1 // SPDX-License-Identifier: GPL-2.0 2 // rc-main.c - Remote Controller core module 3 // 4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <media/rc-core.h> 9 #include <linux/bsearch.h> 10 #include <linux/spinlock.h> 11 #include <linux/delay.h> 12 #include <linux/input.h> 13 #include <linux/leds.h> 14 #include <linux/slab.h> 15 #include <linux/idr.h> 16 #include <linux/device.h> 17 #include <linux/module.h> 18 #include "rc-core-priv.h" 19 20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 21 #define IR_TAB_MIN_SIZE 256 22 #define IR_TAB_MAX_SIZE 8192 23 24 static const struct { 25 const char *name; 26 unsigned int repeat_period; 27 unsigned int scancode_bits; 28 } protocols[] = { 29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 }, 30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 }, 31 [RC_PROTO_RC5] = { .name = "rc-5", 32 .scancode_bits = 0x1f7f, .repeat_period = 114 }, 33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", 34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 }, 35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", 36 .scancode_bits = 0x2fff, .repeat_period = 114 }, 37 [RC_PROTO_JVC] = { .name = "jvc", 38 .scancode_bits = 0xffff, .repeat_period = 125 }, 39 [RC_PROTO_SONY12] = { .name = "sony-12", 40 .scancode_bits = 0x1f007f, .repeat_period = 100 }, 41 [RC_PROTO_SONY15] = { .name = "sony-15", 42 .scancode_bits = 0xff007f, .repeat_period = 100 }, 43 [RC_PROTO_SONY20] = { .name = "sony-20", 44 .scancode_bits = 0x1fff7f, .repeat_period = 100 }, 45 [RC_PROTO_NEC] = { .name = "nec", 46 .scancode_bits = 0xffff, .repeat_period = 110 }, 47 [RC_PROTO_NECX] = { .name = "nec-x", 48 .scancode_bits = 0xffffff, .repeat_period = 110 }, 49 [RC_PROTO_NEC32] = { .name = "nec-32", 50 .scancode_bits = 0xffffffff, .repeat_period = 110 }, 51 [RC_PROTO_SANYO] = { .name = "sanyo", 52 .scancode_bits = 0x1fffff, .repeat_period = 125 }, 53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", 54 .scancode_bits = 0xffffff, .repeat_period = 100 }, 55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", 56 .scancode_bits = 0x1fffff, .repeat_period = 100 }, 57 [RC_PROTO_RC6_0] = { .name = "rc-6-0", 58 .scancode_bits = 0xffff, .repeat_period = 114 }, 59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", 60 .scancode_bits = 0xfffff, .repeat_period = 114 }, 61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", 62 .scancode_bits = 0xffffff, .repeat_period = 114 }, 63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", 64 .scancode_bits = 0xffffffff, .repeat_period = 114 }, 65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", 66 .scancode_bits = 0xffff7fff, .repeat_period = 114 }, 67 [RC_PROTO_SHARP] = { .name = "sharp", 68 .scancode_bits = 0x1fff, .repeat_period = 125 }, 69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 }, 70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 }, 71 [RC_PROTO_IMON] = { .name = "imon", 72 .scancode_bits = 0x7fffffff, .repeat_period = 114 }, 73 [RC_PROTO_RCMM12] = { .name = "rc-mm-12", 74 .scancode_bits = 0x00000fff, .repeat_period = 114 }, 75 [RC_PROTO_RCMM24] = { .name = "rc-mm-24", 76 .scancode_bits = 0x00ffffff, .repeat_period = 114 }, 77 [RC_PROTO_RCMM32] = { .name = "rc-mm-32", 78 .scancode_bits = 0xffffffff, .repeat_period = 114 }, 79 }; 80 81 /* Used to keep track of known keymaps */ 82 static LIST_HEAD(rc_map_list); 83 static DEFINE_SPINLOCK(rc_map_lock); 84 static struct led_trigger *led_feedback; 85 86 /* Used to keep track of rc devices */ 87 static DEFINE_IDA(rc_ida); 88 89 static struct rc_map_list *seek_rc_map(const char *name) 90 { 91 struct rc_map_list *map = NULL; 92 93 spin_lock(&rc_map_lock); 94 list_for_each_entry(map, &rc_map_list, list) { 95 if (!strcmp(name, map->map.name)) { 96 spin_unlock(&rc_map_lock); 97 return map; 98 } 99 } 100 spin_unlock(&rc_map_lock); 101 102 return NULL; 103 } 104 105 struct rc_map *rc_map_get(const char *name) 106 { 107 108 struct rc_map_list *map; 109 110 map = seek_rc_map(name); 111 #ifdef CONFIG_MODULES 112 if (!map) { 113 int rc = request_module("%s", name); 114 if (rc < 0) { 115 pr_err("Couldn't load IR keymap %s\n", name); 116 return NULL; 117 } 118 msleep(20); /* Give some time for IR to register */ 119 120 map = seek_rc_map(name); 121 } 122 #endif 123 if (!map) { 124 pr_err("IR keymap %s not found\n", name); 125 return NULL; 126 } 127 128 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 129 130 return &map->map; 131 } 132 EXPORT_SYMBOL_GPL(rc_map_get); 133 134 int rc_map_register(struct rc_map_list *map) 135 { 136 spin_lock(&rc_map_lock); 137 list_add_tail(&map->list, &rc_map_list); 138 spin_unlock(&rc_map_lock); 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(rc_map_register); 142 143 void rc_map_unregister(struct rc_map_list *map) 144 { 145 spin_lock(&rc_map_lock); 146 list_del(&map->list); 147 spin_unlock(&rc_map_lock); 148 } 149 EXPORT_SYMBOL_GPL(rc_map_unregister); 150 151 152 static struct rc_map_table empty[] = { 153 { 0x2a, KEY_COFFEE }, 154 }; 155 156 static struct rc_map_list empty_map = { 157 .map = { 158 .scan = empty, 159 .size = ARRAY_SIZE(empty), 160 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ 161 .name = RC_MAP_EMPTY, 162 } 163 }; 164 165 /** 166 * ir_create_table() - initializes a scancode table 167 * @dev: the rc_dev device 168 * @rc_map: the rc_map to initialize 169 * @name: name to assign to the table 170 * @rc_proto: ir type to assign to the new table 171 * @size: initial size of the table 172 * 173 * This routine will initialize the rc_map and will allocate 174 * memory to hold at least the specified number of elements. 175 * 176 * return: zero on success or a negative error code 177 */ 178 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, 179 const char *name, u64 rc_proto, size_t size) 180 { 181 rc_map->name = kstrdup(name, GFP_KERNEL); 182 if (!rc_map->name) 183 return -ENOMEM; 184 rc_map->rc_proto = rc_proto; 185 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 186 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 187 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 188 if (!rc_map->scan) { 189 kfree(rc_map->name); 190 rc_map->name = NULL; 191 return -ENOMEM; 192 } 193 194 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", 195 rc_map->size, rc_map->alloc); 196 return 0; 197 } 198 199 /** 200 * ir_free_table() - frees memory allocated by a scancode table 201 * @rc_map: the table whose mappings need to be freed 202 * 203 * This routine will free memory alloctaed for key mappings used by given 204 * scancode table. 