xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision d3964221)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <media/rc-core.h>
18 #include <linux/spinlock.h>
19 #include <linux/delay.h>
20 #include <linux/input.h>
21 #include <linux/leds.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/device.h>
25 #include <linux/module.h>
26 #include "rc-core-priv.h"
27 
28 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
29 #define IR_TAB_MIN_SIZE	256
30 #define IR_TAB_MAX_SIZE	8192
31 #define RC_DEV_MAX	256
32 
33 static const struct {
34 	const char *name;
35 	unsigned int repeat_period;
36 	unsigned int scancode_bits;
37 } protocols[] = {
38 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
39 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
40 	[RC_PROTO_RC5] = { .name = "rc-5",
41 		.scancode_bits = 0x1f7f, .repeat_period = 164 },
42 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
43 		.scancode_bits = 0x1f7f3f, .repeat_period = 164 },
44 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
45 		.scancode_bits = 0x2fff, .repeat_period = 164 },
46 	[RC_PROTO_JVC] = { .name = "jvc",
47 		.scancode_bits = 0xffff, .repeat_period = 250 },
48 	[RC_PROTO_SONY12] = { .name = "sony-12",
49 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
50 	[RC_PROTO_SONY15] = { .name = "sony-15",
51 		.scancode_bits = 0xff007f, .repeat_period = 100 },
52 	[RC_PROTO_SONY20] = { .name = "sony-20",
53 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
54 	[RC_PROTO_NEC] = { .name = "nec",
55 		.scancode_bits = 0xffff, .repeat_period = 160 },
56 	[RC_PROTO_NECX] = { .name = "nec-x",
57 		.scancode_bits = 0xffffff, .repeat_period = 160 },
58 	[RC_PROTO_NEC32] = { .name = "nec-32",
59 		.scancode_bits = 0xffffffff, .repeat_period = 160 },
60 	[RC_PROTO_SANYO] = { .name = "sanyo",
61 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
62 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
63 		.scancode_bits = 0xffff, .repeat_period = 150 },
64 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
65 		.scancode_bits = 0x1fffff, .repeat_period = 150 },
66 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
67 		.scancode_bits = 0xffff, .repeat_period = 164 },
68 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
69 		.scancode_bits = 0xfffff, .repeat_period = 164 },
70 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
71 		.scancode_bits = 0xffffff, .repeat_period = 164 },
72 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
73 		.scancode_bits = 0xffffffff, .repeat_period = 164 },
74 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
75 		.scancode_bits = 0xffff7fff, .repeat_period = 164 },
76 	[RC_PROTO_SHARP] = { .name = "sharp",
77 		.scancode_bits = 0x1fff, .repeat_period = 250 },
78 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
79 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
80 };
81 
82 /* Used to keep track of known keymaps */
83 static LIST_HEAD(rc_map_list);
84 static DEFINE_SPINLOCK(rc_map_lock);
85 static struct led_trigger *led_feedback;
86 
87 /* Used to keep track of rc devices */
88 static DEFINE_IDA(rc_ida);
89 
90 static struct rc_map_list *seek_rc_map(const char *name)
91 {
92 	struct rc_map_list *map = NULL;
93 
94 	spin_lock(&rc_map_lock);
95 	list_for_each_entry(map, &rc_map_list, list) {
96 		if (!strcmp(name, map->map.name)) {
97 			spin_unlock(&rc_map_lock);
98 			return map;
99 		}
100 	}
101 	spin_unlock(&rc_map_lock);
102 
103 	return NULL;
104 }
105 
106 struct rc_map *rc_map_get(const char *name)
107 {
108 
109 	struct rc_map_list *map;
110 
111 	map = seek_rc_map(name);
112 #ifdef CONFIG_MODULES
113 	if (!map) {
114 		int rc = request_module("%s", name);
115 		if (rc < 0) {
116 			pr_err("Couldn't load IR keymap %s\n", name);
117 			return NULL;
118 		}
119 		msleep(20);	/* Give some time for IR to register */
120 
121 		map = seek_rc_map(name);
122 	}
123 #endif
124 	if (!map) {
125 		pr_err("IR keymap %s not found\n", name);
126 		return NULL;
127 	}
128 
129 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
130 
131 	return &map->map;
132 }
133 EXPORT_SYMBOL_GPL(rc_map_get);
134 
135 int rc_map_register(struct rc_map_list *map)
136 {
137 	spin_lock(&rc_map_lock);
138 	list_add_tail(&map->list, &rc_map_list);
139 	spin_unlock(&rc_map_lock);
140 	return 0;
141 }
142 EXPORT_SYMBOL_GPL(rc_map_register);
143 
144 void rc_map_unregister(struct rc_map_list *map)
145 {
146 	spin_lock(&rc_map_lock);
147 	list_del(&map->list);
148 	spin_unlock(&rc_map_lock);
149 }
150 EXPORT_SYMBOL_GPL(rc_map_unregister);
151 
152 
153 static struct rc_map_table empty[] = {
154 	{ 0x2a, KEY_COFFEE },
155 };
156 
157 static struct rc_map_list empty_map = {
158 	.map = {
159 		.scan     = empty,
160 		.size     = ARRAY_SIZE(empty),
161 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
162 		.name     = RC_MAP_EMPTY,
163 	}
164 };
165 
166 /**
167  * ir_create_table() - initializes a scancode table
168  * @rc_map:	the rc_map to initialize
169  * @name:	name to assign to the table
170  * @rc_proto:	ir type to assign to the new table
171  * @size:	initial size of the table
172  * @return:	zero on success or a negative error code
173  *
174  * This routine will initialize the rc_map and will allocate
175  * memory to hold at least the specified number of elements.
176  */
177 static int ir_create_table(struct rc_map *rc_map,
178 			   const char *name, u64 rc_proto, size_t size)
179 {
180 	rc_map->name = kstrdup(name, GFP_KERNEL);
181 	if (!rc_map->name)
182 		return -ENOMEM;
183 	rc_map->rc_proto = rc_proto;
184 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
185 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
186 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
187 	if (!rc_map->scan) {
188 		kfree(rc_map->name);
189 		rc_map->name = NULL;
190 		return -ENOMEM;
191 	}
192 
193 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
194 		   rc_map->size, rc_map->alloc);
195 	return 0;
196 }
197 
198 /**
199  * ir_free_table() - frees memory allocated by a scancode table
200  * @rc_map:	the table whose mappings need to be freed
201  *
202  * This routine will free memory alloctaed for key mappings used by given
203  * scancode table.
204  */
205 static void ir_free_table(struct rc_map *rc_map)
206 {
207 	rc_map->size = 0;
208 	kfree(rc_map->name);
209 	rc_map->name = NULL;
210 	kfree(rc_map->scan);
211 	rc_map->scan = NULL;
212 }
213 
214 /**
215  * ir_resize_table() - resizes a scancode table if necessary
216  * @rc_map:	the rc_map to resize
217  * @gfp_flags:	gfp flags to use when allocating memory
218  * @return:	zero on success or a negative error code
219  *
220  * This routine will shrink the rc_map if it has lots of
221  * unused entries and grow it if it is full.
