xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 114 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 114 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 125 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 100 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 100 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 110 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 110 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 110 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 125 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffffff, .repeat_period = 100 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 100 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 114 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 114 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 114 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 114 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 125 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
71 	[RC_PROTO_IMON] = { .name = "imon",
72 		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
73 };
74 
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
79 
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
82 
83 static struct rc_map_list *seek_rc_map(const char *name)
84 {
85 	struct rc_map_list *map = NULL;
86 
87 	spin_lock(&rc_map_lock);
88 	list_for_each_entry(map, &rc_map_list, list) {
89 		if (!strcmp(name, map->map.name)) {
90 			spin_unlock(&rc_map_lock);
91 			return map;
92 		}
93 	}
94 	spin_unlock(&rc_map_lock);
95 
96 	return NULL;
97 }
98 
99 struct rc_map *rc_map_get(const char *name)
100 {
101 
102 	struct rc_map_list *map;
103 
104 	map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 	if (!map) {
107 		int rc = request_module("%s", name);
108 		if (rc < 0) {
109 			pr_err("Couldn't load IR keymap %s\n", name);
110 			return NULL;
111 		}
112 		msleep(20);	/* Give some time for IR to register */
113 
114 		map = seek_rc_map(name);
115 	}
116 #endif
117 	if (!map) {
118 		pr_err("IR keymap %s not found\n", name);
119 		return NULL;
120 	}
121 
122 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
123 
124 	return &map->map;
125 }
126 EXPORT_SYMBOL_GPL(rc_map_get);
127 
128 int rc_map_register(struct rc_map_list *map)
129 {
130 	spin_lock(&rc_map_lock);
131 	list_add_tail(&map->list, &rc_map_list);
132 	spin_unlock(&rc_map_lock);
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(rc_map_register);
136 
137 void rc_map_unregister(struct rc_map_list *map)
138 {
139 	spin_lock(&rc_map_lock);
140 	list_del(&map->list);
141 	spin_unlock(&rc_map_lock);
142 }
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
144 
145 
146 static struct rc_map_table empty[] = {
147 	{ 0x2a, KEY_COFFEE },
148 };
149 
150 static struct rc_map_list empty_map = {
151 	.map = {
152 		.scan     = empty,
153 		.size     = ARRAY_SIZE(empty),
154 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
155 		.name     = RC_MAP_EMPTY,
156 	}
157 };
158 
159 /**
160  * ir_create_table() - initializes a scancode table
161  * @dev:	the rc_dev device
162  * @rc_map:	the rc_map to initialize
163  * @name:	name to assign to the table
164  * @rc_proto:	ir type to assign to the new table
165  * @size:	initial size of the table
166  *
167  * This routine will initialize the rc_map and will allocate
168  * memory to hold at least the specified number of elements.
169  *
170  * return:	zero on success or a negative error code
171  */
172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 			   const char *name, u64 rc_proto, size_t size)
174 {
175 	rc_map->name = kstrdup(name, GFP_KERNEL);
176 	if (!rc_map->name)
177 		return -ENOMEM;
178 	rc_map->rc_proto = rc_proto;
179 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 	if (!rc_map->scan) {
183 		kfree(rc_map->name);
184 		rc_map->name = NULL;
185 		return -ENOMEM;
186 	}
187 
188 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 		rc_map->size, rc_map->alloc);
190 	return 0;
191 }
192 
193 /**
194  * ir_free_table() - frees memory allocated by a scancode table
195  * @rc_map:	the table whose mappings need to be freed
196  *
197  * This routine will free memory alloctaed for key mappings used by given
198  * scancode table.
199  */
200 static void ir_free_table(struct rc_map *rc_map)
201 {
202 	rc_map->size = 0;
203 	kfree(rc_map->name);
204 	rc_map->name = NULL;
205 	kfree(rc_map->scan);
206 	rc_map->scan = NULL;
207 }
208 
209 /**
210  * ir_resize_table() - resizes a scancode table if necessary
211  * @dev:	the rc_dev device
212  * @rc_map:	the rc_map to resize
213  * @gfp_flags:	gfp flags to use when allocating memory
214  *
215  * This routine will shrink the rc_map if it has lots of
216  * unused entries and grow it if it is full.
217  *
218  * return:	zero on success or a negative error code
219  */
220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 			   gfp_t gfp_flags)
222 {
223 	unsigned int oldalloc = rc_map->alloc;
224 	unsigned int newalloc = oldalloc;
225 	struct rc_map_table *oldscan = rc_map->scan;
226 	struct rc_map_table *newscan;
227 
228 	if (rc_map->size == rc_map->len) {
229 		/* All entries in use -> grow keytable */
230 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 			return -ENOMEM;
232 
233 		newalloc *= 2;
234 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
235 	}
236 
237 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 		/* Less than 1/3 of entries in use -> shrink keytable */
239 		newalloc /= 2;
240 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
241 	}
242 
243 	if (newalloc == oldalloc)
244 		return 0;
245 
246 	newscan = kmalloc(newalloc, gfp_flags);
247 	if (!newscan)
248 		return -ENOMEM;
249 
250 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 	rc_map->scan = newscan;
252 	rc_map->alloc = newalloc;
253 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 	kfree(oldscan);
255 	return 0;
256 }
257 
258 /**
259  * ir_update_mapping() - set a keycode in the scancode->keycode table
260  * @dev:	the struct rc_dev device descriptor
261  * @rc_map:	scancode table to be adjusted
262  * @index:	index of the mapping that needs to be updated
263  * @new_keycode: the desired keycode
264  *
265  * This routine is used to update scancode->keycode mapping at given
266  * position.
