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" }, 1028 { RC_PROTO_BIT_RCMM12 | 1029 RC_PROTO_BIT_RCMM24 | 1030 RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" }, 1031 { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL }, 1032 }; 1033 1034 /** 1035 * struct rc_filter_attribute - Device attribute relating to a filter type. 1036 * @attr: Device attribute. 1037 * @type: Filter type. 1038 * @mask: false for filter value, true for filter mask. 1039 */ 1040 struct rc_filter_attribute { 1041 struct device_attribute attr; 1042 enum rc_filter_type type; 1043 bool mask; 1044 }; 1045 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 1046 1047 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 1048 struct rc_filter_attribute dev_attr_##_name = { \ 1049 .attr = __ATTR(_name, _mode, _show, _store), \ 1050 .type = (_type), \ 1051 .mask = (_mask), \ 1052 } 1053 1054 /** 1055 * show_protocols() - shows the current IR protocol(s) 1056 * @device: the device descriptor 1057 * @mattr: the device attribute struct 1058 * @buf: a pointer to the output buffer 1059 * 1060 * This routine is a callback routine for input read the IR protocol type(s). 1061 * it is triggered by reading /sys/class/rc/rc?/protocols. 1062 * It returns the protocol names of supported protocols. 1063 * Enabled protocols are printed in brackets. 1064 * 1065 * dev->lock is taken to guard against races between 1066 * store_protocols and show_protocols. 1067 */ 1068 static ssize_t show_protocols(struct device *device, 1069 struct device_attribute *mattr, char *buf) 1070 { 1071 struct rc_dev *dev = to_rc_dev(device); 1072 u64 allowed, enabled; 1073 char *tmp = buf; 1074 int i; 1075 1076 mutex_lock(&dev->lock); 1077 1078 enabled = dev->enabled_protocols; 1079 allowed = dev->allowed_protocols; 1080 if (dev->raw && !allowed) 1081 allowed = ir_raw_get_allowed_protocols(); 1082 1083 mutex_unlock(&dev->lock); 1084 1085 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 1086 __func__, (long long)allowed, (long long)enabled); 1087 1088 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1089 if (allowed & enabled & proto_names[i].type) 1090 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 1091 else if (allowed & proto_names[i].type) 1092 tmp += sprintf(tmp, "%s ", proto_names[i].name); 1093 1094 if (allowed & proto_names[i].type) 1095 allowed &= ~proto_names[i].type; 1096 } 1097 1098 #ifdef CONFIG_LIRC 1099 if (dev->driver_type == RC_DRIVER_IR_RAW) 1100 tmp += sprintf(tmp, "[lirc] "); 1101 #endif 1102 1103 if (tmp != buf) 1104 tmp--; 1105 *tmp = '\n'; 1106 1107 return tmp + 1 - buf; 1108 } 1109 1110 /** 1111 * parse_protocol_change() - parses a protocol change request 1112 * @dev: rc_dev device 1113 * @protocols: pointer to the bitmask of current protocols 1114 * @buf: pointer to the buffer with a list of changes 1115 * 1116 * Writing "+proto" will add a protocol to the protocol mask. 1117 * Writing "-proto" will remove a protocol from protocol mask. 1118 * Writing "proto" will enable only "proto". 1119 * Writing "none" will disable all protocols. 1120 * Returns the number of changes performed or a negative error code. 1121 */ 1122 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, 1123 const char *buf) 1124 { 1125 const char *tmp; 1126 unsigned count = 0; 1127 bool enable, disable; 1128 u64 mask; 1129 int i; 1130 1131 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 1132 if (!