xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include "rc-core-priv.h"
25 
26 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
27 #define IR_TAB_MIN_SIZE	256
28 #define IR_TAB_MAX_SIZE	8192
29 #define RC_DEV_MAX	256
30 
31 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
32 #define IR_KEYPRESS_TIMEOUT 250
33 
34 /* Used to keep track of known keymaps */
35 static LIST_HEAD(rc_map_list);
36 static DEFINE_SPINLOCK(rc_map_lock);
37 static struct led_trigger *led_feedback;
38 
39 /* Used to keep track of rc devices */
40 static DEFINE_IDA(rc_ida);
41 
42 static struct rc_map_list *seek_rc_map(const char *name)
43 {
44 	struct rc_map_list *map = NULL;
45 
46 	spin_lock(&rc_map_lock);
47 	list_for_each_entry(map, &rc_map_list, list) {
48 		if (!strcmp(name, map->map.name)) {
49 			spin_unlock(&rc_map_lock);
50 			return map;
51 		}
52 	}
53 	spin_unlock(&rc_map_lock);
54 
55 	return NULL;
56 }
57 
58 struct rc_map *rc_map_get(const char *name)
59 {
60 
61 	struct rc_map_list *map;
62 
63 	map = seek_rc_map(name);
64 #ifdef CONFIG_MODULES
65 	if (!map) {
66 		int rc = request_module("%s", name);
67 		if (rc < 0) {
68 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
69 			return NULL;
70 		}
71 		msleep(20);	/* Give some time for IR to register */
72 
73 		map = seek_rc_map(name);
74 	}
75 #endif
76 	if (!map) {
77 		printk(KERN_ERR "IR keymap %s not found\n", name);
78 		return NULL;
79 	}
80 
81 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
82 
83 	return &map->map;
84 }
85 EXPORT_SYMBOL_GPL(rc_map_get);
86 
87 int rc_map_register(struct rc_map_list *map)
88 {
89 	spin_lock(&rc_map_lock);
90 	list_add_tail(&map->list, &rc_map_list);
91 	spin_unlock(&rc_map_lock);
92 	return 0;
93 }
94 EXPORT_SYMBOL_GPL(rc_map_register);
95 
96 void rc_map_unregister(struct rc_map_list *map)
97 {
98 	spin_lock(&rc_map_lock);
99 	list_del(&map->list);
100 	spin_unlock(&rc_map_lock);
101 }
102 EXPORT_SYMBOL_GPL(rc_map_unregister);
103 
104 
105 static struct rc_map_table empty[] = {
106 	{ 0x2a, KEY_COFFEE },
107 };
108 
109 static struct rc_map_list empty_map = {
110 	.map = {
111 		.scan    = empty,
112 		.size    = ARRAY_SIZE(empty),
113 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
114 		.name    = RC_MAP_EMPTY,
115 	}
116 };
117 
118 /**
119  * ir_create_table() - initializes a scancode table
120  * @rc_map:	the rc_map to initialize
121  * @name:	name to assign to the table
122  * @rc_type:	ir type to assign to the new table
123  * @size:	initial size of the table
124  * @return:	zero on success or a negative error code
125  *
126  * This routine will initialize the rc_map and will allocate
127  * memory to hold at least the specified number of elements.
128  */
129 static int ir_create_table(struct rc_map *rc_map,
130 			   const char *name, u64 rc_type, size_t size)
131 {
132 	rc_map->name = name;
133 	rc_map->rc_type = rc_type;
134 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
135 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
136 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
137 	if (!rc_map->scan)
138 		return -ENOMEM;
139 
140 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
141 		   rc_map->size, rc_map->alloc);
142 	return 0;
143 }
144 
145 /**
146  * ir_free_table() - frees memory allocated by a scancode table
147  * @rc_map:	the table whose mappings need to be freed
148  *
149  * This routine will free memory alloctaed for key mappings used by given
150  * scancode table.
151  */
152 static void ir_free_table(struct rc_map *rc_map)
153 {
154 	rc_map->size = 0;
155 	kfree(rc_map->scan);
156 	rc_map->scan = NULL;
157 }
158 
159 /**
160  * ir_resize_table() - resizes a scancode table if necessary
161  * @rc_map:	the rc_map to resize
162  * @gfp_flags:	gfp flags to use when allocating memory
163  * @return:	zero on success or a negative error code
164  *
165  * This routine will shrink the rc_map if it has lots of
166  * unused entries and grow it if it is full.
167  */
168 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
169 {
170 	unsigned int oldalloc = rc_map->alloc;
171 	unsigned int newalloc = oldalloc;
172 	struct rc_map_table *oldscan = rc_map->scan;
173 	struct rc_map_table *newscan;
174 
175 	if (rc_map->size == rc_map->len) {
176 		/* All entries in use -> grow keytable */
177 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
178 			return -ENOMEM;
179 
180 		newalloc *= 2;
181 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
182 	}
183 
184 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
185 		/* Less than 1/3 of entries in use -> shrink keytable */
186 		newalloc /= 2;
187 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
188 	}
189 
190 	if (newalloc == oldalloc)
191 		return 0;
192 
193 	newscan = kmalloc(newalloc, gfp_flags);
194 	if (!newscan) {
195 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
196 		return -ENOMEM;
197 	}
198 
199 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
200 	rc_map->scan = newscan;
201 	rc_map->alloc = newalloc;
202 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
203 	kfree(oldscan);
204 	return 0;
205 }
206 
207 /**
208  * ir_update_mapping() - set a keycode in the scancode->keycode table
209  * @dev:	the struct rc_dev device descriptor
210  * @rc_map:	scancode table to be adjusted
211  * @index:	index of the mapping that needs to be updated
212  * @keycode:	the desired keycode
213  * @return:	previous keycode assigned to the mapping
214  *
215  * This routine is used to update scancode->keycode mapping at given
216  * position.
