1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/spinlock.h> 17 #include <linux/delay.h> 18 #include <linux/input.h> 19 #include <linux/leds.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/device.h> 23 #include <linux/module.h> 24 #include "rc-core-priv.h" 25 26 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 27 #define IR_TAB_MIN_SIZE 256 28 #define IR_TAB_MAX_SIZE 8192 29 #define RC_DEV_MAX 256 30 31 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 32 #define IR_KEYPRESS_TIMEOUT 250 33 34 /* Used to keep track of known keymaps */ 35 static LIST_HEAD(rc_map_list); 36 static DEFINE_SPINLOCK(rc_map_lock); 37 static struct led_trigger *led_feedback; 38 39 /* Used to keep track of rc devices */ 40 static DEFINE_IDA(rc_ida); 41 42 static struct rc_map_list *seek_rc_map(const char *name) 43 { 44 struct rc_map_list *map = NULL; 45 46 spin_lock(&rc_map_lock); 47 list_for_each_entry(map, &rc_map_list, list) { 48 if (!strcmp(name, map->map.name)) { 49 spin_unlock(&rc_map_lock); 50 return map; 51 } 52 } 53 spin_unlock(&rc_map_lock); 54 55 return NULL; 56 } 57 58 struct rc_map *rc_map_get(const char *name) 59 { 60 61 struct rc_map_list *map; 62 63 map = seek_rc_map(name); 64 #ifdef CONFIG_MODULES 65 if (!map) { 66 int rc = request_module("%s", name); 67 if (rc < 0) { 68 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 69 return NULL; 70 } 71 msleep(20); /* Give some time for IR to register */ 72 73 map = seek_rc_map(name); 74 } 75 #endif 76 if (!map) { 77 printk(KERN_ERR "IR keymap %s not found\n", name); 78 return NULL; 79 } 80 81 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 82 83 return &map->map; 84 } 85 EXPORT_SYMBOL_GPL(rc_map_get); 86 87 int rc_map_register(struct rc_map_list *map) 88 { 89 spin_lock(&rc_map_lock); 90 list_add_tail(&map->list, &rc_map_list); 91 spin_unlock(&rc_map_lock); 92 return 0; 93 } 94 EXPORT_SYMBOL_GPL(rc_map_register); 95 96 void rc_map_unregister(struct rc_map_list *map) 97 { 98 spin_lock(&rc_map_lock); 99 list_del(&map->list); 100 spin_unlock(&rc_map_lock); 101 } 102 EXPORT_SYMBOL_GPL(rc_map_unregister); 103 104 105 static struct rc_map_table empty[] = { 106 { 0x2a, KEY_COFFEE }, 107 }; 108 109 static struct rc_map_list empty_map = { 110 .map = { 111 .scan = empty, 112 .size = ARRAY_SIZE(empty), 113 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 114 .name = RC_MAP_EMPTY, 115 } 116 }; 117 118 /** 119 * ir_create_table() - initializes a scancode table 120 * @rc_map: the rc_map to initialize 121 * @name: name to assign to the table 122 * @rc_type: ir type to assign to the new table 123 * @size: initial size of the table 124 * @return: zero on success or a negative error code 125 * 126 * This routine will initialize the rc_map and will allocate 127 * memory to hold at least the specified number of elements. 128 */ 129 static int ir_create_table(struct rc_map *rc_map, 130 const char *name, u64 rc_type, size_t size) 131 { 132 rc_map->name = name; 133 rc_map->rc_type = rc_type; 134 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 135 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 136 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 137 if (!rc_map->scan) 138 return -ENOMEM; 139 140 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 141 rc_map->size, rc_map->alloc); 142 return 0; 143 } 144 145 /** 146 * ir_free_table() - frees memory allocated by a scancode table 147 * @rc_map: the table whose mappings need to be freed 148 * 149 * This routine will free memory alloctaed for key mappings used by given 150 * scancode table. 151 */ 152 static void ir_free_table(struct rc_map *rc_map) 153 { 154 rc_map->size = 0; 155 kfree(rc_map->scan); 156 rc_map->scan = NULL; 157 } 158 159 /** 160 * ir_resize_table() - resizes a scancode table if necessary 161 * @rc_map: the rc_map to resize 162 * @gfp_flags: gfp flags to use when allocating memory 163 * @return: zero on success or a negative error code 164 * 165 * This routine will shrink the rc_map if it has lots of 166 * unused entries and grow it if it is full. 167 */ 168 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 169 { 170 unsigned int oldalloc = rc_map->alloc; 171 unsigned int newalloc = oldalloc; 172 struct rc_map_table *oldscan = rc_map->scan; 173 struct rc_map_table *newscan; 174 175 if (rc_map->size == rc_map->len) { 176 /* All entries in use -> grow keytable */ 177 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 178 return -ENOMEM; 179 180 newalloc *= 2; 181 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 182 } 183 184 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 185 /* Less than 1/3 of entries in use -> shrink keytable */ 186 newalloc /= 2; 187 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 188 } 189 190 if (newalloc == oldalloc) 191 return 0; 192 193 newscan = kmalloc(newalloc, gfp_flags); 194 if (!newscan) { 195 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 196 return -ENOMEM; 197 } 198 199 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 200 rc_map->scan = newscan; 201 rc_map->alloc = newalloc; 202 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 203 kfree(oldscan); 204 return 0; 205 } 206 207 /** 208 * ir_update_mapping() - set a keycode in the scancode->keycode table 209 * @dev: the struct rc_dev device descriptor 210 * @rc_map: scancode table to be adjusted 211 * @index: index of the mapping that needs to be updated 212 * @keycode: the desired keycode 213 * @return: previous keycode assigned to the mapping 214 * 215 * This routine is used to update scancode->keycode mapping at given 216 * position. 