205 */ 206 static void ir_free_table(struct rc_map *rc_map) 207 { 208 rc_map->size = 0; 209 kfree(rc_map->name); 210 rc_map->name = NULL; 211 kfree(rc_map->scan); 212 rc_map->scan = NULL; 213 } 214 215 /** 216 * ir_resize_table() - resizes a scancode table if necessary 217 * @dev: the rc_dev device 218 * @rc_map: the rc_map to resize 219 * @gfp_flags: gfp flags to use when allocating memory 220 * 221 * This routine will shrink the rc_map if it has lots of 222 * unused entries and grow it if it is full. 223 * 224 * return: zero on success or a negative error code 225 */ 226 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, 227 gfp_t gfp_flags) 228 { 229 unsigned int oldalloc = rc_map->alloc; 230 unsigned int newalloc = oldalloc; 231 struct rc_map_table *oldscan = rc_map->scan; 232 struct rc_map_table *newscan; 233 234 if (rc_map->size == rc_map->len) { 235 /* All entries in use -> grow keytable */ 236 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 237 return -ENOMEM; 238 239 newalloc *= 2; 240 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); 241 } 242 243 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 244 /* Less than 1/3 of entries in use -> shrink keytable */ 245 newalloc /= 2; 246 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); 247 } 248 249 if (newalloc == oldalloc) 250 return 0; 251 252 newscan = kmalloc(newalloc, gfp_flags); 253 if (!newscan) 254 return -ENOMEM; 255 256 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 257 rc_map->scan = newscan; 258 rc_map->alloc = newalloc; 259 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 260 kfree(oldscan); 261 return 0; 262 } 263 264 /** 265 * ir_update_mapping() - set a keycode in the scancode->keycode table 266 * @dev: the struct rc_dev device descriptor 267 * @rc_map: scancode table to be adjusted 268 * @index: index of the mapping that needs to be updated 269 * @new_keycode: the desired keycode 270 * 271 * This routine is used to update scancode->keycode mapping at given 272 * position. 273 * 274 * return: previous keycode assigned to the mapping 275 * 276 */ 277 static unsigned int ir_update_mapping(struct rc_dev *dev, 278 struct rc_map *rc_map, 279 unsigned int index, 280 unsigned int new_keycode) 281 { 282 int old_keycode = rc_map->scan[index].keycode; 283 int i; 284 285 /* Did the user wish to remove the mapping? */ 286 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 287 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n", 288 index, rc_map->scan[index].scancode); 289 rc_map->len--; 290 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 291 (rc_map->len - index) * sizeof(struct rc_map_table)); 292 } else { 293 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n", 294 index, 295 old_keycode == KEY_RESERVED ? "New" : "Replacing", 296 rc_map->scan[index].scancode, new_keycode); 297 rc_map->scan[index].keycode = new_keycode; 298 __set_bit(new_keycode, dev->input_dev->keybit); 299 } 300 301 if (old_keycode != KEY_RESERVED) { 302 /* A previous mapping was updated... */ 303 __clear_bit(old_keycode, dev->input_dev->keybit); 304 /* ... but another scancode might use the same keycode */ 305 for (i = 0; i < rc_map->len; i++) { 306 if (rc_map->scan[i].keycode == old_keycode) { 307 __set_bit(old_keycode, dev->input_dev->keybit); 308 break; 309 } 310 } 311 312 /* Possibly shrink the keytable, failure is not a problem */ 313 ir_resize_table(dev, rc_map, GFP_ATOMIC); 314 } 315 316 return old_keycode; 317 } 318 319 /** 320 * ir_establish_scancode() - set a keycode in the scancode->keycode table 321 * @dev: the struct rc_dev device descriptor 322 * @rc_map: scancode table to be searched 323 * @scancode: the desired scancode 324 * @resize: controls whether we allowed to resize the table to 325 * accommodate not yet present scancodes 326 * 327 * This routine is used to locate given scancode in rc_map. 328 * If scancode is not yet present the routine will allocate a new slot 329 * for it. 330 * 331 * return: index of the mapping containing scancode in question 332 * or -1U in case of failure. 333 */ 334 static unsigned int ir_establish_scancode(struct rc_dev *dev, 335 struct rc_map *rc_map, 336 unsigned int scancode, 337 bool resize) 338 { 339 unsigned int i; 340 341 /* 342 * Unfortunately, some hardware-based IR decoders don't provide 343 * all bits for the complete IR code. In general, they provide only 344 * the command part of the IR code. Yet, as it is possible to replace 345 * the provided IR with another one, it is needed to allow loading 346 * IR tables from other remotes. So, we support specifying a mask to 347 * indicate the valid bits of the scancodes. 348 */ 349 if (dev->scancode_mask) 350 scancode &= dev->scancode_mask; 351 352 /* First check if we already have a mapping for this ir command */ 353 for (i = 0; i < rc_map->len; i++) { 354 if (rc_map->scan[i].scancode == scancode) 355 return i; 356 357 /* Keytable is sorted from lowest to highest scancode */ 358 if (rc_map->scan[i].scancode >= scancode) 359 break; 360 } 361 362 /* No previous mapping found, we might need to grow the table */ 363 if (rc_map->size == rc_map->len) { 364 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) 365 return -1U; 366 } 367 368 /* i is the proper index to insert our new keycode */ 369 if (i < rc_map->len) 370 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 371 (rc_map->len - i) * sizeof(struct rc_map_table)); 372 rc_map->scan[i].scancode = scancode; 373 rc_map->scan[i].keycode = KEY_RESERVED; 374 rc_map->len++; 375 376 return i; 377 } 378 379 /** 380 * ir_setkeycode() - set a keycode in the scancode->keycode table 381 * @idev: the struct input_dev device descriptor 382 * @ke: Input keymap entry 383 * @old_keycode: result 384 * 385 * This routine is used to handle evdev EVIOCSKEY ioctl. 386 * 387 * return: -EINVAL if the keycode could not be inserted, otherwise zero. 388 */ 389 static int ir_setkeycode(struct input_dev *idev, 390 const struct input_keymap_entry *ke, 391 unsigned int *old_keycode) 392 { 393 struct rc_dev *rdev = input_get_drvdata(idev); 394 struct rc_map *rc_map = &rdev->rc_map; 395 unsigned int index; 396 unsigned int scancode; 397 int retval = 0; 398 unsigned long flags; 399 400 spin_lock_irqsave(&rc_map->lock, flags); 401 402 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 403 index = ke->index; 404 if (index >= rc_map->len) { 405 retval = -EINVAL; 406 goto out; 407 } 408 } else { 409 retval = input_scancode_to_scalar(ke, &scancode); 410 if (retval) 411 goto out; 412 413 index = ir_establish_scancode(rdev, rc_map, scancode, true); 414 if (index >= rc_map->len) { 415 retval = -ENOMEM; 416 goto out; 417 } 418 } 419 420 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 421 422 out: 423 spin_unlock_irqrestore(&rc_map->lock, flags); 424 return retval; 425 } 426 427 /** 428 * ir_setkeytable() - sets several entries in the scancode->keycode table 429 * @dev: the struct rc_dev device descriptor 430 * @from: the struct rc_map to copy entries from 431 * 432 * This routine is used to handle table initialization. 433 * 434 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 435 */ 436 static int ir_setkeytable(struct rc_dev *dev, 437 const struct rc_map *from) 438 { 439 struct rc_map *rc_map = &dev->rc_map; 440 unsigned int i, index; 441 int rc; 442 443 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, 444 from->size); 445 if (rc) 446 return rc; 447 448 for (i = 0; i < from->size; i++) { 449 index = ir_establish_scancode(dev, rc_map, 450 from->scan[i].scancode, false); 451 if (index >= rc_map->len) { 452 rc = -ENOMEM; 453 break; 454 } 455 456 ir_update_mapping(dev, rc_map, index, 457 from->scan[i].keycode); 458 } 459 460 if (rc) 461 ir_free_table(rc_map); 462 463 return rc; 464 } 465 466 static int rc_map_cmp(const void *key, const void *elt) 467 { 468 const unsigned int *scancode = key; 469 const struct rc_map_table *e = elt; 470 471 if (*scancode < e->scancode) 472 return -1; 473 else if (*scancode > e->scancode) 474 return 1; 475 return 0; 476 } 477 478 /** 479 * ir_lookup_by_scancode() - locate mapping by scancode 480 * @rc_map: the struct rc_map to search 481 * @scancode: scancode to look for in the table 482 * 483 * This routine performs binary search in RC keykeymap table for 484 * given scancode. 