222  */
223 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
224 {
225 	unsigned int oldalloc = rc_map->alloc;
226 	unsigned int newalloc = oldalloc;
227 	struct rc_map_table *oldscan = rc_map->scan;
228 	struct rc_map_table *newscan;
229 
230 	if (rc_map->size == rc_map->len) {
231 		/* All entries in use -> grow keytable */
232 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
233 			return -ENOMEM;
234 
235 		newalloc *= 2;
236 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
237 	}
238 
239 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
240 		/* Less than 1/3 of entries in use -> shrink keytable */
241 		newalloc /= 2;
242 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
243 	}
244 
245 	if (newalloc == oldalloc)
246 		return 0;
247 
248 	newscan = kmalloc(newalloc, gfp_flags);
249 	if (!newscan) {
250 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
251 		return -ENOMEM;
252 	}
253 
254 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
255 	rc_map->scan = newscan;
256 	rc_map->alloc = newalloc;
257 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
258 	kfree(oldscan);
259 	return 0;
260 }
261 
262 /**
263  * ir_update_mapping() - set a keycode in the scancode->keycode table
264  * @dev:	the struct rc_dev device descriptor
265  * @rc_map:	scancode table to be adjusted
266  * @index:	index of the mapping that needs to be updated
267  * @keycode:	the desired keycode
268  * @return:	previous keycode assigned to the mapping
269  *
270  * This routine is used to update scancode->keycode mapping at given
271  * position.
272  */
273 static unsigned int ir_update_mapping(struct rc_dev *dev,
274 				      struct rc_map *rc_map,
275 				      unsigned int index,
276 				      unsigned int new_keycode)
277 {
278 	int old_keycode = rc_map->scan[index].keycode;
279 	int i;
280 
281 	/* Did the user wish to remove the mapping? */
282 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
283 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
284 			   index, rc_map->scan[index].scancode);
285 		rc_map->len--;
286 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
287 			(rc_map->len - index) * sizeof(struct rc_map_table));
288 	} else {
289 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
290 			   index,
291 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
292 			   rc_map->scan[index].scancode, new_keycode);
293 		rc_map->scan[index].keycode = new_keycode;
294 		__set_bit(new_keycode, dev->input_dev->keybit);
295 	}
296 
297 	if (old_keycode != KEY_RESERVED) {
298 		/* A previous mapping was updated... */
299 		__clear_bit(old_keycode, dev->input_dev->keybit);
300 		/* ... but another scancode might use the same keycode */
301 		for (i = 0; i < rc_map->len; i++) {
302 			if (rc_map->scan[i].keycode == old_keycode) {
303 				__set_bit(old_keycode, dev->input_dev->keybit);
304 				break;
305 			}
306 		}
307 
308 		/* Possibly shrink the keytable, failure is not a problem */
309 		ir_resize_table(rc_map, GFP_ATOMIC);
310 	}
311 
312 	return old_keycode;
313 }
314 
315 /**
316  * ir_establish_scancode() - set a keycode in the scancode->keycode table
317  * @dev:	the struct rc_dev device descriptor
318  * @rc_map:	scancode table to be searched
319  * @scancode:	the desired scancode
320  * @resize:	controls whether we allowed to resize the table to
321  *		accommodate not yet present scancodes
322  * @return:	index of the mapping containing scancode in question
323  *		or -1U in case of failure.
324  *
325  * This routine is used to locate given scancode in rc_map.
326  * If scancode is not yet present the routine will allocate a new slot
327  * for it.
328  */
329 static unsigned int ir_establish_scancode(struct rc_dev *dev,
330 					  struct rc_map *rc_map,
331 					  unsigned int scancode,
332 					  bool resize)
333 {
334 	unsigned int i;
335 
336 	/*
337 	 * Unfortunately, some hardware-based IR decoders don't provide
338 	 * all bits for the complete IR code. In general, they provide only
339 	 * the command part of the IR code. Yet, as it is possible to replace
340 	 * the provided IR with another one, it is needed to allow loading
341 	 * IR tables from other remotes. So, we support specifying a mask to
342 	 * indicate the valid bits of the scancodes.
343 	 */
344 	if (dev->scancode_mask)
345 		scancode &= dev->scancode_mask;
346 
347 	/* First check if we already have a mapping for this ir command */
348 	for (i = 0; i < rc_map->len; i++) {
349 		if (rc_map->scan[i].scancode == scancode)
350 			return i;
351 
352 		/* Keytable is sorted from lowest to highest scancode */
353 		if (rc_map->scan[i].scancode >= scancode)
354 			break;
355 	}
356 
357 	/* No previous mapping found, we might need to grow the table */
358 	if (rc_map->size == rc_map->len) {
359 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
360 			return -1U;
361 	}
362 
363 	/* i is the proper index to insert our new keycode */
364 	if (i < rc_map->len)
365 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
366 			(rc_map->len - i) * sizeof(struct rc_map_table));
367 	rc_map->scan[i].scancode = scancode;
368 	rc_map->scan[i].keycode = KEY_RESERVED;
369 	rc_map->len++;
370 
371 	return i;
372 }
373 
374 /**
375  * ir_setkeycode() - set a keycode in the scancode->keycode table
376  * @idev:	the struct input_dev device descriptor
377  * @scancode:	the desired scancode
378  * @keycode:	result
379  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
380  *
381  * This routine is used to handle evdev EVIOCSKEY ioctl.
382  */
383 static int ir_setkeycode(struct input_dev *idev,
384 			 const struct input_keymap_entry *ke,
385 			 unsigned int *old_keycode)
386 {
387 	struct rc_dev *rdev = input_get_drvdata(idev);
388 	struct rc_map *rc_map = &rdev->rc_map;
389 	unsigned int index;
390 	unsigned int scancode;
391 	int retval = 0;
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&rc_map->lock, flags);
395 
396 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 		index = ke->index;
398 		if (index >= rc_map->len) {
399 			retval = -EINVAL;
400 			goto out;
401 		}
402 	} else {
403 		retval = input_scancode_to_scalar(ke, &scancode);
404 		if (retval)
405 			goto out;
406 
407 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 		if (index >= rc_map->len) {
409 			retval = -ENOMEM;
410 			goto out;
411 		}
412 	}
413 
414 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
415 
416 out:
417 	spin_unlock_irqrestore(&rc_map->lock, flags);
418 	return retval;
419 }
420 
421 /**
422  * ir_setkeytable() - sets several entries in the scancode->keycode table
423  * @dev:	the struct rc_dev device descriptor
424  * @to:		the struct rc_map to copy entries to
425  * @from:	the struct rc_map to copy entries from
426  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
427  *
428  * This routine is used to handle table initialization.
429  */
430 static int ir_setkeytable(struct rc_dev *dev,
431 			  const struct rc_map *from)
432 {
433 	struct rc_map *rc_map = &dev->rc_map;
434 	unsigned int i, index;
435 	int rc;
436 
437 	rc = ir_create_table(rc_map, from->name,
438 			     from->rc_proto, from->size);
439 	if (rc)
440 		return rc;
441 
442 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
443 		   rc_map->size, rc_map->alloc);
444 
445 	for (i = 0; i < from->size; i++) {
446 		index = ir_establish_scancode(dev, rc_map,
447 					      from->scan[i].scancode, false);
448 		if (index >= rc_map->len) {
449 			rc = -ENOMEM;
450 			break;
451 		}
452 
453 		ir_update_mapping(dev, rc_map, index,
454 				  from->scan[i].keycode);
455 	}
456 
457 	if (rc)
458 		ir_free_table(rc_map);
459 
460 	return rc;
461 }
462 
463 /**
464  * ir_lookup_by_scancode() - locate mapping by scancode
465  * @rc_map:	the struct rc_map to search
466  * @scancode:	scancode to look for in the table
467  * @return:	index in the table, -1U if not found
468  *
469  * This routine performs binary search in RC keykeymap table for
470  * given scancode.