267  *
268  * return:	previous keycode assigned to the mapping
269  *
270  */
271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 				      struct rc_map *rc_map,
273 				      unsigned int index,
274 				      unsigned int new_keycode)
275 {
276 	int old_keycode = rc_map->scan[index].keycode;
277 
278 	/* Did the user wish to remove the mapping? */
279 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
280 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
281 			index, rc_map->scan[index].scancode);
282 		rc_map->len--;
283 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
284 			(rc_map->len - index) * sizeof(struct rc_map_table));
285 	} else {
286 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
287 			index,
288 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
289 			rc_map->scan[index].scancode, new_keycode);
290 		rc_map->scan[index].keycode = new_keycode;
291 	}
292 
293 	if (old_keycode != KEY_RESERVED) {
294 		/* Possibly shrink the keytable, failure is not a problem */
295 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
296 	}
297 
298 	return old_keycode;
299 }
300 
301 /**
302  * ir_establish_scancode() - set a keycode in the scancode->keycode table
303  * @dev:	the struct rc_dev device descriptor
304  * @rc_map:	scancode table to be searched
305  * @scancode:	the desired scancode
306  * @resize:	controls whether we allowed to resize the table to
307  *		accommodate not yet present scancodes
308  *
309  * This routine is used to locate given scancode in rc_map.
310  * If scancode is not yet present the routine will allocate a new slot
311  * for it.
312  *
313  * return:	index of the mapping containing scancode in question
314  *		or -1U in case of failure.
315  */
316 static unsigned int ir_establish_scancode(struct rc_dev *dev,
317 					  struct rc_map *rc_map,
318 					  unsigned int scancode,
319 					  bool resize)
320 {
321 	unsigned int i;
322 
323 	/*
324 	 * Unfortunately, some hardware-based IR decoders don't provide
325 	 * all bits for the complete IR code. In general, they provide only
326 	 * the command part of the IR code. Yet, as it is possible to replace
327 	 * the provided IR with another one, it is needed to allow loading
328 	 * IR tables from other remotes. So, we support specifying a mask to
329 	 * indicate the valid bits of the scancodes.
330 	 */
331 	if (dev->scancode_mask)
332 		scancode &= dev->scancode_mask;
333 
334 	/* First check if we already have a mapping for this ir command */
335 	for (i = 0; i < rc_map->len; i++) {
336 		if (rc_map->scan[i].scancode == scancode)
337 			return i;
338 
339 		/* Keytable is sorted from lowest to highest scancode */
340 		if (rc_map->scan[i].scancode >= scancode)
341 			break;
342 	}
343 
344 	/* No previous mapping found, we might need to grow the table */
345 	if (rc_map->size == rc_map->len) {
346 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
347 			return -1U;
348 	}
349 
350 	/* i is the proper index to insert our new keycode */
351 	if (i < rc_map->len)
352 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
353 			(rc_map->len - i) * sizeof(struct rc_map_table));
354 	rc_map->scan[i].scancode = scancode;
355 	rc_map->scan[i].keycode = KEY_RESERVED;
356 	rc_map->len++;
357 
358 	return i;
359 }
360 
361 /**
362  * ir_setkeycode() - set a keycode in the scancode->keycode table
363  * @idev:	the struct input_dev device descriptor
364  * @ke:		Input keymap entry
365  * @old_keycode: result
366  *
367  * This routine is used to handle evdev EVIOCSKEY ioctl.
368  *
369  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
370  */
371 static int ir_setkeycode(struct input_dev *idev,
372 			 const struct input_keymap_entry *ke,
373 			 unsigned int *old_keycode)
374 {
375 	struct rc_dev *rdev = input_get_drvdata(idev);
376 	struct rc_map *rc_map = &rdev->rc_map;
377 	unsigned int index;
378 	unsigned int scancode;
379 	int retval = 0;
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&rc_map->lock, flags);
383 
384 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
385 		index = ke->index;
386 		if (index >= rc_map->len) {
387 			retval = -EINVAL;
388 			goto out;
389 		}
390 	} else {
391 		retval = input_scancode_to_scalar(ke, &scancode);
392 		if (retval)
393 			goto out;
394 
395 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
396 		if (index >= rc_map->len) {
397 			retval = -ENOMEM;
398 			goto out;
399 		}
400 	}
401 
402 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
403 
404 out:
405 	spin_unlock_irqrestore(&rc_map->lock, flags);
406 	return retval;
407 }
408 
409 /**
410  * ir_setkeytable() - sets several entries in the scancode->keycode table
411  * @dev:	the struct rc_dev device descriptor
412  * @from:	the struct rc_map to copy entries from
413  *
414  * This routine is used to handle table initialization.