217  */
218 static unsigned int ir_update_mapping(struct rc_dev *dev,
219 				      struct rc_map *rc_map,
220 				      unsigned int index,
221 				      unsigned int new_keycode)
222 {
223 	int old_keycode = rc_map->scan[index].keycode;
224 	int i;
225 
226 	/* Did the user wish to remove the mapping? */
227 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
228 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
229 			   index, rc_map->scan[index].scancode);
230 		rc_map->len--;
231 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
232 			(rc_map->len - index) * sizeof(struct rc_map_table));
233 	} else {
234 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
235 			   index,
236 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
237 			   rc_map->scan[index].scancode, new_keycode);
238 		rc_map->scan[index].keycode = new_keycode;
239 		__set_bit(new_keycode, dev->input_dev->keybit);
240 	}
241 
242 	if (old_keycode != KEY_RESERVED) {
243 		/* A previous mapping was updated... */
244 		__clear_bit(old_keycode, dev->input_dev->keybit);
245 		/* ... but another scancode might use the same keycode */
246 		for (i = 0; i < rc_map->len; i++) {
247 			if (rc_map->scan[i].keycode == old_keycode) {
248 				__set_bit(old_keycode, dev->input_dev->keybit);
249 				break;
250 			}
251 		}
252 
253 		/* Possibly shrink the keytable, failure is not a problem */
254 		ir_resize_table(rc_map, GFP_ATOMIC);
255 	}
256 
257 	return old_keycode;
258 }
259 
260 /**
261  * ir_establish_scancode() - set a keycode in the scancode->keycode table
262  * @dev:	the struct rc_dev device descriptor
263  * @rc_map:	scancode table to be searched
264  * @scancode:	the desired scancode
265  * @resize:	controls whether we allowed to resize the table to
266  *		accommodate not yet present scancodes
267  * @return:	index of the mapping containing scancode in question
268  *		or -1U in case of failure.
269  *
270  * This routine is used to locate given scancode in rc_map.
271  * If scancode is not yet present the routine will allocate a new slot
272  * for it.
273  */
274 static unsigned int ir_establish_scancode(struct rc_dev *dev,
275 					  struct rc_map *rc_map,
276 					  unsigned int scancode,
277 					  bool resize)
278 {
279 	unsigned int i;
280 
281 	/*
282 	 * Unfortunately, some hardware-based IR decoders don't provide
283 	 * all bits for the complete IR code. In general, they provide only
284 	 * the command part of the IR code. Yet, as it is possible to replace
285 	 * the provided IR with another one, it is needed to allow loading
286 	 * IR tables from other remotes. So, we support specifying a mask to
287 	 * indicate the valid bits of the scancodes.
288 	 */
289 	if (dev->scancode_mask)
290 		scancode &= dev->scancode_mask;
291 
292 	/* First check if we already have a mapping for this ir command */
293 	for (i = 0; i < rc_map->len; i++) {
294 		if (rc_map->scan[i].scancode == scancode)
295 			return i;
296 
297 		/* Keytable is sorted from lowest to highest scancode */
298 		if (rc_map->scan[i].scancode >= scancode)
299 			break;
300 	}
301 
302 	/* No previous mapping found, we might need to grow the table */
303 	if (rc_map->size == rc_map->len) {
304 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
305 			return -1U;
306 	}
307 
308 	/* i is the proper index to insert our new keycode */
309 	if (i < rc_map->len)
310 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
311 			(rc_map->len - i) * sizeof(struct rc_map_table));
312 	rc_map->scan[i].scancode = scancode;
313 	rc_map->scan[i].keycode = KEY_RESERVED;
314 	rc_map->len++;
315 
316 	return i;
317 }
318 
319 /**
320  * ir_setkeycode() - set a keycode in the scancode->keycode table
321  * @idev:	the struct input_dev device descriptor
322  * @scancode:	the desired scancode
323  * @keycode:	result
324  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
325  *
326  * This routine is used to handle evdev EVIOCSKEY ioctl.
327  */
328 static int ir_setkeycode(struct input_dev *idev,
329 			 const struct input_keymap_entry *ke,
330 			 unsigned int *old_keycode)
331 {
332 	struct rc_dev *rdev = input_get_drvdata(idev);
333 	struct rc_map *rc_map = &rdev->rc_map;
334 	unsigned int index;
335 	unsigned int scancode;
336 	int retval = 0;
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(&rc_map->lock, flags);
340 
341 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
342 		index = ke->index;
343 		if (index >= rc_map->len) {
344 			retval = -EINVAL;
345 			goto out;
346 		}
347 	} else {
348 		retval = input_scancode_to_scalar(ke, &scancode);
349 		if (retval)
350 			goto out;
351 
352 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
353 		if (index >= rc_map->len) {
354 			retval = -ENOMEM;
355 			goto out;
356 		}
357 	}
358 
359 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
360 
361 out:
362 	spin_unlock_irqrestore(&rc_map->lock, flags);
363 	return retval;
364 }
365 
366 /**
367  * ir_setkeytable() - sets several entries in the scancode->keycode table
368  * @dev:	the struct rc_dev device descriptor
369  * @to:		the struct rc_map to copy entries to
370  * @from:	the struct rc_map to copy entries from
371  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
372  *
373  * This routine is used to handle table initialization.
374  */
375 static int ir_setkeytable(struct rc_dev *dev,
376 			  const struct rc_map *from)
377 {
378 	struct rc_map *rc_map = &dev->rc_map;
379 	unsigned int i, index;
380 	int rc;
381 
382 	rc = ir_create_table(rc_map, from->name,
383 			     from->rc_type, from->size);
384 	if (rc)
385 		return rc;
386 
387 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
388 		   rc_map->size, rc_map->alloc);
389 
390 	for (i = 0; i < from->size; i++) {
391 		index = ir_establish_scancode(dev, rc_map,
392 					      from->scan[i].scancode, false);
393 		if (index >= rc_map->len) {
394 			rc = -ENOMEM;
395 			break;
396 		}
397 
398 		ir_update_mapping(dev, rc_map, index,
399 				  from->scan[i].keycode);
400 	}
401 
402 	if (rc)
403 		ir_free_table(rc_map);
404 
405 	return rc;
406 }
407 
408 /**
409  * ir_lookup_by_scancode() - locate mapping by scancode
410  * @rc_map:	the struct rc_map to search
411  * @scancode:	scancode to look for in the table
412  * @return:	index in the table, -1U if not found
413  *
414  * This routine performs binary search in RC keykeymap table for
415  * given scancode.