471  */
472 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
473 					  unsigned int scancode)
474 {
475 	int start = 0;
476 	int end = rc_map->len - 1;
477 	int mid;
478 
479 	while (start <= end) {
480 		mid = (start + end) / 2;
481 		if (rc_map->scan[mid].scancode < scancode)
482 			start = mid + 1;
483 		else if (rc_map->scan[mid].scancode > scancode)
484 			end = mid - 1;
485 		else
486 			return mid;
487 	}
488 
489 	return -1U;
490 }
491 
492 /**
493  * ir_getkeycode() - get a keycode from the scancode->keycode table
494  * @idev:	the struct input_dev device descriptor
495  * @scancode:	the desired scancode
496  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
497  * @return:	always returns zero.
498  *
499  * This routine is used to handle evdev EVIOCGKEY ioctl.
500  */
501 static int ir_getkeycode(struct input_dev *idev,
502 			 struct input_keymap_entry *ke)
503 {
504 	struct rc_dev *rdev = input_get_drvdata(idev);
505 	struct rc_map *rc_map = &rdev->rc_map;
506 	struct rc_map_table *entry;
507 	unsigned long flags;
508 	unsigned int index;
509 	unsigned int scancode;
510 	int retval;
511 
512 	spin_lock_irqsave(&rc_map->lock, flags);
513 
514 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
515 		index = ke->index;
516 	} else {
517 		retval = input_scancode_to_scalar(ke, &scancode);
518 		if (retval)
519 			goto out;
520 
521 		index = ir_lookup_by_scancode(rc_map, scancode);
522 	}
523 
524 	if (index < rc_map->len) {
525 		entry = &rc_map->scan[index];
526 
527 		ke->index = index;
528 		ke->keycode = entry->keycode;
529 		ke->len = sizeof(entry->scancode);
530 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
531 
532 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
533 		/*
534 		 * We do not really know the valid range of scancodes
535 		 * so let's respond with KEY_RESERVED to anything we
536 		 * do not have mapping for [yet].
537 		 */
538 		ke->index = index;
539 		ke->keycode = KEY_RESERVED;
540 	} else {
541 		retval = -EINVAL;
542 		goto out;
543 	}
544 
545 	retval = 0;
546 
547 out:
548 	spin_unlock_irqrestore(&rc_map->lock, flags);
549 	return retval;
550 }
551 
552 /**
553  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
554  * @dev:	the struct rc_dev descriptor of the device
555  * @scancode:	the scancode to look for
556  * @return:	the corresponding keycode, or KEY_RESERVED
557  *
558  * This routine is used by drivers which need to convert a scancode to a
559  * keycode. Normally it should not be used since drivers should have no
560  * interest in keycodes.
561  */
562 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
563 {
564 	struct rc_map *rc_map = &dev->rc_map;
565 	unsigned int keycode;
566 	unsigned int index;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&rc_map->lock, flags);
570 
571 	index = ir_lookup_by_scancode(rc_map, scancode);
572 	keycode = index < rc_map->len ?
573 			rc_map->scan[index].keycode : KEY_RESERVED;
574 
575 	spin_unlock_irqrestore(&rc_map->lock, flags);
576 
577 	if (keycode != KEY_RESERVED)
578 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
579 			   dev->device_name, scancode, keycode);
580 
581 	return keycode;
582 }
583 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
584 
585 /**
586  * ir_do_keyup() - internal function to signal the release of a keypress
587  * @dev:	the struct rc_dev descriptor of the device
588  * @sync:	whether or not to call input_sync
589  *
590  * This function is used internally to release a keypress, it must be
591  * called with keylock held.
592  */
593 static void ir_do_keyup(struct rc_dev *dev, bool sync)
594 {
595 	if (!dev->keypressed)
596 		return;
597 
598 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
599 	input_report_key(dev->input_dev, dev->last_keycode, 0);
600 	led_trigger_event(led_feedback, LED_OFF);
601 	if (sync)
602 		input_sync(dev->input_dev);
603 	dev->keypressed = false;
604 }
605 
606 /**
607  * rc_keyup() - signals the release of a keypress
608  * @dev:	the struct rc_dev descriptor of the device
609  *
610  * This routine is used to signal that a key has been released on the
611  * remote control.
612  */
613 void rc_keyup(struct rc_dev *dev)
614 {
615 	unsigned long flags;
616 
617 	spin_lock_irqsave(&dev->keylock, flags);
618 	ir_do_keyup(dev, true);
619 	spin_unlock_irqrestore(&dev->keylock, flags);
620 }
621 EXPORT_SYMBOL_GPL(rc_keyup);
622 
623 /**
624  * ir_timer_keyup() - generates a keyup event after a timeout
625  * @cookie:	a pointer to the struct rc_dev for the device
626  *
627  * This routine will generate a keyup event some time after a keydown event
628  * is generated when no further activity has been detected.
629  */
630 static void ir_timer_keyup(unsigned long cookie)
631 {
632 	struct rc_dev *dev = (struct rc_dev *)cookie;
633 	unsigned long flags;
634 
635 	/*
636 	 * ir->keyup_jiffies is used to prevent a race condition if a
637 	 * hardware interrupt occurs at this point and the keyup timer
638 	 * event is moved further into the future as a result.
639 	 *
640 	 * The timer will then be reactivated and this function called
641 	 * again in the future. We need to exit gracefully in that case
642 	 * to allow the input subsystem to do its auto-repeat magic or
643 	 * a keyup event might follow immediately after the keydown.
644 	 */
645 	spin_lock_irqsave(&dev->keylock, flags);
646 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
647 		ir_do_keyup(dev, true);
648 	spin_unlock_irqrestore(&dev->keylock, flags);
649 }
650 
651 /**
652  * rc_repeat() - signals that a key is still pressed
653  * @dev:	the struct rc_dev descriptor of the device
654  *
655  * This routine is used by IR decoders when a repeat message which does
656  * not include the necessary bits to reproduce the scancode has been
657  * received.
658  */
659 void rc_repeat(struct rc_dev *dev)
660 {
661 	unsigned long flags;
662 	unsigned int timeout = protocols[dev->last_protocol].repeat_period;
663 
664 	spin_lock_irqsave(&dev->keylock, flags);
665 
666 	if (!dev->keypressed)
667 		goto out;
668 
669 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
670 	input_sync(dev->input_dev);
671 
672 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
673 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
674 
675 out:
676 	spin_unlock_irqrestore(&dev->keylock, flags);
677 }
678 EXPORT_SYMBOL_GPL(rc_repeat);
679 
680 /**
681  * ir_do_keydown() - internal function to process a keypress
682  * @dev:	the struct rc_dev descriptor of the device
683  * @protocol:	the protocol of the keypress
684  * @scancode:   the scancode of the keypress
685  * @keycode:    the keycode of the keypress
686  * @toggle:     the toggle value of the keypress
687  *
688  * This function is used internally to register a keypress, it must be
689  * called with keylock held.
