xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision a44d924c)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 114 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 114 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 125 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 100 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 110 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 110 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 110 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 125 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffffff, .repeat_period = 100 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 100 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 114 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 114 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 114 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 125 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 	[RC_PROTO_IMON] = { .name = "imon",
72 		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 };
74 
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
79 
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
82 
83 static struct rc_map_list *seek_rc_map(const char *name)
84 {
85 	struct rc_map_list *map = NULL;
86 
87 	spin_lock(&rc_map_lock);
88 	list_for_each_entry(map, &rc_map_list, list) {
89 		if (!strcmp(name, map->map.name)) {
90 			spin_unlock(&rc_map_lock);
91 			return map;
92 		}
93 	}
94 	spin_unlock(&rc_map_lock);
95 
96 	return NULL;
97 }
98 
99 struct rc_map *rc_map_get(const char *name)
100 {
101 
102 	struct rc_map_list *map;
103 
104 	map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 	if (!map) {
107 		int rc = request_module("%s", name);
108 		if (rc < 0) {
109 			pr_err("Couldn't load IR keymap %s\n", name);
110 			return NULL;
111 		}
112 		msleep(20);	/* Give some time for IR to register */
113 
114 		map = seek_rc_map(name);
115 	}
116 #endif
117 	if (!map) {
118 		pr_err("IR keymap %s not found\n", name);
119 		return NULL;
120 	}
121 
122 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
123 
124 	return &map->map;
125 }
126 EXPORT_SYMBOL_GPL(rc_map_get);
127 
128 int rc_map_register(struct rc_map_list *map)
129 {
130 	spin_lock(&rc_map_lock);
131 	list_add_tail(&map->list, &rc_map_list);
132 	spin_unlock(&rc_map_lock);
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(rc_map_register);
136 
137 void rc_map_unregister(struct rc_map_list *map)
138 {
139 	spin_lock(&rc_map_lock);
140 	list_del(&map->list);
141 	spin_unlock(&rc_map_lock);
142 }
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
144 
145 
146 static struct rc_map_table empty[] = {
147 	{ 0x2a, KEY_COFFEE },
148 };
149 
150 static struct rc_map_list empty_map = {
151 	.map = {
152 		.scan     = empty,
153 		.size     = ARRAY_SIZE(empty),
154 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
155 		.name     = RC_MAP_EMPTY,
156 	}
157 };
158 
159 /**
160  * ir_create_table() - initializes a scancode table
161  * @dev:	the rc_dev device
162  * @rc_map:	the rc_map to initialize
163  * @name:	name to assign to the table
164  * @rc_proto:	ir type to assign to the new table
165  * @size:	initial size of the table
166  *
167  * This routine will initialize the rc_map and will allocate
168  * memory to hold at least the specified number of elements.
169  *
170  * return:	zero on success or a negative error code
171  */
172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 			   const char *name, u64 rc_proto, size_t size)
174 {
175 	rc_map->name = kstrdup(name, GFP_KERNEL);
176 	if (!rc_map->name)
177 		return -ENOMEM;
178 	rc_map->rc_proto = rc_proto;
179 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 	if (!rc_map->scan) {
183 		kfree(rc_map->name);
184 		rc_map->name = NULL;
185 		return -ENOMEM;
186 	}
187 
188 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 		rc_map->size, rc_map->alloc);
190 	return 0;
191 }
192 
193 /**
194  * ir_free_table() - frees memory allocated by a scancode table
195  * @rc_map:	the table whose mappings need to be freed
196  *
197  * This routine will free memory alloctaed for key mappings used by given
198  * scancode table.
199  */
200 static void ir_free_table(struct rc_map *rc_map)
201 {
202 	rc_map->size = 0;
203 	kfree(rc_map->name);
204 	rc_map->name = NULL;
205 	kfree(rc_map->scan);
206 	rc_map->scan = NULL;
207 }
208 
209 /**
210  * ir_resize_table() - resizes a scancode table if necessary
211  * @dev:	the rc_dev device
212  * @rc_map:	the rc_map to resize
213  * @gfp_flags:	gfp flags to use when allocating memory
214  *
215  * This routine will shrink the rc_map if it has lots of
216  * unused entries and grow it if it is full.
217  *
218  * return:	zero on success or a negative error code
219  */
220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 			   gfp_t gfp_flags)
222 {
223 	unsigned int oldalloc = rc_map->alloc;
224 	unsigned int newalloc = oldalloc;
225 	struct rc_map_table *oldscan = rc_map->scan;
226 	struct rc_map_table *newscan;
227 
228 	if (rc_map->size == rc_map->len) {
229 		/* All entries in use -> grow keytable */
230 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 			return -ENOMEM;
232 
233 		newalloc *= 2;
234 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
235 	}
236 
237 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 		/* Less than 1/3 of entries in use -> shrink keytable */
239 		newalloc /= 2;
240 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
241 	}
242 
243 	if (newalloc == oldalloc)
244 		return 0;
245 
246 	newscan = kmalloc(newalloc, gfp_flags);
247 	if (!newscan)
248 		return -ENOMEM;
249 
250 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 	rc_map->scan = newscan;
252 	rc_map->alloc = newalloc;
253 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 	kfree(oldscan);
255 	return 0;
256 }
257 
258 /**
259  * ir_update_mapping() - set a keycode in the scancode->keycode table
260  * @dev:	the struct rc_dev device descriptor
261  * @rc_map:	scancode table to be adjusted
262  * @index:	index of the mapping that needs to be updated
263  * @new_keycode: the desired keycode
264  *
265  * This routine is used to update scancode->keycode mapping at given
266  * position.
267  *
268  * return:	previous keycode assigned to the mapping
269  *
270  */
271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 				      struct rc_map *rc_map,
273 				      unsigned int index,
274 				      unsigned int new_keycode)
275 {
276 	int old_keycode = rc_map->scan[index].keycode;
277 
278 	/* Did the user wish to remove the mapping? */
279 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
280 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
281 			index, rc_map->scan[index].scancode);
282 		rc_map->len--;
283 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
284 			(rc_map->len - index) * sizeof(struct rc_map_table));
285 	} else {
286 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
287 			index,
288 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
289 			rc_map->scan[index].scancode, new_keycode);
290 		rc_map->scan[index].keycode = new_keycode;
291 	}
292 
293 	if (old_keycode != KEY_RESERVED) {
294 		/* Possibly shrink the keytable, failure is not a problem */
295 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
296 	}
297 
298 	return old_keycode;
299 }
300 
301 /**
302  * ir_establish_scancode() - set a keycode in the scancode->keycode table
303  * @dev:	the struct rc_dev device descriptor
304  * @rc_map:	scancode table to be searched
305  * @scancode:	the desired scancode
306  * @resize:	controls whether we allowed to resize the table to
307  *		accommodate not yet present scancodes
308  *
309  * This routine is used to locate given scancode in rc_map.
310  * If scancode is not yet present the routine will allocate a new slot
311  * for it.
312  *
313  * return:	index of the mapping containing scancode in question
314  *		or -1U in case of failure.