416  */
417 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
418 					  unsigned int scancode)
419 {
420 	int start = 0;
421 	int end = rc_map->len - 1;
422 	int mid;
423 
424 	while (start <= end) {
425 		mid = (start + end) / 2;
426 		if (rc_map->scan[mid].scancode < scancode)
427 			start = mid + 1;
428 		else if (rc_map->scan[mid].scancode > scancode)
429 			end = mid - 1;
430 		else
431 			return mid;
432 	}
433 
434 	return -1U;
435 }
436 
437 /**
438  * ir_getkeycode() - get a keycode from the scancode->keycode table
439  * @idev:	the struct input_dev device descriptor
440  * @scancode:	the desired scancode
441  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
442  * @return:	always returns zero.
443  *
444  * This routine is used to handle evdev EVIOCGKEY ioctl.
445  */
446 static int ir_getkeycode(struct input_dev *idev,
447 			 struct input_keymap_entry *ke)
448 {
449 	struct rc_dev *rdev = input_get_drvdata(idev);
450 	struct rc_map *rc_map = &rdev->rc_map;
451 	struct rc_map_table *entry;
452 	unsigned long flags;
453 	unsigned int index;
454 	unsigned int scancode;
455 	int retval;
456 
457 	spin_lock_irqsave(&rc_map->lock, flags);
458 
459 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
460 		index = ke->index;
461 	} else {
462 		retval = input_scancode_to_scalar(ke, &scancode);
463 		if (retval)
464 			goto out;
465 
466 		index = ir_lookup_by_scancode(rc_map, scancode);
467 	}
468 
469 	if (index < rc_map->len) {
470 		entry = &rc_map->scan[index];
471 
472 		ke->index = index;
473 		ke->keycode = entry->keycode;
474 		ke->len = sizeof(entry->scancode);
475 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
476 
477 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
478 		/*
479 		 * We do not really know the valid range of scancodes
480 		 * so let's respond with KEY_RESERVED to anything we
481 		 * do not have mapping for [yet].
482 		 */
483 		ke->index = index;
484 		ke->keycode = KEY_RESERVED;
485 	} else {
486 		retval = -EINVAL;
487 		goto out;
488 	}
489 
490 	retval = 0;
491 
492 out:
493 	spin_unlock_irqrestore(&rc_map->lock, flags);
494 	return retval;
495 }
496 
497 /**
498  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
499  * @dev:	the struct rc_dev descriptor of the device
500  * @scancode:	the scancode to look for
501  * @return:	the corresponding keycode, or KEY_RESERVED
502  *
503  * This routine is used by drivers which need to convert a scancode to a
504  * keycode. Normally it should not be used since drivers should have no
505  * interest in keycodes.
506  */
507 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
508 {
509 	struct rc_map *rc_map = &dev->rc_map;
510 	unsigned int keycode;
511 	unsigned int index;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&rc_map->lock, flags);
515 
516 	index = ir_lookup_by_scancode(rc_map, scancode);
517 	keycode = index < rc_map->len ?
518 			rc_map->scan[index].keycode : KEY_RESERVED;
519 
520 	spin_unlock_irqrestore(&rc_map->lock, flags);
521 
522 	if (keycode != KEY_RESERVED)
523 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
524 			   dev->input_name, scancode, keycode);
525 
526 	return keycode;
527 }
528 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
529 
530 /**
531  * ir_do_keyup() - internal function to signal the release of a keypress
532  * @dev:	the struct rc_dev descriptor of the device
533  * @sync:	whether or not to call input_sync
534  *
535  * This function is used internally to release a keypress, it must be
536  * called with keylock held.
537  */
538 static void ir_do_keyup(struct rc_dev *dev, bool sync)
539 {
540 	if (!dev->keypressed)
541 		return;
542 
543 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
544 	input_report_key(dev->input_dev, dev->last_keycode, 0);
545 	led_trigger_event(led_feedback, LED_OFF);
546 	if (sync)
547 		input_sync(dev->input_dev);
548 	dev->keypressed = false;
549 }
550 
551 /**
552  * rc_keyup() - signals the release of a keypress
553  * @dev:	the struct rc_dev descriptor of the device
554  *
555  * This routine is used to signal that a key has been released on the
556  * remote control.
557  */
558 void rc_keyup(struct rc_dev *dev)
559 {
560 	unsigned long flags;
561 
562 	spin_lock_irqsave(&dev->keylock, flags);
563 	ir_do_keyup(dev, true);
564 	spin_unlock_irqrestore(&dev->keylock, flags);
565 }
566 EXPORT_SYMBOL_GPL(rc_keyup);
567 
568 /**
569  * ir_timer_keyup() - generates a keyup event after a timeout
570  * @cookie:	a pointer to the struct rc_dev for the device
571  *
572  * This routine will generate a keyup event some time after a keydown event
573  * is generated when no further activity has been detected.
574  */
575 static void ir_timer_keyup(unsigned long cookie)
576 {
577 	struct rc_dev *dev = (struct rc_dev *)cookie;
578 	unsigned long flags;
579 
580 	/*
581 	 * ir->keyup_jiffies is used to prevent a race condition if a
582 	 * hardware interrupt occurs at this point and the keyup timer
583 	 * event is moved further into the future as a result.
584 	 *
585 	 * The timer will then be reactivated and this function called
586 	 * again in the future. We need to exit gracefully in that case
587 	 * to allow the input subsystem to do its auto-repeat magic or
588 	 * a keyup event might follow immediately after the keydown.
589 	 */
590 	spin_lock_irqsave(&dev->keylock, flags);
591 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
592 		ir_do_keyup(dev, true);
593 	spin_unlock_irqrestore(&dev->keylock, flags);
594 }
595 
596 /**
597  * rc_repeat() - signals that a key is still pressed
598  * @dev:	the struct rc_dev descriptor of the device
599  *
600  * This routine is used by IR decoders when a repeat message which does
601  * not include the necessary bits to reproduce the scancode has been
602  * received.