217 */ 218 static unsigned int ir_update_mapping(struct rc_dev *dev, 219 struct rc_map *rc_map, 220 unsigned int index, 221 unsigned int new_keycode) 222 { 223 int old_keycode = rc_map->scan[index].keycode; 224 int i; 225 226 /* Did the user wish to remove the mapping? */ 227 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 228 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 229 index, rc_map->scan[index].scancode); 230 rc_map->len--; 231 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 232 (rc_map->len - index) * sizeof(struct rc_map_table)); 233 } else { 234 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 235 index, 236 old_keycode == KEY_RESERVED ? "New" : "Replacing", 237 rc_map->scan[index].scancode, new_keycode); 238 rc_map->scan[index].keycode = new_keycode; 239 __set_bit(new_keycode, dev->input_dev->keybit); 240 } 241 242 if (old_keycode != KEY_RESERVED) { 243 /* A previous mapping was updated... */ 244 __clear_bit(old_keycode, dev->input_dev->keybit); 245 /* ... but another scancode might use the same keycode */ 246 for (i = 0; i < rc_map->len; i++) { 247 if (rc_map->scan[i].keycode == old_keycode) { 248 __set_bit(old_keycode, dev->input_dev->keybit); 249 break; 250 } 251 } 252 253 /* Possibly shrink the keytable, failure is not a problem */ 254 ir_resize_table(rc_map, GFP_ATOMIC); 255 } 256 257 return old_keycode; 258 } 259 260 /** 261 * ir_establish_scancode() - set a keycode in the scancode->keycode table 262 * @dev: the struct rc_dev device descriptor 263 * @rc_map: scancode table to be searched 264 * @scancode: the desired scancode 265 * @resize: controls whether we allowed to resize the table to 266 * accommodate not yet present scancodes 267 * @return: index of the mapping containing scancode in question 268 * or -1U in case of failure. 269 * 270 * This routine is used to locate given scancode in rc_map. 271 * If scancode is not yet present the routine will allocate a new slot 272 * for it. 273 */ 274 static unsigned int ir_establish_scancode(struct rc_dev *dev, 275 struct rc_map *rc_map, 276 unsigned int scancode, 277 bool resize) 278 { 279 unsigned int i; 280 281 /* 282 * Unfortunately, some hardware-based IR decoders don't provide 283 * all bits for the complete IR code. In general, they provide only 284 * the command part of the IR code. Yet, as it is possible to replace 285 * the provided IR with another one, it is needed to allow loading 286 * IR tables from other remotes. So, we support specifying a mask to 287 * indicate the valid bits of the scancodes. 288 */ 289 if (dev->scancode_mask) 290 scancode &= dev->scancode_mask; 291 292 /* First check if we already have a mapping for this ir command */ 293 for (i = 0; i < rc_map->len; i++) { 294 if (rc_map->scan[i].scancode == scancode) 295 return i; 296 297 /* Keytable is sorted from lowest to highest scancode */ 298 if (rc_map->scan[i].scancode >= scancode) 299 break; 300 } 301 302 /* No previous mapping found, we might need to grow the table */ 303 if (rc_map->size == rc_map->len) { 304 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 305 return -1U; 306 } 307 308 /* i is the proper index to insert our new keycode */ 309 if (i < rc_map->len) 310 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 311 (rc_map->len - i) * sizeof(struct rc_map_table)); 312 rc_map->scan[i].scancode = scancode; 313 rc_map->scan[i].keycode = KEY_RESERVED; 314 rc_map->len++; 315 316 return i; 317 } 318 319 /** 320 * ir_setkeycode() - set a keycode in the scancode->keycode table 321 * @idev: the struct input_dev device descriptor 322 * @scancode: the desired scancode 323 * @keycode: result 324 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 325 * 326 * This routine is used to handle evdev EVIOCSKEY ioctl. 327 */ 328 static int ir_setkeycode(struct input_dev *idev, 329 const struct input_keymap_entry *ke, 330 unsigned int *old_keycode) 331 { 332 struct rc_dev *rdev = input_get_drvdata(idev); 333 struct rc_map *rc_map = &rdev->rc_map; 334 unsigned int index; 335 unsigned int scancode; 336 int retval = 0; 337 unsigned long flags; 338 339 spin_lock_irqsave(&rc_map->lock, flags); 340 341 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 342 index = ke->index; 343 if (index >= rc_map->len) { 344 retval = -EINVAL; 345 goto out; 346 } 347 } else { 348 retval = input_scancode_to_scalar(ke, &scancode); 349 if (retval) 350 goto out; 351 352 index = ir_establish_scancode(rdev, rc_map, scancode, true); 353 if (index >= rc_map->len) { 354 retval = -ENOMEM; 355 goto out; 356 } 357 } 358 359 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 360 361 out: 362 spin_unlock_irqrestore(&rc_map->lock, flags); 363 return retval; 364 } 365 366 /** 367 * ir_setkeytable() - sets several entries in the scancode->keycode table 368 * @dev: the struct rc_dev device descriptor 369 * @to: the struct rc_map to copy entries to 370 * @from: the struct rc_map to copy entries from 371 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 372 * 373 * This routine is used to handle table initialization. 374 */ 375 static int ir_setkeytable(struct rc_dev *dev, 376 const struct rc_map *from) 377 { 378 struct rc_map *rc_map = &dev->rc_map; 379 unsigned int i, index; 380 int rc; 381 382 rc = ir_create_table(rc_map, from->name, 383 from->rc_type, from->size); 384 if (rc) 385 return rc; 386 387 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 388 rc_map->size, rc_map->alloc); 389 390 for (i = 0; i < from->size; i++) { 391 index = ir_establish_scancode(dev, rc_map, 392 from->scan[i].scancode, false); 393 if (index >= rc_map->len) { 394 rc = -ENOMEM; 395 break; 396 } 397 398 ir_update_mapping(dev, rc_map, index, 399 from->scan[i].keycode); 400 } 401 402 if (rc) 403 ir_free_table(rc_map); 404 405 return rc; 406 } 407 408 /** 409 * ir_lookup_by_scancode() - locate mapping by scancode 410 * @rc_map: the struct rc_map to search 411 * @scancode: scancode to look for in the table 412 * @return: index in the table, -1U if not found 413 * 414 * This routine performs binary search in RC keykeymap table for 415 * given scancode. 