690  */
691 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
692 			  u32 scancode, u32 keycode, u8 toggle)
693 {
694 	bool new_event = (!dev->keypressed		 ||
695 			  dev->last_protocol != protocol ||
696 			  dev->last_scancode != scancode ||
697 			  dev->last_toggle   != toggle);
698 
699 	if (new_event && dev->keypressed)
700 		ir_do_keyup(dev, false);
701 
702 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
703 
704 	if (new_event && keycode != KEY_RESERVED) {
705 		/* Register a keypress */
706 		dev->keypressed = true;
707 		dev->last_protocol = protocol;
708 		dev->last_scancode = scancode;
709 		dev->last_toggle = toggle;
710 		dev->last_keycode = keycode;
711 
712 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
713 			   dev->device_name, keycode, protocol, scancode);
714 		input_report_key(dev->input_dev, keycode, 1);
715 
716 		led_trigger_event(led_feedback, LED_FULL);
717 	}
718 
719 	input_sync(dev->input_dev);
720 }
721 
722 /**
723  * rc_keydown() - generates input event for a key press
724  * @dev:	the struct rc_dev descriptor of the device
725  * @protocol:	the protocol for the keypress
726  * @scancode:	the scancode for the keypress
727  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
728  *              support toggle values, this should be set to zero)
729  *
730  * This routine is used to signal that a key has been pressed on the
731  * remote control.
732  */
733 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
734 		u8 toggle)
735 {
736 	unsigned long flags;
737 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
738 
739 	spin_lock_irqsave(&dev->keylock, flags);
740 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
741 
742 	if (dev->keypressed) {
743 		dev->keyup_jiffies = jiffies +
744 			msecs_to_jiffies(protocols[protocol].repeat_period);
745 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
746 	}
747 	spin_unlock_irqrestore(&dev->keylock, flags);
748 }
749 EXPORT_SYMBOL_GPL(rc_keydown);
750 
751 /**
752  * rc_keydown_notimeout() - generates input event for a key press without
753  *                          an automatic keyup event at a later time
754  * @dev:	the struct rc_dev descriptor of the device
755  * @protocol:	the protocol for the keypress
756  * @scancode:	the scancode for the keypress
757  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
758  *              support toggle values, this should be set to zero)
759  *
760  * This routine is used to signal that a key has been pressed on the
761  * remote control. The driver must manually call rc_keyup() at a later stage.
762  */
763 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
764 			  u32 scancode, u8 toggle)
765 {
766 	unsigned long flags;
767 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
768 
769 	spin_lock_irqsave(&dev->keylock, flags);
770 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
771 	spin_unlock_irqrestore(&dev->keylock, flags);
772 }
773 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
774 
775 /**
776  * rc_validate_filter() - checks that the scancode and mask are valid and
777  *			  provides sensible defaults
778  * @dev:	the struct rc_dev descriptor of the device
779  * @filter:	the scancode and mask
780  * @return:	0 or -EINVAL if the filter is not valid
781  */
782 static int rc_validate_filter(struct rc_dev *dev,
783 			      struct rc_scancode_filter *filter)
784 {
785 	u32 mask, s = filter->data;
786 	enum rc_proto protocol = dev->wakeup_protocol;
787 
788 	if (protocol >= ARRAY_SIZE(protocols))
789 		return -EINVAL;
790 
791 	mask = protocols[protocol].scancode_bits;
792 
793 	switch (protocol) {
794 	case RC_PROTO_NECX:
795 		if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
796 			return -EINVAL;
797 		break;
798 	case RC_PROTO_NEC32:
799 		if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
800 			return -EINVAL;
801 		break;
802 	case RC_PROTO_RC6_MCE:
803 		if ((s & 0xffff0000) != 0x800f0000)
804 			return -EINVAL;
805 		break;
806 	case RC_PROTO_RC6_6A_32:
807 		if ((s & 0xffff0000) == 0x800f0000)
808 			return -EINVAL;
809 		break;
810 	default:
811 		break;
812 	}
813 
814 	filter->data &= mask;
815 	filter->mask &= mask;
816 
817 	/*
818 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
819 	 */
820 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
821 		return -EINVAL;
822 
823 	return 0;
824 }
825 
826 int rc_open(struct rc_dev *rdev)
827 {
828 	int rval = 0;
829 
830 	if (!rdev)
831 		return -EINVAL;
832 
833 	mutex_lock(&rdev->lock);
834 
835 	if (!rdev->users++ && rdev->open != NULL)
836 		rval = rdev->open(rdev);
837 
838 	if (rval)
839 		rdev->users--;
840 
841 	mutex_unlock(&rdev->lock);
842 
843 	return rval;
844 }
845 EXPORT_SYMBOL_GPL(rc_open);
846 
847 static int ir_open(struct input_dev *idev)
848 {
849 	struct rc_dev *rdev = input_get_drvdata(idev);
850 
851 	return rc_open(rdev);
852 }
853 
854 void rc_close(struct rc_dev *rdev)
855 {
856 	if (rdev) {
857 		mutex_lock(&rdev->lock);
858 
859 		if (!--rdev->users && rdev->close != NULL)
860 			rdev->close(rdev);
861 
862 		mutex_unlock(&rdev->lock);
863 	}
864 }
865 EXPORT_SYMBOL_GPL(rc_close);
866 
867 static void ir_close(struct input_dev *idev)
868 {
869 	struct rc_dev *rdev = input_get_drvdata(idev);
870 	rc_close(rdev);
871 }
872 
873 /* class for /sys/class/rc */
874 static char *rc_devnode(struct device *dev, umode_t *mode)
875 {
876 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
877 }
878 
879 static struct class rc_class = {
880 	.name		= "rc",
881 	.devnode	= rc_devnode,
882 };
883 
884 /*
885  * These are the protocol textual descriptions that are
886  * used by the sysfs protocols file. Note that the order
887  * of the entries is relevant.
888  */
889 static const struct {
890 	u64	type;
891 	const char	*name;
892 	const char	*module_name;
893 } proto_names[] = {
894 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
895 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
896 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
897 	{ RC_PROTO_BIT_RC5 |
898 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
899 	{ RC_PROTO_BIT_NEC |
900 	  RC_PROTO_BIT_NECX |
901 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
902 	{ RC_PROTO_BIT_RC6_0 |
903 	  RC_PROTO_BIT_RC6_6A_20 |
904 	  RC_PROTO_BIT_RC6_6A_24 |
905 	  RC_PROTO_BIT_RC6_6A_32 |
906 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
907 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
908 	{ RC_PROTO_BIT_SONY12 |
909 	  RC_PROTO_BIT_SONY15 |
910 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
911 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
912 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
913 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
914 	{ RC_PROTO_BIT_MCIR2_KBD |
915 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
916 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
917 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
918 };
919 
920 /**
921  * struct rc_filter_attribute - Device attribute relating to a filter type.
922  * @attr:	Device attribute.
923  * @type:	Filter type.
924  * @mask:	false for filter value, true for filter mask.