603  */
604 void rc_repeat(struct rc_dev *dev)
605 {
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&dev->keylock, flags);
609 
610 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
611 	input_sync(dev->input_dev);
612 
613 	if (!dev->keypressed)
614 		goto out;
615 
616 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
617 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
618 
619 out:
620 	spin_unlock_irqrestore(&dev->keylock, flags);
621 }
622 EXPORT_SYMBOL_GPL(rc_repeat);
623 
624 /**
625  * ir_do_keydown() - internal function to process a keypress
626  * @dev:	the struct rc_dev descriptor of the device
627  * @protocol:	the protocol of the keypress
628  * @scancode:   the scancode of the keypress
629  * @keycode:    the keycode of the keypress
630  * @toggle:     the toggle value of the keypress
631  *
632  * This function is used internally to register a keypress, it must be
633  * called with keylock held.
634  */
635 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
636 			  u32 scancode, u32 keycode, u8 toggle)
637 {
638 	bool new_event = (!dev->keypressed		 ||
639 			  dev->last_protocol != protocol ||
640 			  dev->last_scancode != scancode ||
641 			  dev->last_toggle   != toggle);
642 
643 	if (new_event && dev->keypressed)
644 		ir_do_keyup(dev, false);
645 
646 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
647 
648 	if (new_event && keycode != KEY_RESERVED) {
649 		/* Register a keypress */
650 		dev->keypressed = true;
651 		dev->last_protocol = protocol;
652 		dev->last_scancode = scancode;
653 		dev->last_toggle = toggle;
654 		dev->last_keycode = keycode;
655 
656 		IR_dprintk(1, "%s: key down event, "
657 			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
658 			   dev->input_name, keycode, protocol, scancode);
659 		input_report_key(dev->input_dev, keycode, 1);
660 
661 		led_trigger_event(led_feedback, LED_FULL);
662 	}
663 
664 	input_sync(dev->input_dev);
665 }
666 
667 /**
668  * rc_keydown() - generates input event for a key press
669  * @dev:	the struct rc_dev descriptor of the device
670  * @protocol:	the protocol for the keypress
671  * @scancode:	the scancode for the keypress
672  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
673  *              support toggle values, this should be set to zero)
674  *
675  * This routine is used to signal that a key has been pressed on the
676  * remote control.
677  */
678 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
679 {
680 	unsigned long flags;
681 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
682 
683 	spin_lock_irqsave(&dev->keylock, flags);
684 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
685 
686 	if (dev->keypressed) {
687 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
688 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
689 	}
690 	spin_unlock_irqrestore(&dev->keylock, flags);
691 }
692 EXPORT_SYMBOL_GPL(rc_keydown);
693 
694 /**
695  * rc_keydown_notimeout() - generates input event for a key press without
696  *                          an automatic keyup event at a later time
697  * @dev:	the struct rc_dev descriptor of the device
698  * @protocol:	the protocol for the keypress
699  * @scancode:	the scancode for the keypress
700  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
701  *              support toggle values, this should be set to zero)
702  *
703  * This routine is used to signal that a key has been pressed on the
704  * remote control. The driver must manually call rc_keyup() at a later stage.
705  */
706 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
707 			  u32 scancode, u8 toggle)
708 {
709 	unsigned long flags;
710 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
711 
712 	spin_lock_irqsave(&dev->keylock, flags);
713 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
714 	spin_unlock_irqrestore(&dev->keylock, flags);
715 }
716 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
717 
718 int rc_open(struct rc_dev *rdev)
719 {
720 	int rval = 0;
721 
722 	if (!rdev)
723 		return -EINVAL;
724 
725 	mutex_lock(&rdev->lock);
726 	if (!rdev->users++ && rdev->open != NULL)
727 		rval = rdev->open(rdev);
728 
729 	if (rval)
730 		rdev->users--;
731 
732 	mutex_unlock(&rdev->lock);
733 
734 	return rval;
735 }
736 EXPORT_SYMBOL_GPL(rc_open);
737 
738 static int ir_open(struct input_dev *idev)
739 {
740 	struct rc_dev *rdev = input_get_drvdata(idev);
741 
742 	return rc_open(rdev);
743 }
744 
745 void rc_close(struct rc_dev *rdev)
746 {
747 	if (rdev) {
748 		mutex_lock(&rdev->lock);
749 
750 		if (!--rdev->users && rdev->close != NULL)
751 			rdev->close(rdev);
752 
753 		mutex_unlock(&rdev->lock);
754 	}
755 }
756 EXPORT_SYMBOL_GPL(rc_close);
757 
758 static void ir_close(struct input_dev *idev)
759 {
760 	struct rc_dev *rdev = input_get_drvdata(idev);
761 	rc_close(rdev);
762 }
763 
764 /* class for /sys/class/rc */
765 static char *rc_devnode(struct device *dev, umode_t *mode)
766 {
767 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
768 }
769 
770 static struct class rc_class = {
771 	.name		= "rc",
772 	.devnode	= rc_devnode,
773 };
774 
775 /*
776  * These are the protocol textual descriptions that are
777  * used by the sysfs protocols file. Note that the order
778  * of the entries is relevant.
779  */
780 static const struct {
781 	u64	type;
782 	const char	*name;
783 	const char	*module_name;
784 } proto_names[] = {
785 	{ RC_BIT_NONE,		"none",		NULL			},
786 	{ RC_BIT_OTHER,		"other",	NULL			},
787 	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
788 	{ RC_BIT_RC5 |
789 	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
790 	{ RC_BIT_NEC,		"nec",		"ir-nec-decoder"	},
791 	{ RC_BIT_RC6_0 |
792 	  RC_BIT_RC6_6A_20 |
793 	  RC_BIT_RC6_6A_24 |
794 	  RC_BIT_RC6_6A_32 |
795 	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
796 	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
797 	{ RC_BIT_SONY12 |
798 	  RC_BIT_SONY15 |
799 	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
800 	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
801 	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
802 	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
803 	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
804 	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
805 };
806 
807 /**
808  * struct rc_filter_attribute - Device attribute relating to a filter type.
809  * @attr:	Device attribute.
810  * @type:	Filter type.