*tmp) 1133 break; 1134 1135 if (*tmp == '+') { 1136 enable = true; 1137 disable = false; 1138 tmp++; 1139 } else if (*tmp == '-') { 1140 enable = false; 1141 disable = true; 1142 tmp++; 1143 } else { 1144 enable = false; 1145 disable = false; 1146 } 1147 1148 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1149 if (!strcasecmp(tmp, proto_names[i].name)) { 1150 mask = proto_names[i].type; 1151 break; 1152 } 1153 } 1154 1155 if (i == ARRAY_SIZE(proto_names)) { 1156 if (!strcasecmp(tmp, "lirc")) 1157 mask = 0; 1158 else { 1159 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", 1160 tmp); 1161 return -EINVAL; 1162 } 1163 } 1164 1165 count++; 1166 1167 if (enable) 1168 *protocols |= mask; 1169 else if (disable) 1170 *protocols &= ~mask; 1171 else 1172 *protocols = mask; 1173 } 1174 1175 if (!count) { 1176 dev_dbg(&dev->dev, "Protocol not specified\n"); 1177 return -EINVAL; 1178 } 1179 1180 return count; 1181 } 1182 1183 void ir_raw_load_modules(u64 *protocols) 1184 { 1185 u64 available; 1186 int i, ret; 1187 1188 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1189 if (proto_names[i].type == RC_PROTO_BIT_NONE || 1190 proto_names[i].type & (RC_PROTO_BIT_OTHER | 1191 RC_PROTO_BIT_UNKNOWN)) 1192 continue; 1193 1194 available = ir_raw_get_allowed_protocols(); 1195 if (!(*protocols & proto_names[i].type & ~available)) 1196 continue; 1197 1198 if (!proto_names[i].module_name) { 1199 pr_err("Can't enable IR protocol %s\n", 1200 proto_names[i].name); 1201 *protocols &= ~proto_names[i].type; 1202 continue; 1203 } 1204 1205 ret = request_module("%s", proto_names[i].module_name); 1206 if (ret < 0) { 1207 pr_err("Couldn't load IR protocol module %s\n", 1208 proto_names[i].module_name); 1209 *protocols &= ~proto_names[i].type; 1210 continue; 1211 } 1212 msleep(20); 1213 available = ir_raw_get_allowed_protocols(); 1214 if (!(*protocols & proto_names[i].type & ~available)) 1215 continue; 1216 1217 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", 1218 proto_names[i].module_name, 1219 proto_names[i].name); 1220 *protocols &= ~proto_names[i].type; 1221 } 1222 } 1223 1224 /** 1225 * store_protocols() - changes the current/wakeup IR protocol(s) 1226 * @device: the device descriptor 1227 * @mattr: the device attribute struct 1228 * @buf: a pointer to the input buffer 1229 * @len: length of the input buffer 1230 * 1231 * This routine is for changing the IR protocol type. 1232 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1233 * See parse_protocol_change() for the valid commands. 1234 * Returns @len on success or a negative error code. 1235 * 1236 * dev->lock is taken to guard against races between 1237 * store_protocols and show_protocols. 1238 */ 1239 static ssize_t store_protocols(struct device *device, 1240 struct device_attribute *mattr, 1241 const char *buf, size_t len) 1242 { 1243 struct rc_dev *dev = to_rc_dev(device); 1244 u64 *current_protocols; 1245 struct rc_scancode_filter *filter; 1246 u64 old_protocols, new_protocols; 1247 ssize_t rc; 1248 1249 dev_dbg(&dev->dev, "Normal protocol change requested\n"); 1250 current_protocols = &dev->enabled_protocols; 1251 filter = &dev->scancode_filter; 1252 1253 if (!dev->change_protocol) { 1254 dev_dbg(&dev->dev, "Protocol switching not supported\n"); 1255 return -EINVAL; 1256 } 1257 1258 mutex_lock(&dev->lock); 1259 1260 old_protocols = *current_protocols; 1261 new_protocols = old_protocols; 1262 rc = parse_protocol_change(dev, &new_protocols, buf); 1263 if (rc < 0) 1264 goto out; 1265 1266 if (dev->driver_type == RC_DRIVER_IR_RAW) 1267 ir_raw_load_modules(&new_protocols); 1268 1269 rc = dev->change_protocol(dev, &new_protocols); 