925  */
926 struct rc_filter_attribute {
927 	struct device_attribute		attr;
928 	enum rc_filter_type		type;
929 	bool				mask;
930 };
931 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
932 
933 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
934 	struct rc_filter_attribute dev_attr_##_name = {			\
935 		.attr = __ATTR(_name, _mode, _show, _store),		\
936 		.type = (_type),					\
937 		.mask = (_mask),					\
938 	}
939 
940 static bool lirc_is_present(void)
941 {
942 #if defined(CONFIG_LIRC_MODULE)
943 	struct module *lirc;
944 
945 	mutex_lock(&module_mutex);
946 	lirc = find_module("lirc_dev");
947 	mutex_unlock(&module_mutex);
948 
949 	return lirc ? true : false;
950 #elif defined(CONFIG_LIRC)
951 	return true;
952 #else
953 	return false;
954 #endif
955 }
956 
957 /**
958  * show_protocols() - shows the current IR protocol(s)
959  * @device:	the device descriptor
960  * @mattr:	the device attribute struct
961  * @buf:	a pointer to the output buffer
962  *
963  * This routine is a callback routine for input read the IR protocol type(s).
964  * it is trigged by reading /sys/class/rc/rc?/protocols.
965  * It returns the protocol names of supported protocols.
966  * Enabled protocols are printed in brackets.
967  *
968  * dev->lock is taken to guard against races between
969  * store_protocols and show_protocols.
970  */
971 static ssize_t show_protocols(struct device *device,
972 			      struct device_attribute *mattr, char *buf)
973 {
974 	struct rc_dev *dev = to_rc_dev(device);
975 	u64 allowed, enabled;
976 	char *tmp = buf;
977 	int i;
978 
979 	mutex_lock(&dev->lock);
980 
981 	enabled = dev->enabled_protocols;
982 	allowed = dev->allowed_protocols;
983 	if (dev->raw && !allowed)
984 		allowed = ir_raw_get_allowed_protocols();
985 
986 	mutex_unlock(&dev->lock);
987 
988 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
989 		   __func__, (long long)allowed, (long long)enabled);
990 
991 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
992 		if (allowed & enabled & proto_names[i].type)
993 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
994 		else if (allowed & proto_names[i].type)
995 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
996 
997 		if (allowed & proto_names[i].type)
998 			allowed &= ~proto_names[i].type;
999 	}
1000 
1001 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
1002 		tmp += sprintf(tmp, "[lirc] ");
1003 
1004 	if (tmp != buf)
1005 		tmp--;
1006 	*tmp = '\n';
1007 
1008 	return tmp + 1 - buf;
1009 }
1010 
1011 /**
1012  * parse_protocol_change() - parses a protocol change request
1013  * @protocols:	pointer to the bitmask of current protocols
1014  * @buf:	pointer to the buffer with a list of changes
1015  *
1016  * Writing "+proto" will add a protocol to the protocol mask.
1017  * Writing "-proto" will remove a protocol from protocol mask.
1018  * Writing "proto" will enable only "proto".
1019  * Writing "none" will disable all protocols.
1020  * Returns the number of changes performed or a negative error code.
1021  */
1022 static int parse_protocol_change(u64 *protocols, const char *buf)
1023 {
1024 	const char *tmp;
1025 	unsigned count = 0;
1026 	bool enable, disable;
1027 	u64 mask;
1028 	int i;
1029 
1030 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1031 		if (!*tmp)
1032 			break;
1033 
1034 		if (*tmp == '+') {
1035 			enable = true;
1036 			disable = false;
1037 			tmp++;
1038 		} else if (*tmp == '-') {
1039 			enable = false;
1040 			disable = true;
1041 			tmp++;
1042 		} else {
1043 			enable = false;
1044 			disable = false;
1045 		}
1046 
1047 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1048 			if (!strcasecmp(tmp, proto_names[i].name)) {
1049 				mask = proto_names[i].type;
1050 				break;
1051 			}
1052 		}
1053 
1054 		if (i == ARRAY_SIZE(proto_names)) {
1055 			if (!strcasecmp(tmp, "lirc"))
1056 				mask = 0;
1057 			else {
1058 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1059 				return -EINVAL;
1060 			}
1061 		}
1062 
1063 		count++;
1064 
1065 		if (enable)
1066 			*protocols |= mask;
1067 		else if (disable)
1068 			*protocols &= ~mask;
1069 		else
1070 			*protocols = mask;
1071 	}
1072 
1073 	if (!count) {
1074 		IR_dprintk(1, "Protocol not specified\n");
1075 		return -EINVAL;
1076 	}
1077 
1078 	return count;
1079 }
1080 
1081 static void ir_raw_load_modules(u64 *protocols)
1082 {
1083 	u64 available;
1084 	int i, ret;
1085 
1086 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1087 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1088 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1089 					   RC_PROTO_BIT_UNKNOWN))
1090 			continue;
1091 
1092 		available = ir_raw_get_allowed_protocols();
1093 		if (!(*protocols & proto_names[i].type & ~available))
1094 			continue;
1095 
1096 		if (!proto_names[i].module_name) {
1097 			pr_err("Can't enable IR protocol %s\n",
1098 			       proto_names[i].name);
1099 			*protocols &= ~proto_names[i].type;
1100 			continue;
1101 		}
1102 
1103 		ret = request_module("%s", proto_names[i].module_name);
1104 		if (ret < 0) {
1105 			pr_err("Couldn't load IR protocol module %s\n",
1106 			       proto_names[i].module_name);
1107 			*protocols &= ~proto_names[i].type;
1108 			continue;
1109 		}
1110 		msleep(20);
1111 		available = ir_raw_get_allowed_protocols();
1112 		if (!(*protocols & proto_names[i].type & ~available))
1113 			continue;
1114 
1115 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1116 		       proto_names[i].module_name,
1117 		       proto_names[i].name);
1118 		*protocols &= ~proto_names[i].type;
1119 	}
1120 }
1121 
1122 /**
1123  * store_protocols() - changes the current/wakeup IR protocol(s)
1124  * @device:	the device descriptor
1125  * @mattr:	the device attribute struct
1126  * @buf:	a pointer to the input buffer
1127  * @len:	length of the input buffer
1128  *
1129  * This routine is for changing the IR protocol type.
1130  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1131  * See parse_protocol_change() for the valid commands.
1132  * Returns @len on success or a negative error code.
1133  *
1134  * dev->lock is taken to guard against races between
1135  * store_protocols and show_protocols.