315  */
316 static unsigned int ir_establish_scancode(struct rc_dev *dev,
317 					  struct rc_map *rc_map,
318 					  unsigned int scancode,
319 					  bool resize)
320 {
321 	unsigned int i;
322 
323 	/*
324 	 * Unfortunately, some hardware-based IR decoders don't provide
325 	 * all bits for the complete IR code. In general, they provide only
326 	 * the command part of the IR code. Yet, as it is possible to replace
327 	 * the provided IR with another one, it is needed to allow loading
328 	 * IR tables from other remotes. So, we support specifying a mask to
329 	 * indicate the valid bits of the scancodes.
330 	 */
331 	if (dev->scancode_mask)
332 		scancode &= dev->scancode_mask;
333 
334 	/* First check if we already have a mapping for this ir command */
335 	for (i = 0; i < rc_map->len; i++) {
336 		if (rc_map->scan[i].scancode == scancode)
337 			return i;
338 
339 		/* Keytable is sorted from lowest to highest scancode */
340 		if (rc_map->scan[i].scancode >= scancode)
341 			break;
342 	}
343 
344 	/* No previous mapping found, we might need to grow the table */
345 	if (rc_map->size == rc_map->len) {
346 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
347 			return -1U;
348 	}
349 
350 	/* i is the proper index to insert our new keycode */
351 	if (i < rc_map->len)
352 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
353 			(rc_map->len - i) * sizeof(struct rc_map_table));
354 	rc_map->scan[i].scancode = scancode;
355 	rc_map->scan[i].keycode = KEY_RESERVED;
356 	rc_map->len++;
357 
358 	return i;
359 }
360 
361 /**
362  * ir_setkeycode() - set a keycode in the scancode->keycode table
363  * @idev:	the struct input_dev device descriptor
364  * @ke:		Input keymap entry
365  * @old_keycode: result
366  *
367  * This routine is used to handle evdev EVIOCSKEY ioctl.
368  *
369  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
370  */
371 static int ir_setkeycode(struct input_dev *idev,
372 			 const struct input_keymap_entry *ke,
373 			 unsigned int *old_keycode)
374 {
375 	struct rc_dev *rdev = input_get_drvdata(idev);
376 	struct rc_map *rc_map = &rdev->rc_map;
377 	unsigned int index;
378 	unsigned int scancode;
379 	int retval = 0;
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&rc_map->lock, flags);
383 
384 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
385 		index = ke->index;
386 		if (index >= rc_map->len) {
387 			retval = -EINVAL;
388 			goto out;
389 		}
390 	} else {
391 		retval = input_scancode_to_scalar(ke, &scancode);
392 		if (retval)
393 			goto out;
394 
395 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
396 		if (index >= rc_map->len) {
397 			retval = -ENOMEM;
398 			goto out;
399 		}
400 	}
401 
402 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
403 
404 out:
405 	spin_unlock_irqrestore(&rc_map->lock, flags);
406 	return retval;
407 }
408 
409 /**
410  * ir_setkeytable() - sets several entries in the scancode->keycode table
411  * @dev:	the struct rc_dev device descriptor
412  * @from:	the struct rc_map to copy entries from
413  *
414  * This routine is used to handle table initialization.
415  *
416  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
417  */
418 static int ir_setkeytable(struct rc_dev *dev,
419 			  const struct rc_map *from)
420 {
421 	struct rc_map *rc_map = &dev->rc_map;
422 	unsigned int i, index;
423 	int rc;
424 
425 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
426 			     from->size);
427 	if (rc)
428 		return rc;
429 
430 	for (i = 0; i < from->size; i++) {
431 		index = ir_establish_scancode(dev, rc_map,
432 					      from->scan[i].scancode, false);
433 		if (index >= rc_map->len) {
434 			rc = -ENOMEM;
435 			break;
436 		}
437 
438 		ir_update_mapping(dev, rc_map, index,
439 				  from->scan[i].keycode);
440 	}
441 
442 	if (rc)
443 		ir_free_table(rc_map);
444 
445 	return rc;
446 }
447 
448 static int rc_map_cmp(const void *key, const void *elt)
449 {
450 	const unsigned int *scancode = key;
451 	const struct rc_map_table *e = elt;
452 
453 	if (*scancode < e->scancode)
454 		return -1;
455 	else if (*scancode > e->scancode)
456 		return 1;
457 	return 0;
458 }
459 
460 /**
461  * ir_lookup_by_scancode() - locate mapping by scancode
462  * @rc_map:	the struct rc_map to search
463  * @scancode:	scancode to look for in the table
464  *
465  * This routine performs binary search in RC keykeymap table for
466  * given scancode.
467  *
468  * return:	index in the table, -1U if not found
469  */
470 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
471 					  unsigned int scancode)
472 {
473 	struct rc_map_table *res;
474 
475 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
476 		      sizeof(struct rc_map_table), rc_map_cmp);
477 	if (!res)
478 		return -1U;
479 	else
480 		return res - rc_map->scan;
481 }
482 
483 /**
484  * ir_getkeycode() - get a keycode from the scancode->keycode table
485  * @idev:	the struct input_dev device descriptor
486  * @ke:		Input keymap entry
487  *
488  * This routine is used to handle evdev EVIOCGKEY ioctl.
489  *
490  * return:	always returns zero.
491  */
492 static int ir_getkeycode(struct input_dev *idev,
493 			 struct input_keymap_entry *ke)
494 {
495 	struct rc_dev *rdev = input_get_drvdata(idev);
496 	struct rc_map *rc_map = &rdev->rc_map;
497 	struct rc_map_table *entry;
498 	unsigned long flags;
499 	unsigned int index;
500 	unsigned int scancode;
501 	int retval;
502 
503 	spin_lock_irqsave(&rc_map->lock, flags);
504 
505 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
506 		index = ke->index;
507 	} else {
508 		retval = input_scancode_to_scalar(ke, &scancode);
509 		if (retval)
510 			goto out;
511 
512 		index = ir_lookup_by_scancode(rc_map, scancode);
513 	}
514 
515 	if (index < rc_map->len) {
516 		entry = &rc_map->scan[index];
517 
518 		ke->index = index;
519 		ke->keycode = entry->keycode;
520 		ke->len = sizeof(entry->scancode);
521 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
522 
523 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
524 		/*
525 		 * We do not really know the valid range of scancodes
526 		 * so let's respond with KEY_RESERVED to anything we
527 		 * do not have mapping for [yet].
528 		 */
529 		ke->index = index;
530 		ke->keycode = KEY_RESERVED;
531 	} else {
532 		retval = -EINVAL;
533 		goto out;
534 	}
535 
536 	retval = 0;
537 
538 out:
539 	spin_unlock_irqrestore(&rc_map->lock, flags);
540 	return retval;
541 }
542 
543 /**
544  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
545  * @dev:	the struct rc_dev descriptor of the device
546  * @scancode:	the scancode to look for
547  *
548  * This routine is used by drivers which need to convert a scancode to a
549  * keycode. Normally it should not be used since drivers should have no
550  * interest in keycodes.
551  *
552  * return:	the corresponding keycode, or KEY_RESERVED
553  */
554 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
555 {
556 	struct rc_map *rc_map = &dev->rc_map;
557 	unsigned int keycode;
558 	unsigned int index;
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&rc_map->lock, flags);
562 
563 	index = ir_lookup_by_scancode(rc_map, scancode);
564 	keycode = index < rc_map->len ?