415  *
416  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
417  */
418 static int ir_setkeytable(struct rc_dev *dev,
419 			  const struct rc_map *from)
420 {
421 	struct rc_map *rc_map = &dev->rc_map;
422 	unsigned int i, index;
423 	int rc;
424 
425 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
426 			     from->size);
427 	if (rc)
428 		return rc;
429 
430 	for (i = 0; i < from->size; i++) {
431 		index = ir_establish_scancode(dev, rc_map,
432 					      from->scan[i].scancode, false);
433 		if (index >= rc_map->len) {
434 			rc = -ENOMEM;
435 			break;
436 		}
437 
438 		ir_update_mapping(dev, rc_map, index,
439 				  from->scan[i].keycode);
440 	}
441 
442 	if (rc)
443 		ir_free_table(rc_map);
444 
445 	return rc;
446 }
447 
448 static int rc_map_cmp(const void *key, const void *elt)
449 {
450 	const unsigned int *scancode = key;
451 	const struct rc_map_table *e = elt;
452 
453 	if (*scancode < e->scancode)
454 		return -1;
455 	else if (*scancode > e->scancode)
456 		return 1;
457 	return 0;
458 }
459 
460 /**
461  * ir_lookup_by_scancode() - locate mapping by scancode
462  * @rc_map:	the struct rc_map to search
463  * @scancode:	scancode to look for in the table
464  *
465  * This routine performs binary search in RC keykeymap table for
466  * given scancode.
467  *
468  * return:	index in the table, -1U if not found
469  */
470 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
471 					  unsigned int scancode)
472 {
473 	struct rc_map_table *res;
474 
475 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
476 		      sizeof(struct rc_map_table), rc_map_cmp);
477 	if (!res)
478 		return -1U;
479 	else
480 		return res - rc_map->scan;
481 }
482 
483 /**
484  * ir_getkeycode() - get a keycode from the scancode->keycode table
485  * @idev:	the struct input_dev device descriptor
486  * @ke:		Input keymap entry
487  *
488  * This routine is used to handle evdev EVIOCGKEY ioctl.
489  *
490  * return:	always returns zero.
491  */
492 static int ir_getkeycode(struct input_dev *idev,
493 			 struct input_keymap_entry *ke)
494 {
495 	struct rc_dev *rdev = input_get_drvdata(idev);
496 	struct rc_map *rc_map = &rdev->rc_map;
497 	struct rc_map_table *entry;
498 	unsigned long flags;
499 	unsigned int index;
500 	unsigned int scancode;
501 	int retval;
502 
503 	spin_lock_irqsave(&rc_map->lock, flags);
504 
505 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
506 		index = ke->index;
507 	} else {
508 		retval = input_scancode_to_scalar(ke, &scancode);
509 		if (retval)
510 			goto out;
511 
512 		index = ir_lookup_by_scancode(rc_map, scancode);
513 	}
514 
515 	if (index < rc_map->len) {
516 		entry = &rc_map->scan[index];
517 
518 		ke->index = index;
519 		ke->keycode = entry->keycode;
520 		ke->len = sizeof(entry->scancode);
521 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
522 
523 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
524 		/*
525 		 * We do not really know the valid range of scancodes
526 		 * so let's respond with KEY_RESERVED to anything we
527 		 * do not have mapping for [yet].
528 		 */
529 		ke->index = index;
530 		ke->keycode = KEY_RESERVED;
531 	} else {
532 		retval = -EINVAL;
533 		goto out;
534 	}
535 
536 	retval = 0;
537 
538 out:
539 	spin_unlock_irqrestore(&rc_map->lock, flags);
540 	return retval;
541 }
542 
543 /**
544  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
545  * @dev:	the struct rc_dev descriptor of the device
546  * @scancode:	the scancode to look for
547  *
548  * This routine is used by drivers which need to convert a scancode to a
549  * keycode. Normally it should not be used since drivers should have no
550  * interest in keycodes.
551  *
552  * return:	the corresponding keycode, or KEY_RESERVED
553  */
554 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
555 {
556 	struct rc_map *rc_map = &dev->rc_map;
557 	unsigned int keycode;
558 	unsigned int index;
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&rc_map->lock, flags);
562 
563 	index = ir_lookup_by_scancode(rc_map, scancode);
564 	keycode = index < rc_map->len ?
565 			rc_map->scan[index].keycode : KEY_RESERVED;
566 
567 	spin_unlock_irqrestore(&rc_map->lock, flags);
568 
569 	if (keycode != KEY_RESERVED)
570 		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
571 			dev->device_name, scancode, keycode);
572 
573 	return keycode;
574 }
575 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
576 
577 /**
578  * ir_do_keyup() - internal function to signal the release of a keypress
579  * @dev:	the struct rc_dev descriptor of the device
580  * @sync:	whether or not to call input_sync
581  *
582  * This function is used internally to release a keypress, it must be
583  * called with keylock held.