1136  */
1137 static ssize_t store_protocols(struct device *device,
1138 			       struct device_attribute *mattr,
1139 			       const char *buf, size_t len)
1140 {
1141 	struct rc_dev *dev = to_rc_dev(device);
1142 	u64 *current_protocols;
1143 	struct rc_scancode_filter *filter;
1144 	u64 old_protocols, new_protocols;
1145 	ssize_t rc;
1146 
1147 	IR_dprintk(1, "Normal protocol change requested\n");
1148 	current_protocols = &dev->enabled_protocols;
1149 	filter = &dev->scancode_filter;
1150 
1151 	if (!dev->change_protocol) {
1152 		IR_dprintk(1, "Protocol switching not supported\n");
1153 		return -EINVAL;
1154 	}
1155 
1156 	mutex_lock(&dev->lock);
1157 
1158 	old_protocols = *current_protocols;
1159 	new_protocols = old_protocols;
1160 	rc = parse_protocol_change(&new_protocols, buf);
1161 	if (rc < 0)
1162 		goto out;
1163 
1164 	rc = dev->change_protocol(dev, &new_protocols);
1165 	if (rc < 0) {
1166 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1167 			   (long long)new_protocols);
1168 		goto out;
1169 	}
1170 
1171 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1172 		ir_raw_load_modules(&new_protocols);
1173 
1174 	if (new_protocols != old_protocols) {
1175 		*current_protocols = new_protocols;
1176 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1177 			   (long long)new_protocols);
1178 	}
1179 
1180 	/*
1181 	 * If a protocol change was attempted the filter may need updating, even
1182 	 * if the actual protocol mask hasn't changed (since the driver may have
1183 	 * cleared the filter).
1184 	 * Try setting the same filter with the new protocol (if any).
1185 	 * Fall back to clearing the filter.
1186 	 */
1187 	if (dev->s_filter && filter->mask) {
1188 		if (new_protocols)
1189 			rc = dev->s_filter(dev, filter);
1190 		else
1191 			rc = -1;
1192 
1193 		if (rc < 0) {
1194 			filter->data = 0;
1195 			filter->mask = 0;
1196 			dev->s_filter(dev, filter);
1197 		}
1198 	}
1199 
1200 	rc = len;
1201 
1202 out:
1203 	mutex_unlock(&dev->lock);
1204 	return rc;
1205 }
1206 
1207 /**
1208  * show_filter() - shows the current scancode filter value or mask
1209  * @device:	the device descriptor
1210  * @attr:	the device attribute struct
1211  * @buf:	a pointer to the output buffer
1212  *
1213  * This routine is a callback routine to read a scancode filter value or mask.
1214  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1215  * It prints the current scancode filter value or mask of the appropriate filter
1216  * type in hexadecimal into @buf and returns the size of the buffer.
1217  *
1218  * Bits of the filter value corresponding to set bits in the filter mask are
1219  * compared against input scancodes and non-matching scancodes are discarded.
1220  *
1221  * dev->lock is taken to guard against races between
1222  * store_filter and show_filter.
1223  */
1224 static ssize_t show_filter(struct device *device,
1225 			   struct device_attribute *attr,
1226 			   char *buf)
1227 {
1228 	struct rc_dev *dev = to_rc_dev(device);
1229 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1230 	struct rc_scancode_filter *filter;
1231 	u32 val;
1232 
1233 	mutex_lock(&dev->lock);
1234 
1235 	if (fattr->type == RC_FILTER_NORMAL)
1236 		filter = &dev->scancode_filter;
1237 	else
1238 		filter = &dev->scancode_wakeup_filter;
1239 
1240 	if (fattr->mask)
1241 		val = filter->mask;
1242 	else
1243 		val = filter->data;
1244 	mutex_unlock(&dev->lock);
1245 
1246 	return sprintf(buf, "%#x\n", val);
1247 }
1248 
1249 /**
1250  * store_filter() - changes the scancode filter value
1251  * @device:	the device descriptor
1252  * @attr:	the device attribute struct
1253  * @buf:	a pointer to the input buffer
1254  * @len:	length of the input buffer
1255  *
1256  * This routine is for changing a scancode filter value or mask.
1257  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1258  * Returns -EINVAL if an invalid filter value for the current protocol was
1259  * specified or if scancode filtering is not supported by the driver, otherwise
1260  * returns @len.
1261  *
1262  * Bits of the filter value corresponding to set bits in the filter mask are
1263  * compared against input scancodes and non-matching scancodes are discarded.
1264  *
1265  * dev->lock is taken to guard against races between
1266  * store_filter and show_filter.
1267  */
1268 static ssize_t store_filter(struct device *device,
1269 			    struct device_attribute *attr,
1270 			    const char *buf, size_t len)
1271 {
1272 	struct rc_dev *dev = to_rc_dev(device);
1273 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1274 	struct rc_scancode_filter new_filter, *filter;
1275 	int ret;
1276 	unsigned long val;
1277 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1278 
1279 	ret = kstrtoul(buf, 0, &val);
1280 	if (ret < 0)
1281 		return ret;
1282 
1283 	if (fattr->type == RC_FILTER_NORMAL) {
1284 		set_filter = dev->s_filter;
1285 		filter = &dev->scancode_filter;
1286 	} else {
1287 		set_filter = dev->s_wakeup_filter;
1288 		filter = &dev->scancode_wakeup_filter;
1289 	}
1290 
1291 	if (!set_filter)
1292 		return -EINVAL;
1293 
1294 	mutex_lock(&dev->lock);
1295 
1296 	new_filter = *filter;
1297 	if (fattr->mask)
1298 		new_filter.mask = val;
1299 	else
1300 		new_filter.data = val;
1301 
1302 	if (fattr->type == RC_FILTER_WAKEUP) {
1303 		/*
1304 		 * Refuse to set a filter unless a protocol is enabled
1305 		 * and the filter is valid for that protocol
1306 		 */
1307 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1308 			ret = rc_validate_filter(dev, &new_filter);
1309 		else
1310 			ret = -EINVAL;
1311 
1312 		if (ret != 0)
1313 			goto unlock;
1314 	}
1315 
1316 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1317 	    val) {
1318 		/* refuse to set a filter unless a protocol is enabled */
1319 		ret = -EINVAL;
1320 		goto unlock;
1321 	}
1322 
1323 	ret = set_filter(dev, &new_filter);
1324 	if (ret < 0)
1325 		goto unlock;
1326 
1327 	*filter = new_filter;
1328 
1329 unlock:
1330 	mutex_unlock(&dev->lock);
1331 	return (ret < 0) ? ret : len;
1332 }
1333 
1334 /**
1335  * show_wakeup_protocols() - shows the wakeup IR protocol
1336  * @device:	the device descriptor
1337  * @mattr:	the device attribute struct
1338  * @buf:	a pointer to the output buffer
1339  *
1340  * This routine is a callback routine for input read the IR protocol type(s).
1341  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1342  * It returns the protocol names of supported protocols.
1343  * The enabled protocols are printed in brackets.
1344  *
1345  * dev->lock is taken to guard against races between
1346  * store_wakeup_protocols and show_wakeup_protocols.
1347  */
1348 static ssize_t show_wakeup_protocols(struct device *device,
1349 				     struct device_attribute *mattr,
1350 				     char *buf)
1351 {
1352 	struct rc_dev *dev = to_rc_dev(device);
1353 	u64 allowed;
1354 	enum rc_proto enabled;
1355 	char *tmp = buf;
1356 	int i;
1357 
1358 	mutex_lock(&dev->lock);
1359 
1360 	allowed = dev->allowed_wakeup_protocols;
1361 	enabled = dev->wakeup_protocol;
1362 
1363 	mutex_unlock(&dev->lock);
1364 
1365 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1366 		   __func__, (long long)allowed, enabled);
1367 
1368 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1369 		if (allowed & (1ULL << i)) {
1370 			if (i == enabled)
1371 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1372 			else
1373 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1374 		}
1375 	}
1376 
1377 	if (tmp != buf)
1378 		tmp--;
1379 	*tmp = '\n';
1380 
1381 	return tmp + 1 - buf;
1382 }
1383 
1384 /**
1385  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1386  * @device:	the device descriptor
1387  * @mattr:	the device attribute struct
1388  * @buf:	a pointer to the input buffer
1389  * @len:	length of the input buffer
1390  *
1391  * This routine is for changing the IR protocol type.