416 */ 417 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 418 unsigned int scancode) 419 { 420 int start = 0; 421 int end = rc_map->len - 1; 422 int mid; 423 424 while (start <= end) { 425 mid = (start + end) / 2; 426 if (rc_map->scan[mid].scancode < scancode) 427 start = mid + 1; 428 else if (rc_map->scan[mid].scancode > scancode) 429 end = mid - 1; 430 else 431 return mid; 432 } 433 434 return -1U; 435 } 436 437 /** 438 * ir_getkeycode() - get a keycode from the scancode->keycode table 439 * @idev: the struct input_dev device descriptor 440 * @scancode: the desired scancode 441 * @keycode: used to return the keycode, if found, or KEY_RESERVED 442 * @return: always returns zero. 443 * 444 * This routine is used to handle evdev EVIOCGKEY ioctl. 445 */ 446 static int ir_getkeycode(struct input_dev *idev, 447 struct input_keymap_entry *ke) 448 { 449 struct rc_dev *rdev = input_get_drvdata(idev); 450 struct rc_map *rc_map = &rdev->rc_map; 451 struct rc_map_table *entry; 452 unsigned long flags; 453 unsigned int index; 454 unsigned int scancode; 455 int retval; 456 457 spin_lock_irqsave(&rc_map->lock, flags); 458 459 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 460 index = ke->index; 461 } else { 462 retval = input_scancode_to_scalar(ke, &scancode); 463 if (retval) 464 goto out; 465 466 index = ir_lookup_by_scancode(rc_map, scancode); 467 } 468 469 if (index < rc_map->len) { 470 entry = &rc_map->scan[index]; 471 472 ke->index = index; 473 ke->keycode = entry->keycode; 474 ke->len = sizeof(entry->scancode); 475 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 476 477 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 478 /* 479 * We do not really know the valid range of scancodes 480 * so let's respond with KEY_RESERVED to anything we 481 * do not have mapping for [yet]. 482 */ 483 ke->index = index; 484 ke->keycode = KEY_RESERVED; 485 } else { 486 retval = -EINVAL; 487 goto out; 488 } 489 490 retval = 0; 491 492 out: 493 spin_unlock_irqrestore(&rc_map->lock, flags); 494 return retval; 495 } 496 497 /** 498 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 499 * @dev: the struct rc_dev descriptor of the device 500 * @scancode: the scancode to look for 501 * @return: the corresponding keycode, or KEY_RESERVED 502 * 503 * This routine is used by drivers which need to convert a scancode to a 504 * keycode. Normally it should not be used since drivers should have no 505 * interest in keycodes. 506 */ 507 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 508 { 509 struct rc_map *rc_map = &dev->rc_map; 510 unsigned int keycode; 511 unsigned int index; 512 unsigned long flags; 513 514 spin_lock_irqsave(&rc_map->lock, flags); 515 516 index = ir_lookup_by_scancode(rc_map, scancode); 517 keycode = index < rc_map->len ? 518 rc_map->scan[index].keycode : KEY_RESERVED; 519 520 spin_unlock_irqrestore(&rc_map->lock, flags); 521 522 if (keycode != KEY_RESERVED) 523 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 524 dev->input_name, scancode, keycode); 525 526 return keycode; 527 } 528 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 529 530 /** 531 * ir_do_keyup() - internal function to signal the release of a keypress 532 * @dev: the struct rc_dev descriptor of the device 533 * @sync: whether or not to call input_sync 534 * 535 * This function is used internally to release a keypress, it must be 536 * called with keylock held. 537 */ 538 static void ir_do_keyup(struct rc_dev *dev, bool sync) 539 { 540 if (!dev->keypressed) 541 return; 542 543 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 544 input_report_key(dev->input_dev, dev->last_keycode, 0); 545 led_trigger_event(led_feedback, LED_OFF); 546 if (sync) 547 input_sync(dev->input_dev); 548 dev->keypressed = false; 549 } 550 551 /** 552 * rc_keyup() - signals the release of a keypress 553 * @dev: the struct rc_dev descriptor of the device 554 * 555 * This routine is used to signal that a key has been released on the 556 * remote control. 557 */ 558 void rc_keyup(struct rc_dev *dev) 559 { 560 unsigned long flags; 561 562 spin_lock_irqsave(&dev->keylock, flags); 563 ir_do_keyup(dev, true); 564 spin_unlock_irqrestore(&dev->keylock, flags); 565 } 566 EXPORT_SYMBOL_GPL(rc_keyup); 567 568 /** 569 * ir_timer_keyup() - generates a keyup event after a timeout 570 * @cookie: a pointer to the struct rc_dev for the device 571 * 572 * This routine will generate a keyup event some time after a keydown event 573 * is generated when no further activity has been detected. 574 */ 575 static void ir_timer_keyup(unsigned long cookie) 576 { 577 struct rc_dev *dev = (struct rc_dev *)cookie; 578 unsigned long flags; 579 580 /* 581 * ir->keyup_jiffies is used to prevent a race condition if a 582 * hardware interrupt occurs at this point and the keyup timer 583 * event is moved further into the future as a result. 584 * 585 * The timer will then be reactivated and this function called 586 * again in the future. We need to exit gracefully in that case 587 * to allow the input subsystem to do its auto-repeat magic or 588 * a keyup event might follow immediately after the keydown. 589 */ 590 spin_lock_irqsave(&dev->keylock, flags); 591 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 592 ir_do_keyup(dev, true); 593 spin_unlock_irqrestore(&dev->keylock, flags); 594 } 595 596 /** 597 * rc_repeat() - signals that a key is still pressed 598 * @dev: the struct rc_dev descriptor of the device 599 * 600 * This routine is used by IR decoders when a repeat message which does 601 * not include the necessary bits to reproduce the scancode has been 602 * received. 