565 			rc_map->scan[index].keycode : KEY_RESERVED;
566 
567 	spin_unlock_irqrestore(&rc_map->lock, flags);
568 
569 	if (keycode != KEY_RESERVED)
570 		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
571 			dev->device_name, scancode, keycode);
572 
573 	return keycode;
574 }
575 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
576 
577 /**
578  * ir_do_keyup() - internal function to signal the release of a keypress
579  * @dev:	the struct rc_dev descriptor of the device
580  * @sync:	whether or not to call input_sync
581  *
582  * This function is used internally to release a keypress, it must be
583  * called with keylock held.
584  */
585 static void ir_do_keyup(struct rc_dev *dev, bool sync)
586 {
587 	if (!dev->keypressed)
588 		return;
589 
590 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
591 	del_timer(&dev->timer_repeat);
592 	input_report_key(dev->input_dev, dev->last_keycode, 0);
593 	led_trigger_event(led_feedback, LED_OFF);
594 	if (sync)
595 		input_sync(dev->input_dev);
596 	dev->keypressed = false;
597 }
598 
599 /**
600  * rc_keyup() - signals the release of a keypress
601  * @dev:	the struct rc_dev descriptor of the device
602  *
603  * This routine is used to signal that a key has been released on the
604  * remote control.
605  */
606 void rc_keyup(struct rc_dev *dev)
607 {
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&dev->keylock, flags);
611 	ir_do_keyup(dev, true);
612 	spin_unlock_irqrestore(&dev->keylock, flags);
613 }
614 EXPORT_SYMBOL_GPL(rc_keyup);
615 
616 /**
617  * ir_timer_keyup() - generates a keyup event after a timeout
618  *
619  * @t:		a pointer to the struct timer_list
620  *
621  * This routine will generate a keyup event some time after a keydown event
622  * is generated when no further activity has been detected.
623  */
624 static void ir_timer_keyup(struct timer_list *t)
625 {
626 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
627 	unsigned long flags;
628 
629 	/*
630 	 * ir->keyup_jiffies is used to prevent a race condition if a
631 	 * hardware interrupt occurs at this point and the keyup timer
632 	 * event is moved further into the future as a result.
633 	 *
634 	 * The timer will then be reactivated and this function called
635 	 * again in the future. We need to exit gracefully in that case
636 	 * to allow the input subsystem to do its auto-repeat magic or
637 	 * a keyup event might follow immediately after the keydown.
638 	 */
639 	spin_lock_irqsave(&dev->keylock, flags);
640 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
641 		ir_do_keyup(dev, true);
642 	spin_unlock_irqrestore(&dev->keylock, flags);
643 }
644 
645 /**
646  * ir_timer_repeat() - generates a repeat event after a timeout
647  *
648  * @t:		a pointer to the struct timer_list
649  *
650  * This routine will generate a soft repeat event every REP_PERIOD
651  * milliseconds.
652  */
653 static void ir_timer_repeat(struct timer_list *t)
654 {
655 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
656 	struct input_dev *input = dev->input_dev;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&dev->keylock, flags);
660 	if (dev->keypressed) {
661 		input_event(input, EV_KEY, dev->last_keycode, 2);
662 		input_sync(input);
663 		if (input->rep[REP_PERIOD])
664 			mod_timer(&dev->timer_repeat, jiffies +
665 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
666 	}
667 	spin_unlock_irqrestore(&dev->keylock, flags);
668 }
669 
670 static unsigned int repeat_period(int protocol)
671 {
672 	if (protocol >= ARRAY_SIZE(protocols))
673 		return 100;
674 
675 	return protocols[protocol].repeat_period;
676 }
677 
678 /**
679  * rc_repeat() - signals that a key is still pressed
680  * @dev:	the struct rc_dev descriptor of the device
681  *
682  * This routine is used by IR decoders when a repeat message which does
683  * not include the necessary bits to reproduce the scancode has been
684  * received.
685  */
686 void rc_repeat(struct rc_dev *dev)
687 {
688 	unsigned long flags;
689 	unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
690 		msecs_to_jiffies(repeat_period(dev->last_protocol));
691 	struct lirc_scancode sc = {
692 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
693 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
694 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
695 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
696 	};
697 
698 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
699 		ir_lirc_scancode_event(dev, &sc);
700 
701 	spin_lock_irqsave(&dev->keylock, flags);
702 
703 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
704 	input_sync(dev->input_dev);
705 
706 	if (dev->keypressed) {
707 		dev->keyup_jiffies = jiffies + timeout;
708 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
709 	}
710 
711 	spin_unlock_irqrestore(&dev->keylock, flags);
712 }
713 EXPORT_SYMBOL_GPL(rc_repeat);
714 
715 /**
716  * ir_do_keydown() - internal function to process a keypress
717  * @dev:	the struct rc_dev descriptor of the device
718  * @protocol:	the protocol of the keypress
719  * @scancode:   the scancode of the keypress
720  * @keycode:    the keycode of the keypress
721  * @toggle:     the toggle value of the keypress
722  *
723  * This function is used internally to register a keypress, it must be
724  * called with keylock held.
725  */
726 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
727 			  u32 scancode, u32 keycode, u8 toggle)
728 {
729 	bool new_event = (!dev->keypressed		 ||
730 			  dev->last_protocol != protocol ||
731 			  dev->last_scancode != scancode ||
732 			  dev->last_toggle   != toggle);
733 	struct lirc_scancode sc = {
734 		.scancode = scancode, .rc_proto = protocol,
735 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
736 		.keycode = keycode
737 	};
738 
739 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
740 		ir_lirc_scancode_event(dev, &sc);
741 
742 	if (new_event && dev->keypressed)
743 		ir_do_keyup(dev, false);
744 
745 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
746 
747 	dev->last_protocol = protocol;
748 	dev->last_scancode = scancode;
749 	dev->last_toggle = toggle;
750 	dev->last_keycode = keycode;
751 
752 	if (new_event && keycode != KEY_RESERVED) {
753 		/* Register a keypress */
754 		dev->keypressed = true;
755 
756 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
757 			dev->device_name, keycode, protocol, scancode);
758 		input_report_key(dev->input_dev, keycode, 1);
759 
760 		led_trigger_event(led_feedback, LED_FULL);
761 	}
762 
763 	/*
764 	 * For CEC, start sending repeat messages as soon as the first
765 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
766 	 * is non-zero. Otherwise, the input layer will generate repeat
767 	 * messages.
768 	 */
769 	if (!new_event && keycode != KEY_RESERVED &&
770 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
771 	    !timer_pending(&dev->timer_repeat) &&
772 	    dev->input_dev->rep[REP_PERIOD] &&
773 	    !dev->input_dev->rep[REP_DELAY]) {
774 		input_event(dev->input_dev, EV_KEY, keycode, 2);
775 		mod_timer(&dev->timer_repeat, jiffies +
776 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
777 	}
778 
779 	input_sync(dev->input_dev);
780 }
781 
782 /**
783  * rc_keydown() - generates input event for a key press
784  * @dev:	the struct rc_dev descriptor of the device
785  * @protocol:	the protocol for the keypress
786  * @scancode:	the scancode for the keypress
787  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
788  *              support toggle values, this should be set to zero)
789  *
790  * This routine is used to signal that a key has been pressed on the
791  * remote control.
