xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision a36954f5)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <media/rc-core.h>
18 #include <linux/atomic.h>
19 #include <linux/spinlock.h>
20 #include <linux/delay.h>
21 #include <linux/input.h>
22 #include <linux/leds.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/device.h>
26 #include <linux/module.h>
27 #include "rc-core-priv.h"
28 
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE	256
31 #define IR_TAB_MAX_SIZE	8192
32 #define RC_DEV_MAX	256
33 
34 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
35 #define IR_KEYPRESS_TIMEOUT 250
36 
37 /* Used to keep track of known keymaps */
38 static LIST_HEAD(rc_map_list);
39 static DEFINE_SPINLOCK(rc_map_lock);
40 static struct led_trigger *led_feedback;
41 
42 /* Used to keep track of rc devices */
43 static DEFINE_IDA(rc_ida);
44 
45 static struct rc_map_list *seek_rc_map(const char *name)
46 {
47 	struct rc_map_list *map = NULL;
48 
49 	spin_lock(&rc_map_lock);
50 	list_for_each_entry(map, &rc_map_list, list) {
51 		if (!strcmp(name, map->map.name)) {
52 			spin_unlock(&rc_map_lock);
53 			return map;
54 		}
55 	}
56 	spin_unlock(&rc_map_lock);
57 
58 	return NULL;
59 }
60 
61 struct rc_map *rc_map_get(const char *name)
62 {
63 
64 	struct rc_map_list *map;
65 
66 	map = seek_rc_map(name);
67 #ifdef CONFIG_MODULES
68 	if (!map) {
69 		int rc = request_module("%s", name);
70 		if (rc < 0) {
71 			pr_err("Couldn't load IR keymap %s\n", name);
72 			return NULL;
73 		}
74 		msleep(20);	/* Give some time for IR to register */
75 
76 		map = seek_rc_map(name);
77 	}
78 #endif
79 	if (!map) {
80 		pr_err("IR keymap %s not found\n", name);
81 		return NULL;
82 	}
83 
84 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
85 
86 	return &map->map;
87 }
88 EXPORT_SYMBOL_GPL(rc_map_get);
89 
90 int rc_map_register(struct rc_map_list *map)
91 {
92 	spin_lock(&rc_map_lock);
93 	list_add_tail(&map->list, &rc_map_list);
94 	spin_unlock(&rc_map_lock);
95 	return 0;
96 }
97 EXPORT_SYMBOL_GPL(rc_map_register);
98 
99 void rc_map_unregister(struct rc_map_list *map)
100 {
101 	spin_lock(&rc_map_lock);
102 	list_del(&map->list);
103 	spin_unlock(&rc_map_lock);
104 }
105 EXPORT_SYMBOL_GPL(rc_map_unregister);
106 
107 
108 static struct rc_map_table empty[] = {
109 	{ 0x2a, KEY_COFFEE },
110 };
111 
112 static struct rc_map_list empty_map = {
113 	.map = {
114 		.scan    = empty,
115 		.size    = ARRAY_SIZE(empty),
116 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
117 		.name    = RC_MAP_EMPTY,
118 	}
119 };
120 
121 /**
122  * ir_create_table() - initializes a scancode table
123  * @rc_map:	the rc_map to initialize
124  * @name:	name to assign to the table
125  * @rc_type:	ir type to assign to the new table
126  * @size:	initial size of the table
127  * @return:	zero on success or a negative error code
128  *
129  * This routine will initialize the rc_map and will allocate
130  * memory to hold at least the specified number of elements.
131  */
132 static int ir_create_table(struct rc_map *rc_map,
133 			   const char *name, u64 rc_type, size_t size)
134 {
135 	rc_map->name = kstrdup(name, GFP_KERNEL);
136 	if (!rc_map->name)
137 		return -ENOMEM;
138 	rc_map->rc_type = rc_type;
139 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
140 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
141 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
142 	if (!rc_map->scan) {
143 		kfree(rc_map->name);
144 		rc_map->name = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
149 		   rc_map->size, rc_map->alloc);
150 	return 0;
151 }
152 
153 /**
154  * ir_free_table() - frees memory allocated by a scancode table
155  * @rc_map:	the table whose mappings need to be freed
156  *
157  * This routine will free memory alloctaed for key mappings used by given
158  * scancode table.
159  */
160 static void ir_free_table(struct rc_map *rc_map)
161 {
162 	rc_map->size = 0;
163 	kfree(rc_map->name);
164 	rc_map->name = NULL;
165 	kfree(rc_map->scan);
166 	rc_map->scan = NULL;
167 }
168 
169 /**
170  * ir_resize_table() - resizes a scancode table if necessary
171  * @rc_map:	the rc_map to resize
172  * @gfp_flags:	gfp flags to use when allocating memory
173  * @return:	zero on success or a negative error code
174  *
175  * This routine will shrink the rc_map if it has lots of
176  * unused entries and grow it if it is full.
177  */
178 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
179 {
180 	unsigned int oldalloc = rc_map->alloc;
181 	unsigned int newalloc = oldalloc;
182 	struct rc_map_table *oldscan = rc_map->scan;
183 	struct rc_map_table *newscan;
184 
185 	if (rc_map->size == rc_map->len) {
186 		/* All entries in use -> grow keytable */
187 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
188 			return -ENOMEM;
189 
190 		newalloc *= 2;
191 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
192 	}
193 
194 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
195 		/* Less than 1/3 of entries in use -> shrink keytable */
196 		newalloc /= 2;
197 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
198 	}
199 
200 	if (newalloc == oldalloc)
201 		return 0;
202 
203 	newscan = kmalloc(newalloc, gfp_flags);
204 	if (!newscan) {
205 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
206 		return -ENOMEM;
207 	}
208 
209 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
210 	rc_map->scan = newscan;
211 	rc_map->alloc = newalloc;
212 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
213 	kfree(oldscan);
214 	return 0;
215 }
216 
217 /**
218  * ir_update_mapping() - set a keycode in the scancode->keycode table
219  * @dev:	the struct rc_dev device descriptor
220  * @rc_map:	scancode table to be adjusted
221  * @index:	index of the mapping that needs to be updated
222  * @keycode:	the desired keycode
223  * @return:	previous keycode assigned to the mapping
224  *
225  * This routine is used to update scancode->keycode mapping at given
226  * position.
227  */
228 static unsigned int ir_update_mapping(struct rc_dev *dev,
229 				      struct rc_map *rc_map,
230 				      unsigned int index,
231 				      unsigned int new_keycode)
232 {
233 	int old_keycode = rc_map->scan[index].keycode;
234 	int i;
235 
236 	/* Did the user wish to remove the mapping? */
237 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
238 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
239 			   index, rc_map->scan[index].scancode);
240 		rc_map->len--;
241 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
242 			(rc_map->len - index) * sizeof(struct rc_map_table));
243 	} else {
244 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
245 			   index,
246 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
247 			   rc_map->scan[index].scancode, new_keycode);
248 		rc_map->scan[index].keycode = new_keycode;
249 		__set_bit(new_keycode, dev->input_dev->keybit);
250 	}
251 
252 	if (old_keycode != KEY_RESERVED) {
253 		/* A previous mapping was updated... */
254 		__clear_bit(old_keycode, dev->input_dev->keybit);
255 		/* ... but another scancode might use the same keycode */
256 		for (i = 0; i < rc_map->len; i++) {
257 			if (rc_map->scan[i].keycode == old_keycode) {
258 				__set_bit(old_keycode, dev->input_dev->keybit);
259 				break;
260 			}
261 		}
262 
263 		/* Possibly shrink the keytable, failure is not a problem */
264 		ir_resize_table(rc_map, GFP_ATOMIC);
265 	}
266 
267 	return old_keycode;
268 }
269 
270 /**
271  * ir_establish_scancode() - set a keycode in the scancode->keycode table
272  * @dev:	the struct rc_dev device descriptor
273  * @rc_map:	scancode table to be searched
274  * @scancode:	the desired scancode
275  * @resize:	controls whether we allowed to resize the table to
276  *		accommodate not yet present scancodes
277  * @return:	index of the mapping containing scancode in question
278  *		or -1U in case of failure.