603 */ 604 void rc_repeat(struct rc_dev *dev) 605 { 606 unsigned long flags; 607 608 spin_lock_irqsave(&dev->keylock, flags); 609 610 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 611 input_sync(dev->input_dev); 612 613 if (!dev->keypressed) 614 goto out; 615 616 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 617 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 618 619 out: 620 spin_unlock_irqrestore(&dev->keylock, flags); 621 } 622 EXPORT_SYMBOL_GPL(rc_repeat); 623 624 /** 625 * ir_do_keydown() - internal function to process a keypress 626 * @dev: the struct rc_dev descriptor of the device 627 * @protocol: the protocol of the keypress 628 * @scancode: the scancode of the keypress 629 * @keycode: the keycode of the keypress 630 * @toggle: the toggle value of the keypress 631 * 632 * This function is used internally to register a keypress, it must be 633 * called with keylock held. 634 */ 635 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol, 636 u32 scancode, u32 keycode, u8 toggle) 637 { 638 bool new_event = (!dev->keypressed || 639 dev->last_protocol != protocol || 640 dev->last_scancode != scancode || 641 dev->last_toggle != toggle); 642 643 if (new_event && dev->keypressed) 644 ir_do_keyup(dev, false); 645 646 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 647 648 if (new_event && keycode != KEY_RESERVED) { 649 /* Register a keypress */ 650 dev->keypressed = true; 651 dev->last_protocol = protocol; 652 dev->last_scancode = scancode; 653 dev->last_toggle = toggle; 654 dev->last_keycode = keycode; 655 656 IR_dprintk(1, "%s: key down event, " 657 "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 658 dev->input_name, keycode, protocol, scancode); 659 input_report_key(dev->input_dev, keycode, 1); 660 661 led_trigger_event(led_feedback, LED_FULL); 662 } 663 664 input_sync(dev->input_dev); 665 } 666 667 /** 668 * rc_keydown() - generates input event for a key press 669 * @dev: the struct rc_dev descriptor of the device 670 * @protocol: the protocol for the keypress 671 * @scancode: the scancode for the keypress 672 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 673 * support toggle values, this should be set to zero) 674 * 675 * This routine is used to signal that a key has been pressed on the 676 * remote control. 677 */ 678 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle) 679 { 680 unsigned long flags; 681 u32 keycode = rc_g_keycode_from_table(dev, scancode); 682 683 spin_lock_irqsave(&dev->keylock, flags); 684 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 685 686 if (dev->keypressed) { 687 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 688 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 689 } 690 spin_unlock_irqrestore(&dev->keylock, flags); 691 } 692 EXPORT_SYMBOL_GPL(rc_keydown); 693 694 /** 695 * rc_keydown_notimeout() - generates input event for a key press without 696 * an automatic keyup event at a later time 697 * @dev: the struct rc_dev descriptor of the device 698 * @protocol: the protocol for the keypress 699 * @scancode: the scancode for the keypress 700 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 701 * support toggle values, this should be set to zero) 702 * 703 * This routine is used to signal that a key has been pressed on the 704 * remote control. The driver must manually call rc_keyup() at a later stage. 705 */ 706 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol, 707 u32 scancode, u8 toggle) 708 { 709 unsigned long flags; 710 u32 keycode = rc_g_keycode_from_table(dev, scancode); 711 712 spin_lock_irqsave(&dev->keylock, flags); 713 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 714 spin_unlock_irqrestore(&dev->keylock, flags); 715 } 716 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 717 718 int rc_open(struct rc_dev *rdev) 719 { 720 int rval = 0; 721 722 if (!rdev) 723 return -EINVAL; 724 725 mutex_lock(&rdev->lock); 726 if (!rdev->users++ && rdev->open != NULL) 727 rval = rdev->open(rdev); 728 729 if (rval) 730 rdev->users--; 731 732 mutex_unlock(&rdev->lock); 733 734 return rval; 735 } 736 EXPORT_SYMBOL_GPL(rc_open); 737 738 static int ir_open(struct input_dev *idev) 739 { 740 struct rc_dev *rdev = input_get_drvdata(idev); 741 742 return rc_open(rdev); 743 } 744 745 void rc_close(struct rc_dev *rdev) 746 { 747 if (rdev) { 748 mutex_lock(&rdev->lock); 749 750 if (!--rdev->users && rdev->close != NULL) 751 rdev->close(rdev); 752 753 mutex_unlock(&rdev->lock); 754 } 755 } 756 EXPORT_SYMBOL_GPL(rc_close); 757 758 static void ir_close(struct input_dev *idev) 759 { 760 struct rc_dev *rdev = input_get_drvdata(idev); 761 rc_close(rdev); 762 } 763 764 /* class for /sys/class/rc */ 765 static char *rc_devnode(struct device *dev, umode_t *mode) 766 { 767 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 768 } 769 770 static struct class rc_class = { 771 .name = "rc", 772 .devnode = rc_devnode, 773 }; 774 775 /* 776 * These are the protocol textual descriptions that are 777 * used by the sysfs protocols file. Note that the order 778 * of the entries is relevant. 