1270 if (rc < 0) { 1271 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", 1272 (long long)new_protocols); 1273 goto out; 1274 } 1275 1276 if (new_protocols != old_protocols) { 1277 *current_protocols = new_protocols; 1278 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", 1279 (long long)new_protocols); 1280 } 1281 1282 /* 1283 * If a protocol change was attempted the filter may need updating, even 1284 * if the actual protocol mask hasn't changed (since the driver may have 1285 * cleared the filter). 1286 * Try setting the same filter with the new protocol (if any). 1287 * Fall back to clearing the filter. 1288 */ 1289 if (dev->s_filter && filter->mask) { 1290 if (new_protocols) 1291 rc = dev->s_filter(dev, filter); 1292 else 1293 rc = -1; 1294 1295 if (rc < 0) { 1296 filter->data = 0; 1297 filter->mask = 0; 1298 dev->s_filter(dev, filter); 1299 } 1300 } 1301 1302 rc = len; 1303 1304 out: 1305 mutex_unlock(&dev->lock); 1306 return rc; 1307 } 1308 1309 /** 1310 * show_filter() - shows the current scancode filter value or mask 1311 * @device: the device descriptor 1312 * @attr: the device attribute struct 1313 * @buf: a pointer to the output buffer 1314 * 1315 * This routine is a callback routine to read a scancode filter value or mask. 1316 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1317 * It prints the current scancode filter value or mask of the appropriate filter 1318 * type in hexadecimal into @buf and returns the size of the buffer. 1319 * 1320 * Bits of the filter value corresponding to set bits in the filter mask are 1321 * compared against input scancodes and non-matching scancodes are discarded. 1322 * 1323 * dev->lock is taken to guard against races between 1324 * store_filter and show_filter. 1325 */ 1326 static ssize_t show_filter(struct device *device, 1327 struct device_attribute *attr, 1328 char *buf) 1329 { 1330 struct rc_dev *dev = to_rc_dev(device); 1331 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1332 struct rc_scancode_filter *filter; 1333 u32 val; 1334 1335 mutex_lock(&dev->lock); 1336 1337 if (fattr->type == RC_FILTER_NORMAL) 1338 filter = &dev->scancode_filter; 1339 else 1340 filter = &dev->scancode_wakeup_filter; 1341 1342 if (fattr->mask) 1343 val = filter->mask; 1344 else 1345 val = filter->data; 1346 mutex_unlock(&dev->lock); 1347 1348 return sprintf(buf, "%#x\n", val); 1349 } 1350 1351 /** 1352 * store_filter() - changes the scancode filter value 1353 * @device: the device descriptor 1354 * @attr: the device attribute struct 1355 * @buf: a pointer to the input buffer 1356 * @len: length of the input buffer 1357 * 1358 * This routine is for changing a scancode filter value or mask. 1359 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1360 * Returns -EINVAL if an invalid filter value for the current protocol was 1361 * specified or if scancode filtering is not supported by the driver, otherwise 1362 * returns @len. 1363 * 1364 * Bits of the filter value corresponding to set bits in the filter mask are 1365 * compared against input scancodes and non-matching scancodes are discarded. 1366 * 1367 * dev->lock is taken to guard against races between 1368 * store_filter and show_filter. 