279  *
280  * This routine is used to locate given scancode in rc_map.
281  * If scancode is not yet present the routine will allocate a new slot
282  * for it.
283  */
284 static unsigned int ir_establish_scancode(struct rc_dev *dev,
285 					  struct rc_map *rc_map,
286 					  unsigned int scancode,
287 					  bool resize)
288 {
289 	unsigned int i;
290 
291 	/*
292 	 * Unfortunately, some hardware-based IR decoders don't provide
293 	 * all bits for the complete IR code. In general, they provide only
294 	 * the command part of the IR code. Yet, as it is possible to replace
295 	 * the provided IR with another one, it is needed to allow loading
296 	 * IR tables from other remotes. So, we support specifying a mask to
297 	 * indicate the valid bits of the scancodes.
298 	 */
299 	if (dev->scancode_mask)
300 		scancode &= dev->scancode_mask;
301 
302 	/* First check if we already have a mapping for this ir command */
303 	for (i = 0; i < rc_map->len; i++) {
304 		if (rc_map->scan[i].scancode == scancode)
305 			return i;
306 
307 		/* Keytable is sorted from lowest to highest scancode */
308 		if (rc_map->scan[i].scancode >= scancode)
309 			break;
310 	}
311 
312 	/* No previous mapping found, we might need to grow the table */
313 	if (rc_map->size == rc_map->len) {
314 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
315 			return -1U;
316 	}
317 
318 	/* i is the proper index to insert our new keycode */
319 	if (i < rc_map->len)
320 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
321 			(rc_map->len - i) * sizeof(struct rc_map_table));
322 	rc_map->scan[i].scancode = scancode;
323 	rc_map->scan[i].keycode = KEY_RESERVED;
324 	rc_map->len++;
325 
326 	return i;
327 }
328 
329 /**
330  * ir_setkeycode() - set a keycode in the scancode->keycode table
331  * @idev:	the struct input_dev device descriptor
332  * @scancode:	the desired scancode
333  * @keycode:	result
334  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
335  *
336  * This routine is used to handle evdev EVIOCSKEY ioctl.
337  */
338 static int ir_setkeycode(struct input_dev *idev,
339 			 const struct input_keymap_entry *ke,
340 			 unsigned int *old_keycode)
341 {
342 	struct rc_dev *rdev = input_get_drvdata(idev);
343 	struct rc_map *rc_map = &rdev->rc_map;
344 	unsigned int index;
345 	unsigned int scancode;
346 	int retval = 0;
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&rc_map->lock, flags);
350 
351 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
352 		index = ke->index;
353 		if (index >= rc_map->len) {
354 			retval = -EINVAL;
355 			goto out;
356 		}
357 	} else {
358 		retval = input_scancode_to_scalar(ke, &scancode);
359 		if (retval)
360 			goto out;
361 
362 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
363 		if (index >= rc_map->len) {
364 			retval = -ENOMEM;
365 			goto out;
366 		}
367 	}
368 
369 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
370 
371 out:
372 	spin_unlock_irqrestore(&rc_map->lock, flags);
373 	return retval;
374 }
375 
376 /**
377  * ir_setkeytable() - sets several entries in the scancode->keycode table
378  * @dev:	the struct rc_dev device descriptor
379  * @to:		the struct rc_map to copy entries to
380  * @from:	the struct rc_map to copy entries from
381  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
382  *
383  * This routine is used to handle table initialization.
384  */
385 static int ir_setkeytable(struct rc_dev *dev,
386 			  const struct rc_map *from)
387 {
388 	struct rc_map *rc_map = &dev->rc_map;
389 	unsigned int i, index;
390 	int rc;
391 
392 	rc = ir_create_table(rc_map, from->name,
393 			     from->rc_type, from->size);
394 	if (rc)
395 		return rc;
396 
397 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
398 		   rc_map->size, rc_map->alloc);
399 
400 	for (i = 0; i < from->size; i++) {
401 		index = ir_establish_scancode(dev, rc_map,
402 					      from->scan[i].scancode, false);
403 		if (index >= rc_map->len) {
404 			rc = -ENOMEM;
405 			break;
406 		}
407 
408 		ir_update_mapping(dev, rc_map, index,
409 				  from->scan[i].keycode);
410 	}
411 
412 	if (rc)
413 		ir_free_table(rc_map);
414 
415 	return rc;
416 }
417 
418 /**
419  * ir_lookup_by_scancode() - locate mapping by scancode
420  * @rc_map:	the struct rc_map to search
421  * @scancode:	scancode to look for in the table
422  * @return:	index in the table, -1U if not found
423  *
424  * This routine performs binary search in RC keykeymap table for
425  * given scancode.
426  */
427 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
428 					  unsigned int scancode)
429 {
430 	int start = 0;
431 	int end = rc_map->len - 1;
432 	int mid;
433 
434 	while (start <= end) {
435 		mid = (start + end) / 2;
436 		if (rc_map->scan[mid].scancode < scancode)
437 			start = mid + 1;
438 		else if (rc_map->scan[mid].scancode > scancode)
439 			end = mid - 1;
440 		else
441 			return mid;
442 	}
443 
444 	return -1U;
445 }
446 
447 /**
448  * ir_getkeycode() - get a keycode from the scancode->keycode table
449  * @idev:	the struct input_dev device descriptor
450  * @scancode:	the desired scancode
451  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
452  * @return:	always returns zero.
453  *
454  * This routine is used to handle evdev EVIOCGKEY ioctl.
455  */
456 static int ir_getkeycode(struct input_dev *idev,
457 			 struct input_keymap_entry *ke)
458 {
459 	struct rc_dev *rdev = input_get_drvdata(idev);
460 	struct rc_map *rc_map = &rdev->rc_map;
461 	struct rc_map_table *entry;
462 	unsigned long flags;
463 	unsigned int index;
464 	unsigned int scancode;
465 	int retval;
466 
467 	spin_lock_irqsave(&rc_map->lock, flags);
468 
469 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
470 		index = ke->index;
471 	} else {
472 		retval = input_scancode_to_scalar(ke, &scancode);
473 		if (retval)
474 			goto out;
475 
476 		index = ir_lookup_by_scancode(rc_map, scancode);
477 	}
478 
479 	if (index < rc_map->len) {
480 		entry = &rc_map->scan[index];
481 
482 		ke->index = index;
483 		ke->keycode = entry->keycode;
484 		ke->len = sizeof(entry->scancode);
485 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
486 
487 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
488 		/*
489 		 * We do not really know the valid range of scancodes
490 		 * so let's respond with KEY_RESERVED to anything we
491 		 * do not have mapping for [yet].
492 		 */
493 		ke->index = index;
494 		ke->keycode = KEY_RESERVED;
495 	} else {
496 		retval = -EINVAL;
497 		goto out;
498 	}
499 
500 	retval = 0;
501 
502 out:
503 	spin_unlock_irqrestore(&rc_map->lock, flags);
504 	return retval;
505 }
506 
507 /**
508  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
509  * @dev:	the struct rc_dev descriptor of the device
510  * @scancode:	the scancode to look for
511  * @return:	the corresponding keycode, or KEY_RESERVED
512  *
513  * This routine is used by drivers which need to convert a scancode to a
514  * keycode. Normally it should not be used since drivers should have no
515  * interest in keycodes.