779 */ 780 static const struct { 781 u64 type; 782 const char *name; 783 const char *module_name; 784 } proto_names[] = { 785 { RC_BIT_NONE, "none", NULL }, 786 { RC_BIT_OTHER, "other", NULL }, 787 { RC_BIT_UNKNOWN, "unknown", NULL }, 788 { RC_BIT_RC5 | 789 RC_BIT_RC5X, "rc-5", "ir-rc5-decoder" }, 790 { RC_BIT_NEC, "nec", "ir-nec-decoder" }, 791 { RC_BIT_RC6_0 | 792 RC_BIT_RC6_6A_20 | 793 RC_BIT_RC6_6A_24 | 794 RC_BIT_RC6_6A_32 | 795 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 796 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" }, 797 { RC_BIT_SONY12 | 798 RC_BIT_SONY15 | 799 RC_BIT_SONY20, "sony", "ir-sony-decoder" }, 800 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 801 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 802 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 803 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" }, 804 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" }, 805 }; 806 807 /** 808 * struct rc_filter_attribute - Device attribute relating to a filter type. 809 * @attr: Device attribute. 810 * @type: Filter type. 811 * @mask: false for filter value, true for filter mask. 812 */ 813 struct rc_filter_attribute { 814 struct device_attribute attr; 815 enum rc_filter_type type; 816 bool mask; 817 }; 818 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 819 820 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \ 821 struct rc_filter_attribute dev_attr_##_name = { \ 822 .attr = __ATTR(_name, _mode, _show, _store), \ 823 .type = (_type), \ 824 } 825 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 826 struct rc_filter_attribute dev_attr_##_name = { \ 827 .attr = __ATTR(_name, _mode, _show, _store), \ 828 .type = (_type), \ 829 .mask = (_mask), \ 830 } 831 832 static bool lirc_is_present(void) 833 { 834 #if defined(CONFIG_LIRC_MODULE) 835 struct module *lirc; 836 837 mutex_lock(&module_mutex); 838 lirc = find_module("lirc_dev"); 839 mutex_unlock(&module_mutex); 840 841 return lirc ? true : false; 842 #elif defined(CONFIG_LIRC) 843 return true; 844 #else 845 return false; 846 #endif 847 } 848 849 /** 850 * show_protocols() - shows the current/wakeup IR protocol(s) 851 * @device: the device descriptor 852 * @mattr: the device attribute struct 853 * @buf: a pointer to the output buffer 854 * 855 * This routine is a callback routine for input read the IR protocol type(s). 856 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols. 857 * It returns the protocol names of supported protocols. 858 * Enabled protocols are printed in brackets. 859 * 860 * dev->lock is taken to guard against races between device 861 * registration, store_protocols and show_protocols. 862 */ 863 static ssize_t show_protocols(struct device *device, 864 struct device_attribute *mattr, char *buf) 865 { 866 struct rc_dev *dev = to_rc_dev(device); 867 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 868 u64 allowed, enabled; 869 char *tmp = buf; 870 int i; 871 872 /* Device is being removed */ 873 if (!dev) 874 return -EINVAL; 875 876 mutex_lock(&dev->lock); 877 878 if (fattr->type == RC_FILTER_NORMAL) { 879 enabled = dev->enabled_protocols; 880 allowed = dev->allowed_protocols; 881 if (dev->raw && !allowed) 882 allowed = ir_raw_get_allowed_protocols(); 883 } else { 884 enabled = dev->enabled_wakeup_protocols; 885 allowed = dev->allowed_wakeup_protocols; 886 } 887 888 mutex_unlock(&dev->lock); 889 890 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 891 __func__, (long long)allowed, (long long)enabled); 892 893 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 894 if (allowed & enabled & proto_names[i].type) 895 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 896 else if (allowed & proto_names[i].type) 897 tmp += sprintf(tmp, "%s ", proto_names[i].name); 898 899 if (allowed & proto_names[i].type) 900 allowed &= ~proto_names[i].type; 901 } 902 903 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present()) 904 tmp += sprintf(tmp, "[lirc] "); 905 906 if (tmp != buf) 907 tmp--; 908 *tmp = '\n'; 909 910 return tmp + 1 - buf; 911 } 912 913 /** 914 * parse_protocol_change() - parses a protocol change request 915 * @protocols: pointer to the bitmask of current protocols 916 * @buf: pointer to the buffer with a list of changes 917 * 918 * Writing "+proto" will add a protocol to the protocol mask. 919 * Writing "-proto" will remove a protocol from protocol mask. 920 * Writing "proto" will enable only "proto". 921 * Writing "none" will disable all protocols. 922 * Returns the number of changes performed or a negative error code. 923 */ 924 static int parse_protocol_change(u64 *protocols, const char *buf) 925 { 926 const char *tmp; 927 unsigned count = 0; 928 bool enable, disable; 929 u64 mask; 930 int i; 931 932 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 933 if (!*tmp) 934 break; 935 936 if (*tmp == '+') { 937 enable = true; 938 disable = false; 939 tmp++; 940 } else if (*tmp == '-') { 941 enable = false; 942 disable = true; 943 tmp++; 944 } else { 945 enable = false; 946 disable = false; 947 } 948 949 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 950 if (!strcasecmp(tmp, proto_names[i].name)) { 951 mask = proto_names[i].type; 952 break; 953 } 954 } 955 956 if (i == ARRAY_SIZE(proto_names)) { 957 if (!strcasecmp(tmp, "lirc")) 958 mask = 0; 959 else { 960 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 961 return -EINVAL; 962 } 963 } 964 965 count++; 966 967 if (enable) 968 *protocols |= mask; 969 else if (disable) 970 *protocols &= ~mask; 971 else 972 *protocols = mask; 973 } 974 975 if (!count) { 976 IR_dprintk(1, "Protocol not specified\n"); 977 return -EINVAL; 978 } 979 980 return count; 981 } 982 983 static void ir_raw_load_modules(u64 *protocols) 984 985 { 986 u64 available; 987 int i, ret; 988 989 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 990 if (proto_names[i].type == RC_BIT_NONE || 991 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN)) 992 continue; 993 994 available = ir_raw_get_allowed_protocols(); 995 if (!