1369 */ 1370 static ssize_t store_filter(struct device *device, 1371 struct device_attribute *attr, 1372 const char *buf, size_t len) 1373 { 1374 struct rc_dev *dev = to_rc_dev(device); 1375 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1376 struct rc_scancode_filter new_filter, *filter; 1377 int ret; 1378 unsigned long val; 1379 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1380 1381 ret = kstrtoul(buf, 0, &val); 1382 if (ret < 0) 1383 return ret; 1384 1385 if (fattr->type == RC_FILTER_NORMAL) { 1386 set_filter = dev->s_filter; 1387 filter = &dev->scancode_filter; 1388 } else { 1389 set_filter = dev->s_wakeup_filter; 1390 filter = &dev->scancode_wakeup_filter; 1391 } 1392 1393 if (!set_filter) 1394 return -EINVAL; 1395 1396 mutex_lock(&dev->lock); 1397 1398 new_filter = *filter; 1399 if (fattr->mask) 1400 new_filter.mask = val; 1401 else 1402 new_filter.data = val; 1403 1404 if (fattr->type == RC_FILTER_WAKEUP) { 1405 /* 1406 * Refuse to set a filter unless a protocol is enabled 1407 * and the filter is valid for that protocol 1408 */ 1409 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) 1410 ret = rc_validate_filter(dev, &new_filter); 1411 else 1412 ret = -EINVAL; 1413 1414 if (ret != 0) 1415 goto unlock; 1416 } 1417 1418 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && 1419 val) { 1420 /* refuse to set a filter unless a protocol is enabled */ 1421 ret = -EINVAL; 1422 goto unlock; 1423 } 1424 1425 ret = set_filter(dev, &new_filter); 1426 if (ret < 0) 1427 goto unlock; 1428 1429 *filter = new_filter; 1430 1431 unlock: 1432 mutex_unlock(&dev->lock); 1433 return (ret < 0) ? ret : len; 1434 } 1435 1436 /** 1437 * show_wakeup_protocols() - shows the wakeup IR protocol 1438 * @device: the device descriptor 1439 * @mattr: the device attribute struct 1440 * @buf: a pointer to the output buffer 1441 * 1442 * This routine is a callback routine for input read the IR protocol type(s). 1443 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols. 1444 * It returns the protocol names of supported protocols. 1445 * The enabled protocols are printed in brackets. 1446 * 1447 * dev->lock is taken to guard against races between 1448 * store_wakeup_protocols and show_wakeup_protocols. 1449 */ 1450 static ssize_t show_wakeup_protocols(struct device *device, 1451 struct device_attribute *mattr, 1452 char *buf) 1453 { 1454 struct rc_dev *dev = to_rc_dev(device); 1455 u64 allowed; 1456 enum rc_proto enabled; 1457 char *tmp = buf; 1458 int i; 1459 1460 mutex_lock(&dev->lock); 1461 1462 allowed = dev->allowed_wakeup_protocols; 1463 enabled = dev->wakeup_protocol; 1464 1465 mutex_unlock(&dev->lock); 1466 1467 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", 1468 __func__, (long long)allowed, enabled); 1469 1470 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1471 if (allowed & (1ULL << i)) { 1472 if (i == enabled) 1473 tmp += sprintf(tmp, "[%s] ", protocols[i].name); 1474 else 1475 tmp += sprintf(tmp, "%s ", protocols[i].name); 1476 } 1477 } 1478 1479 if (tmp != buf) 1480 tmp--; 1481 *tmp = '\n'; 1482 1483 return tmp + 1 - buf; 1484 } 1485 1486 /** 1487 * store_wakeup_protocols() - changes the wakeup IR protocol(s) 1488 * @device: the device descriptor 1489 * @mattr: the device attribute struct 1490 * @buf: a pointer to the input buffer 1491 * @len: length of the input buffer 1492 * 1493 * This routine is for changing the IR protocol type. 1494 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols. 1495 * Returns @len on success or a negative error code. 1496 * 1497 * dev->lock is taken to guard against races between 1498 * store_wakeup_protocols and show_wakeup_protocols. 