516  */
517 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
518 {
519 	struct rc_map *rc_map = &dev->rc_map;
520 	unsigned int keycode;
521 	unsigned int index;
522 	unsigned long flags;
523 
524 	spin_lock_irqsave(&rc_map->lock, flags);
525 
526 	index = ir_lookup_by_scancode(rc_map, scancode);
527 	keycode = index < rc_map->len ?
528 			rc_map->scan[index].keycode : KEY_RESERVED;
529 
530 	spin_unlock_irqrestore(&rc_map->lock, flags);
531 
532 	if (keycode != KEY_RESERVED)
533 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
534 			   dev->input_name, scancode, keycode);
535 
536 	return keycode;
537 }
538 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
539 
540 /**
541  * ir_do_keyup() - internal function to signal the release of a keypress
542  * @dev:	the struct rc_dev descriptor of the device
543  * @sync:	whether or not to call input_sync
544  *
545  * This function is used internally to release a keypress, it must be
546  * called with keylock held.
547  */
548 static void ir_do_keyup(struct rc_dev *dev, bool sync)
549 {
550 	if (!dev->keypressed)
551 		return;
552 
553 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
554 	input_report_key(dev->input_dev, dev->last_keycode, 0);
555 	led_trigger_event(led_feedback, LED_OFF);
556 	if (sync)
557 		input_sync(dev->input_dev);
558 	dev->keypressed = false;
559 }
560 
561 /**
562  * rc_keyup() - signals the release of a keypress
563  * @dev:	the struct rc_dev descriptor of the device
564  *
565  * This routine is used to signal that a key has been released on the
566  * remote control.
567  */
568 void rc_keyup(struct rc_dev *dev)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&dev->keylock, flags);
573 	ir_do_keyup(dev, true);
574 	spin_unlock_irqrestore(&dev->keylock, flags);
575 }
576 EXPORT_SYMBOL_GPL(rc_keyup);
577 
578 /**
579  * ir_timer_keyup() - generates a keyup event after a timeout
580  * @cookie:	a pointer to the struct rc_dev for the device
581  *
582  * This routine will generate a keyup event some time after a keydown event
583  * is generated when no further activity has been detected.
584  */
585 static void ir_timer_keyup(unsigned long cookie)
586 {
587 	struct rc_dev *dev = (struct rc_dev *)cookie;
588 	unsigned long flags;
589 
590 	/*
591 	 * ir->keyup_jiffies is used to prevent a race condition if a
592 	 * hardware interrupt occurs at this point and the keyup timer
593 	 * event is moved further into the future as a result.
594 	 *
595 	 * The timer will then be reactivated and this function called
596 	 * again in the future. We need to exit gracefully in that case
597 	 * to allow the input subsystem to do its auto-repeat magic or
598 	 * a keyup event might follow immediately after the keydown.
599 	 */
600 	spin_lock_irqsave(&dev->keylock, flags);
601 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
602 		ir_do_keyup(dev, true);
603 	spin_unlock_irqrestore(&dev->keylock, flags);
604 }
605 
606 /**
607  * rc_repeat() - signals that a key is still pressed
608  * @dev:	the struct rc_dev descriptor of the device
609  *
610  * This routine is used by IR decoders when a repeat message which does
611  * not include the necessary bits to reproduce the scancode has been
612  * received.
613  */
614 void rc_repeat(struct rc_dev *dev)
615 {
616 	unsigned long flags;
617 
618 	spin_lock_irqsave(&dev->keylock, flags);
619 
620 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
621 	input_sync(dev->input_dev);
622 
623 	if (!dev->keypressed)
624 		goto out;
625 
626 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
627 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
628 
629 out:
630 	spin_unlock_irqrestore(&dev->keylock, flags);
631 }
632 EXPORT_SYMBOL_GPL(rc_repeat);
633 
634 /**
635  * ir_do_keydown() - internal function to process a keypress
636  * @dev:	the struct rc_dev descriptor of the device
637  * @protocol:	the protocol of the keypress
638  * @scancode:   the scancode of the keypress
639  * @keycode:    the keycode of the keypress
640  * @toggle:     the toggle value of the keypress
641  *
642  * This function is used internally to register a keypress, it must be
643  * called with keylock held.
644  */
645 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
646 			  u32 scancode, u32 keycode, u8 toggle)
647 {
648 	bool new_event = (!dev->keypressed		 ||
649 			  dev->last_protocol != protocol ||
650 			  dev->last_scancode != scancode ||
651 			  dev->last_toggle   != toggle);
652 
653 	if (new_event && dev->keypressed)
654 		ir_do_keyup(dev, false);
655 
656 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
657 
658 	if (new_event && keycode != KEY_RESERVED) {
659 		/* Register a keypress */
660 		dev->keypressed = true;
661 		dev->last_protocol = protocol;
662 		dev->last_scancode = scancode;
663 		dev->last_toggle = toggle;
664 		dev->last_keycode = keycode;
665 
666 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
667 			   dev->input_name, keycode, protocol, scancode);
668 		input_report_key(dev->input_dev, keycode, 1);
669 
670 		led_trigger_event(led_feedback, LED_FULL);
671 	}
672 
673 	input_sync(dev->input_dev);
674 }
675 
676 /**
677  * rc_keydown() - generates input event for a key press
678  * @dev:	the struct rc_dev descriptor of the device
679  * @protocol:	the protocol for the keypress
680  * @scancode:	the scancode for the keypress
681  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
682  *              support toggle values, this should be set to zero)
683  *
684  * This routine is used to signal that a key has been pressed on the
685  * remote control.
686  */
687 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
688 {
689 	unsigned long flags;
690 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
691 
692 	spin_lock_irqsave(&dev->keylock, flags);
693 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
694 
695 	if (dev->keypressed) {
696 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
697 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
698 	}
699 	spin_unlock_irqrestore(&dev->keylock, flags);
700 }
701 EXPORT_SYMBOL_GPL(rc_keydown);
702 
703 /**
704  * rc_keydown_notimeout() - generates input event for a key press without
705  *                          an automatic keyup event at a later time
706  * @dev:	the struct rc_dev descriptor of the device
707  * @protocol:	the protocol for the keypress
708  * @scancode:	the scancode for the keypress
709  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
710  *              support toggle values, this should be set to zero)
711  *
712  * This routine is used to signal that a key has been pressed on the
713  * remote control. The driver must manually call rc_keyup() at a later stage.