792  */
793 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
794 		u8 toggle)
795 {
796 	unsigned long flags;
797 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
798 
799 	spin_lock_irqsave(&dev->keylock, flags);
800 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
801 
802 	if (dev->keypressed) {
803 		dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
804 			msecs_to_jiffies(repeat_period(protocol));
805 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
806 	}
807 	spin_unlock_irqrestore(&dev->keylock, flags);
808 }
809 EXPORT_SYMBOL_GPL(rc_keydown);
810 
811 /**
812  * rc_keydown_notimeout() - generates input event for a key press without
813  *                          an automatic keyup event at a later time
814  * @dev:	the struct rc_dev descriptor of the device
815  * @protocol:	the protocol for the keypress
816  * @scancode:	the scancode for the keypress
817  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
818  *              support toggle values, this should be set to zero)
819  *
820  * This routine is used to signal that a key has been pressed on the
821  * remote control. The driver must manually call rc_keyup() at a later stage.
822  */
823 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
824 			  u32 scancode, u8 toggle)
825 {
826 	unsigned long flags;
827 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
828 
829 	spin_lock_irqsave(&dev->keylock, flags);
830 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
831 	spin_unlock_irqrestore(&dev->keylock, flags);
832 }
833 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
834 
835 /**
836  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
837  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
838  * @proto:	protocol
839  * @scancode:	scancode
840  */
841 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
842 {
843 	switch (proto) {
844 	/*
845 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
846 	 * 8 bits inverted, then the address would match regular nec.
847 	 */
848 	case RC_PROTO_NECX:
849 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
850 			return false;
851 		break;
852 	/*
853 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
854 	 * of the command match the upper 8 bits inverted, then it would
855 	 * be either NEC or NECX.
856 	 */
857 	case RC_PROTO_NEC32:
858 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
859 			return false;
860 		break;
861 	/*
862 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
863 	 * is regular mode-6a 32 bit
864 	 */
865 	case RC_PROTO_RC6_MCE:
866 		if ((scancode & 0xffff0000) != 0x800f0000)
867 			return false;
868 		break;
869 	case RC_PROTO_RC6_6A_32:
870 		if ((scancode & 0xffff0000) == 0x800f0000)
871 			return false;
872 		break;
873 	default:
874 		break;
875 	}
876 
877 	return true;
878 }
879 
880 /**
881  * rc_validate_filter() - checks that the scancode and mask are valid and
882  *			  provides sensible defaults
883  * @dev:	the struct rc_dev descriptor of the device
884  * @filter:	the scancode and mask
885  *
886  * return:	0 or -EINVAL if the filter is not valid
887  */
888 static int rc_validate_filter(struct rc_dev *dev,
889 			      struct rc_scancode_filter *filter)
890 {
891 	u32 mask, s = filter->data;
892 	enum rc_proto protocol = dev->wakeup_protocol;
893 
894 	if (protocol >= ARRAY_SIZE(protocols))
895 		return -EINVAL;
896 
897 	mask = protocols[protocol].scancode_bits;
898 
899 	if (!rc_validate_scancode(protocol, s))
900 		return -EINVAL;
901 
902 	filter->data &= mask;
903 	filter->mask &= mask;
904 
905 	/*
906 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
907 	 */
908 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
909 		return -EINVAL;
910 
911 	return 0;
912 }
913 
914 int rc_open(struct rc_dev *rdev)
915 {
916 	int rval = 0;
917 
918 	if (!rdev)
919 		return -EINVAL;
920 
921 	mutex_lock(&rdev->lock);
922 
923 	if (!rdev->registered) {
924 		rval = -ENODEV;
925 	} else {
926 		if (!rdev->users++ && rdev->open)
927 			rval = rdev->open(rdev);
928 
929 		if (rval)
930 			rdev->users--;
931 	}
932 
933 	mutex_unlock(&rdev->lock);
934 
935 	return rval;
936 }
937 
938 static int ir_open(struct input_dev *idev)
939 {
940 	struct rc_dev *rdev = input_get_drvdata(idev);
941 
942 	return rc_open(rdev);
943 }
944 
945 void rc_close(struct rc_dev *rdev)
946 {
947 	if (rdev) {
948 		mutex_lock(&rdev->lock);
949 
950 		if (!--rdev->users && rdev->close && rdev->registered)
951 			rdev->close(rdev);
952 
953 		mutex_unlock(&rdev->lock);
954 	}
955 }
956 
957 static void ir_close(struct input_dev *idev)
958 {
959 	struct rc_dev *rdev = input_get_drvdata(idev);
960 	rc_close(rdev);
961 }
962 
963 /* class for /sys/class/rc */
964 static char *rc_devnode(struct device *dev, umode_t *mode)
965 {
966 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
967 }
968 
969 static struct class rc_class = {
970 	.name		= "rc",
971 	.devnode	= rc_devnode,
972 };
973 
974 /*
975  * These are the protocol textual descriptions that are
976  * used by the sysfs protocols file. Note that the order
977  * of the entries is relevant.
978  */
979 static const struct {
980 	u64	type;
981 	const char	*name;
982 	const char	*module_name;
983 } proto_names[] = {
984 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
985 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
986 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
987 	{ RC_PROTO_BIT_RC5 |
988 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
989 	{ RC_PROTO_BIT_NEC |
990 	  RC_PROTO_BIT_NECX |
991 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
992 	{ RC_PROTO_BIT_RC6_0 |
993 	  RC_PROTO_BIT_RC6_6A_20 |
994 	  RC_PROTO_BIT_RC6_6A_24 |
995 	  RC_PROTO_BIT_RC6_6A_32 |
996 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
997 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
998 	{ RC_PROTO_BIT_SONY12 |
999 	  RC_PROTO_BIT_SONY15 |
1000 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1001 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1002 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1003 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1004 	{ RC_PROTO_BIT_MCIR2_KBD |
1005 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1006 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1007 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1008 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1009 };
1010 
1011 /**
1012  * struct rc_filter_attribute - Device attribute relating to a filter type.
1013  * @attr:	Device attribute.
1014  * @type:	Filter type.
1015  * @mask:	false for filter value, true for filter mask.
1016  */
1017 struct rc_filter_attribute {
1018 	struct device_attribute		attr;
1019 	enum rc_filter_type		type;
1020 	bool				mask;
1021 };
1022 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1023 
1024 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1025 	struct rc_filter_attribute dev_attr_##_name = {			\
1026 		.attr = __ATTR(_name, _mode, _show, _store),		\
1027 		.type = (_type),					\
1028 		.mask = (_mask),					\
1029 	}
1030 
1031 /**
1032  * show_protocols() - shows the current IR protocol(s)
1033  * @device:	the device descriptor
1034  * @mattr:	the device attribute struct
1035  * @buf:	a pointer to the output buffer
1036  *
1037  * This routine is a callback routine for input read the IR protocol type(s).
1038  * it is trigged by reading /sys/class/rc/rc?/protocols.
1039  * It returns the protocol names of supported protocols.
1040  * Enabled protocols are printed in brackets.
1041  *
1042  * dev->lock is taken to guard against races between
1043  * store_protocols and show_protocols.