811  * @mask:	false for filter value, true for filter mask.
812  */
813 struct rc_filter_attribute {
814 	struct device_attribute		attr;
815 	enum rc_filter_type		type;
816 	bool				mask;
817 };
818 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
819 
820 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
821 	struct rc_filter_attribute dev_attr_##_name = {			\
822 		.attr = __ATTR(_name, _mode, _show, _store),		\
823 		.type = (_type),					\
824 	}
825 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
826 	struct rc_filter_attribute dev_attr_##_name = {			\
827 		.attr = __ATTR(_name, _mode, _show, _store),		\
828 		.type = (_type),					\
829 		.mask = (_mask),					\
830 	}
831 
832 static bool lirc_is_present(void)
833 {
834 #if defined(CONFIG_LIRC_MODULE)
835 	struct module *lirc;
836 
837 	mutex_lock(&module_mutex);
838 	lirc = find_module("lirc_dev");
839 	mutex_unlock(&module_mutex);
840 
841 	return lirc ? true : false;
842 #elif defined(CONFIG_LIRC)
843 	return true;
844 #else
845 	return false;
846 #endif
847 }
848 
849 /**
850  * show_protocols() - shows the current/wakeup IR protocol(s)
851  * @device:	the device descriptor
852  * @mattr:	the device attribute struct
853  * @buf:	a pointer to the output buffer
854  *
855  * This routine is a callback routine for input read the IR protocol type(s).
856  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
857  * It returns the protocol names of supported protocols.
858  * Enabled protocols are printed in brackets.
859  *
860  * dev->lock is taken to guard against races between device
861  * registration, store_protocols and show_protocols.
862  */
863 static ssize_t show_protocols(struct device *device,
864 			      struct device_attribute *mattr, char *buf)
865 {
866 	struct rc_dev *dev = to_rc_dev(device);
867 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
868 	u64 allowed, enabled;
869 	char *tmp = buf;
870 	int i;
871 
872 	/* Device is being removed */
873 	if (!dev)
874 		return -EINVAL;
875 
876 	mutex_lock(&dev->lock);
877 
878 	if (fattr->type == RC_FILTER_NORMAL) {
879 		enabled = dev->enabled_protocols;
880 		allowed = dev->allowed_protocols;
881 		if (dev->raw && !allowed)
882 			allowed = ir_raw_get_allowed_protocols();
883 	} else {
884 		enabled = dev->enabled_wakeup_protocols;
885 		allowed = dev->allowed_wakeup_protocols;
886 	}
887 
888 	mutex_unlock(&dev->lock);
889 
890 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
891 		   __func__, (long long)allowed, (long long)enabled);
892 
893 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
894 		if (allowed & enabled & proto_names[i].type)
895 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
896 		else if (allowed & proto_names[i].type)
897 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
898 
899 		if (allowed & proto_names[i].type)
900 			allowed &= ~proto_names[i].type;
901 	}
902 
903 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
904 		tmp += sprintf(tmp, "[lirc] ");
905 
906 	if (tmp != buf)
907 		tmp--;
908 	*tmp = '\n';
909 
910 	return tmp + 1 - buf;
911 }
912 
913 /**
914  * parse_protocol_change() - parses a protocol change request
915  * @protocols:	pointer to the bitmask of current protocols
916  * @buf:	pointer to the buffer with a list of changes
917  *
918  * Writing "+proto" will add a protocol to the protocol mask.
919  * Writing "-proto" will remove a protocol from protocol mask.
920  * Writing "proto" will enable only "proto".
921  * Writing "none" will disable all protocols.
922  * Returns the number of changes performed or a negative error code.
923  */
924 static int parse_protocol_change(u64 *protocols, const char *buf)
925 {
926 	const char *tmp;
927 	unsigned count = 0;
928 	bool enable, disable;
929 	u64 mask;
930 	int i;
931 
932 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
933 		if (!*tmp)
934 			break;
935 
936 		if (*tmp == '+') {
937 			enable = true;
938 			disable = false;
939 			tmp++;
940 		} else if (*tmp == '-') {
941 			enable = false;
942 			disable = true;
943 			tmp++;
944 		} else {
945 			enable = false;
946 			disable = false;
947 		}
948 
949 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
950 			if (!strcasecmp(tmp, proto_names[i].name)) {
951 				mask = proto_names[i].type;
952 				break;
953 			}
954 		}
955 
956 		if (i == ARRAY_SIZE(proto_names)) {
957 			if (!strcasecmp(tmp, "lirc"))
958 				mask = 0;
959 			else {
960 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
961 				return -EINVAL;
962 			}
963 		}
964 
965 		count++;
966 
967 		if (enable)
968 			*protocols |= mask;
969 		else if (disable)
970 			*protocols &= ~mask;
971 		else
972 			*protocols = mask;
973 	}
974 
975 	if (!count) {
976 		IR_dprintk(1, "Protocol not specified\n");
977 		return -EINVAL;
978 	}
979 
980 	return count;
981 }
982 
983 static void ir_raw_load_modules(u64 *protocols)
984 
985 {
986 	u64 available;
987 	int i, ret;
988 
989 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
990 		if (proto_names[i].type == RC_BIT_NONE ||
991 		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
992 			continue;
993 
994 		available = ir_raw_get_allowed_protocols();
995 		if (!(*protocols & proto_names[i].type & ~available))
996 			continue;
997 
998 		if (!proto_names[i].module_name) {
999 			pr_err("Can't enable IR protocol %s\n",
1000 			       proto_names[i].name);
1001 			*protocols &= ~proto_names[i].type;
1002 			continue;
1003 		}
1004 
1005 		ret = request_module("%s", proto_names[i].module_name);
1006 		if (ret < 0) {
1007 			pr_err("Couldn't load IR protocol module %s\n",
1008 			       proto_names[i].module_name);
1009 			*protocols &= ~proto_names[i].type;
1010 			continue;
1011 		}
1012 		msleep(20);
1013 		available = ir_raw_get_allowed_protocols();
1014 		if (!(*protocols & proto_names[i].type & ~available))
1015 			continue;
1016 
1017 		pr_err("Loaded IR protocol module %s, \
1018 		       but protocol %s still not available\n",
1019 		       proto_names[i].module_name,
1020 		       proto_names[i].name);
1021 		*protocols &= ~proto_names[i].type;
1022 	}
1023 }
1024 
1025 /**
1026  * store_protocols() - changes the current/wakeup IR protocol(s)
1027  * @device:	the device descriptor
1028  * @mattr:	the device attribute struct
1029  * @buf:	a pointer to the input buffer
1030  * @len:	length of the input buffer
1031  *
1032  * This routine is for changing the IR protocol type.