714  */
715 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
716 			  u32 scancode, u8 toggle)
717 {
718 	unsigned long flags;
719 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
720 
721 	spin_lock_irqsave(&dev->keylock, flags);
722 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
723 	spin_unlock_irqrestore(&dev->keylock, flags);
724 }
725 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
726 
727 /**
728  * rc_validate_filter() - checks that the scancode and mask are valid and
729  *			  provides sensible defaults
730  * @dev:	the struct rc_dev descriptor of the device
731  * @filter:	the scancode and mask
732  * @return:	0 or -EINVAL if the filter is not valid
733  */
734 static int rc_validate_filter(struct rc_dev *dev,
735 			      struct rc_scancode_filter *filter)
736 {
737 	static u32 masks[] = {
738 		[RC_TYPE_RC5] = 0x1f7f,
739 		[RC_TYPE_RC5X_20] = 0x1f7f3f,
740 		[RC_TYPE_RC5_SZ] = 0x2fff,
741 		[RC_TYPE_SONY12] = 0x1f007f,
742 		[RC_TYPE_SONY15] = 0xff007f,
743 		[RC_TYPE_SONY20] = 0x1fff7f,
744 		[RC_TYPE_JVC] = 0xffff,
745 		[RC_TYPE_NEC] = 0xffff,
746 		[RC_TYPE_NECX] = 0xffffff,
747 		[RC_TYPE_NEC32] = 0xffffffff,
748 		[RC_TYPE_SANYO] = 0x1fffff,
749 		[RC_TYPE_MCIR2_KBD] = 0xffff,
750 		[RC_TYPE_MCIR2_MSE] = 0x1fffff,
751 		[RC_TYPE_RC6_0] = 0xffff,
752 		[RC_TYPE_RC6_6A_20] = 0xfffff,
753 		[RC_TYPE_RC6_6A_24] = 0xffffff,
754 		[RC_TYPE_RC6_6A_32] = 0xffffffff,
755 		[RC_TYPE_RC6_MCE] = 0xffff7fff,
756 		[RC_TYPE_SHARP] = 0x1fff,
757 	};
758 	u32 s = filter->data;
759 	enum rc_type protocol = dev->wakeup_protocol;
760 
761 	switch (protocol) {
762 	case RC_TYPE_NECX:
763 		if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
764 			return -EINVAL;
765 		break;
766 	case RC_TYPE_NEC32:
767 		if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
768 			return -EINVAL;
769 		break;
770 	case RC_TYPE_RC6_MCE:
771 		if ((s & 0xffff0000) != 0x800f0000)
772 			return -EINVAL;
773 		break;
774 	case RC_TYPE_RC6_6A_32:
775 		if ((s & 0xffff0000) == 0x800f0000)
776 			return -EINVAL;
777 		break;
778 	default:
779 		break;
780 	}
781 
782 	filter->data &= masks[protocol];
783 	filter->mask &= masks[protocol];
784 
785 	/*
786 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
787 	 */
788 	if (dev->encode_wakeup &&
789 	    filter->mask != 0 && filter->mask != masks[protocol])
790 		return -EINVAL;
791 
792 	return 0;
793 }
794 
795 int rc_open(struct rc_dev *rdev)
796 {
797 	int rval = 0;
798 
799 	if (!rdev)
800 		return -EINVAL;
801 
802 	mutex_lock(&rdev->lock);
803 
804 	if (!rdev->users++ && rdev->open != NULL)
805 		rval = rdev->open(rdev);
806 
807 	if (rval)
808 		rdev->users--;
809 
810 	mutex_unlock(&rdev->lock);
811 
812 	return rval;
813 }
814 EXPORT_SYMBOL_GPL(rc_open);
815 
816 static int ir_open(struct input_dev *idev)
817 {
818 	struct rc_dev *rdev = input_get_drvdata(idev);
819 
820 	return rc_open(rdev);
821 }
822 
823 void rc_close(struct rc_dev *rdev)
824 {
825 	if (rdev) {
826 		mutex_lock(&rdev->lock);
827 
828 		if (!--rdev->users && rdev->close != NULL)
829 			rdev->close(rdev);
830 
831 		mutex_unlock(&rdev->lock);
832 	}
833 }
834 EXPORT_SYMBOL_GPL(rc_close);
835 
836 static void ir_close(struct input_dev *idev)
837 {
838 	struct rc_dev *rdev = input_get_drvdata(idev);
839 	rc_close(rdev);
840 }
841 
842 /* class for /sys/class/rc */
843 static char *rc_devnode(struct device *dev, umode_t *mode)
844 {
845 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
846 }
847 
848 static struct class rc_class = {
849 	.name		= "rc",
850 	.devnode	= rc_devnode,
851 };
852 
853 /*
854  * These are the protocol textual descriptions that are
855  * used by the sysfs protocols file. Note that the order
856  * of the entries is relevant.
857  */
858 static const struct {
859 	u64	type;
860 	const char	*name;
861 	const char	*module_name;
862 } proto_names[] = {
863 	{ RC_BIT_NONE,		"none",		NULL			},
864 	{ RC_BIT_OTHER,		"other",	NULL			},
865 	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
866 	{ RC_BIT_RC5 |
867 	  RC_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
868 	{ RC_BIT_NEC |
869 	  RC_BIT_NECX |
870 	  RC_BIT_NEC32,		"nec",		"ir-nec-decoder"	},
871 	{ RC_BIT_RC6_0 |
872 	  RC_BIT_RC6_6A_20 |
873 	  RC_BIT_RC6_6A_24 |
874 	  RC_BIT_RC6_6A_32 |
875 	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
876 	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
877 	{ RC_BIT_SONY12 |
878 	  RC_BIT_SONY15 |
879 	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
880 	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
881 	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
882 	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
883 	{ RC_BIT_MCIR2_KBD |
884 	  RC_BIT_MCIR2_MSE,	"mce_kbd",	"ir-mce_kbd-decoder"	},
885 	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
886 	{ RC_BIT_CEC,		"cec",		NULL			},
887 };
888 
889 /**
890  * struct rc_filter_attribute - Device attribute relating to a filter type.
891  * @attr:	Device attribute.
892  * @type:	Filter type.
893  * @mask:	false for filter value, true for filter mask.
894  */
895 struct rc_filter_attribute {
896 	struct device_attribute		attr;
897 	enum rc_filter_type		type;
898 	bool				mask;
899 };
900 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
901 
902 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
903 	struct rc_filter_attribute dev_attr_##_name = {			\
904 		.attr = __ATTR(_name, _mode, _show, _store),		\
905 		.type = (_type),					\
906 		.mask = (_mask),					\
907 	}
908 
909 static bool lirc_is_present(void)
910 {
911 #if defined(CONFIG_LIRC_MODULE)
912 	struct module *lirc;
913 
914 	mutex_lock(&module_mutex);
915 	lirc = find_module("lirc_dev");
916 	mutex_unlock(&module_mutex);
917 
918 	return lirc ? true : false;
919 #elif defined(CONFIG_LIRC)
920 	return true;
921 #else
922 	return false;
923 #endif
924 }
925 
926 /**
927  * show_protocols() - shows the current IR protocol(s)
928  * @device:	the device descriptor
929  * @mattr:	the device attribute struct
930  * @buf:	a pointer to the output buffer
931  *
932  * This routine is a callback routine for input read the IR protocol type(s).
933  * it is trigged by reading /sys/class/rc/rc?/protocols.
934  * It returns the protocol names of supported protocols.
935  * Enabled protocols are printed in brackets.
936  *
937  * dev->lock is taken to guard against races between device
938  * registration, store_protocols and show_protocols.
939  */
940 static ssize_t show_protocols(struct device *device,
941 			      struct device_attribute *mattr, char *buf)
942 {
943 	struct rc_dev *dev = to_rc_dev(device);
944 	u64 allowed, enabled;
945 	char *tmp = buf;
946 	int i;
947 
948 	/* Device is being removed */
949 	if (!dev)
950 		return -EINVAL;
951 
952 	if (!atomic_read(&dev->initialized))
953 		return -ERESTARTSYS;
954 
955 	mutex_lock(&dev->lock);
956 
957 	enabled = dev->enabled_protocols;
958 	allowed = dev->allowed_protocols;
959 	if (dev->raw && !allowed)
960 		allowed = ir_raw_get_allowed_protocols();
961 
962 	mutex_unlock(&dev->lock);
963 
964 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
965 		   __func__, (long long)allowed, (long long)enabled);
966 
967 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
968 		if (allowed & enabled & proto_names[i].type)
969 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
970 		else if (allowed & proto_names[i].type)
971 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
972 
973 		if (allowed & proto_names[i].type)
974 			allowed &= ~proto_names[i].type;
975 	}
976 
977 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
978 		tmp += sprintf(tmp, "[lirc] ");
979 
980 	if (tmp != buf)
981 		tmp--;
982 	*tmp = '\n';
983 
984 	return tmp + 1 - buf;
985 }
986 
987 /**
988  * parse_protocol_change() - parses a protocol change request
989  * @protocols:	pointer to the bitmask of current protocols
990  * @buf:	pointer to the buffer with a list of changes
991  *
992  * Writing "+proto" will add a protocol to the protocol mask.