485 * 486 * return: index in the table, -1U if not found 487 */ 488 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 489 unsigned int scancode) 490 { 491 struct rc_map_table *res; 492 493 res = bsearch(&scancode, rc_map->scan, rc_map->len, 494 sizeof(struct rc_map_table), rc_map_cmp); 495 if (!res) 496 return -1U; 497 else 498 return res - rc_map->scan; 499 } 500 501 /** 502 * ir_getkeycode() - get a keycode from the scancode->keycode table 503 * @idev: the struct input_dev device descriptor 504 * @ke: Input keymap entry 505 * 506 * This routine is used to handle evdev EVIOCGKEY ioctl. 507 * 508 * return: always returns zero. 509 */ 510 static int ir_getkeycode(struct input_dev *idev, 511 struct input_keymap_entry *ke) 512 { 513 struct rc_dev *rdev = input_get_drvdata(idev); 514 struct rc_map *rc_map = &rdev->rc_map; 515 struct rc_map_table *entry; 516 unsigned long flags; 517 unsigned int index; 518 unsigned int scancode; 519 int retval; 520 521 spin_lock_irqsave(&rc_map->lock, flags); 522 523 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 524 index = ke->index; 525 } else { 526 retval = input_scancode_to_scalar(ke, &scancode); 527 if (retval) 528 goto out; 529 530 index = ir_lookup_by_scancode(rc_map, scancode); 531 } 532 533 if (index < rc_map->len) { 534 entry = &rc_map->scan[index]; 535 536 ke->index = index; 537 ke->keycode = entry->keycode; 538 ke->len = sizeof(entry->scancode); 539 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 540 541 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 542 /* 543 * We do not really know the valid range of scancodes 544 * so let's respond with KEY_RESERVED to anything we 545 * do not have mapping for [yet]. 546 */ 547 ke->index = index; 548 ke->keycode = KEY_RESERVED; 549 } else { 550 retval = -EINVAL; 551 goto out; 552 } 553 554 retval = 0; 555 556 out: 557 spin_unlock_irqrestore(&rc_map->lock, flags); 558 return retval; 559 } 560 561 /** 562 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 563 * @dev: the struct rc_dev descriptor of the device 564 * @scancode: the scancode to look for 565 * 566 * This routine is used by drivers which need to convert a scancode to a 567 * keycode. Normally it should not be used since drivers should have no 568 * interest in keycodes. 569 * 570 * return: the corresponding keycode, or KEY_RESERVED 571 */ 572 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 573 { 574 struct rc_map *rc_map = &dev->rc_map; 575 unsigned int keycode; 576 unsigned int index; 577 unsigned long flags; 578 579 spin_lock_irqsave(&rc_map->lock, flags); 580 581 index = ir_lookup_by_scancode(rc_map, scancode); 582 keycode = index < rc_map->len ? 583 rc_map->scan[index].keycode : KEY_RESERVED; 584 585 spin_unlock_irqrestore(&rc_map->lock, flags); 586 587 if (keycode != KEY_RESERVED) 588 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n", 589 dev->device_name, scancode, keycode); 590 591 return keycode; 592 } 593 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 594 595 /** 596 * ir_do_keyup() - internal function to signal the release of a keypress 597 * @dev: the struct rc_dev descriptor of the device 598 * @sync: whether or not to call input_sync 599 * 600 * This function is used internally to release a keypress, it must be 601 * called with keylock held. 602 */ 603 static void ir_do_keyup(struct rc_dev *dev, bool sync) 604 { 605 if (!dev->keypressed) 606 return; 607 608 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); 609 del_timer(&dev->timer_repeat); 610 input_report_key(dev->input_dev, dev->last_keycode, 0); 611 led_trigger_event(led_feedback, LED_OFF); 612 if (sync) 613 input_sync(dev->input_dev); 614 dev->keypressed = false; 615 } 616 617 /** 618 * rc_keyup() - signals the release of a keypress 619 * @dev: the struct rc_dev descriptor of the device 620 * 621 * This routine is used to signal that a key has been released on the 622 * remote control. 623 */ 624 void rc_keyup(struct rc_dev *dev) 625 { 626 unsigned long flags; 627 628 spin_lock_irqsave(&dev->keylock, flags); 629 ir_do_keyup(dev, true); 630 spin_unlock_irqrestore(&dev->keylock, flags); 631 } 632 EXPORT_SYMBOL_GPL(rc_keyup); 633 634 /** 635 * ir_timer_keyup() - generates a keyup event after a timeout 636 * 637 * @t: a pointer to the struct timer_list 638 * 639 * This routine will generate a keyup event some time after a keydown event 640 * is generated when no further activity has been detected. 641 */ 642 static void ir_timer_keyup(struct timer_list *t) 643 { 644 struct rc_dev *dev = from_timer(dev, t, timer_keyup); 645 unsigned long flags; 646 647 /* 648 * ir->keyup_jiffies is used to prevent a race condition if a 649 * hardware interrupt occurs at this point and the keyup timer 650 * event is moved further into the future as a result. 651 * 652 * The timer will then be reactivated and this function called 653 * again in the future. We need to exit gracefully in that case 654 * to allow the input subsystem to do its auto-repeat magic or 655 * a keyup event might follow immediately after the keydown. 656 */ 657 spin_lock_irqsave(&dev->keylock, flags); 658 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 659 ir_do_keyup(dev, true); 660 spin_unlock_irqrestore(&dev->keylock, flags); 661 } 662 663 /** 664 * ir_timer_repeat() - generates a repeat event after a timeout 665 * 666 * @t: a pointer to the struct timer_list 667 * 668 * This routine will generate a soft repeat event every REP_PERIOD 669 * milliseconds. 670 */ 671 static void ir_timer_repeat(struct timer_list *t) 672 { 673 struct rc_dev *dev = from_timer(dev, t, timer_repeat); 674 struct input_dev *input = dev->input_dev; 675 unsigned long flags; 676 677 spin_lock_irqsave(&dev->keylock, flags); 678 if (dev->keypressed) { 679 input_event(input, EV_KEY, dev->last_keycode, 2); 680 input_sync(input); 681 if (input->rep[REP_PERIOD]) 682 mod_timer(&dev->timer_repeat, jiffies + 683 msecs_to_jiffies(input->rep[REP_PERIOD])); 684 } 685 spin_unlock_irqrestore(&dev->keylock, flags); 686 } 687 688 static unsigned int repeat_period(int protocol) 689 { 690 if (protocol >= ARRAY_SIZE(protocols)) 691 return 100; 692 693 return protocols[protocol].repeat_period; 694 } 695 696 /** 697 * rc_repeat() - signals that a key is still pressed 698 * @dev: the struct rc_dev descriptor of the device 699 * 700 * This routine is used by IR decoders when a repeat message which does 701 * not include the necessary bits to reproduce the scancode has been 702 * received. 