584  */
585 static void ir_do_keyup(struct rc_dev *dev, bool sync)
586 {
587 	if (!dev->keypressed)
588 		return;
589 
590 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
591 	del_timer(&dev->timer_repeat);
592 	input_report_key(dev->input_dev, dev->last_keycode, 0);
593 	led_trigger_event(led_feedback, LED_OFF);
594 	if (sync)
595 		input_sync(dev->input_dev);
596 	dev->keypressed = false;
597 }
598 
599 /**
600  * rc_keyup() - signals the release of a keypress
601  * @dev:	the struct rc_dev descriptor of the device
602  *
603  * This routine is used to signal that a key has been released on the
604  * remote control.
605  */
606 void rc_keyup(struct rc_dev *dev)
607 {
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&dev->keylock, flags);
611 	ir_do_keyup(dev, true);
612 	spin_unlock_irqrestore(&dev->keylock, flags);
613 }
614 EXPORT_SYMBOL_GPL(rc_keyup);
615 
616 /**
617  * ir_timer_keyup() - generates a keyup event after a timeout
618  *
619  * @t:		a pointer to the struct timer_list
620  *
621  * This routine will generate a keyup event some time after a keydown event
622  * is generated when no further activity has been detected.
623  */
624 static void ir_timer_keyup(struct timer_list *t)
625 {
626 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
627 	unsigned long flags;
628 
629 	/*
630 	 * ir->keyup_jiffies is used to prevent a race condition if a
631 	 * hardware interrupt occurs at this point and the keyup timer
632 	 * event is moved further into the future as a result.
633 	 *
634 	 * The timer will then be reactivated and this function called
635 	 * again in the future. We need to exit gracefully in that case
636 	 * to allow the input subsystem to do its auto-repeat magic or
637 	 * a keyup event might follow immediately after the keydown.
638 	 */
639 	spin_lock_irqsave(&dev->keylock, flags);
640 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
641 		ir_do_keyup(dev, true);
642 	spin_unlock_irqrestore(&dev->keylock, flags);
643 }
644 
645 /**
646  * ir_timer_repeat() - generates a repeat event after a timeout
647  *
648  * @t:		a pointer to the struct timer_list
649  *
650  * This routine will generate a soft repeat event every REP_PERIOD
651  * milliseconds.
652  */
653 static void ir_timer_repeat(struct timer_list *t)
654 {
655 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
656 	struct input_dev *input = dev->input_dev;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&dev->keylock, flags);
660 	if (dev->keypressed) {
661 		input_event(input, EV_KEY, dev->last_keycode, 2);
662 		input_sync(input);
663 		if (input->rep[REP_PERIOD])
664 			mod_timer(&dev->timer_repeat, jiffies +
665 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
666 	}
667 	spin_unlock_irqrestore(&dev->keylock, flags);
668 }
669 
670 static unsigned int repeat_period(int protocol)
671 {
672 	if (protocol >= ARRAY_SIZE(protocols))
673 		return 100;
674 
675 	return protocols[protocol].repeat_period;
676 }
677 
678 /**
679  * rc_repeat() - signals that a key is still pressed
680  * @dev:	the struct rc_dev descriptor of the device
681  *
682  * This routine is used by IR decoders when a repeat message which does
683  * not include the necessary bits to reproduce the scancode has been
684  * received.
685  */
686 void rc_repeat(struct rc_dev *dev)
687 {
688 	unsigned long flags;
689 	unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
690 		msecs_to_jiffies(repeat_period(dev->last_protocol));
691 	struct lirc_scancode sc = {
692 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
693 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
694 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
695 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
696 	};
697 
698 	ir_lirc_scancode_event(dev, &sc);
699 
700 	spin_lock_irqsave(&dev->keylock, flags);
701 
702 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
703 	input_sync(dev->input_dev);
704 
705 	if (dev->keypressed) {
706 		dev->keyup_jiffies = jiffies + timeout;
707 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
708 	}
709 
710 	spin_unlock_irqrestore(&dev->keylock, flags);
711 }
712 EXPORT_SYMBOL_GPL(rc_repeat);
713 
714 /**
715  * ir_do_keydown() - internal function to process a keypress
716  * @dev:	the struct rc_dev descriptor of the device
717  * @protocol:	the protocol of the keypress
718  * @scancode:   the scancode of the keypress
719  * @keycode:    the keycode of the keypress
720  * @toggle:     the toggle value of the keypress
721  *
722  * This function is used internally to register a keypress, it must be
723  * called with keylock held.