993  * Writing "-proto" will remove a protocol from protocol mask.
994  * Writing "proto" will enable only "proto".
995  * Writing "none" will disable all protocols.
996  * Returns the number of changes performed or a negative error code.
997  */
998 static int parse_protocol_change(u64 *protocols, const char *buf)
999 {
1000 	const char *tmp;
1001 	unsigned count = 0;
1002 	bool enable, disable;
1003 	u64 mask;
1004 	int i;
1005 
1006 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1007 		if (!*tmp)
1008 			break;
1009 
1010 		if (*tmp == '+') {
1011 			enable = true;
1012 			disable = false;
1013 			tmp++;
1014 		} else if (*tmp == '-') {
1015 			enable = false;
1016 			disable = true;
1017 			tmp++;
1018 		} else {
1019 			enable = false;
1020 			disable = false;
1021 		}
1022 
1023 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1024 			if (!strcasecmp(tmp, proto_names[i].name)) {
1025 				mask = proto_names[i].type;
1026 				break;
1027 			}
1028 		}
1029 
1030 		if (i == ARRAY_SIZE(proto_names)) {
1031 			if (!strcasecmp(tmp, "lirc"))
1032 				mask = 0;
1033 			else {
1034 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1035 				return -EINVAL;
1036 			}
1037 		}
1038 
1039 		count++;
1040 
1041 		if (enable)
1042 			*protocols |= mask;
1043 		else if (disable)
1044 			*protocols &= ~mask;
1045 		else
1046 			*protocols = mask;
1047 	}
1048 
1049 	if (!count) {
1050 		IR_dprintk(1, "Protocol not specified\n");
1051 		return -EINVAL;
1052 	}
1053 
1054 	return count;
1055 }
1056 
1057 static void ir_raw_load_modules(u64 *protocols)
1058 {
1059 	u64 available;
1060 	int i, ret;
1061 
1062 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1063 		if (proto_names[i].type == RC_BIT_NONE ||
1064 		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1065 			continue;
1066 
1067 		available = ir_raw_get_allowed_protocols();
1068 		if (!(*protocols & proto_names[i].type & ~available))
1069 			continue;
1070 
1071 		if (!proto_names[i].module_name) {
1072 			pr_err("Can't enable IR protocol %s\n",
1073 			       proto_names[i].name);
1074 			*protocols &= ~proto_names[i].type;
1075 			continue;
1076 		}
1077 
1078 		ret = request_module("%s", proto_names[i].module_name);
1079 		if (ret < 0) {
1080 			pr_err("Couldn't load IR protocol module %s\n",
1081 			       proto_names[i].module_name);
1082 			*protocols &= ~proto_names[i].type;
1083 			continue;
1084 		}
1085 		msleep(20);
1086 		available = ir_raw_get_allowed_protocols();
1087 		if (!(*protocols & proto_names[i].type & ~available))
1088 			continue;
1089 
1090 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1091 		       proto_names[i].module_name,
1092 		       proto_names[i].name);
1093 		*protocols &= ~proto_names[i].type;
1094 	}
1095 }
1096 
1097 /**
1098  * store_protocols() - changes the current/wakeup IR protocol(s)
1099  * @device:	the device descriptor
1100  * @mattr:	the device attribute struct
1101  * @buf:	a pointer to the input buffer
1102  * @len:	length of the input buffer
1103  *
1104  * This routine is for changing the IR protocol type.
1105  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1106  * See parse_protocol_change() for the valid commands.
1107  * Returns @len on success or a negative error code.
1108  *
1109  * dev->lock is taken to guard against races between device
1110  * registration, store_protocols and show_protocols.
1111  */
1112 static ssize_t store_protocols(struct device *device,
1113 			       struct device_attribute *mattr,
1114 			       const char *buf, size_t len)
1115 {
1116 	struct rc_dev *dev = to_rc_dev(device);
1117 	u64 *current_protocols;
1118 	struct rc_scancode_filter *filter;
1119 	u64 old_protocols, new_protocols;
1120 	ssize_t rc;
1121 
1122 	/* Device is being removed */
1123 	if (!dev)
1124 		return -EINVAL;
1125 
1126 	if (!atomic_read(&dev->initialized))
1127 		return -ERESTARTSYS;
1128 
1129 	IR_dprintk(1, "Normal protocol change requested\n");
1130 	current_protocols = &dev->enabled_protocols;
1131 	filter = &dev->scancode_filter;
1132 
1133 	if (!dev->change_protocol) {
1134 		IR_dprintk(1, "Protocol switching not supported\n");
1135 		return -EINVAL;
1136 	}
1137 
1138 	mutex_lock(&dev->lock);
1139 
1140 	old_protocols = *current_protocols;
1141 	new_protocols = old_protocols;
1142 	rc = parse_protocol_change(&new_protocols, buf);
1143 	if (rc < 0)
1144 		goto out;
1145 
1146 	rc = dev->change_protocol(dev, &new_protocols);
1147 	if (rc < 0) {
1148 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1149 			   (long long)new_protocols);
1150 		goto out;
1151 	}
1152 
1153 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1154 		ir_raw_load_modules(&new_protocols);
1155 
1156 	if (new_protocols != old_protocols) {
1157 		*current_protocols = new_protocols;
1158 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1159 			   (long long)new_protocols);
1160 	}
1161 
1162 	/*
1163 	 * If a protocol change was attempted the filter may need updating, even
1164 	 * if the actual protocol mask hasn't changed (since the driver may have
1165 	 * cleared the filter).
1166 	 * Try setting the same filter with the new protocol (if any).
1167 	 * Fall back to clearing the filter.
1168 	 */
1169 	if (dev->s_filter && filter->mask) {
1170 		if (new_protocols)
1171 			rc = dev->s_filter(dev, filter);
1172 		else
1173 			rc = -1;
1174 
1175 		if (rc < 0) {
1176 			filter->data = 0;
1177 			filter->mask = 0;
1178 			dev->s_filter(dev, filter);
1179 		}
1180 	}
1181 
1182 	rc = len;
1183 
1184 out:
1185 	mutex_unlock(&dev->lock);
1186 	return rc;
1187 }
1188 
1189 /**
1190  * show_filter() - shows the current scancode filter value or mask
1191  * @device:	the device descriptor
1192  * @attr:	the device attribute struct
1193  * @buf:	a pointer to the output buffer
1194  *
1195  * This routine is a callback routine to read a scancode filter value or mask.
1196  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1197  * It prints the current scancode filter value or mask of the appropriate filter
1198  * type in hexadecimal into @buf and returns the size of the buffer.
1199  *
1200  * Bits of the filter value corresponding to set bits in the filter mask are
1201  * compared against input scancodes and non-matching scancodes are discarded.
1202  *
1203  * dev->lock is taken to guard against races between device registration,
1204  * store_filter and show_filter.