703 */ 704 void rc_repeat(struct rc_dev *dev) 705 { 706 unsigned long flags; 707 unsigned int timeout = nsecs_to_jiffies(dev->timeout) + 708 msecs_to_jiffies(repeat_period(dev->last_protocol)); 709 struct lirc_scancode sc = { 710 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, 711 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, 712 .flags = LIRC_SCANCODE_FLAG_REPEAT | 713 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) 714 }; 715 716 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 717 ir_lirc_scancode_event(dev, &sc); 718 719 spin_lock_irqsave(&dev->keylock, flags); 720 721 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 722 input_sync(dev->input_dev); 723 724 if (dev->keypressed) { 725 dev->keyup_jiffies = jiffies + timeout; 726 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 727 } 728 729 spin_unlock_irqrestore(&dev->keylock, flags); 730 } 731 EXPORT_SYMBOL_GPL(rc_repeat); 732 733 /** 734 * ir_do_keydown() - internal function to process a keypress 735 * @dev: the struct rc_dev descriptor of the device 736 * @protocol: the protocol of the keypress 737 * @scancode: the scancode of the keypress 738 * @keycode: the keycode of the keypress 739 * @toggle: the toggle value of the keypress 740 * 741 * This function is used internally to register a keypress, it must be 742 * called with keylock held. 743 */ 744 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, 745 u32 scancode, u32 keycode, u8 toggle) 746 { 747 bool new_event = (!dev->keypressed || 748 dev->last_protocol != protocol || 749 dev->last_scancode != scancode || 750 dev->last_toggle != toggle); 751 struct lirc_scancode sc = { 752 .scancode = scancode, .rc_proto = protocol, 753 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, 754 .keycode = keycode 755 }; 756 757 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 758 ir_lirc_scancode_event(dev, &sc); 759 760 if (new_event && dev->keypressed) 761 ir_do_keyup(dev, false); 762 763 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 764 765 dev->last_protocol = protocol; 766 dev->last_scancode = scancode; 767 dev->last_toggle = toggle; 768 dev->last_keycode = keycode; 769 770 if (new_event && keycode != KEY_RESERVED) { 771 /* Register a keypress */ 772 dev->keypressed = true; 773 774 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 775 dev->device_name, keycode, protocol, scancode); 776 input_report_key(dev->input_dev, keycode, 1); 777 778 led_trigger_event(led_feedback, LED_FULL); 779 } 780 781 /* 782 * For CEC, start sending repeat messages as soon as the first 783 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD 784 * is non-zero. Otherwise, the input layer will generate repeat 785 * messages. 786 */ 787 if (!new_event && keycode != KEY_RESERVED && 788 dev->allowed_protocols == RC_PROTO_BIT_CEC && 789 !timer_pending(&dev->timer_repeat) && 790 dev->input_dev->rep[REP_PERIOD] && 791 !dev->input_dev->rep[REP_DELAY]) { 792 input_event(dev->input_dev, EV_KEY, keycode, 2); 793 mod_timer(&dev->timer_repeat, jiffies + 794 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); 795 } 796 797 input_sync(dev->input_dev); 798 } 799 800 /** 801 * rc_keydown() - generates input event for a key press 802 * @dev: the struct rc_dev descriptor of the device 803 * @protocol: the protocol for the keypress 804 * @scancode: the scancode for the keypress 805 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 806 * support toggle values, this should be set to zero) 807 * 808 * This routine is used to signal that a key has been pressed on the 809 * remote control. 810 */ 811 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, 812 u8 toggle) 813 { 814 unsigned long flags; 815 u32 keycode = rc_g_keycode_from_table(dev, scancode); 816 817 spin_lock_irqsave(&dev->keylock, flags); 818 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 819 820 if (dev->keypressed) { 821 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) + 822 msecs_to_jiffies(repeat_period(protocol)); 823 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 824 } 825 spin_unlock_irqrestore(&dev->keylock, flags); 826 } 827 EXPORT_SYMBOL_GPL(rc_keydown); 828 829 /** 830 * rc_keydown_notimeout() - generates input event for a key press without 831 * an automatic keyup event at a later time 832 * @dev: the struct rc_dev descriptor of the device 833 * @protocol: the protocol for the keypress 834 * @scancode: the scancode for the keypress 835 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 836 * support toggle values, this should be set to zero) 837 * 838 * This routine is used to signal that a key has been pressed on the 839 * remote control. The driver must manually call rc_keyup() at a later stage. 840 */ 841 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, 842 u32 scancode, u8 toggle) 843 { 844 unsigned long flags; 845 u32 keycode = rc_g_keycode_from_table(dev, scancode); 846 847 spin_lock_irqsave(&dev->keylock, flags); 848 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 849 spin_unlock_irqrestore(&dev->keylock, flags); 850 } 851 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 852 853 /** 854 * rc_validate_scancode() - checks that a scancode is valid for a protocol. 855 * For nec, it should do the opposite of ir_nec_bytes_to_scancode() 856 * @proto: protocol 857 * @scancode: scancode 858 */ 859 bool rc_validate_scancode(enum rc_proto proto, u32 scancode) 860 { 861 switch (proto) { 862 /* 863 * NECX has a 16-bit address; if the lower 8 bits match the upper 864 * 8 bits inverted, then the address would match regular nec. 865 */ 866 case RC_PROTO_NECX: 867 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) 868 return false; 869 break; 870 /* 871 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits 872 * of the command match the upper 8 bits inverted, then it would 873 * be either NEC or NECX. 874 */ 875 case RC_PROTO_NEC32: 876 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) 877 return false; 878 break; 879 /* 880 * If the customer code (top 32-bit) is 0x800f, it is MCE else it 881 * is regular mode-6a 32 bit 882 */ 883 case RC_PROTO_RC6_MCE: 884 if ((scancode & 0xffff0000) != 0x800f0000) 885 return false; 886 break; 887 case RC_PROTO_RC6_6A_32: 888 if ((scancode & 0xffff0000) == 0x800f0000) 889 return false; 890 break; 891 default: 892 break; 893 } 894 895 return true; 896 } 897 898 /** 899 * rc_validate_filter() - checks that the scancode and mask are valid and 900 * provides sensible defaults 901 * @dev: the struct rc_dev descriptor of the device 902 * @filter: the scancode and mask 903 * 904 * return: 0 or -EINVAL if the filter is not valid 905 */ 906 static int rc_validate_filter(struct rc_dev *dev, 907 struct rc_scancode_filter *filter) 908 { 909 u32 mask, s = filter->data; 910 enum rc_proto protocol = dev->wakeup_protocol; 911 912 if (protocol >= ARRAY_SIZE(protocols)) 913 return -EINVAL; 914 915 mask = protocols[protocol].scancode_bits; 916 917 if (!rc_validate_scancode(protocol, s)) 918 return -EINVAL; 919 920 filter->data &= mask; 921 filter->mask &= mask; 922 923 /* 924 * If we have to raw encode the IR for wakeup, we cannot have a mask 925 */ 926 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) 927 return -EINVAL; 928 929 return 0; 930 } 931 932 int rc_open(struct rc_dev *rdev) 933 { 934 int rval = 0; 935 936 if (!rdev) 937 return -EINVAL; 938 939 mutex_lock(&rdev->lock); 940 941 if (!rdev->registered) { 942 rval = -ENODEV; 943 } else { 944 if (!rdev->users++ && rdev->open) 945 rval = rdev->open(rdev); 946 947 if (rval) 948 rdev->users--; 949 } 950 951 mutex_unlock(&rdev->lock); 952 953 return rval; 954 } 955 956 static int ir_open(struct input_dev *idev) 957 { 958 struct rc_dev *rdev = input_get_drvdata(idev); 959 960 return rc_open(rdev); 961 } 962 963 void rc_close(struct rc_dev *rdev) 964 { 965 if (rdev) { 966 mutex_lock(&rdev->lock); 967 968 if (!