1044  */
1045 static ssize_t show_protocols(struct device *device,
1046 			      struct device_attribute *mattr, char *buf)
1047 {
1048 	struct rc_dev *dev = to_rc_dev(device);
1049 	u64 allowed, enabled;
1050 	char *tmp = buf;
1051 	int i;
1052 
1053 	mutex_lock(&dev->lock);
1054 
1055 	enabled = dev->enabled_protocols;
1056 	allowed = dev->allowed_protocols;
1057 	if (dev->raw && !allowed)
1058 		allowed = ir_raw_get_allowed_protocols();
1059 
1060 	mutex_unlock(&dev->lock);
1061 
1062 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1063 		__func__, (long long)allowed, (long long)enabled);
1064 
1065 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1066 		if (allowed & enabled & proto_names[i].type)
1067 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1068 		else if (allowed & proto_names[i].type)
1069 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1070 
1071 		if (allowed & proto_names[i].type)
1072 			allowed &= ~proto_names[i].type;
1073 	}
1074 
1075 #ifdef CONFIG_LIRC
1076 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1077 		tmp += sprintf(tmp, "[lirc] ");
1078 #endif
1079 
1080 	if (tmp != buf)
1081 		tmp--;
1082 	*tmp = '\n';
1083 
1084 	return tmp + 1 - buf;
1085 }
1086 
1087 /**
1088  * parse_protocol_change() - parses a protocol change request
1089  * @dev:	rc_dev device
1090  * @protocols:	pointer to the bitmask of current protocols
1091  * @buf:	pointer to the buffer with a list of changes
1092  *
1093  * Writing "+proto" will add a protocol to the protocol mask.
1094  * Writing "-proto" will remove a protocol from protocol mask.
1095  * Writing "proto" will enable only "proto".
1096  * Writing "none" will disable all protocols.
1097  * Returns the number of changes performed or a negative error code.
1098  */
1099 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1100 				 const char *buf)
1101 {
1102 	const char *tmp;
1103 	unsigned count = 0;
1104 	bool enable, disable;
1105 	u64 mask;
1106 	int i;
1107 
1108 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1109 		if (!*tmp)
1110 			break;
1111 
1112 		if (*tmp == '+') {
1113 			enable = true;
1114 			disable = false;
1115 			tmp++;
1116 		} else if (*tmp == '-') {
1117 			enable = false;
1118 			disable = true;
1119 			tmp++;
1120 		} else {
1121 			enable = false;
1122 			disable = false;
1123 		}
1124 
1125 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1126 			if (!strcasecmp(tmp, proto_names[i].name)) {
1127 				mask = proto_names[i].type;
1128 				break;
1129 			}
1130 		}
1131 
1132 		if (i == ARRAY_SIZE(proto_names)) {
1133 			if (!strcasecmp(tmp, "lirc"))
1134 				mask = 0;
1135 			else {
1136 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1137 					tmp);
1138 				return -EINVAL;
1139 			}
1140 		}
1141 
1142 		count++;
1143 
1144 		if (enable)
1145 			*protocols |= mask;
1146 		else if (disable)
1147 			*protocols &= ~mask;
1148 		else
1149 			*protocols = mask;
1150 	}
1151 
1152 	if (!count) {
1153 		dev_dbg(&dev->dev, "Protocol not specified\n");
1154 		return -EINVAL;
1155 	}
1156 
1157 	return count;
1158 }
1159 
1160 void ir_raw_load_modules(u64 *protocols)
1161 {
1162 	u64 available;
1163 	int i, ret;
1164 
1165 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1166 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1167 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1168 					   RC_PROTO_BIT_UNKNOWN))
1169 			continue;
1170 
1171 		available = ir_raw_get_allowed_protocols();
1172 		if (!(*protocols & proto_names[i].type & ~available))
1173 			continue;
1174 
1175 		if (!proto_names[i].module_name) {
1176 			pr_err("Can't enable IR protocol %s\n",
1177 			       proto_names[i].name);
1178 			*protocols &= ~proto_names[i].type;
1179 			continue;
1180 		}
1181 
1182 		ret = request_module("%s", proto_names[i].module_name);
1183 		if (ret < 0) {
1184 			pr_err("Couldn't load IR protocol module %s\n",
1185 			       proto_names[i].module_name);
1186 			*protocols &= ~proto_names[i].type;
1187 			continue;
1188 		}
1189 		msleep(20);
1190 		available = ir_raw_get_allowed_protocols();
1191 		if (!(*protocols & proto_names[i].type & ~available))
1192 			continue;
1193 
1194 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1195 		       proto_names[i].module_name,
1196 		       proto_names[i].name);
1197 		*protocols &= ~proto_names[i].type;
1198 	}
1199 }
1200 
1201 /**
1202  * store_protocols() - changes the current/wakeup IR protocol(s)
1203  * @device:	the device descriptor
1204  * @mattr:	the device attribute struct
1205  * @buf:	a pointer to the input buffer
1206  * @len:	length of the input buffer
1207  *
1208  * This routine is for changing the IR protocol type.
1209  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1210  * See parse_protocol_change() for the valid commands.
1211  * Returns @len on success or a negative error code.
1212  *
1213  * dev->lock is taken to guard against races between
1214  * store_protocols and show_protocols.
1215  */
1216 static ssize_t store_protocols(struct device *device,
1217 			       struct device_attribute *mattr,
1218 			       const char *buf, size_t len)
1219 {
1220 	struct rc_dev *dev = to_rc_dev(device);
1221 	u64 *current_protocols;
1222 	struct rc_scancode_filter *filter;
1223 	u64 old_protocols, new_protocols;
1224 	ssize_t rc;
1225 
1226 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1227 	current_protocols = &dev->enabled_protocols;
1228 	filter = &dev->scancode_filter;
1229 
1230 	if (!dev->change_protocol) {
1231 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1232 		return -EINVAL;
1233 	}
1234 
1235 	mutex_lock(&dev->lock);
1236 
1237 	old_protocols = *current_protocols;
1238 	new_protocols = old_protocols;
1239 	rc = parse_protocol_change(dev, &new_protocols, buf);
1240 	if (rc < 0)
1241 		goto out;
1242 
1243 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1244 		ir_raw_load_modules(&new_protocols);
1245 
1246 	rc = dev->change_protocol(dev, &new_protocols);
1247 	if (rc < 0) {
1248 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1249 			(long long)new_protocols);
1250 		goto out;
1251 	}
1252 
1253 	if (new_protocols != old_protocols) {
1254 		*current_protocols = new_protocols;
1255 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1256 			(long long)new_protocols);
1257 	}
1258 
1259 	/*
1260 	 * If a protocol change was attempted the filter may need updating, even
1261 	 * if the actual protocol mask hasn't changed (since the driver may have
1262 	 * cleared the filter).
1263 	 * Try setting the same filter with the new protocol (if any).
1264 	 * Fall back to clearing the filter.
1265 	 */
1266 	if (dev->s_filter && filter->mask) {
1267 		if (new_protocols)
1268 			rc = dev->s_filter(dev, filter);
1269 		else
1270 			rc = -1;
1271 
1272 		if (rc < 0) {
1273 			filter->data = 0;
1274 			filter->mask = 0;
1275 			dev->s_filter(dev, filter);
1276 		}
1277 	}
1278 
1279 	rc = len;
1280 
1281 out:
1282 	mutex_unlock(&dev->lock);
1283 	return rc;
1284 }
1285 
1286 /**
1287  * show_filter() - shows the current scancode filter value or mask
1288  * @device:	the device descriptor
1289  * @attr:	the device attribute struct
1290  * @buf:	a pointer to the output buffer
1291  *
1292  * This routine is a callback routine to read a scancode filter value or mask.