1205  */
1206 static ssize_t show_filter(struct device *device,
1207 			   struct device_attribute *attr,
1208 			   char *buf)
1209 {
1210 	struct rc_dev *dev = to_rc_dev(device);
1211 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1212 	struct rc_scancode_filter *filter;
1213 	u32 val;
1214 
1215 	/* Device is being removed */
1216 	if (!dev)
1217 		return -EINVAL;
1218 
1219 	if (!atomic_read(&dev->initialized))
1220 		return -ERESTARTSYS;
1221 
1222 	mutex_lock(&dev->lock);
1223 
1224 	if (fattr->type == RC_FILTER_NORMAL)
1225 		filter = &dev->scancode_filter;
1226 	else
1227 		filter = &dev->scancode_wakeup_filter;
1228 
1229 	if (fattr->mask)
1230 		val = filter->mask;
1231 	else
1232 		val = filter->data;
1233 	mutex_unlock(&dev->lock);
1234 
1235 	return sprintf(buf, "%#x\n", val);
1236 }
1237 
1238 /**
1239  * store_filter() - changes the scancode filter value
1240  * @device:	the device descriptor
1241  * @attr:	the device attribute struct
1242  * @buf:	a pointer to the input buffer
1243  * @len:	length of the input buffer
1244  *
1245  * This routine is for changing a scancode filter value or mask.
1246  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1247  * Returns -EINVAL if an invalid filter value for the current protocol was
1248  * specified or if scancode filtering is not supported by the driver, otherwise
1249  * returns @len.
1250  *
1251  * Bits of the filter value corresponding to set bits in the filter mask are
1252  * compared against input scancodes and non-matching scancodes are discarded.
1253  *
1254  * dev->lock is taken to guard against races between device registration,
1255  * store_filter and show_filter.
1256  */
1257 static ssize_t store_filter(struct device *device,
1258 			    struct device_attribute *attr,
1259 			    const char *buf, size_t len)
1260 {
1261 	struct rc_dev *dev = to_rc_dev(device);
1262 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1263 	struct rc_scancode_filter new_filter, *filter;
1264 	int ret;
1265 	unsigned long val;
1266 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1267 
1268 	/* Device is being removed */
1269 	if (!dev)
1270 		return -EINVAL;
1271 
1272 	if (!atomic_read(&dev->initialized))
1273 		return -ERESTARTSYS;
1274 
1275 	ret = kstrtoul(buf, 0, &val);
1276 	if (ret < 0)
1277 		return ret;
1278 
1279 	if (fattr->type == RC_FILTER_NORMAL) {
1280 		set_filter = dev->s_filter;
1281 		filter = &dev->scancode_filter;
1282 	} else {
1283 		set_filter = dev->s_wakeup_filter;
1284 		filter = &dev->scancode_wakeup_filter;
1285 	}
1286 
1287 	if (!set_filter)
1288 		return -EINVAL;
1289 
1290 	mutex_lock(&dev->lock);
1291 
1292 	new_filter = *filter;
1293 	if (fattr->mask)
1294 		new_filter.mask = val;
1295 	else
1296 		new_filter.data = val;
1297 
1298 	if (fattr->type == RC_FILTER_WAKEUP) {
1299 		/*
1300 		 * Refuse to set a filter unless a protocol is enabled
1301 		 * and the filter is valid for that protocol
1302 		 */
1303 		if (dev->wakeup_protocol != RC_TYPE_UNKNOWN)
1304 			ret = rc_validate_filter(dev, &new_filter);
1305 		else
1306 			ret = -EINVAL;
1307 
1308 		if (ret != 0)
1309 			goto unlock;
1310 	}
1311 
1312 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1313 	    val) {
1314 		/* refuse to set a filter unless a protocol is enabled */
1315 		ret = -EINVAL;
1316 		goto unlock;
1317 	}
1318 
1319 	ret = set_filter(dev, &new_filter);
1320 	if (ret < 0)
1321 		goto unlock;
1322 
1323 	*filter = new_filter;
1324 
1325 unlock:
1326 	mutex_unlock(&dev->lock);
1327 	return (ret < 0) ? ret : len;
1328 }
1329 
1330 /*
1331  * This is the list of all variants of all protocols, which is used by
1332  * the wakeup_protocols sysfs entry. In the protocols sysfs entry some
1333  * some protocols are grouped together (e.g. nec = nec + necx + nec32).
1334  *
1335  * For wakeup we need to know the exact protocol variant so the hardware
1336  * can be programmed exactly what to expect.
1337  */
1338 static const char * const proto_variant_names[] = {
1339 	[RC_TYPE_UNKNOWN] = "unknown",
1340 	[RC_TYPE_OTHER] = "other",
1341 	[RC_TYPE_RC5] = "rc-5",
1342 	[RC_TYPE_RC5X_20] = "rc-5x-20",
1343 	[RC_TYPE_RC5_SZ] = "rc-5-sz",
1344 	[RC_TYPE_JVC] = "jvc",
1345 	[RC_TYPE_SONY12] = "sony-12",
1346 	[RC_TYPE_SONY15] = "sony-15",
1347 	[RC_TYPE_SONY20] = "sony-20",
1348 	[RC_TYPE_NEC] = "nec",
1349 	[RC_TYPE_NECX] = "nec-x",
1350 	[RC_TYPE_NEC32] = "nec-32",
1351 	[RC_TYPE_SANYO] = "sanyo",
1352 	[RC_TYPE_MCIR2_KBD] = "mcir2-kbd",
1353 	[RC_TYPE_MCIR2_MSE] = "mcir2-mse",
1354 	[RC_TYPE_RC6_0] = "rc-6-0",
1355 	[RC_TYPE_RC6_6A_20] = "rc-6-6a-20",
1356 	[RC_TYPE_RC6_6A_24] = "rc-6-6a-24",
1357 	[RC_TYPE_RC6_6A_32] = "rc-6-6a-32",
1358 	[RC_TYPE_RC6_MCE] = "rc-6-mce",
1359 	[RC_TYPE_SHARP] = "sharp",
1360 	[RC_TYPE_XMP] = "xmp",
1361 	[RC_TYPE_CEC] = "cec",
1362 };
1363 
1364 /**
1365  * show_wakeup_protocols() - shows the wakeup IR protocol
1366  * @device:	the device descriptor
1367  * @mattr:	the device attribute struct
1368  * @buf:	a pointer to the output buffer
1369  *
1370  * This routine is a callback routine for input read the IR protocol type(s).
1371  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1372  * It returns the protocol names of supported protocols.
1373  * The enabled protocols are printed in brackets.
1374  *
1375  * dev->lock is taken to guard against races between device
1376  * registration, store_protocols and show_protocols.
1377  */
1378 static ssize_t show_wakeup_protocols(struct device *device,
1379 				     struct device_attribute *mattr,
1380 				     char *buf)
1381 {
1382 	struct rc_dev *dev = to_rc_dev(device);
1383 	u64 allowed;
1384 	enum rc_type enabled;
1385 	char *tmp = buf;
1386 	int i;
1387 
1388 	/* Device is being removed */
1389 	if (!dev)
1390 		return -EINVAL;
1391 
1392 	if (!atomic_read(&dev->initialized))
1393 		return -ERESTARTSYS;
1394 
1395 	mutex_lock(&dev->lock);
1396 
1397 	allowed = dev->allowed_wakeup_protocols;
1398 	enabled = dev->wakeup_protocol;
1399 
1400 	mutex_unlock(&dev->lock);
1401 
1402 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1403 		   __func__, (long long)allowed, enabled);
1404 
1405 	for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1406 		if (allowed & (1ULL << i)) {
1407 			if (i == enabled)
1408 				tmp += sprintf(tmp, "[%s] ",
1409 						proto_variant_names[i]);
1410 			else
1411 				tmp += sprintf(tmp, "%s ",
1412 						proto_variant_names[i]);
1413 		}
1414 	}
1415 
1416 	if (tmp != buf)
1417 		tmp--;
1418 	*tmp = '\n';
1419 
1420 	return tmp + 1 - buf;
1421 }
1422 
1423 /**
1424  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1425  * @device:	the device descriptor
1426  * @mattr:	the device attribute struct
1427  * @buf:	a pointer to the input buffer
1428  * @len:	length of the input buffer
1429  *
1430  * This routine is for changing the IR protocol type.