1499 */ 1500 static ssize_t store_wakeup_protocols(struct device *device, 1501 struct device_attribute *mattr, 1502 const char *buf, size_t len) 1503 { 1504 struct rc_dev *dev = to_rc_dev(device); 1505 enum rc_proto protocol = RC_PROTO_UNKNOWN; 1506 ssize_t rc; 1507 u64 allowed; 1508 int i; 1509 1510 mutex_lock(&dev->lock); 1511 1512 allowed = dev->allowed_wakeup_protocols; 1513 1514 if (!sysfs_streq(buf, "none")) { 1515 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1516 if ((allowed & (1ULL << i)) && 1517 sysfs_streq(buf, protocols[i].name)) { 1518 protocol = i; 1519 break; 1520 } 1521 } 1522 1523 if (i == ARRAY_SIZE(protocols)) { 1524 rc = -EINVAL; 1525 goto out; 1526 } 1527 1528 if (dev->encode_wakeup) { 1529 u64 mask = 1ULL << protocol; 1530 1531 ir_raw_load_modules(&mask); 1532 if (!mask) { 1533 rc = -EINVAL; 1534 goto out; 1535 } 1536 } 1537 } 1538 1539 if (dev->wakeup_protocol != protocol) { 1540 dev->wakeup_protocol = protocol; 1541 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); 1542 1543 if (protocol == RC_PROTO_RC6_MCE) 1544 dev->scancode_wakeup_filter.data = 0x800f0000; 1545 else 1546 dev->scancode_wakeup_filter.data = 0; 1547 dev->scancode_wakeup_filter.mask = 0; 1548 1549 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); 1550 if (rc == 0) 1551 rc = len; 1552 } else { 1553 rc = len; 1554 } 1555 1556 out: 1557 mutex_unlock(&dev->lock); 1558 return rc; 1559 } 1560 1561 static void rc_dev_release(struct device *device) 1562 { 1563 struct rc_dev *dev = to_rc_dev(device); 1564 1565 kfree(dev); 1566 } 1567 1568 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1569 do { \ 1570 int err = add_uevent_var(env, fmt, val); \ 1571 if (err) \ 1572 return err; \ 1573 } while (0) 1574 1575 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1576 { 1577 struct rc_dev *dev = to_rc_dev(device); 1578 1579 if (dev->rc_map.name) 1580 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1581 if (dev->driver_name) 1582 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1583 if (dev->device_name) 1584 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); 1585 1586 return 0; 1587 } 1588 1589 /* 1590 * Static device attribute struct with the sysfs attributes for IR's 1591 */ 1592 static struct device_attribute dev_attr_ro_protocols = 1593 __ATTR(protocols, 0444, show_protocols, NULL); 1594 static struct device_attribute dev_attr_rw_protocols = 1595 __ATTR(protocols, 0644, show_protocols, store_protocols); 1596 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, 1597 store_wakeup_protocols); 1598 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1599 show_filter, store_filter, RC_FILTER_NORMAL, false); 1600 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1601 show_filter, store_filter, RC_FILTER_NORMAL, true); 1602 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1603 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1604 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1605 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1606 1607 static struct attribute *rc_dev_rw_protocol_attrs[] = { 1608 &dev_attr_rw_protocols.attr, 1609 NULL, 1610 }; 1611 1612 static const struct attribute_group rc_dev_rw_protocol_attr_grp = { 1613 .attrs = rc_dev_rw_protocol_attrs, 1614 }; 1615 1616 static struct attribute *rc_dev_ro_protocol_attrs[] = { 1617 &dev_attr_ro_protocols.attr, 1618 NULL, 1619 }; 1620 1621 static const struct attribute_group rc_dev_ro_protocol_attr_grp = { 1622 .attrs = rc_dev_ro_protocol_attrs, 1623 }; 1624 1625 static struct attribute *rc_dev_filter_attrs[] = { 1626 &dev_attr_filter.attr.attr, 1627 &dev_attr_filter_mask.attr.attr, 1628 NULL, 1629 }; 1630 1631 static const struct