(*protocols & proto_names[i].type & ~available)) 996 continue; 997 998 if (!proto_names[i].module_name) { 999 pr_err("Can't enable IR protocol %s\n", 1000 proto_names[i].name); 1001 *protocols &= ~proto_names[i].type; 1002 continue; 1003 } 1004 1005 ret = request_module("%s", proto_names[i].module_name); 1006 if (ret < 0) { 1007 pr_err("Couldn't load IR protocol module %s\n", 1008 proto_names[i].module_name); 1009 *protocols &= ~proto_names[i].type; 1010 continue; 1011 } 1012 msleep(20); 1013 available = ir_raw_get_allowed_protocols(); 1014 if (!(*protocols & proto_names[i].type & ~available)) 1015 continue; 1016 1017 pr_err("Loaded IR protocol module %s, \ 1018 but protocol %s still not available\n", 1019 proto_names[i].module_name, 1020 proto_names[i].name); 1021 *protocols &= ~proto_names[i].type; 1022 } 1023 } 1024 1025 /** 1026 * store_protocols() - changes the current/wakeup IR protocol(s) 1027 * @device: the device descriptor 1028 * @mattr: the device attribute struct 1029 * @buf: a pointer to the input buffer 1030 * @len: length of the input buffer 1031 * 1032 * This routine is for changing the IR protocol type. 1033 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1034 * See parse_protocol_change() for the valid commands. 1035 * Returns @len on success or a negative error code. 1036 * 1037 * dev->lock is taken to guard against races between device 1038 * registration, store_protocols and show_protocols. 1039 */ 1040 static ssize_t store_protocols(struct device *device, 1041 struct device_attribute *mattr, 1042 const char *buf, size_t len) 1043 { 1044 struct rc_dev *dev = to_rc_dev(device); 1045 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 1046 u64 *current_protocols; 1047 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type); 1048 struct rc_scancode_filter *filter; 1049 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1050 u64 old_protocols, new_protocols; 1051 ssize_t rc; 1052 1053 /* Device is being removed */ 1054 if (!dev) 1055 return -EINVAL; 1056 1057 if (fattr->type == RC_FILTER_NORMAL) { 1058 IR_dprintk(1, "Normal protocol change requested\n"); 1059 current_protocols = &dev->enabled_protocols; 1060 change_protocol = dev->change_protocol; 1061 filter = &dev->scancode_filter; 1062 set_filter = dev->s_filter; 1063 } else { 1064 IR_dprintk(1, "Wakeup protocol change requested\n"); 1065 current_protocols = &dev->enabled_wakeup_protocols; 1066 change_protocol = dev->change_wakeup_protocol; 1067 filter = &dev->scancode_wakeup_filter; 1068 set_filter = dev->s_wakeup_filter; 1069 } 1070 1071 if (!change_protocol) { 1072 IR_dprintk(1, "Protocol switching not supported\n"); 1073 return -EINVAL; 1074 } 1075 1076 mutex_lock(&dev->lock); 1077 1078 old_protocols = *current_protocols; 1079 new_protocols = old_protocols; 1080 rc = parse_protocol_change(&new_protocols, buf); 1081 if (rc < 0) 1082 goto out; 1083 1084 rc = change_protocol(dev, &new_protocols); 1085 if (rc < 0) { 1086 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 1087 (long long)new_protocols); 1088 goto out; 1089 } 1090 1091 if (dev->driver_type == RC_DRIVER_IR_RAW) 1092 ir_raw_load_modules(&new_protocols); 1093 1094 if (new_protocols != old_protocols) { 1095 *current_protocols = new_protocols; 1096 IR_dprintk(1, "Protocols changed to 0x%llx\n", 1097 (long long)new_protocols); 1098 } 1099 1100 /* 1101 * If a protocol change was attempted the filter may need updating, even 1102 * if the actual protocol mask hasn't changed (since the driver may have 1103 * cleared the filter). 1104 * Try setting the same filter with the new protocol (if any). 1105 * Fall back to clearing the filter. 1106 */ 1107 if (set_filter && filter->mask) { 1108 if (new_protocols) 1109 rc = set_filter(dev, filter); 1110 else 1111 rc = -1; 1112 1113 if (rc < 0) { 1114 filter->data = 0; 1115 filter->mask = 0; 1116 set_filter(dev, filter); 1117 } 1118 } 1119 1120 rc = len; 1121 1122 out: 1123 mutex_unlock(&dev->lock); 1124 return rc; 1125 } 1126 1127 /** 1128 * show_filter() - shows the current scancode filter value or mask 1129 * @device: the device descriptor 1130 * @attr: the device attribute struct 1131 * @buf: a pointer to the output buffer 1132 * 1133 * This routine is a callback routine to read a scancode filter value or mask. 1134 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1135 * It prints the current scancode filter value or mask of the appropriate filter 1136 * type in hexadecimal into @buf and returns the size of the buffer. 1137 * 1138 * Bits of the filter value corresponding to set bits in the filter mask are 1139 * compared against input scancodes and non-matching scancodes are discarded. 1140 * 1141 * dev->lock is taken to guard against races between device registration, 1142 * store_filter and show_filter. 1143 */ 1144 static ssize_t show_filter(struct device *device, 1145 struct device_attribute *attr, 1146 char *buf) 1147 { 1148 struct rc_dev *dev = to_rc_dev(device); 1149 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1150 struct rc_scancode_filter *filter; 1151 u32 val; 1152 1153 /* Device is being removed */ 1154 if (!dev) 1155 return -EINVAL; 1156 1157 if (fattr->type == RC_FILTER_NORMAL) 1158 filter = &dev->scancode_filter; 1159 else 1160 filter = &dev->scancode_wakeup_filter; 1161 1162 mutex_lock(&dev->lock); 1163 if (fattr->mask) 1164 val = filter->mask; 1165 else 1166 val = filter->data; 1167 mutex_unlock(&dev->lock); 1168 1169 return sprintf(buf, "%#x\n", val); 1170 } 1171 1172 /** 1173 * store_filter() - changes the scancode filter value 1174 * @device: the device descriptor 1175 * @attr: the device attribute struct 1176 * @buf: a pointer to the input buffer 1177 * @len: length of the input buffer 1178 * 1179 * This routine is for changing a scancode filter value or mask. 1180 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1181 * Returns -EINVAL if an invalid filter value for the current protocol was 1182 * specified or if scancode filtering is not supported by the driver, otherwise 1183 * returns @len. 1184 * 1185 * Bits of the filter value corresponding to set bits in the filter mask are 1186 * compared against input scancodes and non-matching scancodes are discarded. 