1293  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1294  * It prints the current scancode filter value or mask of the appropriate filter
1295  * type in hexadecimal into @buf and returns the size of the buffer.
1296  *
1297  * Bits of the filter value corresponding to set bits in the filter mask are
1298  * compared against input scancodes and non-matching scancodes are discarded.
1299  *
1300  * dev->lock is taken to guard against races between
1301  * store_filter and show_filter.
1302  */
1303 static ssize_t show_filter(struct device *device,
1304 			   struct device_attribute *attr,
1305 			   char *buf)
1306 {
1307 	struct rc_dev *dev = to_rc_dev(device);
1308 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1309 	struct rc_scancode_filter *filter;
1310 	u32 val;
1311 
1312 	mutex_lock(&dev->lock);
1313 
1314 	if (fattr->type == RC_FILTER_NORMAL)
1315 		filter = &dev->scancode_filter;
1316 	else
1317 		filter = &dev->scancode_wakeup_filter;
1318 
1319 	if (fattr->mask)
1320 		val = filter->mask;
1321 	else
1322 		val = filter->data;
1323 	mutex_unlock(&dev->lock);
1324 
1325 	return sprintf(buf, "%#x\n", val);
1326 }
1327 
1328 /**
1329  * store_filter() - changes the scancode filter value
1330  * @device:	the device descriptor
1331  * @attr:	the device attribute struct
1332  * @buf:	a pointer to the input buffer
1333  * @len:	length of the input buffer
1334  *
1335  * This routine is for changing a scancode filter value or mask.
1336  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1337  * Returns -EINVAL if an invalid filter value for the current protocol was
1338  * specified or if scancode filtering is not supported by the driver, otherwise
1339  * returns @len.
1340  *
1341  * Bits of the filter value corresponding to set bits in the filter mask are
1342  * compared against input scancodes and non-matching scancodes are discarded.
1343  *
1344  * dev->lock is taken to guard against races between
1345  * store_filter and show_filter.
1346  */
1347 static ssize_t store_filter(struct device *device,
1348 			    struct device_attribute *attr,
1349 			    const char *buf, size_t len)
1350 {
1351 	struct rc_dev *dev = to_rc_dev(device);
1352 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1353 	struct rc_scancode_filter new_filter, *filter;
1354 	int ret;
1355 	unsigned long val;
1356 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1357 
1358 	ret = kstrtoul(buf, 0, &val);
1359 	if (ret < 0)
1360 		return ret;
1361 
1362 	if (fattr->type == RC_FILTER_NORMAL) {
1363 		set_filter = dev->s_filter;
1364 		filter = &dev->scancode_filter;
1365 	} else {
1366 		set_filter = dev->s_wakeup_filter;
1367 		filter = &dev->scancode_wakeup_filter;
1368 	}
1369 
1370 	if (!set_filter)
1371 		return -EINVAL;
1372 
1373 	mutex_lock(&dev->lock);
1374 
1375 	new_filter = *filter;
1376 	if (fattr->mask)
1377 		new_filter.mask = val;
1378 	else
1379 		new_filter.data = val;
1380 
1381 	if (fattr->type == RC_FILTER_WAKEUP) {
1382 		/*
1383 		 * Refuse to set a filter unless a protocol is enabled
1384 		 * and the filter is valid for that protocol
1385 		 */
1386 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1387 			ret = rc_validate_filter(dev, &new_filter);
1388 		else
1389 			ret = -EINVAL;
1390 
1391 		if (ret != 0)
1392 			goto unlock;
1393 	}
1394 
1395 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1396 	    val) {
1397 		/* refuse to set a filter unless a protocol is enabled */
1398 		ret = -EINVAL;
1399 		goto unlock;
1400 	}
1401 
1402 	ret = set_filter(dev, &new_filter);
1403 	if (ret < 0)
1404 		goto unlock;
1405 
1406 	*filter = new_filter;
1407 
1408 unlock:
1409 	mutex_unlock(&dev->lock);
1410 	return (ret < 0) ? ret : len;
1411 }
1412 
1413 /**
1414  * show_wakeup_protocols() - shows the wakeup IR protocol
1415  * @device:	the device descriptor
1416  * @mattr:	the device attribute struct
1417  * @buf:	a pointer to the output buffer
1418  *
1419  * This routine is a callback routine for input read the IR protocol type(s).
1420  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1421  * It returns the protocol names of supported protocols.
1422  * The enabled protocols are printed in brackets.
1423  *
1424  * dev->lock is taken to guard against races between
1425  * store_wakeup_protocols and show_wakeup_protocols.
1426  */
1427 static ssize_t show_wakeup_protocols(struct device *device,
1428 				     struct device_attribute *mattr,
1429 				     char *buf)
1430 {
1431 	struct rc_dev *dev = to_rc_dev(device);
1432 	u64 allowed;
1433 	enum rc_proto enabled;
1434 	char *tmp = buf;
1435 	int i;
1436 
1437 	mutex_lock(&dev->lock);
1438 
1439 	allowed = dev->allowed_wakeup_protocols;
1440 	enabled = dev->wakeup_protocol;
1441 
1442 	mutex_unlock(&dev->lock);
1443 
1444 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1445 		__func__, (long long)allowed, enabled);
1446 
1447 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1448 		if (allowed & (1ULL << i)) {
1449 			if (i == enabled)
1450 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1451 			else
1452 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1453 		}
1454 	}
1455 
1456 	if (tmp != buf)
1457 		tmp--;
1458 	*tmp = '\n';
1459 
1460 	return tmp + 1 - buf;
1461 }
1462 
1463 /**
1464  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1465  * @device:	the device descriptor
1466  * @mattr:	the device attribute struct
1467  * @buf:	a pointer to the input buffer
1468  * @len:	length of the input buffer
1469  *
1470  * This routine is for changing the IR protocol type.
1471  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1472  * Returns @len on success or a negative error code.
1473  *
1474  * dev->lock is taken to guard against races between
1475  * store_wakeup_protocols and show_wakeup_protocols.