attribute_group rc_dev_filter_attr_grp = { 1632 .attrs = rc_dev_filter_attrs, 1633 }; 1634 1635 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1636 &dev_attr_wakeup_filter.attr.attr, 1637 &dev_attr_wakeup_filter_mask.attr.attr, 1638 &dev_attr_wakeup_protocols.attr, 1639 NULL, 1640 }; 1641 1642 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1643 .attrs = rc_dev_wakeup_filter_attrs, 1644 }; 1645 1646 static const struct device_type rc_dev_type = { 1647 .release = rc_dev_release, 1648 .uevent = rc_dev_uevent, 1649 }; 1650 1651 struct rc_dev *rc_allocate_device(enum rc_driver_type type) 1652 { 1653 struct rc_dev *dev; 1654 1655 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1656 if (!dev) 1657 return NULL; 1658 1659 if (type != RC_DRIVER_IR_RAW_TX) { 1660 dev->input_dev = input_allocate_device(); 1661 if (!dev->input_dev) { 1662 kfree(dev); 1663 return NULL; 1664 } 1665 1666 dev->input_dev->getkeycode = ir_getkeycode; 1667 dev->input_dev->setkeycode = ir_setkeycode; 1668 input_set_drvdata(dev->input_dev, dev); 1669 1670 dev->timeout = IR_DEFAULT_TIMEOUT; 1671 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); 1672 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); 1673 1674 spin_lock_init(&dev->rc_map.lock); 1675 spin_lock_init(&dev->keylock); 1676 } 1677 mutex_init(&dev->lock); 1678 1679 dev->dev.type = &rc_dev_type; 1680 dev->dev.class = &rc_class; 1681 device_initialize(&dev->dev); 1682 1683 dev->driver_type = type; 1684 1685 __module_get(THIS_MODULE); 1686 return dev; 1687 } 1688 EXPORT_SYMBOL_GPL(rc_allocate_device); 1689 1690 void rc_free_device(struct rc_dev *dev) 1691 { 1692 if (!dev) 1693 return; 1694 1695 input_free_device(dev->input_dev); 1696 1697 put_device(&dev->dev); 1698 1699 /* kfree(dev) will be called by the callback function 1700 rc_dev_release() */ 1701 1702 module_put(THIS_MODULE); 1703 } 1704 EXPORT_SYMBOL_GPL(rc_free_device); 1705 1706 static void devm_rc_alloc_release(struct device *dev, void *res) 1707 { 1708 rc_free_device(*(struct rc_dev **)res); 1709 } 1710 1711 struct rc_dev *devm_rc_allocate_device(struct device *dev, 1712 enum rc_driver_type type) 1713 { 1714 struct rc_dev **dr, *rc; 1715 1716 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1717 if (!dr) 1718 return NULL; 1719 1720 rc = rc_allocate_device(type); 1721 if (!rc) { 1722 devres_free(dr); 1723 return NULL; 1724 } 1725 1726 rc->dev.parent = dev; 1727 rc->managed_alloc = true; 1728 *dr = rc; 1729 devres_add(dev, dr); 1730 1731 return rc; 1732 } 1733 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1734 1735 static int rc_prepare_rx_device(struct rc_dev *dev) 1736 { 1737 int rc; 1738 struct rc_map *rc_map; 1739 u64 rc_proto; 1740 1741 if (!dev->map_name) 1742 return -EINVAL; 1743 1744 rc_map = rc_map_get(dev->map_name); 1745 if (!rc_map) 1746 rc_map = rc_map_get(RC_MAP_EMPTY); 1747 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1748 return -EINVAL; 1749 1750 rc = ir_setkeytable(dev, rc_map); 1751 if (rc) 1752 return rc; 1753 1754 rc_proto = BIT_ULL(rc_map->rc_proto); 1755 1756 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1757 dev->enabled_protocols = dev->allowed_protocols; 1758 1759 if (dev->driver_type == RC_DRIVER_IR_RAW) 1760 ir_raw_load_modules(&rc_proto); 1761 1762 if (dev->change_protocol) { 1763 rc = dev->change_protocol(dev, &rc_proto); 1764 if (rc < 0) 1765 goto out_table; 1766 dev->enabled_protocols = rc_proto; 1767 } 1768 1769 /* Keyboard events */ 1770 set_bit(EV_KEY, dev->input_dev->evbit); 1771 