1187 * 1188 * dev->lock is taken to guard against races between device registration, 1189 * store_filter and show_filter. 1190 */ 1191 static ssize_t store_filter(struct device *device, 1192 struct device_attribute *attr, 1193 const char *buf, size_t len) 1194 { 1195 struct rc_dev *dev = to_rc_dev(device); 1196 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1197 struct rc_scancode_filter new_filter, *filter; 1198 int ret; 1199 unsigned long val; 1200 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1201 u64 *enabled_protocols; 1202 1203 /* Device is being removed */ 1204 if (!dev) 1205 return -EINVAL; 1206 1207 ret = kstrtoul(buf, 0, &val); 1208 if (ret < 0) 1209 return ret; 1210 1211 if (fattr->type == RC_FILTER_NORMAL) { 1212 set_filter = dev->s_filter; 1213 enabled_protocols = &dev->enabled_protocols; 1214 filter = &dev->scancode_filter; 1215 } else { 1216 set_filter = dev->s_wakeup_filter; 1217 enabled_protocols = &dev->enabled_wakeup_protocols; 1218 filter = &dev->scancode_wakeup_filter; 1219 } 1220 1221 if (!set_filter) 1222 return -EINVAL; 1223 1224 mutex_lock(&dev->lock); 1225 1226 new_filter = *filter; 1227 if (fattr->mask) 1228 new_filter.mask = val; 1229 else 1230 new_filter.data = val; 1231 1232 if (!*enabled_protocols && val) { 1233 /* refuse to set a filter unless a protocol is enabled */ 1234 ret = -EINVAL; 1235 goto unlock; 1236 } 1237 1238 ret = set_filter(dev, &new_filter); 1239 if (ret < 0) 1240 goto unlock; 1241 1242 *filter = new_filter; 1243 1244 unlock: 1245 mutex_unlock(&dev->lock); 1246 return (ret < 0) ? ret : len; 1247 } 1248 1249 static void rc_dev_release(struct device *device) 1250 { 1251 } 1252 1253 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1254 do { \ 1255 int err = add_uevent_var(env, fmt, val); \ 1256 if (err) \ 1257 return err; \ 1258 } while (0) 1259 1260 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1261 { 1262 struct rc_dev *dev = to_rc_dev(device); 1263 1264 if (dev->rc_map.name) 1265 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1266 if (dev->driver_name) 1267 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * Static device attribute struct with the sysfs attributes for IR's 1274 */ 1275 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR, 1276 show_protocols, store_protocols, RC_FILTER_NORMAL); 1277 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR, 1278 show_protocols, store_protocols, RC_FILTER_WAKEUP); 1279 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1280 show_filter, store_filter, RC_FILTER_NORMAL, false); 1281 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1282 show_filter, store_filter, RC_FILTER_NORMAL, true); 1283 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1284 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1285 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1286 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1287 1288 static struct attribute *rc_dev_protocol_attrs[] = { 1289 &dev_attr_protocols.attr.attr, 1290 NULL, 1291 }; 1292 1293 static struct attribute_group rc_dev_protocol_attr_grp = { 1294 .attrs = rc_dev_protocol_attrs, 1295 }; 1296 1297 static struct attribute *rc_dev_wakeup_protocol_attrs[] = { 1298 &dev_attr_wakeup_protocols.attr.attr, 1299 NULL, 1300 }; 1301 1302 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = { 1303 .attrs = rc_dev_wakeup_protocol_attrs, 1304 }; 1305 1306 static struct attribute *rc_dev_filter_attrs[] = { 1307 &dev_attr_filter.attr.attr, 1308 &dev_attr_filter_mask.attr.attr, 1309 NULL, 1310 }; 1311 1312 static struct attribute_group rc_dev_filter_attr_grp = { 1313 .attrs = rc_dev_filter_attrs, 1314 }; 1315 1316 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1317 &dev_attr_wakeup_filter.attr.attr, 1318 &dev_attr_wakeup_filter_mask.attr.attr, 1319 NULL, 1320 }; 1321 1322 static struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1323 .attrs = rc_dev_wakeup_filter_attrs, 1324 }; 1325 1326 static struct device_type rc_dev_type = { 1327 .release = rc_dev_release, 1328 .uevent = rc_dev_uevent, 1329 }; 1330 1331 struct rc_dev *rc_allocate_device(void) 1332 { 1333 struct rc_dev *dev; 1334 1335 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1336 if (!dev) 1337 return NULL; 1338 1339 dev->input_dev = input_allocate_device(); 1340 if (!dev->input_dev) { 1341 kfree(dev); 1342 return NULL; 1343 } 1344 1345 dev->input_dev->getkeycode = ir_getkeycode; 1346 dev->input_dev->setkeycode = ir_setkeycode; 1347 input_set_drvdata(dev->input_dev, dev); 1348 1349 spin_lock_init(&dev->rc_map.lock); 1350 spin_lock_init(&dev->keylock); 1351 mutex_init(&dev->lock); 1352 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1353 1354 dev->dev.type = &rc_dev_type; 1355 dev->dev.class = &rc_class; 1356 device_initialize(&dev->dev); 1357 1358 __module_get(THIS_MODULE); 1359 return dev; 1360 } 1361 EXPORT_SYMBOL_GPL(rc_allocate_device); 1362 1363 void rc_free_device(struct rc_dev *dev) 1364 { 1365 if (!dev) 1366 return; 1367 1368 input_free_device(dev->input_dev); 1369 1370 put_device(&dev->dev); 1371 1372 kfree(dev); 1373 module_put(THIS_MODULE); 1374 } 1375 EXPORT_SYMBOL_GPL(rc_free_device); 1376 1377 int rc_register_device(struct rc_dev *dev) 1378 { 1379 static bool raw_init = false; /* raw decoders loaded? */ 1380 struct rc_map *rc_map; 1381 const char *path; 