--rdev->users && rdev->close && rdev->registered) 969 rdev->close(rdev); 970 971 mutex_unlock(&rdev->lock); 972 } 973 } 974 975 static void ir_close(struct input_dev *idev) 976 { 977 struct rc_dev *rdev = input_get_drvdata(idev); 978 rc_close(rdev); 979 } 980 981 /* class for /sys/class/rc */ 982 static char *rc_devnode(struct device *dev, umode_t *mode) 983 { 984 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 985 } 986 987 static struct class rc_class = { 988 .name = "rc", 989 .devnode = rc_devnode, 990 }; 991 992 /* 993 * These are the protocol textual descriptions that are 994 * used by the sysfs protocols file. Note that the order 995 * of the entries is relevant. 996 */ 997 static const struct { 998 u64 type; 999 const char *name; 1000 const char *module_name; 1001 } proto_names[] = { 1002 { RC_PROTO_BIT_NONE, "none", NULL }, 1003 { RC_PROTO_BIT_OTHER, "other", NULL }, 1004 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, 1005 { RC_PROTO_BIT_RC5 | 1006 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, 1007 { RC_PROTO_BIT_NEC | 1008 RC_PROTO_BIT_NECX | 1009 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, 1010 { RC_PROTO_BIT_RC6_0 | 1011 RC_PROTO_BIT_RC6_6A_20 | 1012 RC_PROTO_BIT_RC6_6A_24 | 1013 RC_PROTO_BIT_RC6_6A_32 | 1014 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 1015 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, 1016 { RC_PROTO_BIT_SONY12 | 1017 RC_PROTO_BIT_SONY15 | 1018 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, 1019 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 1020 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 1021 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 1022 { RC_PROTO_BIT_MCIR2_KBD | 1023 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, 1024 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, 1025 { RC_PROTO_BIT_CEC, "cec", NULL }, 1026 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" }, 1027 { RC_PROTO_BIT_RCMM12 | 1028 RC_PROTO_BIT_RCMM24 | 1029 RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" }, 1030 }; 1031 1032 /** 1033 * struct rc_filter_attribute - Device attribute relating to a filter type. 1034 * @attr: Device attribute. 1035 * @type: Filter type. 1036 * @mask: false for filter value, true for filter mask. 1037 */ 1038 struct rc_filter_attribute { 1039 struct device_attribute attr; 1040 enum rc_filter_type type; 1041 bool mask; 1042 }; 1043 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 1044 1045 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 1046 struct rc_filter_attribute dev_attr_##_name = { \ 1047 .attr = __ATTR(_name, _mode, _show, _store), \ 1048 .type = (_type), \ 1049 .mask = (_mask), \ 1050 } 1051 1052 /** 1053 * show_protocols() - shows the current IR protocol(s) 1054 * @device: the device descriptor 1055 * @mattr: the device attribute struct 1056 * @buf: a pointer to the output buffer 1057 * 1058 * This routine is a callback routine for input read the IR protocol type(s). 1059 * it is triggered by reading /sys/class/rc/rc?/protocols. 1060 * It returns the protocol names of supported protocols. 1061 * Enabled protocols are printed in brackets. 1062 * 1063 * dev->lock is taken to guard against races between 1064 * store_protocols and show_protocols. 1065 */ 1066 static ssize_t show_protocols(struct device *device, 1067 struct device_attribute *mattr, char *buf) 1068 { 1069 struct rc_dev *dev = to_rc_dev(device); 1070 u64 allowed, enabled; 1071 char *tmp = buf; 1072 int i; 1073 1074 mutex_lock(&dev->lock); 1075 1076 enabled = dev->enabled_protocols; 1077 allowed = dev->allowed_protocols; 1078 if (dev->raw && !allowed) 1079 allowed = ir_raw_get_allowed_protocols(); 1080 1081 mutex_unlock(&dev->lock); 1082 1083 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 1084 __func__, (long long)allowed, (long long)enabled); 1085 1086 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1087 if (allowed & enabled & proto_names[i].type) 1088 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 1089 else if (allowed & proto_names[i].type) 1090 tmp += sprintf(tmp, "%s ", proto_names[i].name); 1091 1092 if (allowed & proto_names[i].type) 1093 allowed &= ~proto_names[i].type; 1094 } 1095 1096 #ifdef CONFIG_LIRC 1097 if (dev->driver_type == RC_DRIVER_IR_RAW) 1098 tmp += sprintf(tmp, "[lirc] "); 1099 #endif 1100 1101 if (tmp != buf) 1102 tmp--; 1103 *tmp = '\n'; 1104 1105 return tmp + 1 - buf; 1106 } 1107 1108 /** 1109 * parse_protocol_change() - parses a protocol change request 1110 * @dev: rc_dev device 1111 * @protocols: pointer to the bitmask of current protocols 1112 * @buf: pointer to the buffer with a list of changes 1113 * 1114 * Writing "+proto" will add a protocol to the protocol mask. 1115 * Writing "-proto" will remove a protocol from protocol mask. 1116 * Writing "proto" will enable only "proto". 1117 * Writing "none" will disable all protocols. 1118 * Returns the number of changes performed or a negative error code. 1119 */ 1120 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, 1121 const char *buf) 1122 { 1123 const char *tmp; 1124 unsigned count = 0; 1125 bool enable, disable; 1126 u64 mask; 1127 int i; 1128 1129 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 1130 if (!*tmp) 1131 break; 1132 1133 if (*tmp == '+') { 1134 enable = true; 1135 disable = false; 1136 tmp++; 1137 } else if (*tmp == '-') { 1138 enable = false; 1139 disable = true; 1140 tmp++; 1141 } else { 1142 enable = false; 1143 disable = false; 1144 } 1145 1146 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1147 if (!strcasecmp(tmp, proto_names[i].name)) { 1148 mask = proto_names[i].type; 1149 break; 1150 } 1151 } 1152 1153 if (i == ARRAY_SIZE(proto_names)) { 1154 if (!strcasecmp(tmp, "lirc")) 1155 mask = 0; 1156 else { 1157 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", 1158 tmp); 1159 return -EINVAL; 1160 } 1161 } 1162 1163 count++; 1164 1165 if (enable) 1166 *protocols |= mask; 1167 else if (disable) 1168 *protocols &= ~mask; 1169 else 1170 *protocols = mask; 1171 } 1172 1173 if (!count) { 1174 dev_dbg(&dev->dev, "Protocol not specified\n"); 1175 return -EINVAL; 1176 } 1177 1178 return count; 1179 } 1180 1181 void ir_raw_load_modules(u64 *protocols) 1182 { 1183 u64 available; 1184 int i, ret; 1185 1186 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1187 if (proto_names[i].type == RC_PROTO_BIT_NONE || 1188 proto_names[i].type & (RC_PROTO_BIT_OTHER | 1189 RC_PROTO_BIT_UNKNOWN)) 1190 continue; 1191 1192 available = ir_raw_get_allowed_protocols(); 1193 if (!(*protocols & proto_names[i].type & ~available)) 1194 continue; 1195 1196 if (!proto_names[i].module_name) { 1197 pr_err("Can't enable IR protocol %s\n", 1198 proto_names[i].name); 1199 *protocols &= ~proto_names[i].type; 1200 continue; 1201 } 1202 1203 ret = request_module("%s", proto_names[i].module_name); 1204 if (ret < 0) { 1205 pr_err("Couldn't load IR protocol module %s\n", 1206 proto_names[i].module_name); 1207 *protocols &= ~proto_names[i].type; 1208 continue; 1209 } 1210 msleep(20); 1211 available = ir_raw_get_allowed_protocols(); 1212 if (!(*protocols & proto_names[i].type & ~available)) 1213 continue; 1214 1215 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", 1216 proto_names[i].module_name, 1217 proto_names[i].name); 1218 *protocols &= ~proto_names[i].type; 1219 } 1220 } 1221 1222 /** 1223 * store_protocols() - changes the current/wakeup IR protocol(s) 1224 * @device: the device descriptor 1225 * @mattr: the device attribute struct 1226 * @buf: a pointer to the input buffer 1227 * @len: length of the input buffer 1228 * 1229 * This routine is for changing the IR protocol type. 1230 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1231 * See parse_protocol_change() for the valid commands. 