1033  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1034  * See parse_protocol_change() for the valid commands.
1035  * Returns @len on success or a negative error code.
1036  *
1037  * dev->lock is taken to guard against races between device
1038  * registration, store_protocols and show_protocols.
1039  */
1040 static ssize_t store_protocols(struct device *device,
1041 			       struct device_attribute *mattr,
1042 			       const char *buf, size_t len)
1043 {
1044 	struct rc_dev *dev = to_rc_dev(device);
1045 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1046 	u64 *current_protocols;
1047 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1048 	struct rc_scancode_filter *filter;
1049 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1050 	u64 old_protocols, new_protocols;
1051 	ssize_t rc;
1052 
1053 	/* Device is being removed */
1054 	if (!dev)
1055 		return -EINVAL;
1056 
1057 	if (fattr->type == RC_FILTER_NORMAL) {
1058 		IR_dprintk(1, "Normal protocol change requested\n");
1059 		current_protocols = &dev->enabled_protocols;
1060 		change_protocol = dev->change_protocol;
1061 		filter = &dev->scancode_filter;
1062 		set_filter = dev->s_filter;
1063 	} else {
1064 		IR_dprintk(1, "Wakeup protocol change requested\n");
1065 		current_protocols = &dev->enabled_wakeup_protocols;
1066 		change_protocol = dev->change_wakeup_protocol;
1067 		filter = &dev->scancode_wakeup_filter;
1068 		set_filter = dev->s_wakeup_filter;
1069 	}
1070 
1071 	if (!change_protocol) {
1072 		IR_dprintk(1, "Protocol switching not supported\n");
1073 		return -EINVAL;
1074 	}
1075 
1076 	mutex_lock(&dev->lock);
1077 
1078 	old_protocols = *current_protocols;
1079 	new_protocols = old_protocols;
1080 	rc = parse_protocol_change(&new_protocols, buf);
1081 	if (rc < 0)
1082 		goto out;
1083 
1084 	rc = change_protocol(dev, &new_protocols);
1085 	if (rc < 0) {
1086 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1087 			   (long long)new_protocols);
1088 		goto out;
1089 	}
1090 
1091 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1092 		ir_raw_load_modules(&new_protocols);
1093 
1094 	if (new_protocols != old_protocols) {
1095 		*current_protocols = new_protocols;
1096 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1097 			   (long long)new_protocols);
1098 	}
1099 
1100 	/*
1101 	 * If a protocol change was attempted the filter may need updating, even
1102 	 * if the actual protocol mask hasn't changed (since the driver may have
1103 	 * cleared the filter).
1104 	 * Try setting the same filter with the new protocol (if any).
1105 	 * Fall back to clearing the filter.
1106 	 */
1107 	if (set_filter && filter->mask) {
1108 		if (new_protocols)
1109 			rc = set_filter(dev, filter);
1110 		else
1111 			rc = -1;
1112 
1113 		if (rc < 0) {
1114 			filter->data = 0;
1115 			filter->mask = 0;
1116 			set_filter(dev, filter);
1117 		}
1118 	}
1119 
1120 	rc = len;
1121 
1122 out:
1123 	mutex_unlock(&dev->lock);
1124 	return rc;
1125 }
1126 
1127 /**
1128  * show_filter() - shows the current scancode filter value or mask
1129  * @device:	the device descriptor
1130  * @attr:	the device attribute struct
1131  * @buf:	a pointer to the output buffer
1132  *
1133  * This routine is a callback routine to read a scancode filter value or mask.
1134  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1135  * It prints the current scancode filter value or mask of the appropriate filter
1136  * type in hexadecimal into @buf and returns the size of the buffer.
1137  *
1138  * Bits of the filter value corresponding to set bits in the filter mask are
1139  * compared against input scancodes and non-matching scancodes are discarded.
1140  *
1141  * dev->lock is taken to guard against races between device registration,
1142  * store_filter and show_filter.
1143  */
1144 static ssize_t show_filter(struct device *device,
1145 			   struct device_attribute *attr,
1146 			   char *buf)
1147 {
1148 	struct rc_dev *dev = to_rc_dev(device);
1149 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1150 	struct rc_scancode_filter *filter;
1151 	u32 val;
1152 
1153 	/* Device is being removed */
1154 	if (!dev)
1155 		return -EINVAL;
1156 
1157 	if (fattr->type == RC_FILTER_NORMAL)
1158 		filter = &dev->scancode_filter;
1159 	else
1160 		filter = &dev->scancode_wakeup_filter;
1161 
1162 	mutex_lock(&dev->lock);
1163 	if (fattr->mask)
1164 		val = filter->mask;
1165 	else
1166 		val = filter->data;
1167 	mutex_unlock(&dev->lock);
1168 
1169 	return sprintf(buf, "%#x\n", val);
1170 }
1171 
1172 /**
1173  * store_filter() - changes the scancode filter value
1174  * @device:	the device descriptor
1175  * @attr:	the device attribute struct
1176  * @buf:	a pointer to the input buffer
1177  * @len:	length of the input buffer
1178  *
1179  * This routine is for changing a scancode filter value or mask.
1180  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1181  * Returns -EINVAL if an invalid filter value for the current protocol was
1182  * specified or if scancode filtering is not supported by the driver, otherwise
1183  * returns @len.
1184  *
1185  * Bits of the filter value corresponding to set bits in the filter mask are
1186  * compared against input scancodes and non-matching scancodes are discarded.
1187  *
1188  * dev->lock is taken to guard against races between device registration,
1189  * store_filter and show_filter.