1382 int attr = 0; 1383 int minor; 1384 int rc; 1385 1386 if (!dev || !dev->map_name) 1387 return -EINVAL; 1388 1389 rc_map = rc_map_get(dev->map_name); 1390 if (!rc_map) 1391 rc_map = rc_map_get(RC_MAP_EMPTY); 1392 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1393 return -EINVAL; 1394 1395 set_bit(EV_KEY, dev->input_dev->evbit); 1396 set_bit(EV_REP, dev->input_dev->evbit); 1397 set_bit(EV_MSC, dev->input_dev->evbit); 1398 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1399 if (dev->open) 1400 dev->input_dev->open = ir_open; 1401 if (dev->close) 1402 dev->input_dev->close = ir_close; 1403 1404 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1405 if (minor < 0) 1406 return minor; 1407 1408 dev->minor = minor; 1409 dev_set_name(&dev->dev, "rc%u", dev->minor); 1410 dev_set_drvdata(&dev->dev, dev); 1411 1412 dev->dev.groups = dev->sysfs_groups; 1413 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp; 1414 if (dev->s_filter) 1415 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1416 if (dev->s_wakeup_filter) 1417 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1418 if (dev->change_wakeup_protocol) 1419 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp; 1420 dev->sysfs_groups[attr++] = NULL; 1421 1422 /* 1423 * Take the lock here, as the device sysfs node will appear 1424 * when device_add() is called, which may trigger an ir-keytable udev 1425 * rule, which will in turn call show_protocols and access 1426 * dev->enabled_protocols before it has been initialized. 1427 */ 1428 mutex_lock(&dev->lock); 1429 1430 rc = device_add(&dev->dev); 1431 if (rc) 1432 goto out_unlock; 1433 1434 rc = ir_setkeytable(dev, rc_map); 1435 if (rc) 1436 goto out_dev; 1437 1438 dev->input_dev->dev.parent = &dev->dev; 1439 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1440 dev->input_dev->phys = dev->input_phys; 1441 dev->input_dev->name = dev->input_name; 1442 1443 /* input_register_device can call ir_open, so unlock mutex here */ 1444 mutex_unlock(&dev->lock); 1445 1446 rc = input_register_device(dev->input_dev); 1447 1448 mutex_lock(&dev->lock); 1449 1450 if (rc) 1451 goto out_table; 1452 1453 /* 1454 * Default delay of 250ms is too short for some protocols, especially 1455 * since the timeout is currently set to 250ms. Increase it to 500ms, 1456 * to avoid wrong repetition of the keycodes. Note that this must be 1457 * set after the call to input_register_device(). 1458 */ 1459 dev->input_dev->rep[REP_DELAY] = 500; 1460 1461 /* 1462 * As a repeat event on protocols like RC-5 and NEC take as long as 1463 * 110/114ms, using 33ms as a repeat period is not the right thing 1464 * to do. 1465 */ 1466 dev->input_dev->rep[REP_PERIOD] = 125; 1467 1468 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1469 dev_info(&dev->dev, "%s as %s\n", 1470 dev->input_name ?: "Unspecified device", path ?: "N/A"); 1471 kfree(path); 1472 1473 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1474 if (!raw_init) { 1475 request_module_nowait("ir-lirc-codec"); 1476 raw_init = true; 1477 } 1478 /* calls ir_register_device so unlock mutex here*/ 1479 mutex_unlock(&dev->lock); 1480 rc = ir_raw_event_register(dev); 1481 mutex_lock(&dev->lock); 1482 if (rc < 0) 1483 goto out_input; 1484 } 1485 1486 if (dev->change_protocol) { 1487 u64 rc_type = (1ll << rc_map->rc_type); 1488 rc = dev->change_protocol(dev, &rc_type); 1489 if (rc < 0) 1490 goto out_raw; 1491 dev->enabled_protocols = rc_type; 1492 } 1493 1494 mutex_unlock(&dev->lock); 1495 1496 IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n", 1497 dev->minor, 1498 dev->driver_name ? dev->driver_name : "unknown", 1499 rc_map->name ? rc_map->name : "unknown", 1500 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1501 1502 return 0; 1503 1504 out_raw: 1505 if (dev->driver_type == RC_DRIVER_IR_RAW) 1506 ir_raw_event_unregister(dev); 1507 out_input: 1508 input_unregister_device(dev->input_dev); 1509 dev->input_dev = NULL; 1510 out_table: 1511 ir_free_table(&dev->rc_map); 1512 out_dev: 1513 device_del(&dev->dev); 1514 out_unlock: 1515 mutex_unlock(&dev->lock); 1516 ida_simple_remove(&rc_ida, minor); 1517 return rc; 1518 } 1519 EXPORT_SYMBOL_GPL(rc_register_device); 1520 1521 void rc_unregister_device(struct rc_dev *dev) 1522 { 1523 if (!dev) 1524 return; 1525 1526 del_timer_sync(&dev->timer_keyup); 1527 1528 if (dev->driver_type == RC_DRIVER_IR_RAW) 1529 ir_raw_event_unregister(dev); 1530 1531 /* Freeing the table should also call the stop callback */ 1532 ir_free_table(&dev->rc_map); 1533 IR_dprintk(1, "Freed keycode table\n"); 1534 1535 input_unregister_device(dev->input_dev); 1536 dev->input_dev = NULL; 1537 1538 device_del(&dev->dev); 1539 1540 ida_simple_remove(&rc_ida, dev->minor); 1541 1542 rc_free_device(dev); 1543 } 1544 1545 EXPORT_SYMBOL_GPL(rc_unregister_device); 1546 1547 /* 1548 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1549 */ 1550 1551 static int __init rc_core_init(void) 1552 { 1553 int rc = class_register(&rc_class); 1554 if (rc) { 1555 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1556 return rc; 1557 } 1558 1559 led_trigger_register_simple("rc-feedback", &led_feedback); 1560 rc_map_register(&empty_map); 1561 1562 return 0; 1563 } 1564 1565 static void __exit rc_core_exit(void) 1566 { 1567 class_unregister(&rc_class); 1568 led_trigger_unregister_simple(led_feedback); 1569 rc_map_unregister(&empty_map); 1570 } 1571 1572 subsys_initcall(rc_core_init); 1573 module_exit(rc_core_exit); 1574 1575 int rc_core_debug; /* ir_debug level (0,1,2) */ 1576 EXPORT_SYMBOL_GPL(rc_core_debug); 1577 module_param_named(debug, rc_core_debug, int, 0644); 1578 1579 MODULE_AUTHOR("Mauro Carvalho Chehab"); 1580 MODULE_LICENSE("GPL"); 1581