1232 * Returns @len on success or a negative error code. 1233 * 1234 * dev->lock is taken to guard against races between 1235 * store_protocols and show_protocols. 1236 */ 1237 static ssize_t store_protocols(struct device *device, 1238 struct device_attribute *mattr, 1239 const char *buf, size_t len) 1240 { 1241 struct rc_dev *dev = to_rc_dev(device); 1242 u64 *current_protocols; 1243 struct rc_scancode_filter *filter; 1244 u64 old_protocols, new_protocols; 1245 ssize_t rc; 1246 1247 dev_dbg(&dev->dev, "Normal protocol change requested\n"); 1248 current_protocols = &dev->enabled_protocols; 1249 filter = &dev->scancode_filter; 1250 1251 if (!dev->change_protocol) { 1252 dev_dbg(&dev->dev, "Protocol switching not supported\n"); 1253 return -EINVAL; 1254 } 1255 1256 mutex_lock(&dev->lock); 1257 1258 old_protocols = *current_protocols; 1259 new_protocols = old_protocols; 1260 rc = parse_protocol_change(dev, &new_protocols, buf); 1261 if (rc < 0) 1262 goto out; 1263 1264 if (dev->driver_type == RC_DRIVER_IR_RAW) 1265 ir_raw_load_modules(&new_protocols); 1266 1267 rc = dev->change_protocol(dev, &new_protocols); 1268 if (rc < 0) { 1269 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", 1270 (long long)new_protocols); 1271 goto out; 1272 } 1273 1274 if (new_protocols != old_protocols) { 1275 *current_protocols = new_protocols; 1276 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", 1277 (long long)new_protocols); 1278 } 1279 1280 /* 1281 * If a protocol change was attempted the filter may need updating, even 1282 * if the actual protocol mask hasn't changed (since the driver may have 1283 * cleared the filter). 1284 * Try setting the same filter with the new protocol (if any). 1285 * Fall back to clearing the filter. 1286 */ 1287 if (dev->s_filter && filter->mask) { 1288 if (new_protocols) 1289 rc = dev->s_filter(dev, filter); 1290 else 1291 rc = -1; 1292 1293 if (rc < 0) { 1294 filter->data = 0; 1295 filter->mask = 0; 1296 dev->s_filter(dev, filter); 1297 } 1298 } 1299 1300 rc = len; 1301 1302 out: 1303 mutex_unlock(&dev->lock); 1304 return rc; 1305 } 1306 1307 /** 1308 * show_filter() - shows the current scancode filter value or mask 1309 * @device: the device descriptor 1310 * @attr: the device attribute struct 1311 * @buf: a pointer to the output buffer 1312 * 1313 * This routine is a callback routine to read a scancode filter value or mask. 1314 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1315 * It prints the current scancode filter value or mask of the appropriate filter 1316 * type in hexadecimal into @buf and returns the size of the buffer. 1317 * 1318 * Bits of the filter value corresponding to set bits in the filter mask are 1319 * compared against input scancodes and non-matching scancodes are discarded. 1320 * 1321 * dev->lock is taken to guard against races between 1322 * store_filter and show_filter. 1323 */ 1324 static ssize_t show_filter(struct device *device, 1325 struct device_attribute *attr, 1326 char *buf) 1327 { 1328 struct rc_dev *dev = to_rc_dev(device); 1329 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1330 struct rc_scancode_filter *filter; 1331 u32 val; 1332 1333 mutex_lock(&dev->lock); 1334 1335 if (fattr->type == RC_FILTER_NORMAL) 1336 filter = &dev->scancode_filter; 1337 else 1338 filter = &dev->scancode_wakeup_filter; 1339 1340 if (fattr->mask) 1341 val = filter->mask; 1342 else 1343 val = filter->data; 1344 mutex_unlock(&dev->lock); 1345 1346 return sprintf(buf, "%#x\n", val); 1347 } 1348 1349 /** 1350 * store_filter() - changes the scancode filter value 1351 * @device: the device descriptor 1352 * @attr: the device attribute struct 1353 * @buf: a pointer to the input buffer 1354 * @len: length of the input buffer 1355 * 1356 * This routine is for changing a scancode filter value or mask. 1357 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1358 * Returns -EINVAL if an invalid filter value for the current protocol was 1359 * specified or if scancode filtering is not supported by the driver, otherwise 1360 * returns @len. 1361 * 1362 * Bits of the filter value corresponding to set bits in the filter mask are 1363 * compared against input scancodes and non-matching scancodes are discarded. 1364 * 1365 * dev->lock is taken to guard against races between 1366 * store_filter and show_filter. 1367 */ 1368 static ssize_t store_filter(struct device *device, 1369 struct device_attribute *attr, 1370 const char *buf, size_t len) 1371 { 1372 struct rc_dev *dev = to_rc_dev(device); 1373 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1374 struct rc_scancode_filter new_filter, *filter; 1375 int ret; 1376 unsigned long val; 1377 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1378 1379 ret = kstrtoul(buf, 0, &val); 1380 if (ret < 0) 1381 return ret; 1382 1383 if (fattr->type == RC_FILTER_NORMAL) { 1384 set_filter = dev->s_filter; 1385 filter = &dev->scancode_filter; 1386 } else { 1387 set_filter = dev->s_wakeup_filter; 1388 filter = &dev->scancode_wakeup_filter; 1389 } 1390 1391 if (!set_filter) 1392 return -EINVAL; 1393 1394 mutex_lock(&dev->lock); 1395 1396 new_filter = *filter; 1397 if (fattr->mask) 1398 new_filter.mask = val; 1399 else 1400 new_filter.data = val; 1401 1402 if (fattr->type == RC_FILTER_WAKEUP) { 1403 /* 1404 * Refuse to set a filter unless a protocol is enabled 1405 * and the filter is valid for that protocol 1406 */ 1407 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) 1408 ret = rc_validate_filter(dev, &new_filter); 1409 else 1410 ret = -EINVAL; 1411 1412 if (ret != 0) 1413 goto unlock; 1414 } 1415 1416 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && 1417 val) { 1418 /* refuse to set a filter unless a protocol is enabled */ 1419 ret = -EINVAL; 1420 goto unlock; 1421 } 1422 1423 ret = set_filter(dev, &new_filter); 1424 if (ret < 0) 1425 goto unlock; 1426 1427 *filter = new_filter; 1428 1429 unlock: 1430 mutex_unlock(&dev->lock); 1431 return (ret < 0) ? ret : len; 1432 } 1433 1434 /** 1435 * show_wakeup_protocols() - shows the wakeup IR protocol 1436 * @device: the device descriptor 1437 * @mattr: the device attribute struct 1438 * @buf: a pointer to the output buffer 1439 * 1440 * This routine is a callback routine for input read the IR protocol type(s). 1441 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols. 1442 * It returns the protocol names of supported protocols. 1443 * The enabled protocols are printed in brackets. 1444 * 1445 * dev->lock is taken to guard against races between 1446 * store_wakeup_protocols and show_wakeup_protocols. 