1392  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1393  * Returns @len on success or a negative error code.
1394  *
1395  * dev->lock is taken to guard against races between
1396  * store_wakeup_protocols and show_wakeup_protocols.
1397  */
1398 static ssize_t store_wakeup_protocols(struct device *device,
1399 				      struct device_attribute *mattr,
1400 				      const char *buf, size_t len)
1401 {
1402 	struct rc_dev *dev = to_rc_dev(device);
1403 	enum rc_proto protocol;
1404 	ssize_t rc;
1405 	u64 allowed;
1406 	int i;
1407 
1408 	mutex_lock(&dev->lock);
1409 
1410 	allowed = dev->allowed_wakeup_protocols;
1411 
1412 	if (sysfs_streq(buf, "none")) {
1413 		protocol = RC_PROTO_UNKNOWN;
1414 	} else {
1415 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1416 			if ((allowed & (1ULL << i)) &&
1417 			    sysfs_streq(buf, protocols[i].name)) {
1418 				protocol = i;
1419 				break;
1420 			}
1421 		}
1422 
1423 		if (i == ARRAY_SIZE(protocols)) {
1424 			rc = -EINVAL;
1425 			goto out;
1426 		}
1427 
1428 		if (dev->encode_wakeup) {
1429 			u64 mask = 1ULL << protocol;
1430 
1431 			ir_raw_load_modules(&mask);
1432 			if (!mask) {
1433 				rc = -EINVAL;
1434 				goto out;
1435 			}
1436 		}
1437 	}
1438 
1439 	if (dev->wakeup_protocol != protocol) {
1440 		dev->wakeup_protocol = protocol;
1441 		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1442 
1443 		if (protocol == RC_PROTO_RC6_MCE)
1444 			dev->scancode_wakeup_filter.data = 0x800f0000;
1445 		else
1446 			dev->scancode_wakeup_filter.data = 0;
1447 		dev->scancode_wakeup_filter.mask = 0;
1448 
1449 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1450 		if (rc == 0)
1451 			rc = len;
1452 	} else {
1453 		rc = len;
1454 	}
1455 
1456 out:
1457 	mutex_unlock(&dev->lock);
1458 	return rc;
1459 }
1460 
1461 static void rc_dev_release(struct device *device)
1462 {
1463 	struct rc_dev *dev = to_rc_dev(device);
1464 
1465 	kfree(dev);
1466 }
1467 
1468 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1469 	do {								\
1470 		int err = add_uevent_var(env, fmt, val);		\
1471 		if (err)						\
1472 			return err;					\
1473 	} while (0)
1474 
1475 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1476 {
1477 	struct rc_dev *dev = to_rc_dev(device);
1478 
1479 	if (dev->rc_map.name)
1480 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1481 	if (dev->driver_name)
1482 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Static device attribute struct with the sysfs attributes for IR's
1489  */
1490 static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1491 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1492 		   store_wakeup_protocols);
1493 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1494 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1495 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1496 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1497 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1498 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1499 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1500 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1501 
1502 static struct attribute *rc_dev_protocol_attrs[] = {
1503 	&dev_attr_protocols.attr,
1504 	NULL,
1505 };
1506 
1507 static const struct attribute_group rc_dev_protocol_attr_grp = {
1508 	.attrs	= rc_dev_protocol_attrs,
1509 };
1510 
1511 static struct attribute *rc_dev_filter_attrs[] = {
1512 	&dev_attr_filter.attr.attr,
1513 	&dev_attr_filter_mask.attr.attr,
1514 	NULL,
1515 };
1516 
1517 static const struct attribute_group rc_dev_filter_attr_grp = {
1518 	.attrs	= rc_dev_filter_attrs,
1519 };
1520 
1521 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1522 	&dev_attr_wakeup_filter.attr.attr,
1523 	&dev_attr_wakeup_filter_mask.attr.attr,
1524 	&dev_attr_wakeup_protocols.attr,
1525 	NULL,
1526 };
1527 
1528 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1529 	.attrs	= rc_dev_wakeup_filter_attrs,
1530 };
1531 
1532 static struct device_type rc_dev_type = {
1533 	.release	= rc_dev_release,
1534 	.uevent		= rc_dev_uevent,
1535 };
1536 
1537 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1538 {
1539 	struct rc_dev *dev;
1540 
1541 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1542 	if (!dev)
1543 		return NULL;
1544 
1545 	if (type != RC_DRIVER_IR_RAW_TX) {
1546 		dev->input_dev = input_allocate_device();
1547 		if (!dev->input_dev) {
1548 			kfree(dev);
1549 			return NULL;
1550 		}
1551 
1552 		dev->input_dev->getkeycode = ir_getkeycode;
1553 		dev->input_dev->setkeycode = ir_setkeycode;
1554 		input_set_drvdata(dev->input_dev, dev);
1555 
1556 		setup_timer(&dev->timer_keyup, ir_timer_keyup,
1557 			    (unsigned long)dev);
1558 
1559 		spin_lock_init(&dev->rc_map.lock);
1560 		spin_lock_init(&dev->keylock);
1561 	}
1562 	mutex_init(&dev->lock);
1563 
1564 	dev->dev.type = &rc_dev_type;
1565 	dev->dev.class = &rc_class;
1566 	device_initialize(&dev->dev);
1567 
1568 	dev->driver_type = type;
1569 
1570 	__module_get(THIS_MODULE);
1571 	return dev;
1572 }
1573 EXPORT_SYMBOL_GPL(rc_allocate_device);
1574 
1575 void rc_free_device(struct rc_dev *dev)
1576 {
1577 	if (!dev)
1578 		return;
1579 
1580 	input_free_device(dev->input_dev);
1581 
1582 	put_device(&dev->dev);
1583 
1584 	/* kfree(dev) will be called by the callback function
1585 	   rc_dev_release() */
1586 
1587 	module_put(THIS_MODULE);
1588 }
1589 EXPORT_SYMBOL_GPL(rc_free_device);
1590 
1591 static void devm_rc_alloc_release(struct device *dev, void *res)
1592 {
1593 	rc_free_device(*(struct rc_dev **)res);
1594 }
1595 
1596 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1597 				       enum rc_driver_type type)
1598 {
1599 	struct rc_dev **dr, *rc;
1600 
1601 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1602 	if (!dr)
1603 		return NULL;
1604 
1605 	rc = rc_allocate_device(type);
1606 	if (!rc) {
1607 		devres_free(dr);
1608 		return NULL;
1609 	}
1610 
1611 	rc->dev.parent = dev;
1612 	rc->managed_alloc = true;
1613 	*dr = rc;
1614 	devres_add(dev, dr);
1615 
1616 	return rc;
1617 }
1618 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1619 
1620 static int rc_prepare_rx_device(struct rc_dev *dev)
1621 {
1622 	int rc;
1623 	struct rc_map *rc_map;
1624 	u64 rc_proto;
1625 
1626 	if (!dev->map_name)
1627 		return -EINVAL;
1628 
1629 	rc_map = rc_map_get(dev->map_name);
1630 	if (!rc_map)
1631 		rc_map = rc_map_get(RC_MAP_EMPTY);
1632 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1633 		return -EINVAL;
1634 
1635 	rc = ir_setkeytable(dev, rc_map);
1636 	if (rc)
1637 		return rc;
1638 
1639 	rc_proto = BIT_ULL(rc_map->rc_proto);
1640 
1641 	if (dev->change_protocol) {
1642 		rc = dev->change_protocol(dev, &rc_proto);
1643 		if (rc < 0)
1644 			goto out_table;
1645 		dev->enabled_protocols = rc_proto;
1646 	}
1647 
1648 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1649 		ir_raw_load_modules(&rc_proto);
1650 
1651 	set_bit(EV_KEY, dev->input_dev->evbit);
1652 	set_bit(EV_REP, dev->input_dev->evbit);
1653 	set_bit(EV_MSC, dev->input_dev->evbit);
1654 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1655 	if (dev->open)
1656 		dev->input_dev->open = ir_open;
1657 	if (dev->close)
1658 		dev->input_dev->close = ir_close;
1659 
1660 	dev->input_dev->dev.parent = &dev->dev;
1661 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1662 	dev->input_dev->phys = dev->input_phys;
1663 	dev->input_dev->name = dev->device_name;
1664 
1665 	return 0;
1666 
1667 out_table:
1668 	ir_free_table(&dev->rc_map);
1669 
1670 	return rc;
1671 }
1672 
1673 static int rc_setup_rx_device(struct rc_dev *dev)
1674 {
1675 	int rc;
1676 
1677 	/* rc_open will be called here */
1678 	rc = input_register_device(dev->input_dev);
1679 	if (rc)
1680 		return rc;
1681 
1682 	/*
1683 	 * Default delay of 250ms is too short for some protocols, especially
1684 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1685 	 * to avoid wrong repetition of the keycodes. Note that this must be
1686 	 * set after the call to input_register_device().