set_bit(EV_REP, dev->input_dev->evbit); 1772 set_bit(EV_MSC, dev->input_dev->evbit); 1773 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1774 1775 /* Pointer/mouse events */ 1776 set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit); 1777 set_bit(EV_REL, dev->input_dev->evbit); 1778 set_bit(REL_X, dev->input_dev->relbit); 1779 set_bit(REL_Y, dev->input_dev->relbit); 1780 1781 if (dev->open) 1782 dev->input_dev->open = ir_open; 1783 if (dev->close) 1784 dev->input_dev->close = ir_close; 1785 1786 dev->input_dev->dev.parent = &dev->dev; 1787 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1788 dev->input_dev->phys = dev->input_phys; 1789 dev->input_dev->name = dev->device_name; 1790 1791 return 0; 1792 1793 out_table: 1794 ir_free_table(&dev->rc_map); 1795 1796 return rc; 1797 } 1798 1799 static int rc_setup_rx_device(struct rc_dev *dev) 1800 { 1801 int rc; 1802 1803 /* rc_open will be called here */ 1804 rc = input_register_device(dev->input_dev); 1805 if (rc) 1806 return rc; 1807 1808 /* 1809 * Default delay of 250ms is too short for some protocols, especially 1810 * since the timeout is currently set to 250ms. Increase it to 500ms, 1811 * to avoid wrong repetition of the keycodes. Note that this must be 1812 * set after the call to input_register_device(). 1813 */ 1814 if (dev->allowed_protocols == RC_PROTO_BIT_CEC) 1815 dev->input_dev->rep[REP_DELAY] = 0; 1816 else 1817 dev->input_dev->rep[REP_DELAY] = 500; 1818 1819 /* 1820 * As a repeat event on protocols like RC-5 and NEC take as long as 1821 * 110/114ms, using 33ms as a repeat period is not the right thing 1822 * to do. 1823 */ 1824 dev->input_dev->rep[REP_PERIOD] = 125; 1825 1826 return 0; 1827 } 1828 1829 static void rc_free_rx_device(struct rc_dev *dev) 1830 { 1831 if (!dev) 1832 return; 1833 1834 if (dev->input_dev) { 1835 input_unregister_device(dev->input_dev); 1836 dev->input_dev = NULL; 1837 } 1838 1839 ir_free_table(&dev->rc_map); 1840 } 1841 1842 int rc_register_device(struct rc_dev *dev) 1843 { 1844 const char *path; 1845 int attr = 0; 1846 int minor; 1847 int rc; 1848 1849 if (!dev) 1850 return -EINVAL; 1851 1852 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1853 if (minor < 0) 1854 return minor; 1855 1856 dev->minor = minor; 1857 dev_set_name(&dev->dev, "rc%u", dev->minor); 1858 dev_set_drvdata(&dev->dev, dev); 1859 1860 dev->dev.groups = dev->sysfs_groups; 1861 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1862 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; 1863 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) 1864 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; 1865 if (dev->s_filter) 1866 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1867 if (dev->s_wakeup_filter) 1868 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1869 dev->sysfs_groups[attr++] = NULL; 1870 1871 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1872 rc = ir_raw_event_prepare(dev); 1873 if (rc < 0) 1874 goto out_minor; 1875 } 1876 1877 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1878 rc = rc_prepare_rx_device(dev); 1879 if (rc) 1880 goto out_raw; 1881 } 1882 1883 rc = device_add(&dev->dev); 1884 if (rc) 1885 goto out_rx_free; 1886 1887 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1888 dev_info(&dev->dev, "%s as %s\n", 1889 dev->device_name ?: "Unspecified device", path ?: "N/A"); 1890 kfree(path); 1891 1892 dev->registered = true; 1893 1894 /* 1895 * once the the input device is registered in rc_setup_rx_device, 1896 * userspace can open the input device and rc_open() will be called 1897 * as a result. This results in driver code being allowed to submit 1898 * keycodes with rc_keydown, so lirc must be registered first. 