1190  */
1191 static ssize_t store_filter(struct device *device,
1192 			    struct device_attribute *attr,
1193 			    const char *buf, size_t len)
1194 {
1195 	struct rc_dev *dev = to_rc_dev(device);
1196 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1197 	struct rc_scancode_filter new_filter, *filter;
1198 	int ret;
1199 	unsigned long val;
1200 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1201 	u64 *enabled_protocols;
1202 
1203 	/* Device is being removed */
1204 	if (!dev)
1205 		return -EINVAL;
1206 
1207 	ret = kstrtoul(buf, 0, &val);
1208 	if (ret < 0)
1209 		return ret;
1210 
1211 	if (fattr->type == RC_FILTER_NORMAL) {
1212 		set_filter = dev->s_filter;
1213 		enabled_protocols = &dev->enabled_protocols;
1214 		filter = &dev->scancode_filter;
1215 	} else {
1216 		set_filter = dev->s_wakeup_filter;
1217 		enabled_protocols = &dev->enabled_wakeup_protocols;
1218 		filter = &dev->scancode_wakeup_filter;
1219 	}
1220 
1221 	if (!set_filter)
1222 		return -EINVAL;
1223 
1224 	mutex_lock(&dev->lock);
1225 
1226 	new_filter = *filter;
1227 	if (fattr->mask)
1228 		new_filter.mask = val;
1229 	else
1230 		new_filter.data = val;
1231 
1232 	if (!*enabled_protocols && val) {
1233 		/* refuse to set a filter unless a protocol is enabled */
1234 		ret = -EINVAL;
1235 		goto unlock;
1236 	}
1237 
1238 	ret = set_filter(dev, &new_filter);
1239 	if (ret < 0)
1240 		goto unlock;
1241 
1242 	*filter = new_filter;
1243 
1244 unlock:
1245 	mutex_unlock(&dev->lock);
1246 	return (ret < 0) ? ret : len;
1247 }
1248 
1249 static void rc_dev_release(struct device *device)
1250 {
1251 }
1252 
1253 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1254 	do {								\
1255 		int err = add_uevent_var(env, fmt, val);		\
1256 		if (err)						\
1257 			return err;					\
1258 	} while (0)
1259 
1260 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1261 {
1262 	struct rc_dev *dev = to_rc_dev(device);
1263 
1264 	if (dev->rc_map.name)
1265 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1266 	if (dev->driver_name)
1267 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1268 
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Static device attribute struct with the sysfs attributes for IR's
1274  */
1275 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1276 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1277 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1278 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1279 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1280 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1281 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1282 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1283 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1284 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1285 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1286 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1287 
1288 static struct attribute *rc_dev_protocol_attrs[] = {
1289 	&dev_attr_protocols.attr.attr,
1290 	NULL,
1291 };
1292 
1293 static struct attribute_group rc_dev_protocol_attr_grp = {
1294 	.attrs	= rc_dev_protocol_attrs,
1295 };
1296 
1297 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1298 	&dev_attr_wakeup_protocols.attr.attr,
1299 	NULL,
1300 };
1301 
1302 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1303 	.attrs	= rc_dev_wakeup_protocol_attrs,
1304 };
1305 
1306 static struct attribute *rc_dev_filter_attrs[] = {
1307 	&dev_attr_filter.attr.attr,
1308 	&dev_attr_filter_mask.attr.attr,
1309 	NULL,
1310 };
1311 
1312 static struct attribute_group rc_dev_filter_attr_grp = {
1313 	.attrs	= rc_dev_filter_attrs,
1314 };
1315 
1316 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1317 	&dev_attr_wakeup_filter.attr.attr,
1318 	&dev_attr_wakeup_filter_mask.attr.attr,
1319 	NULL,
1320 };
1321 
1322 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1323 	.attrs	= rc_dev_wakeup_filter_attrs,
1324 };
1325 
1326 static struct device_type rc_dev_type = {
1327 	.release	= rc_dev_release,
1328 	.uevent		= rc_dev_uevent,
1329 };
1330 
1331 struct rc_dev *rc_allocate_device(void)
1332 {
1333 	struct rc_dev *dev;
1334 
1335 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1336 	if (!dev)
1337 		return NULL;
1338 
1339 	dev->input_dev = input_allocate_device();
1340 	if (!dev->input_dev) {
1341 		kfree(dev);
1342 		return NULL;
1343 	}
1344 
1345 	dev->input_dev->getkeycode = ir_getkeycode;
1346 	dev->input_dev->setkeycode = ir_setkeycode;
1347 	input_set_drvdata(dev->input_dev, dev);
1348 
1349 	spin_lock_init(&dev->rc_map.lock);
1350 	spin_lock_init(&dev->keylock);
1351 	mutex_init(&dev->lock);
1352 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1353 
1354 	dev->dev.type = &rc_dev_type;
1355 	dev->dev.class = &rc_class;
1356 	device_initialize(&dev->dev);
1357 
1358 	__module_get(THIS_MODULE);
1359 	return dev;
1360 }
1361 EXPORT_SYMBOL_GPL(rc_allocate_device);
1362 
1363 void rc_free_device(struct rc_dev *dev)
1364 {
1365 	if (!dev)
1366 		return;
1367 
1368 	input_free_device(dev->input_dev);
1369 
1370 	put_device(&dev->dev);
1371 
1372 	kfree(dev);
1373 	module_put(THIS_MODULE);
1374 }
1375 EXPORT_SYMBOL_GPL(rc_free_device);
1376 
1377 int rc_register_device(struct rc_dev *dev)
1378 {
1379 	static bool raw_init = false; /* raw decoders loaded? */
1380 	struct rc_map *rc_map;
1381 	const char *path;
1382 	int attr = 0;
1383 	int minor;
1384 	int rc;
1385 
1386 	if (!dev || !dev->map_name)
1387 		return -EINVAL;
1388 
1389 	rc_map = rc_map_get(dev->map_name);
1390 	if (!rc_map)
1391 		rc_map = rc_map_get(RC_MAP_EMPTY);
1392 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1393 		return -EINVAL;
1394 
1395 	set_bit(EV_KEY, dev->input_dev->evbit);
1396 	set_bit(EV_REP, dev->input_dev->evbit);
1397 	set_bit(EV_MSC, dev->input_dev->evbit);
1398 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1399 	if (dev->open)
1400 		dev->input_dev->open = ir_open;
1401 	if (dev->close)
1402 		dev->input_dev->close = ir_close;
1403 
1404 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1405 	if (minor < 0)
1406 		return minor;
1407 
1408 	dev->minor = minor;
1409 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1410 	dev_set_drvdata(&dev->dev, dev);
1411 
1412 	dev->dev.groups = dev->sysfs_groups;
1413 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1414 	if (dev->s_filter)
1415 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1416 	if (dev->s_wakeup_filter)
1417 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1418 	if (dev->change_wakeup_protocol)
1419 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1420 	dev->sysfs_groups[attr++] = NULL;
1421 
1422 	/*
1423 	 * Take the lock here, as the device sysfs node will appear
1424 	 * when device_add() is called, which may trigger an ir-keytable udev
1425 	 * rule, which will in turn call show_protocols and access
1426 	 * dev->enabled_protocols before it has been initialized.