1687 	 */
1688 	dev->input_dev->rep[REP_DELAY] = 500;
1689 
1690 	/*
1691 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1692 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1693 	 * to do.
1694 	 */
1695 	dev->input_dev->rep[REP_PERIOD] = 125;
1696 
1697 	return 0;
1698 }
1699 
1700 static void rc_free_rx_device(struct rc_dev *dev)
1701 {
1702 	if (!dev)
1703 		return;
1704 
1705 	if (dev->input_dev) {
1706 		input_unregister_device(dev->input_dev);
1707 		dev->input_dev = NULL;
1708 	}
1709 
1710 	ir_free_table(&dev->rc_map);
1711 }
1712 
1713 int rc_register_device(struct rc_dev *dev)
1714 {
1715 	const char *path;
1716 	int attr = 0;
1717 	int minor;
1718 	int rc;
1719 
1720 	if (!dev)
1721 		return -EINVAL;
1722 
1723 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1724 	if (minor < 0)
1725 		return minor;
1726 
1727 	dev->minor = minor;
1728 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1729 	dev_set_drvdata(&dev->dev, dev);
1730 
1731 	dev->dev.groups = dev->sysfs_groups;
1732 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1733 		dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1734 	if (dev->s_filter)
1735 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1736 	if (dev->s_wakeup_filter)
1737 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1738 	dev->sysfs_groups[attr++] = NULL;
1739 
1740 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1741 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1742 		rc = ir_raw_event_prepare(dev);
1743 		if (rc < 0)
1744 			goto out_minor;
1745 	}
1746 
1747 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1748 		rc = rc_prepare_rx_device(dev);
1749 		if (rc)
1750 			goto out_raw;
1751 	}
1752 
1753 	rc = device_add(&dev->dev);
1754 	if (rc)
1755 		goto out_rx_free;
1756 
1757 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1758 	dev_info(&dev->dev, "%s as %s\n",
1759 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1760 	kfree(path);
1761 
1762 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1763 		rc = rc_setup_rx_device(dev);
1764 		if (rc)
1765 			goto out_dev;
1766 	}
1767 
1768 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1769 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1770 		rc = ir_raw_event_register(dev);
1771 		if (rc < 0)
1772 			goto out_rx;
1773 	}
1774 
1775 	IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1776 		   dev->minor,
1777 		   dev->driver_name ? dev->driver_name : "unknown");
1778 
1779 	return 0;
1780 
1781 out_rx:
1782 	rc_free_rx_device(dev);
1783 out_dev:
1784 	device_del(&dev->dev);
1785 out_rx_free:
1786 	ir_free_table(&dev->rc_map);
1787 out_raw:
1788 	ir_raw_event_free(dev);
1789 out_minor:
1790 	ida_simple_remove(&rc_ida, minor);
1791 	return rc;
1792 }
1793 EXPORT_SYMBOL_GPL(rc_register_device);
1794 
1795 static void devm_rc_release(struct device *dev, void *res)
1796 {
1797 	rc_unregister_device(*(struct rc_dev **)res);
1798 }
1799 
1800 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1801 {
1802 	struct rc_dev **dr;
1803 	int ret;
1804 
1805 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1806 	if (!dr)
1807 		return -ENOMEM;
1808 
1809 	ret = rc_register_device(dev);
1810 	if (ret) {
1811 		devres_free(dr);
1812 		return ret;
1813 	}
1814 
1815 	*dr = dev;
1816 	devres_add(parent, dr);
1817 
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1821 
1822 void rc_unregister_device(struct rc_dev *dev)
1823 {
1824 	if (!dev)
1825 		return;
1826 
1827 	del_timer_sync(&dev->timer_keyup);
1828 
1829 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1830 		ir_raw_event_unregister(dev);
1831 
1832 	rc_free_rx_device(dev);
1833 
1834 	device_del(&dev->dev);
1835 
1836 	ida_simple_remove(&rc_ida, dev->minor);
1837 
1838 	if (!dev->managed_alloc)
1839 		rc_free_device(dev);
1840 }
1841 
1842 EXPORT_SYMBOL_GPL(rc_unregister_device);
1843 
1844 /*
1845  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1846  */
1847 
1848 static int __init rc_core_init(void)
1849 {
1850 	int rc = class_register(&rc_class);
1851 	if (rc) {
1852 		pr_err("rc_core: unable to register rc class\n");
1853 		return rc;
1854 	}
1855 
1856 	led_trigger_register_simple("rc-feedback", &led_feedback);
1857 	rc_map_register(&empty_map);
1858 
1859 	return 0;
1860 }
1861 
1862 static void __exit rc_core_exit(void)
1863 {
1864 	class_unregister(&rc_class);
1865 	led_trigger_unregister_simple(led_feedback);
1866 	rc_map_unregister(&empty_map);
1867 }
1868 
1869 subsys_initcall(rc_core_init);
1870 module_exit(rc_core_exit);
1871 
1872 int rc_core_debug;    /* ir_debug level (0,1,2) */
1873 EXPORT_SYMBOL_GPL(rc_core_debug);
1874 module_param_named(debug, rc_core_debug, int, 0644);
1875 
1876 MODULE_AUTHOR("Mauro Carvalho Chehab");
1877 MODULE_LICENSE("GPL");
1878