1899 */ 1900 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { 1901 rc = ir_lirc_register(dev); 1902 if (rc < 0) 1903 goto out_dev; 1904 } 1905 1906 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1907 rc = rc_setup_rx_device(dev); 1908 if (rc) 1909 goto out_lirc; 1910 } 1911 1912 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1913 rc = ir_raw_event_register(dev); 1914 if (rc < 0) 1915 goto out_rx; 1916 } 1917 1918 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, 1919 dev->driver_name ? dev->driver_name : "unknown"); 1920 1921 return 0; 1922 1923 out_rx: 1924 rc_free_rx_device(dev); 1925 out_lirc: 1926 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1927 ir_lirc_unregister(dev); 1928 out_dev: 1929 device_del(&dev->dev); 1930 out_rx_free: 1931 ir_free_table(&dev->rc_map); 1932 out_raw: 1933 ir_raw_event_free(dev); 1934 out_minor: 1935 ida_simple_remove(&rc_ida, minor); 1936 return rc; 1937 } 1938 EXPORT_SYMBOL_GPL(rc_register_device); 1939 1940 static void devm_rc_release(struct device *dev, void *res) 1941 { 1942 rc_unregister_device(*(struct rc_dev **)res); 1943 } 1944 1945 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1946 { 1947 struct rc_dev **dr; 1948 int ret; 1949 1950 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1951 if (!dr) 1952 return -ENOMEM; 1953 1954 ret = rc_register_device(dev); 1955 if (ret) { 1956 devres_free(dr); 1957 return ret; 1958 } 1959 1960 *dr = dev; 1961 devres_add(parent, dr); 1962 1963 return 0; 1964 } 1965 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1966 1967 void rc_unregister_device(struct rc_dev *dev) 1968 { 1969 if (!dev) 1970 return; 1971 1972 if (dev->driver_type == RC_DRIVER_IR_RAW) 1973 ir_raw_event_unregister(dev); 1974 1975 del_timer_sync(&dev->timer_keyup); 1976 del_timer_sync(&dev->timer_repeat); 1977 1978 rc_free_rx_device(dev); 1979 1980 mutex_lock(&dev->lock); 1981 if (dev->users && dev->close) 1982 dev->close(dev); 1983 dev->registered = false; 1984 mutex_unlock(&dev->lock); 1985 1986 /* 1987 * lirc device should be freed with dev->registered = false, so 1988 * that userspace polling will get notified. 1989 */ 1990 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1991 ir_lirc_unregister(dev); 1992 1993 device_del(&dev->dev); 1994 1995 ida_simple_remove(&rc_ida, dev->minor); 1996 1997 if (!dev->managed_alloc) 1998 rc_free_device(dev); 1999 } 2000 2001 EXPORT_SYMBOL_GPL(rc_unregister_device); 2002 2003 /* 2004 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 2005 */ 2006 2007 static int __init rc_core_init(void) 2008 { 2009 int rc = class_register(&rc_class); 2010 if (rc) { 2011 pr_err("rc_core: unable to register rc class\n"); 2012 return rc; 2013 } 2014 2015 rc = lirc_dev_init(); 2016 if (rc) { 2017 pr_err("rc_core: unable to init lirc\n"); 2018 class_unregister(&rc_class); 2019 return 0; 2020 } 2021 2022 led_trigger_register_simple("rc-feedback", &led_feedback); 2023 rc_map_register(&empty_map); 2024 2025 return 0; 2026 } 2027 2028 static void __exit rc_core_exit(void) 2029 { 2030 lirc_dev_exit(); 2031 class_unregister(&rc_class); 2032 led_trigger_unregister_simple(led_feedback); 2033 rc_map_unregister(&empty_map); 2034 } 2035 2036 subsys_initcall(rc_core_init); 2037 module_exit(rc_core_exit); 2038 2039 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2040 MODULE_LICENSE("GPL v2"); 2041