724  */
725 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
726 			  u32 scancode, u32 keycode, u8 toggle)
727 {
728 	bool new_event = (!dev->keypressed		 ||
729 			  dev->last_protocol != protocol ||
730 			  dev->last_scancode != scancode ||
731 			  dev->last_toggle   != toggle);
732 	struct lirc_scancode sc = {
733 		.scancode = scancode, .rc_proto = protocol,
734 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
735 		.keycode = keycode
736 	};
737 
738 	ir_lirc_scancode_event(dev, &sc);
739 
740 	if (new_event && dev->keypressed)
741 		ir_do_keyup(dev, false);
742 
743 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
744 
745 	dev->last_protocol = protocol;
746 	dev->last_scancode = scancode;
747 	dev->last_toggle = toggle;
748 	dev->last_keycode = keycode;
749 
750 	if (new_event && keycode != KEY_RESERVED) {
751 		/* Register a keypress */
752 		dev->keypressed = true;
753 
754 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
755 			dev->device_name, keycode, protocol, scancode);
756 		input_report_key(dev->input_dev, keycode, 1);
757 
758 		led_trigger_event(led_feedback, LED_FULL);
759 	}
760 
761 	/*
762 	 * For CEC, start sending repeat messages as soon as the first
763 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
764 	 * is non-zero. Otherwise, the input layer will generate repeat
765 	 * messages.
766 	 */
767 	if (!new_event && keycode != KEY_RESERVED &&
768 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
769 	    !timer_pending(&dev->timer_repeat) &&
770 	    dev->input_dev->rep[REP_PERIOD] &&
771 	    !dev->input_dev->rep[REP_DELAY]) {
772 		input_event(dev->input_dev, EV_KEY, keycode, 2);
773 		mod_timer(&dev->timer_repeat, jiffies +
774 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
775 	}
776 
777 	input_sync(dev->input_dev);
778 }
779 
780 /**
781  * rc_keydown() - generates input event for a key press
782  * @dev:	the struct rc_dev descriptor of the device
783  * @protocol:	the protocol for the keypress
784  * @scancode:	the scancode for the keypress
785  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
786  *              support toggle values, this should be set to zero)
787  *
788  * This routine is used to signal that a key has been pressed on the
789  * remote control.
790  */
791 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
792 		u8 toggle)
793 {
794 	unsigned long flags;
795 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
796 
797 	spin_lock_irqsave(&dev->keylock, flags);
798 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
799 
800 	if (dev->keypressed) {
801 		dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
802 			msecs_to_jiffies(repeat_period(protocol));
803 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
804 	}
805 	spin_unlock_irqrestore(&dev->keylock, flags);
806 }
807 EXPORT_SYMBOL_GPL(rc_keydown);
808 
809 /**
810  * rc_keydown_notimeout() - generates input event for a key press without
811  *                          an automatic keyup event at a later time
812  * @dev:	the struct rc_dev descriptor of the device
813  * @protocol:	the protocol for the keypress
814  * @scancode:	the scancode for the keypress
815  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
816  *              support toggle values, this should be set to zero)
817  *
818  * This routine is used to signal that a key has been pressed on the
819  * remote control. The driver must manually call rc_keyup() at a later stage.
820  */
821 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
822 			  u32 scancode, u8 toggle)
823 {
824 	unsigned long flags;
825 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
826 
827 	spin_lock_irqsave(&dev->keylock, flags);
828 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
829 	spin_unlock_irqrestore(&dev->keylock, flags);
830 }
831 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
832 
833 /**
834  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
835  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
836  * @proto:	protocol
837  * @scancode:	scancode
838  */
839 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
840 {
841 	switch (proto) {
842 	/*
843 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
844 	 * 8 bits inverted, then the address would match regular nec.
845 	 */
846 	case RC_PROTO_NECX:
847 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
848 			return false;
849 		break;
850 	/*
851 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
852 	 * of the command match the upper 8 bits inverted, then it would
853 	 * be either NEC or NECX.