1431  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1432  * Returns @len on success or a negative error code.
1433  *
1434  * dev->lock is taken to guard against races between device
1435  * registration, store_protocols and show_protocols.
1436  */
1437 static ssize_t store_wakeup_protocols(struct device *device,
1438 				      struct device_attribute *mattr,
1439 				      const char *buf, size_t len)
1440 {
1441 	struct rc_dev *dev = to_rc_dev(device);
1442 	enum rc_type protocol;
1443 	ssize_t rc;
1444 	u64 allowed;
1445 	int i;
1446 
1447 	/* Device is being removed */
1448 	if (!dev)
1449 		return -EINVAL;
1450 
1451 	if (!atomic_read(&dev->initialized))
1452 		return -ERESTARTSYS;
1453 
1454 	mutex_lock(&dev->lock);
1455 
1456 	allowed = dev->allowed_wakeup_protocols;
1457 
1458 	if (sysfs_streq(buf, "none")) {
1459 		protocol = RC_TYPE_UNKNOWN;
1460 	} else {
1461 		for (i = 0; i < ARRAY_SIZE(proto_variant_names); i++) {
1462 			if ((allowed & (1ULL << i)) &&
1463 			    sysfs_streq(buf, proto_variant_names[i])) {
1464 				protocol = i;
1465 				break;
1466 			}
1467 		}
1468 
1469 		if (i == ARRAY_SIZE(proto_variant_names)) {
1470 			rc = -EINVAL;
1471 			goto out;
1472 		}
1473 
1474 		if (dev->encode_wakeup) {
1475 			u64 mask = 1ULL << protocol;
1476 
1477 			ir_raw_load_modules(&mask);
1478 			if (!mask) {
1479 				rc = -EINVAL;
1480 				goto out;
1481 			}
1482 		}
1483 	}
1484 
1485 	if (dev->wakeup_protocol != protocol) {
1486 		dev->wakeup_protocol = protocol;
1487 		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1488 
1489 		if (protocol == RC_TYPE_RC6_MCE)
1490 			dev->scancode_wakeup_filter.data = 0x800f0000;
1491 		else
1492 			dev->scancode_wakeup_filter.data = 0;
1493 		dev->scancode_wakeup_filter.mask = 0;
1494 
1495 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1496 		if (rc == 0)
1497 			rc = len;
1498 	} else {
1499 		rc = len;
1500 	}
1501 
1502 out:
1503 	mutex_unlock(&dev->lock);
1504 	return rc;
1505 }
1506 
1507 static void rc_dev_release(struct device *device)
1508 {
1509 	struct rc_dev *dev = to_rc_dev(device);
1510 
1511 	kfree(dev);
1512 }
1513 
1514 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1515 	do {								\
1516 		int err = add_uevent_var(env, fmt, val);		\
1517 		if (err)						\
1518 			return err;					\
1519 	} while (0)
1520 
1521 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1522 {
1523 	struct rc_dev *dev = to_rc_dev(device);
1524 
1525 	if (dev->rc_map.name)
1526 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1527 	if (dev->driver_name)
1528 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1529 
1530 	return 0;
1531 }
1532 
1533 /*
1534  * Static device attribute struct with the sysfs attributes for IR's
1535  */
1536 static DEVICE_ATTR(protocols, 0644, show_protocols, store_protocols);
1537 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1538 		   store_wakeup_protocols);
1539 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1540 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1541 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1542 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1543 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1544 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1545 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1546 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1547 
1548 static struct attribute *rc_dev_protocol_attrs[] = {
1549 	&dev_attr_protocols.attr,
1550 	NULL,
1551 };
1552 
1553 static struct attribute_group rc_dev_protocol_attr_grp = {
1554 	.attrs	= rc_dev_protocol_attrs,
1555 };
1556 
1557 static struct attribute *rc_dev_filter_attrs[] = {
1558 	&dev_attr_filter.attr.attr,
1559 	&dev_attr_filter_mask.attr.attr,
1560 	NULL,
1561 };
1562 
1563 static struct attribute_group rc_dev_filter_attr_grp = {
1564 	.attrs	= rc_dev_filter_attrs,
1565 };
1566 
1567 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1568 	&dev_attr_wakeup_filter.attr.attr,
1569 	&dev_attr_wakeup_filter_mask.attr.attr,
1570 	&dev_attr_wakeup_protocols.attr,
1571 	NULL,
1572 };
1573 
1574 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1575 	.attrs	= rc_dev_wakeup_filter_attrs,
1576 };
1577 
1578 static struct device_type rc_dev_type = {
1579 	.release	= rc_dev_release,
1580 	.uevent		= rc_dev_uevent,
1581 };
1582 
1583 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1584 {
1585 	struct rc_dev *dev;
1586 
1587 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1588 	if (!dev)
1589 		return NULL;
1590 
1591 	if (type != RC_DRIVER_IR_RAW_TX) {
1592 		dev->input_dev = input_allocate_device();
1593 		if (!dev->input_dev) {
1594 			kfree(dev);
1595 			return NULL;
1596 		}
1597 
1598 		dev->input_dev->getkeycode = ir_getkeycode;
1599 		dev->input_dev->setkeycode = ir_setkeycode;
1600 		input_set_drvdata(dev->input_dev, dev);
1601 
1602 		setup_timer(&dev->timer_keyup, ir_timer_keyup,
1603 			    (unsigned long)dev);
1604 
1605 		spin_lock_init(&dev->rc_map.lock);
1606 		spin_lock_init(&dev->keylock);
1607 	}
1608 	mutex_init(&dev->lock);
1609 
1610 	dev->dev.type = &rc_dev_type;
1611 	dev->dev.class = &rc_class;
1612 	device_initialize(&dev->dev);
1613 
1614 	dev->driver_type = type;
1615 
1616 	__module_get(THIS_MODULE);
1617 	return dev;
1618 }
1619 EXPORT_SYMBOL_GPL(rc_allocate_device);
1620 
1621 void rc_free_device(struct rc_dev *dev)
1622 {
1623 	if (!dev)
1624 		return;
1625 
1626 	input_free_device(dev->input_dev);
1627 
1628 	put_device(&dev->dev);
1629 
1630 	/* kfree(dev) will be called by the callback function
1631 	   rc_dev_release() */
1632 
1633 	module_put(THIS_MODULE);
1634 }
1635 EXPORT_SYMBOL_GPL(rc_free_device);
1636 
1637 static void devm_rc_alloc_release(struct device *dev, void *res)
1638 {
1639 	rc_free_device(*(struct rc_dev **)res);
1640 }
1641 
1642 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1643 				       enum rc_driver_type type)
1644 {
1645 	struct rc_dev **dr, *rc;
1646 
1647 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1648 	if (!dr)
1649 		return NULL;
1650 
1651 	rc = rc_allocate_device(type);
1652 	if (!rc) {
1653 		devres_free(dr);
1654 		return NULL;
1655 	}
1656 
1657 	rc->dev.parent = dev;
1658 	rc->managed_alloc = true;
1659 	*dr = rc;
1660 	devres_add(dev, dr);
1661 
1662 	return rc;
1663 }
1664 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1665 
1666 static int rc_setup_rx_device(struct rc_dev *dev)
1667 {
1668 	int rc;
1669 	struct rc_map *rc_map;
1670 	u64 rc_type;
1671 
1672 	if (!dev->map_name)
1673 		return -EINVAL;
1674 
1675 	rc_map = rc_map_get(dev->map_name);
1676 	if (!rc_map)
1677 		rc_map = rc_map_get(RC_MAP_EMPTY);
1678 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1679 		return -EINVAL;
1680 
1681 	rc = ir_setkeytable(dev, rc_map);
1682 	if (rc)
1683 		return rc;
1684 
1685 	rc_type = BIT_ULL(rc_map->rc_type);
1686 
1687 	if (dev->change_protocol) {
1688 		rc = dev->change_protocol(dev, &rc_type);
1689 		if (rc < 0)
1690 			goto out_table;
1691 		dev->enabled_protocols = rc_type;
1692 	}
1693 
1694 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1695 		ir_raw_load_modules(&rc_type);
1696 
1697 	set_bit(EV_KEY, dev->input_dev->evbit);
1698 	set_bit(EV_REP, dev->input_dev->evbit);
1699 	set_bit(EV_MSC, dev->input_dev->evbit);
1700 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1701 	if (dev->open)
1702 		dev->input_dev->open = ir_open;
1703 	if (dev->close)
1704 		dev->input_dev->close = ir_close;
1705 
1706 	/*
1707 	 * Default delay of 250ms is too short for some protocols, especially
1708 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1709 	 * to avoid wrong repetition of the keycodes. Note that this must be
1710 	 * set after the call to input_register_device().