1476  */
1477 static ssize_t store_wakeup_protocols(struct device *device,
1478 				      struct device_attribute *mattr,
1479 				      const char *buf, size_t len)
1480 {
1481 	struct rc_dev *dev = to_rc_dev(device);
1482 	enum rc_proto protocol;
1483 	ssize_t rc;
1484 	u64 allowed;
1485 	int i;
1486 
1487 	mutex_lock(&dev->lock);
1488 
1489 	allowed = dev->allowed_wakeup_protocols;
1490 
1491 	if (sysfs_streq(buf, "none")) {
1492 		protocol = RC_PROTO_UNKNOWN;
1493 	} else {
1494 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1495 			if ((allowed & (1ULL << i)) &&
1496 			    sysfs_streq(buf, protocols[i].name)) {
1497 				protocol = i;
1498 				break;
1499 			}
1500 		}
1501 
1502 		if (i == ARRAY_SIZE(protocols)) {
1503 			rc = -EINVAL;
1504 			goto out;
1505 		}
1506 
1507 		if (dev->encode_wakeup) {
1508 			u64 mask = 1ULL << protocol;
1509 
1510 			ir_raw_load_modules(&mask);
1511 			if (!mask) {
1512 				rc = -EINVAL;
1513 				goto out;
1514 			}
1515 		}
1516 	}
1517 
1518 	if (dev->wakeup_protocol != protocol) {
1519 		dev->wakeup_protocol = protocol;
1520 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1521 
1522 		if (protocol == RC_PROTO_RC6_MCE)
1523 			dev->scancode_wakeup_filter.data = 0x800f0000;
1524 		else
1525 			dev->scancode_wakeup_filter.data = 0;
1526 		dev->scancode_wakeup_filter.mask = 0;
1527 
1528 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1529 		if (rc == 0)
1530 			rc = len;
1531 	} else {
1532 		rc = len;
1533 	}
1534 
1535 out:
1536 	mutex_unlock(&dev->lock);
1537 	return rc;
1538 }
1539 
1540 static void rc_dev_release(struct device *device)
1541 {
1542 	struct rc_dev *dev = to_rc_dev(device);
1543 
1544 	kfree(dev);
1545 }
1546 
1547 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1548 	do {								\
1549 		int err = add_uevent_var(env, fmt, val);		\
1550 		if (err)						\
1551 			return err;					\
1552 	} while (0)
1553 
1554 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1555 {
1556 	struct rc_dev *dev = to_rc_dev(device);
1557 
1558 	if (dev->rc_map.name)
1559 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1560 	if (dev->driver_name)
1561 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1562 	if (dev->device_name)
1563 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Static device attribute struct with the sysfs attributes for IR's
1570  */
1571 static struct device_attribute dev_attr_ro_protocols =
1572 __ATTR(protocols, 0444, show_protocols, NULL);
1573 static struct device_attribute dev_attr_rw_protocols =
1574 __ATTR(protocols, 0644, show_protocols, store_protocols);
1575 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1576 		   store_wakeup_protocols);
1577 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1578 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1579 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1580 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1581 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1582 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1583 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1584 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1585 
1586 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1587 	&dev_attr_rw_protocols.attr,
1588 	NULL,
1589 };
1590 
1591 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1592 	.attrs	= rc_dev_rw_protocol_attrs,
1593 };
1594 
1595 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1596 	&dev_attr_ro_protocols.attr,
1597 	NULL,
1598 };
1599 
1600 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1601 	.attrs	= rc_dev_ro_protocol_attrs,
1602 };
1603 
1604 static struct attribute *rc_dev_filter_attrs[] = {
1605 	&dev_attr_filter.attr.attr,
1606 	&dev_attr_filter_mask.attr.attr,
1607 	NULL,
1608 };
1609 
1610 static const struct attribute_group rc_dev_filter_attr_grp = {
1611 	.attrs	= rc_dev_filter_attrs,
1612 };
1613 
1614 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1615 	&dev_attr_wakeup_filter.attr.attr,
1616 	&dev_attr_wakeup_filter_mask.attr.attr,
1617 	&dev_attr_wakeup_protocols.attr,
1618 	NULL,
1619 };
1620 
1621 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1622 	.attrs	= rc_dev_wakeup_filter_attrs,
1623 };
1624 
1625 static const struct device_type rc_dev_type = {
1626 	.release	= rc_dev_release,
1627 	.uevent		= rc_dev_uevent,
1628 };
1629 
1630 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1631 {
1632 	struct rc_dev *dev;
1633 
1634 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1635 	if (!dev)
1636 		return NULL;
1637 
1638 	if (type != RC_DRIVER_IR_RAW_TX) {
1639 		dev->input_dev = input_allocate_device();
1640 		if (!dev->input_dev) {
1641 			kfree(dev);
1642 			return NULL;
1643 		}
1644 
1645 		dev->input_dev->getkeycode = ir_getkeycode;
1646 		dev->input_dev->setkeycode = ir_setkeycode;
1647 		input_set_drvdata(dev->input_dev, dev);
1648 
1649 		dev->timeout = IR_DEFAULT_TIMEOUT;
1650 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1651 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1652 
1653 		spin_lock_init(&dev->rc_map.lock);
1654 		spin_lock_init(&dev->keylock);
1655 	}
1656 	mutex_init(&dev->lock);
1657 
1658 	dev->dev.type = &rc_dev_type;
1659 	dev->dev.class = &rc_class;
1660 	device_initialize(&dev->dev);
1661 
1662 	dev->driver_type = type;
1663 
1664 	__module_get(THIS_MODULE);
1665 	return dev;
1666 }
1667 EXPORT_SYMBOL_GPL(rc_allocate_device);
1668 
1669 void rc_free_device(struct rc_dev *dev)
1670 {
1671 	if (!dev)
1672 		return;
1673 
1674 	input_free_device(dev->input_dev);
1675 
1676 	put_device(&dev->dev);
1677 
1678 	/* kfree(dev) will be called by the callback function
1679 	   rc_dev_release() */
1680 
1681 	module_put(THIS_MODULE);
1682 }
1683 EXPORT_SYMBOL_GPL(rc_free_device);
1684 
1685 static void devm_rc_alloc_release(struct device *dev, void *res)
1686 {
1687 	rc_free_device(*(struct rc_dev **)res);
1688 }
1689 
1690 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1691 				       enum rc_driver_type type)
1692 {
1693 	struct rc_dev **dr, *rc;
1694 
1695 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1696 	if (!dr)
1697 		return NULL;
1698 
1699 	rc = rc_allocate_device(type);
1700 	if (!rc) {
1701 		devres_free(dr);
1702 		return NULL;
1703 	}
1704 
1705 	rc->dev.parent = dev;
1706 	rc->managed_alloc = true;
1707 	*dr = rc;
1708 	devres_add(dev, dr);
1709 
1710 	return rc;
1711 }
1712 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1713 
1714 static int rc_prepare_rx_device(struct rc_dev *dev)
1715 {
1716 	int rc;
1717 	struct rc_map *rc_map;
1718 	u64 rc_proto;
1719 
1720 	if (!dev->map_name)
1721 		return -EINVAL;
1722 
1723 	rc_map = rc_map_get(dev->map_name);
1724 	if (!rc_map)
1725 		rc_map = rc_map_get(RC_MAP_EMPTY);
1726 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1727 		return -EINVAL;
1728 
1729 	rc = ir_setkeytable(dev, rc_map);
1730 	if (rc)
1731 		return rc;
1732 
1733 	rc_proto = BIT_ULL(rc_map->rc_proto);
1734 
1735 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1736 		dev->enabled_protocols = dev->allowed_protocols;
1737 
1738 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1739 		ir_raw_load_modules(&rc_proto);
1740 
1741 	if (dev->change_protocol) {
1742 		rc = dev->change_protocol(dev, &rc_proto);
1743 		if (rc < 0)
1744 			goto out_table;
1745 		dev->enabled_protocols = rc_proto;
1746 	}
1747 
1748 	/* Keyboard events */
1749 	set_bit(EV_KEY, dev->input_dev->evbit);
1750 	set_bit(EV_REP, dev->input_dev->evbit);
1751 	set_bit(EV_MSC, dev->input_dev->evbit);
1752 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1753 	bitmap_fill(dev->input_dev->keybit, KEY_CNT);
1754 
1755 	/* Pointer/mouse events */
1756 	set_bit(EV_REL, dev->input_dev->evbit);
1757 	set_bit(REL_X, dev->input_dev->relbit);
1758 	set_bit(REL_Y, dev->input_dev->relbit);
1759 
1760 	if (dev->open)
1761 		dev->input_dev->open = ir_open;
1762 	if (dev->close)
1763 		dev->input_dev->close = ir_close;
1764 
1765 	dev->input_dev->dev.parent = &dev->dev;
1766 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1767 	dev->input_dev->phys = dev->input_phys;
1768 	dev->input_dev->name = dev->device_name;
1769 
1770 	return 0;
1771 
1772 out_table:
1773 	ir_free_table(&dev->rc_map);
1774 
1775 	return rc;
1776 }
1777 
1778 static int rc_setup_rx_device(struct rc_dev *dev)
1779 {
1780 	int rc;
1781 
1782 	/* rc_open will be called here */
1783 	rc = input_register_device(dev->input_dev);
1784 	if (rc)
1785 		return rc;
1786 
1787 	/*
1788 	 * Default delay of 250ms is too short for some protocols, especially
1789 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1790 	 * to avoid wrong repetition of the keycodes. Note that this must be
1791 	 * set after the call to input_register_device().