854 	 */
855 	case RC_PROTO_NEC32:
856 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
857 			return false;
858 		break;
859 	/*
860 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
861 	 * is regular mode-6a 32 bit
862 	 */
863 	case RC_PROTO_RC6_MCE:
864 		if ((scancode & 0xffff0000) != 0x800f0000)
865 			return false;
866 		break;
867 	case RC_PROTO_RC6_6A_32:
868 		if ((scancode & 0xffff0000) == 0x800f0000)
869 			return false;
870 		break;
871 	default:
872 		break;
873 	}
874 
875 	return true;
876 }
877 
878 /**
879  * rc_validate_filter() - checks that the scancode and mask are valid and
880  *			  provides sensible defaults
881  * @dev:	the struct rc_dev descriptor of the device
882  * @filter:	the scancode and mask
883  *
884  * return:	0 or -EINVAL if the filter is not valid
885  */
886 static int rc_validate_filter(struct rc_dev *dev,
887 			      struct rc_scancode_filter *filter)
888 {
889 	u32 mask, s = filter->data;
890 	enum rc_proto protocol = dev->wakeup_protocol;
891 
892 	if (protocol >= ARRAY_SIZE(protocols))
893 		return -EINVAL;
894 
895 	mask = protocols[protocol].scancode_bits;
896 
897 	if (!rc_validate_scancode(protocol, s))
898 		return -EINVAL;
899 
900 	filter->data &= mask;
901 	filter->mask &= mask;
902 
903 	/*
904 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
905 	 */
906 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
907 		return -EINVAL;
908 
909 	return 0;
910 }
911 
912 int rc_open(struct rc_dev *rdev)
913 {
914 	int rval = 0;
915 
916 	if (!rdev)
917 		return -EINVAL;
918 
919 	mutex_lock(&rdev->lock);
920 
921 	if (!rdev->registered) {
922 		rval = -ENODEV;
923 	} else {
924 		if (!rdev->users++ && rdev->open)
925 			rval = rdev->open(rdev);
926 
927 		if (rval)
928 			rdev->users--;
929 	}
930 
931 	mutex_unlock(&rdev->lock);
932 
933 	return rval;
934 }
935 
936 static int ir_open(struct input_dev *idev)
937 {
938 	struct rc_dev *rdev = input_get_drvdata(idev);
939 
940 	return rc_open(rdev);
941 }
942 
943 void rc_close(struct rc_dev *rdev)
944 {
945 	if (rdev) {
946 		mutex_lock(&rdev->lock);
947 
948 		if (!--rdev->users && rdev->close && rdev->registered)
949 			rdev->close(rdev);
950 
951 		mutex_unlock(&rdev->lock);
952 	}
953 }
954 
955 static void ir_close(struct input_dev *idev)
956 {
957 	struct rc_dev *rdev = input_get_drvdata(idev);
958 	rc_close(rdev);
959 }
960 
961 /* class for /sys/class/rc */
962 static char *rc_devnode(struct device *dev, umode_t *mode)
963 {
964 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
965 }
966 
967 static struct class rc_class = {
968 	.name		= "rc",
969 	.devnode	= rc_devnode,
970 };
971 
972 /*
973  * These are the protocol textual descriptions that are
974  * used by the sysfs protocols file. Note that the order
975  * of the entries is relevant.
976  */
977 static const struct {
978 	u64	type;
979 	const char	*name;
980 	const char	*module_name;
981 } proto_names[] = {
982 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
983 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
984 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
985 	{ RC_PROTO_BIT_RC5 |
986 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
987 	{ RC_PROTO_BIT_NEC |
988 	  RC_PROTO_BIT_NECX |
989 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
990 	{ RC_PROTO_BIT_RC6_0 |
991 	  RC_PROTO_BIT_RC6_6A_20 |
992 	  RC_PROTO_BIT_RC6_6A_24 |
993 	  RC_PROTO_BIT_RC6_6A_32 |
994 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
995 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
996 	{ RC_PROTO_BIT_SONY12 |
997 	  RC_PROTO_BIT_SONY15 |
998 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
999 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1000 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1001 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1002 	{ RC_PROTO_BIT_MCIR2_KBD |
1003 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1004 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1005 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1006 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1007 };
1008 
1009 /**
1010  * struct rc_filter_attribute - Device attribute relating to a filter type.
1011  * @attr:	Device attribute.
1012  * @type:	Filter type.
1013  * @mask:	false for filter value, true for filter mask.
1014  */
1015 struct rc_filter_attribute {
1016 	struct device_attribute		attr;
1017 	enum rc_filter_type		type;
1018 	bool				mask;
1019 };
1020 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1021 
1022 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1023 	struct rc_filter_attribute dev_attr_##_name = {			\
1024 		.attr = __ATTR(_name, _mode, _show, _store),		\
1025 		.type = (_type),					\
1026 		.mask = (_mask),					\
1027 	}
1028 
1029 /**
1030  * show_protocols() - shows the current IR protocol(s)
1031  * @device:	the device descriptor
1032  * @mattr:	the device attribute struct
1033  * @buf:	a pointer to the output buffer
1034  *
1035  * This routine is a callback routine for input read the IR protocol type(s).
1036  * it is trigged by reading /sys/class/rc/rc?/protocols.
1037  * It returns the protocol names of supported protocols.
1038  * Enabled protocols are printed in brackets.
1039  *
1040  * dev->lock is taken to guard against races between
1041  * store_protocols and show_protocols.
1042  */
1043 static ssize_t show_protocols(struct device *device,
1044 			      struct device_attribute *mattr, char *buf)
1045 {
1046 	struct rc_dev *dev = to_rc_dev(device);
1047 	u64 allowed, enabled;
1048 	char *tmp = buf;
1049 	int i;
1050 
1051 	mutex_lock(&dev->lock);
1052 
1053 	enabled = dev->enabled_protocols;
1054 	allowed = dev->allowed_protocols;
1055 	if (dev->raw && !allowed)
1056 		allowed = ir_raw_get_allowed_protocols();
1057 
1058 	mutex_unlock(&dev->lock);
1059 
1060 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1061 		__func__, (long long)allowed, (long long)enabled);
1062 
1063 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1064 		if (allowed & enabled & proto_names[i].type)
1065 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1066 		else if (allowed & proto_names[i].type)
1067 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1068 
1069 		if (allowed & proto_names[i].type)
1070 			allowed &= ~proto_names[i].type;
1071 	}
1072 
1073 #ifdef CONFIG_LIRC
1074 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1075 		tmp += sprintf(tmp, "[lirc] ");
1076 #endif
1077 
1078 	if (tmp != buf)
1079 		tmp--;
1080 	*tmp = '\n';
1081 
1082 	return tmp + 1 - buf;
1083 }
1084 
1085 /**
1086  * parse_protocol_change() - parses a protocol change request
1087  * @dev:	rc_dev device
1088  * @protocols:	pointer to the bitmask of current protocols
1089  * @buf:	pointer to the buffer with a list of changes
1090  *
1091  * Writing "+proto" will add a protocol to the protocol mask.