1447 */ 1448 static ssize_t show_wakeup_protocols(struct device *device, 1449 struct device_attribute *mattr, 1450 char *buf) 1451 { 1452 struct rc_dev *dev = to_rc_dev(device); 1453 u64 allowed; 1454 enum rc_proto enabled; 1455 char *tmp = buf; 1456 int i; 1457 1458 mutex_lock(&dev->lock); 1459 1460 allowed = dev->allowed_wakeup_protocols; 1461 enabled = dev->wakeup_protocol; 1462 1463 mutex_unlock(&dev->lock); 1464 1465 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", 1466 __func__, (long long)allowed, enabled); 1467 1468 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1469 if (allowed & (1ULL << i)) { 1470 if (i == enabled) 1471 tmp += sprintf(tmp, "[%s] ", protocols[i].name); 1472 else 1473 tmp += sprintf(tmp, "%s ", protocols[i].name); 1474 } 1475 } 1476 1477 if (tmp != buf) 1478 tmp--; 1479 *tmp = '\n'; 1480 1481 return tmp + 1 - buf; 1482 } 1483 1484 /** 1485 * store_wakeup_protocols() - changes the wakeup IR protocol(s) 1486 * @device: the device descriptor 1487 * @mattr: the device attribute struct 1488 * @buf: a pointer to the input buffer 1489 * @len: length of the input buffer 1490 * 1491 * This routine is for changing the IR protocol type. 1492 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols. 1493 * Returns @len on success or a negative error code. 1494 * 1495 * dev->lock is taken to guard against races between 1496 * store_wakeup_protocols and show_wakeup_protocols. 1497 */ 1498 static ssize_t store_wakeup_protocols(struct device *device, 1499 struct device_attribute *mattr, 1500 const char *buf, size_t len) 1501 { 1502 struct rc_dev *dev = to_rc_dev(device); 1503 enum rc_proto protocol; 1504 ssize_t rc; 1505 u64 allowed; 1506 int i; 1507 1508 mutex_lock(&dev->lock); 1509 1510 allowed = dev->allowed_wakeup_protocols; 1511 1512 if (sysfs_streq(buf, "none")) { 1513 protocol = RC_PROTO_UNKNOWN; 1514 } else { 1515 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1516 if ((allowed & (1ULL << i)) && 1517 sysfs_streq(buf, protocols[i].name)) { 1518 protocol = i; 1519 break; 1520 } 1521 } 1522 1523 if (i == ARRAY_SIZE(protocols)) { 1524 rc = -EINVAL; 1525 goto out; 1526 } 1527 1528 if (dev->encode_wakeup) { 1529 u64 mask = 1ULL << protocol; 1530 1531 ir_raw_load_modules(&mask); 1532 if (!mask) { 1533 rc = -EINVAL; 1534 goto out; 1535 } 1536 } 1537 } 1538 1539 if (dev->wakeup_protocol != protocol) { 1540 dev->wakeup_protocol = protocol; 1541 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); 1542 1543 if (protocol == RC_PROTO_RC6_MCE) 1544 dev->scancode_wakeup_filter.data = 0x800f0000; 1545 else 1546 dev->scancode_wakeup_filter.data = 0; 1547 dev->scancode_wakeup_filter.mask = 0; 1548 1549 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); 1550 if (rc == 0) 1551 rc = len; 1552 } else { 1553 rc = len; 1554 } 1555 1556 out: 1557 mutex_unlock(&dev->lock); 1558 return rc; 1559 } 1560 1561 static void rc_dev_release(struct device *device) 1562 { 1563 struct rc_dev *dev = to_rc_dev(device); 1564 1565 kfree(dev); 1566 } 1567 1568 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1569 do { \ 1570 int err = add_uevent_var(env, fmt, val); \ 1571 if (err) \ 1572 return err; \ 1573 } while (0) 1574 1575 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1576 { 1577 struct rc_dev *dev = to_rc_dev(device); 1578 1579 if (dev->rc_map.name) 1580 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1581 if (dev->driver_name) 1582 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1583 if (dev->device_name) 1584 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); 1585 1586 return 0; 1587 } 1588 1589 /* 1590 * Static device attribute struct with the sysfs attributes for IR's 1591 */ 1592 static struct device_attribute dev_attr_ro_protocols = 1593 __ATTR(protocols, 0444, show_protocols, NULL); 1594 static struct device_attribute dev_attr_rw_protocols = 1595 __ATTR(protocols, 0644, show_protocols, store_protocols); 1596 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, 1597 store_wakeup_protocols); 1598 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1599 show_filter, store_filter, RC_FILTER_NORMAL, false); 1600 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1601 show_filter, store_filter, RC_FILTER_NORMAL, true); 1602 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1603 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1604 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1605 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1606 1607 static struct attribute *rc_dev_rw_protocol_attrs[] = { 1608 &dev_attr_rw_protocols.attr, 1609 NULL, 1610 }; 1611 1612 static const struct attribute_group rc_dev_rw_protocol_attr_grp = { 1613 .attrs = rc_dev_rw_protocol_attrs, 1614 }; 1615 1616 static struct attribute *rc_dev_ro_protocol_attrs[] = { 1617 &dev_attr_ro_protocols.attr, 1618 NULL, 1619 }; 1620 1621 static const struct attribute_group rc_dev_ro_protocol_attr_grp = { 1622 .attrs = rc_dev_ro_protocol_attrs, 1623 }; 1624 1625 static struct attribute *rc_dev_filter_attrs[] = { 1626 &dev_attr_filter.attr.attr, 1627 &dev_attr_filter_mask.attr.attr, 1628 NULL, 1629 }; 1630 1631 static const struct attribute_group rc_dev_filter_attr_grp = { 1632 .attrs = rc_dev_filter_attrs, 1633 }; 1634 1635 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1636 &dev_attr_wakeup_filter.attr.attr, 1637 &dev_attr_wakeup_filter_mask.attr.attr, 1638 &dev_attr_wakeup_protocols.attr, 1639 NULL, 1640 }; 1641 1642 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1643 .attrs = rc_dev_wakeup_filter_attrs, 1644 }; 1645 1646 static const struct device_type rc_dev_type = { 1647 .release = rc_dev_release, 1648 .uevent = rc_dev_uevent, 1649 }; 1650 1651 struct rc_dev *rc_allocate_device(enum rc_driver_type type) 1652 { 1653 struct rc_dev *dev; 1654 1655 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1656 if (!dev) 1657 return NULL; 1658 1659 if (type != RC_DRIVER_IR_RAW_TX) { 1660 dev->input_dev = input_allocate_device(); 1661 if (!dev->input_dev) { 1662 kfree(dev); 1663 return NULL; 1664 } 1665 1666 dev->input_dev->getkeycode = ir_getkeycode; 1667 dev->input_dev->setkeycode = ir_setkeycode; 1668 input_set_drvdata(dev->input_dev, dev); 1669 1670 dev->timeout = IR_DEFAULT_TIMEOUT; 1671 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); 1672 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); 1673 1674 spin_lock_init(&dev->rc_map.lock); 1675 spin_lock_init(&dev->keylock); 1676 } 1677 mutex_init(&dev->lock); 1678 1679 dev->dev.type = &rc_dev_type; 1680 dev->dev.class = &rc_class; 1681 device_initialize(&dev->dev); 1682 1683 dev->driver_type = type; 1684 1685 __module_get(THIS_MODULE); 1686 return dev; 1687 } 1688 EXPORT_SYMBOL_GPL(rc_allocate_device); 1689 1690 void rc_free_device(struct rc_dev *dev) 1691 { 1692 if (!dev) 1693 return; 1694 1695 input_free_device(dev->input_dev); 1696 1697 put_device(&dev->dev); 1698 1699 /* kfree(dev) will be called by the callback function 1700 rc_dev_release() */ 1701 1702 module_put(THIS_MODULE); 1703 } 1704 EXPORT_SYMBOL_GPL(rc_free_device); 1705 1706 static void devm_rc_alloc_release(struct device *dev, void *res) 1707 { 1708 rc_free_device(*(struct rc_dev **)res); 1709 } 1710 1711 struct rc_dev *devm_rc_allocate_device(struct device *dev, 1712 enum rc_driver_type type) 1713 { 1714 struct rc_dev **dr, *rc; 1715 1716 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1717 if (!dr) 1718 return NULL; 1719 1720 rc = rc_allocate_device(type); 1721 if (!rc) { 1722 devres_free(dr); 1723 return NULL; 1724 } 1725 1726 rc->dev.parent = dev; 1727 rc->managed_alloc = true; 1728 *dr = rc; 1729 devres_add(dev, dr); 1730 1731 return rc; 1732 } 1733 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1734 1735 static int rc_prepare_rx_device(struct rc_dev *dev) 1736 { 1737 int rc; 1738 struct rc_map *rc_map; 1739 u64 rc_proto; 1740 1741 if (!dev->map_name) 1742 return -EINVAL; 1743 1744 rc_map = rc_map_get(dev->map_name); 1745 if (!rc_map) 1746 rc_map = rc_map_get(RC_MAP_EMPTY); 1747 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1748 return -EINVAL; 1749 1750 rc = ir_setkeytable(dev, rc_map); 1751 if (rc) 1752 return rc; 1753 1754 rc_proto = BIT_ULL(rc_map->rc_proto); 1755 1756 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1757 dev->enabled_protocols = dev->allowed_protocols; 1758 1759 if (dev->driver_type == RC_DRIVER_IR_RAW) 1760 ir_raw_load_modules(&rc_proto); 1761 1762 if (dev->change_protocol) { 1763 rc = dev->change_protocol(dev, &rc_proto); 1764 if (rc < 0) 1765 goto out_table; 1766 dev->enabled_protocols = rc_proto; 1767 } 1768 1769 /* Keyboard events */ 1770 set_bit(EV_KEY, dev->input_dev->evbit); 1771 set_bit(EV_REP, dev->input_dev->evbit); 1772 set_bit(EV_MSC, dev->input_dev->evbit); 1773 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1774 1775 /* Pointer/mouse events */ 1776 set_bit(EV_REL, dev->input_dev->evbit); 1777 set_bit(REL_X, dev->input_dev->relbit); 1778 set_bit(REL_Y, dev->input_dev->relbit); 1779 1780 if (dev->open) 1781 dev->input_dev->open = ir_open; 1782 if (dev->close) 1783 dev->input_dev->close = ir_close; 1784 1785 dev->input_dev->dev.parent = &dev->dev; 1786 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1787 dev->input_dev->phys = dev->input_phys; 1788 dev->input_dev->name = dev->device_name; 1789 1790 return 0; 1791 1792 out_table: 1793 ir_free_table(&dev->rc_map); 1794 1795 return rc; 1796 } 1797 1798 static int rc_setup_rx_device(struct rc_dev *dev) 1799 { 1800 int rc; 1801 1802 /* rc_open will be called here */ 1803 rc = input_register_device(dev->input_dev); 1804 if (rc) 1805 return rc; 1806 1807 /* 1808 * Default delay of 250ms is too short for some protocols, especially 1809 * since the timeout is currently set to 250ms. Increase it to 500ms, 1810 * to avoid wrong repetition of the keycodes. Note that this must be 1811 * set after the call to input_register_device(). 1812 */ 1813 if (dev->allowed_protocols == RC_PROTO_BIT_CEC) 1814 dev->input_dev->rep[REP_DELAY] = 0; 1815 else 1816 dev->input_dev->rep[REP_DELAY] = 500; 1817 1818 /* 1819 * As a repeat event on protocols like RC-5 and NEC take as long as 1820 * 110/114ms, using 33ms as a repeat period is not the right thing 1821 * to do. 1822 */ 1823 dev->input_dev->rep[REP_PERIOD] = 125; 1824 1825 return 0; 1826 } 1827 1828 static void rc_free_rx_device(struct rc_dev *dev) 1829 { 1830 if (!dev) 1831 return; 1832 1833 if (dev->input_dev) { 1834 input_unregister_device(dev->input_dev); 1835 dev->input_dev = NULL; 1836 } 1837 1838 ir_free_table(&dev->rc_map); 1839 } 1840 1841 int rc_register_device(struct rc_dev *dev) 1842 { 1843 const char *path; 1844 int attr = 0; 1845 int minor; 1846 int rc; 1847 1848 if (!dev) 1849 return -EINVAL; 1850 1851 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1852 if (minor < 0) 1853 return minor; 1854 1855 dev->minor = minor; 1856 dev_set_name(&dev->dev, "rc%u", dev->minor); 1857 dev_set_drvdata(&dev->dev, dev); 1858 1859 dev->dev.groups = dev->sysfs_groups; 1860 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1861 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; 1862 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) 1863 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; 1864 if (dev->s_filter) 1865 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1866 if (dev->s_wakeup_filter) 1867 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1868 dev->sysfs_groups[attr++] = NULL; 1869 1870 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1871 rc = ir_raw_event_prepare(dev); 1872 if (rc < 0) 1873 goto out_minor; 1874 } 1875 1876 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1877 rc = rc_prepare_rx_device(dev); 1878 if (rc) 1879 goto out_raw; 1880 } 1881 1882 rc = device_add(&dev->dev); 1883 if (rc) 1884 goto out_rx_free; 1885 1886 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1887 dev_info(&dev->dev, "%s as %s\n", 1888 dev->device_name ?: "Unspecified device", path ?: "N/A"); 1889 kfree(path); 1890 1891 dev->registered = true; 1892 1893 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1894 rc = rc_setup_rx_device(dev); 1895 if (rc) 1896 goto out_dev; 1897 } 1898 1899 /* Ensure that the lirc kfifo is setup before we start the thread */ 1900 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { 1901 rc = ir_lirc_register(dev); 1902 if (rc < 0) 1903 goto out_rx; 1904 } 1905 1906 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1907 rc = ir_raw_event_register(dev); 1908 if (rc < 0) 1909 goto out_lirc; 1910 } 1911 1912 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, 1913 dev->driver_name ? dev->driver_name : "unknown"); 1914 1915 return 0; 1916 1917 out_lirc: 1918 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1919 ir_lirc_unregister(dev); 1920 out_rx: 1921 rc_free_rx_device(dev); 1922 out_dev: 1923 device_del(&dev->dev); 1924 out_rx_free: 1925 ir_free_table(&dev->rc_map); 1926 out_raw: 1927 ir_raw_event_free(dev); 1928 out_minor: 1929 ida_simple_remove(&rc_ida, minor); 1930 return rc; 1931 } 1932 EXPORT_SYMBOL_GPL(rc_register_device); 1933 1934 static void devm_rc_release(struct device *dev, void *res) 1935 { 1936 rc_unregister_device(*(struct rc_dev **)res); 1937 } 1938 1939 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1940 { 1941 struct rc_dev **dr; 1942 int ret; 1943 1944 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1945 if (!dr) 1946 return -ENOMEM; 1947 1948 ret = rc_register_device(dev); 1949 if (ret) { 1950 devres_free(dr); 1951 return ret; 1952 } 1953 1954 *dr = dev; 1955 devres_add(parent, dr); 1956 1957 return 0; 1958 } 1959 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1960 1961 void rc_unregister_device(struct rc_dev *dev) 1962 { 1963 if (!dev) 1964 return; 1965 1966 if (dev->driver_type == RC_DRIVER_IR_RAW) 1967 ir_raw_event_unregister(dev); 1968 1969 del_timer_sync(&dev->timer_keyup); 1970 del_timer_sync(&dev->timer_repeat); 1971 1972 rc_free_rx_device(dev); 1973 1974 mutex_lock(&dev->lock); 1975 if (dev->users && dev->close) 1976 dev->close(dev); 1977 dev->registered = false; 1978 mutex_unlock(&dev->lock); 1979 1980 /* 1981 * lirc device should be freed with dev->registered = false, so 1982 * that userspace polling will get notified. 1983 */ 1984 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1985 ir_lirc_unregister(dev); 1986 1987 device_del(&dev->dev); 1988 1989 ida_simple_remove(&rc_ida, dev->minor); 1990 1991 if (!dev->managed_alloc) 1992 rc_free_device(dev); 1993 } 1994 1995 EXPORT_SYMBOL_GPL(rc_unregister_device); 1996 1997 /* 1998 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1999 */ 2000 2001 static int __init rc_core_init(void) 2002 { 2003 int rc = class_register(&rc_class); 2004 if (rc) { 2005 pr_err("rc_core: unable to register rc class\n"); 2006 return rc; 2007 } 2008 2009 rc = lirc_dev_init(); 2010 if (rc) { 2011 pr_err("rc_core: unable to init lirc\n"); 2012 class_unregister(&rc_class); 2013 return 0; 2014 } 2015 2016 led_trigger_register_simple("rc-feedback", &led_feedback); 2017 rc_map_register(&empty_map); 2018 2019 return 0; 2020 } 2021 2022 static void __exit rc_core_exit(void) 2023 { 2024 lirc_dev_exit(); 2025 class_unregister(&rc_class); 2026 led_trigger_unregister_simple(led_feedback); 2027 rc_map_unregister(&empty_map); 2028 } 2029 2030 subsys_initcall(rc_core_init); 2031 module_exit(rc_core_exit); 2032 2033 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2034 MODULE_LICENSE("GPL v2"); 2035