1792 	 */
1793 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1794 		dev->input_dev->rep[REP_DELAY] = 0;
1795 	else
1796 		dev->input_dev->rep[REP_DELAY] = 500;
1797 
1798 	/*
1799 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1800 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1801 	 * to do.
1802 	 */
1803 	dev->input_dev->rep[REP_PERIOD] = 125;
1804 
1805 	return 0;
1806 }
1807 
1808 static void rc_free_rx_device(struct rc_dev *dev)
1809 {
1810 	if (!dev)
1811 		return;
1812 
1813 	if (dev->input_dev) {
1814 		input_unregister_device(dev->input_dev);
1815 		dev->input_dev = NULL;
1816 	}
1817 
1818 	ir_free_table(&dev->rc_map);
1819 }
1820 
1821 int rc_register_device(struct rc_dev *dev)
1822 {
1823 	const char *path;
1824 	int attr = 0;
1825 	int minor;
1826 	int rc;
1827 
1828 	if (!dev)
1829 		return -EINVAL;
1830 
1831 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1832 	if (minor < 0)
1833 		return minor;
1834 
1835 	dev->minor = minor;
1836 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1837 	dev_set_drvdata(&dev->dev, dev);
1838 
1839 	dev->dev.groups = dev->sysfs_groups;
1840 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1841 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1842 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1843 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1844 	if (dev->s_filter)
1845 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1846 	if (dev->s_wakeup_filter)
1847 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1848 	dev->sysfs_groups[attr++] = NULL;
1849 
1850 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1851 		rc = ir_raw_event_prepare(dev);
1852 		if (rc < 0)
1853 			goto out_minor;
1854 	}
1855 
1856 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1857 		rc = rc_prepare_rx_device(dev);
1858 		if (rc)
1859 			goto out_raw;
1860 	}
1861 
1862 	rc = device_add(&dev->dev);
1863 	if (rc)
1864 		goto out_rx_free;
1865 
1866 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1867 	dev_info(&dev->dev, "%s as %s\n",
1868 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1869 	kfree(path);
1870 
1871 	dev->registered = true;
1872 
1873 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1874 		rc = rc_setup_rx_device(dev);
1875 		if (rc)
1876 			goto out_dev;
1877 	}
1878 
1879 	/* Ensure that the lirc kfifo is setup before we start the thread */
1880 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1881 		rc = ir_lirc_register(dev);
1882 		if (rc < 0)
1883 			goto out_rx;
1884 	}
1885 
1886 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1887 		rc = ir_raw_event_register(dev);
1888 		if (rc < 0)
1889 			goto out_lirc;
1890 	}
1891 
1892 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1893 		dev->driver_name ? dev->driver_name : "unknown");
1894 
1895 	return 0;
1896 
1897 out_lirc:
1898 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1899 		ir_lirc_unregister(dev);
1900 out_rx:
1901 	rc_free_rx_device(dev);
1902 out_dev:
1903 	device_del(&dev->dev);
1904 out_rx_free:
1905 	ir_free_table(&dev->rc_map);
1906 out_raw:
1907 	ir_raw_event_free(dev);
1908 out_minor:
1909 	ida_simple_remove(&rc_ida, minor);
1910 	return rc;
1911 }
1912 EXPORT_SYMBOL_GPL(rc_register_device);
1913 
1914 static void devm_rc_release(struct device *dev, void *res)
1915 {
1916 	rc_unregister_device(*(struct rc_dev **)res);
1917 }
1918 
1919 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1920 {
1921 	struct rc_dev **dr;
1922 	int ret;
1923 
1924 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1925 	if (!dr)
1926 		return -ENOMEM;
1927 
1928 	ret = rc_register_device(dev);
1929 	if (ret) {
1930 		devres_free(dr);
1931 		return ret;
1932 	}
1933 
1934 	*dr = dev;
1935 	devres_add(parent, dr);
1936 
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1940 
1941 void rc_unregister_device(struct rc_dev *dev)
1942 {
1943 	if (!dev)
1944 		return;
1945 
1946 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1947 		ir_raw_event_unregister(dev);
1948 
1949 	del_timer_sync(&dev->timer_keyup);
1950 	del_timer_sync(&dev->timer_repeat);
1951 
1952 	rc_free_rx_device(dev);
1953 
1954 	mutex_lock(&dev->lock);
1955 	if (dev->users && dev->close)
1956 		dev->close(dev);
1957 	dev->registered = false;
1958 	mutex_unlock(&dev->lock);
1959 
1960 	/*
1961 	 * lirc device should be freed with dev->registered = false, so
1962 	 * that userspace polling will get notified.
1963 	 */
1964 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1965 		ir_lirc_unregister(dev);
1966 
1967 	device_del(&dev->dev);
1968 
1969 	ida_simple_remove(&rc_ida, dev->minor);
1970 
1971 	if (!dev->managed_alloc)
1972 		rc_free_device(dev);
1973 }
1974 
1975 EXPORT_SYMBOL_GPL(rc_unregister_device);
1976 
1977 /*
1978  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1979  */
1980 
1981 static int __init rc_core_init(void)
1982 {
1983 	int rc = class_register(&rc_class);
1984 	if (rc) {
1985 		pr_err("rc_core: unable to register rc class\n");
1986 		return rc;
1987 	}
1988 
1989 	rc = lirc_dev_init();
1990 	if (rc) {
1991 		pr_err("rc_core: unable to init lirc\n");
1992 		class_unregister(&rc_class);
1993 		return 0;
1994 	}
1995 
1996 	led_trigger_register_simple("rc-feedback", &led_feedback);
1997 	rc_map_register(&empty_map);
1998 
1999 	return 0;
2000 }
2001 
2002 static void __exit rc_core_exit(void)
2003 {
2004 	lirc_dev_exit();
2005 	class_unregister(&rc_class);
2006 	led_trigger_unregister_simple(led_feedback);
2007 	rc_map_unregister(&empty_map);
2008 }
2009 
2010 subsys_initcall(rc_core_init);
2011 module_exit(rc_core_exit);
2012 
2013 MODULE_AUTHOR("Mauro Carvalho Chehab");
2014 MODULE_LICENSE("GPL v2");
2015