1092  * Writing "-proto" will remove a protocol from protocol mask.
1093  * Writing "proto" will enable only "proto".
1094  * Writing "none" will disable all protocols.
1095  * Returns the number of changes performed or a negative error code.
1096  */
1097 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1098 				 const char *buf)
1099 {
1100 	const char *tmp;
1101 	unsigned count = 0;
1102 	bool enable, disable;
1103 	u64 mask;
1104 	int i;
1105 
1106 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1107 		if (!*tmp)
1108 			break;
1109 
1110 		if (*tmp == '+') {
1111 			enable = true;
1112 			disable = false;
1113 			tmp++;
1114 		} else if (*tmp == '-') {
1115 			enable = false;
1116 			disable = true;
1117 			tmp++;
1118 		} else {
1119 			enable = false;
1120 			disable = false;
1121 		}
1122 
1123 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1124 			if (!strcasecmp(tmp, proto_names[i].name)) {
1125 				mask = proto_names[i].type;
1126 				break;
1127 			}
1128 		}
1129 
1130 		if (i == ARRAY_SIZE(proto_names)) {
1131 			if (!strcasecmp(tmp, "lirc"))
1132 				mask = 0;
1133 			else {
1134 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1135 					tmp);
1136 				return -EINVAL;
1137 			}
1138 		}
1139 
1140 		count++;
1141 
1142 		if (enable)
1143 			*protocols |= mask;
1144 		else if (disable)
1145 			*protocols &= ~mask;
1146 		else
1147 			*protocols = mask;
1148 	}
1149 
1150 	if (!count) {
1151 		dev_dbg(&dev->dev, "Protocol not specified\n");
1152 		return -EINVAL;
1153 	}
1154 
1155 	return count;
1156 }
1157 
1158 void ir_raw_load_modules(u64 *protocols)
1159 {
1160 	u64 available;
1161 	int i, ret;
1162 
1163 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1164 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1165 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1166 					   RC_PROTO_BIT_UNKNOWN))
1167 			continue;
1168 
1169 		available = ir_raw_get_allowed_protocols();
1170 		if (!(*protocols & proto_names[i].type & ~available))
1171 			continue;
1172 
1173 		if (!proto_names[i].module_name) {
1174 			pr_err("Can't enable IR protocol %s\n",
1175 			       proto_names[i].name);
1176 			*protocols &= ~proto_names[i].type;
1177 			continue;
1178 		}
1179 
1180 		ret = request_module("%s", proto_names[i].module_name);
1181 		if (ret < 0) {
1182 			pr_err("Couldn't load IR protocol module %s\n",
1183 			       proto_names[i].module_name);
1184 			*protocols &= ~proto_names[i].type;
1185 			continue;
1186 		}
1187 		msleep(20);
1188 		available = ir_raw_get_allowed_protocols();
1189 		if (!(*protocols & proto_names[i].type & ~available))
1190 			continue;
1191 
1192 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1193 		       proto_names[i].module_name,
1194 		       proto_names[i].name);
1195 		*protocols &= ~proto_names[i].type;
1196 	}
1197 }
1198 
1199 /**
1200  * store_protocols() - changes the current/wakeup IR protocol(s)
1201  * @device:	the device descriptor
1202  * @mattr:	the device attribute struct
1203  * @buf:	a pointer to the input buffer
1204  * @len:	length of the input buffer
1205  *
1206  * This routine is for changing the IR protocol type.
1207  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1208  * See parse_protocol_change() for the valid commands.
1209  * Returns @len on success or a negative error code.
1210  *
1211  * dev->lock is taken to guard against races between
1212  * store_protocols and show_protocols.