1711 	 */
1712 	dev->input_dev->rep[REP_DELAY] = 500;
1713 
1714 	/*
1715 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1716 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1717 	 * to do.
1718 	 */
1719 	dev->input_dev->rep[REP_PERIOD] = 125;
1720 
1721 	dev->input_dev->dev.parent = &dev->dev;
1722 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1723 	dev->input_dev->phys = dev->input_phys;
1724 	dev->input_dev->name = dev->input_name;
1725 
1726 	/* rc_open will be called here */
1727 	rc = input_register_device(dev->input_dev);
1728 	if (rc)
1729 		goto out_table;
1730 
1731 	return 0;
1732 
1733 out_table:
1734 	ir_free_table(&dev->rc_map);
1735 
1736 	return rc;
1737 }
1738 
1739 static void rc_free_rx_device(struct rc_dev *dev)
1740 {
1741 	if (!dev || dev->driver_type == RC_DRIVER_IR_RAW_TX)
1742 		return;
1743 
1744 	ir_free_table(&dev->rc_map);
1745 
1746 	input_unregister_device(dev->input_dev);
1747 	dev->input_dev = NULL;
1748 }
1749 
1750 int rc_register_device(struct rc_dev *dev)
1751 {
1752 	static bool raw_init; /* 'false' default value, raw decoders loaded? */
1753 	const char *path;
1754 	int attr = 0;
1755 	int minor;
1756 	int rc;
1757 
1758 	if (!dev)
1759 		return -EINVAL;
1760 
1761 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1762 	if (minor < 0)
1763 		return minor;
1764 
1765 	dev->minor = minor;
1766 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1767 	dev_set_drvdata(&dev->dev, dev);
1768 	atomic_set(&dev->initialized, 0);
1769 
1770 	dev->dev.groups = dev->sysfs_groups;
1771 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1772 		dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1773 	if (dev->s_filter)
1774 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1775 	if (dev->s_wakeup_filter)
1776 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1777 	dev->sysfs_groups[attr++] = NULL;
1778 
1779 	rc = device_add(&dev->dev);
1780 	if (rc)
1781 		goto out_unlock;
1782 
1783 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1784 	dev_info(&dev->dev, "%s as %s\n",
1785 		dev->input_name ?: "Unspecified device", path ?: "N/A");
1786 	kfree(path);
1787 
1788 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1789 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1790 		if (!raw_init) {
1791 			request_module_nowait("ir-lirc-codec");
1792 			raw_init = true;
1793 		}
1794 		rc = ir_raw_event_register(dev);
1795 		if (rc < 0)
1796 			goto out_dev;
1797 	}
1798 
1799 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1800 		rc = rc_setup_rx_device(dev);
1801 		if (rc)
1802 			goto out_raw;
1803 	}
1804 
1805 	/* Allow the RC sysfs nodes to be accessible */
1806 	atomic_set(&dev->initialized, 1);
1807 
1808 	IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1809 		   dev->minor,
1810 		   dev->driver_name ? dev->driver_name : "unknown");
1811 
1812 	return 0;
1813 
1814 out_raw:
1815 	ir_raw_event_unregister(dev);
1816 out_dev:
1817 	device_del(&dev->dev);
1818 out_unlock:
1819 	ida_simple_remove(&rc_ida, minor);
1820 	return rc;
1821 }
1822 EXPORT_SYMBOL_GPL(rc_register_device);
1823 
1824 static void devm_rc_release(struct device *dev, void *res)
1825 {
1826 	rc_unregister_device(*(struct rc_dev **)res);
1827 }
1828 
1829 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1830 {
1831 	struct rc_dev **dr;
1832 	int ret;
1833 
1834 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1835 	if (!dr)
1836 		return -ENOMEM;
1837 
1838 	ret = rc_register_device(dev);
1839 	if (ret) {
1840 		devres_free(dr);
1841 		return ret;
1842 	}
1843 
1844 	*dr = dev;
1845 	devres_add(parent, dr);
1846 
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1850 
1851 void rc_unregister_device(struct rc_dev *dev)
1852 {
1853 	if (!dev)
1854 		return;
1855 
1856 	del_timer_sync(&dev->timer_keyup);
1857 
1858 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1859 		ir_raw_event_unregister(dev);
1860 
1861 	rc_free_rx_device(dev);
1862 
1863 	device_del(&dev->dev);
1864 
1865 	ida_simple_remove(&rc_ida, dev->minor);
1866 
1867 	if (!dev->managed_alloc)
1868 		rc_free_device(dev);
1869 }
1870 
1871 EXPORT_SYMBOL_GPL(rc_unregister_device);
1872 
1873 /*
1874  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1875  */
1876 
1877 static int __init rc_core_init(void)
1878 {
1879 	int rc = class_register(&rc_class);
1880 	if (rc) {
1881 		pr_err("rc_core: unable to register rc class\n");
1882 		return rc;
1883 	}
1884 
1885 	led_trigger_register_simple("rc-feedback", &led_feedback);
1886 	rc_map_register(&empty_map);
1887 
1888 	return 0;
1889 }
1890 
1891 static void __exit rc_core_exit(void)
1892 {
1893 	class_unregister(&rc_class);
1894 	led_trigger_unregister_simple(led_feedback);
1895 	rc_map_unregister(&empty_map);
1896 }
1897 
1898 subsys_initcall(rc_core_init);
1899 module_exit(rc_core_exit);
1900 
1901 int rc_core_debug;    /* ir_debug level (0,1,2) */
1902 EXPORT_SYMBOL_GPL(rc_core_debug);
1903 module_param_named(debug, rc_core_debug, int, 0644);
1904 
1905 MODULE_AUTHOR("Mauro Carvalho Chehab");
1906 MODULE_LICENSE("GPL");
1907