1427 	 */
1428 	mutex_lock(&dev->lock);
1429 
1430 	rc = device_add(&dev->dev);
1431 	if (rc)
1432 		goto out_unlock;
1433 
1434 	rc = ir_setkeytable(dev, rc_map);
1435 	if (rc)
1436 		goto out_dev;
1437 
1438 	dev->input_dev->dev.parent = &dev->dev;
1439 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1440 	dev->input_dev->phys = dev->input_phys;
1441 	dev->input_dev->name = dev->input_name;
1442 
1443 	/* input_register_device can call ir_open, so unlock mutex here */
1444 	mutex_unlock(&dev->lock);
1445 
1446 	rc = input_register_device(dev->input_dev);
1447 
1448 	mutex_lock(&dev->lock);
1449 
1450 	if (rc)
1451 		goto out_table;
1452 
1453 	/*
1454 	 * Default delay of 250ms is too short for some protocols, especially
1455 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1456 	 * to avoid wrong repetition of the keycodes. Note that this must be
1457 	 * set after the call to input_register_device().
1458 	 */
1459 	dev->input_dev->rep[REP_DELAY] = 500;
1460 
1461 	/*
1462 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1463 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1464 	 * to do.
1465 	 */
1466 	dev->input_dev->rep[REP_PERIOD] = 125;
1467 
1468 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1469 	dev_info(&dev->dev, "%s as %s\n",
1470 		dev->input_name ?: "Unspecified device", path ?: "N/A");
1471 	kfree(path);
1472 
1473 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1474 		if (!raw_init) {
1475 			request_module_nowait("ir-lirc-codec");
1476 			raw_init = true;
1477 		}
1478 		/* calls ir_register_device so unlock mutex here*/
1479 		mutex_unlock(&dev->lock);
1480 		rc = ir_raw_event_register(dev);
1481 		mutex_lock(&dev->lock);
1482 		if (rc < 0)
1483 			goto out_input;
1484 	}
1485 
1486 	if (dev->change_protocol) {
1487 		u64 rc_type = (1ll << rc_map->rc_type);
1488 		rc = dev->change_protocol(dev, &rc_type);
1489 		if (rc < 0)
1490 			goto out_raw;
1491 		dev->enabled_protocols = rc_type;
1492 	}
1493 
1494 	mutex_unlock(&dev->lock);
1495 
1496 	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1497 		   dev->minor,
1498 		   dev->driver_name ? dev->driver_name : "unknown",
1499 		   rc_map->name ? rc_map->name : "unknown",
1500 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1501 
1502 	return 0;
1503 
1504 out_raw:
1505 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1506 		ir_raw_event_unregister(dev);
1507 out_input:
1508 	input_unregister_device(dev->input_dev);
1509 	dev->input_dev = NULL;
1510 out_table:
1511 	ir_free_table(&dev->rc_map);
1512 out_dev:
1513 	device_del(&dev->dev);
1514 out_unlock:
1515 	mutex_unlock(&dev->lock);
1516 	ida_simple_remove(&rc_ida, minor);
1517 	return rc;
1518 }
1519 EXPORT_SYMBOL_GPL(rc_register_device);
1520 
1521 void rc_unregister_device(struct rc_dev *dev)
1522 {
1523 	if (!dev)
1524 		return;
1525 
1526 	del_timer_sync(&dev->timer_keyup);
1527 
1528 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1529 		ir_raw_event_unregister(dev);
1530 
1531 	/* Freeing the table should also call the stop callback */
1532 	ir_free_table(&dev->rc_map);
1533 	IR_dprintk(1, "Freed keycode table\n");
1534 
1535 	input_unregister_device(dev->input_dev);
1536 	dev->input_dev = NULL;
1537 
1538 	device_del(&dev->dev);
1539 
1540 	ida_simple_remove(&rc_ida, dev->minor);
1541 
1542 	rc_free_device(dev);
1543 }
1544 
1545 EXPORT_SYMBOL_GPL(rc_unregister_device);
1546 
1547 /*
1548  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1549  */
1550 
1551 static int __init rc_core_init(void)
1552 {
1553 	int rc = class_register(&rc_class);
1554 	if (rc) {
1555 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1556 		return rc;
1557 	}
1558 
1559 	led_trigger_register_simple("rc-feedback", &led_feedback);
1560 	rc_map_register(&empty_map);
1561 
1562 	return 0;
1563 }
1564 
1565 static void __exit rc_core_exit(void)
1566 {
1567 	class_unregister(&rc_class);
1568 	led_trigger_unregister_simple(led_feedback);
1569 	rc_map_unregister(&empty_map);
1570 }
1571 
1572 subsys_initcall(rc_core_init);
1573 module_exit(rc_core_exit);
1574 
1575 int rc_core_debug;    /* ir_debug level (0,1,2) */
1576 EXPORT_SYMBOL_GPL(rc_core_debug);
1577 module_param_named(debug, rc_core_debug, int, 0644);
1578 
1579 MODULE_AUTHOR("Mauro Carvalho Chehab");
1580 MODULE_LICENSE("GPL");
1581