1213  */
1214 static ssize_t store_protocols(struct device *device,
1215 			       struct device_attribute *mattr,
1216 			       const char *buf, size_t len)
1217 {
1218 	struct rc_dev *dev = to_rc_dev(device);
1219 	u64 *current_protocols;
1220 	struct rc_scancode_filter *filter;
1221 	u64 old_protocols, new_protocols;
1222 	ssize_t rc;
1223 
1224 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1225 	current_protocols = &dev->enabled_protocols;
1226 	filter = &dev->scancode_filter;
1227 
1228 	if (!dev->change_protocol) {
1229 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1230 		return -EINVAL;
1231 	}
1232 
1233 	mutex_lock(&dev->lock);
1234 
1235 	old_protocols = *current_protocols;
1236 	new_protocols = old_protocols;
1237 	rc = parse_protocol_change(dev, &new_protocols, buf);
1238 	if (rc < 0)
1239 		goto out;
1240 
1241 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1242 		ir_raw_load_modules(&new_protocols);
1243 
1244 	rc = dev->change_protocol(dev, &new_protocols);
1245 	if (rc < 0) {
1246 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1247 			(long long)new_protocols);
1248 		goto out;
1249 	}
1250 
1251 	if (new_protocols != old_protocols) {
1252 		*current_protocols = new_protocols;
1253 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1254 			(long long)new_protocols);
1255 	}
1256 
1257 	/*
1258 	 * If a protocol change was attempted the filter may need updating, even
1259 	 * if the actual protocol mask hasn't changed (since the driver may have
1260 	 * cleared the filter).
1261 	 * Try setting the same filter with the new protocol (if any).
1262 	 * Fall back to clearing the filter.
1263 	 */
1264 	if (dev->s_filter && filter->mask) {
1265 		if (new_protocols)
1266 			rc = dev->s_filter(dev, filter);
1267 		else
1268 			rc = -1;
1269 
1270 		if (rc < 0) {
1271 			filter->data = 0;
1272 			filter->mask = 0;
1273 			dev->s_filter(dev, filter);
1274 		}
1275 	}
1276 
1277 	rc = len;
1278 
1279 out:
1280 	mutex_unlock(&dev->lock);
1281 	return rc;
1282 }
1283 
1284 /**
1285  * show_filter() - shows the current scancode filter value or mask
1286  * @device:	the device descriptor
1287  * @attr:	the device attribute struct
1288  * @buf:	a pointer to the output buffer
1289  *
1290  * This routine is a callback routine to read a scancode filter value or mask.
1291  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1292  * It prints the current scancode filter value or mask of the appropriate filter
1293  * type in hexadecimal into @buf and returns the size of the buffer.
1294  *
1295  * Bits of the filter value corresponding to set bits in the filter mask are
1296  * compared against input scancodes and non-matching scancodes are discarded.
1297  *
1298  * dev->lock is taken to guard against races between
1299  * store_filter and show_filter.
1300  */
1301 static ssize_t show_filter(struct device *device,
1302 			   struct device_attribute *attr,
1303 			   char *buf)
1304 {
1305 	struct rc_dev *dev = to_rc_dev(device);
1306 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1307 	struct rc_scancode_filter *filter;
1308 	u32 val;
1309 
1310 	mutex_lock(&dev->lock);
1311 
1312 	if (fattr->type == RC_FILTER_NORMAL)
1313 		filter = &dev->scancode_filter;
1314 	else
1315 		filter = &dev->scancode_wakeup_filter;
1316 
1317 	if (fattr->mask)
1318 		val = filter->mask;
1319 	else
1320 		val = filter->data;
1321 	mutex_unlock(&dev->lock);
1322 
1323 	return sprintf(buf, "%#x\n", val);
1324 }
1325 
1326 /**
1327  * store_filter() - changes the scancode filter value
1328  * @device:	the device descriptor
1329  * @attr:	the device attribute struct
1330  * @buf:	a pointer to the input buffer
1331  * @len:	length of the input buffer
1332  *
1333  * This routine is for changing a scancode filter value or mask.
1334  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1335  * Returns -EINVAL if an invalid filter value for the current protocol was
1336  * specified or if scancode filtering is not supported by the driver, otherwise
1337  * returns @len.
1338  *
1339  * Bits of the filter value corresponding to set bits in the filter mask are
1340  * compared against input scancodes and non-matching scancodes are discarded.
1341  *
1342  * dev->lock is taken to guard against races between
1343  * store_filter and show_filter.
1344  */
1345 static ssize_t store_filter(struct device *device,
1346 			    struct device_attribute *attr,
1347 			    const char *buf, size_t len)
1348 {
1349 	struct rc_dev *dev = to_rc_dev(device);
1350 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1351 	struct rc_scancode_filter new_filter, *filter;
1352 	int ret;
1353 	unsigned long val;
1354 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1355 
1356 	ret = kstrtoul(buf, 0, &val);
1357 	if (ret < 0)
1358 		return ret;
1359 
1360 	if (fattr->type == RC_FILTER_NORMAL) {
1361 		set_filter = dev->s_filter;
1362 		filter = &dev->scancode_filter;
1363 	} else {
1364 		set_filter = dev->s_wakeup_filter;
1365 		filter = &dev->scancode_wakeup_filter;
1366 	}
1367 
1368 	if (!set_filter)
1369 		return -EINVAL;
1370 
1371 	mutex_lock(&dev->lock);
1372 
1373 	new_filter = *filter;
1374 	if (fattr->mask)
1375 		new_filter.mask = val;
1376 	else
1377 		new_filter.data = val;
1378 
1379 	if (fattr->type == RC_FILTER_WAKEUP) {
1380 		/*
1381 		 * Refuse to set a filter unless a protocol is enabled
1382 		 * and the filter is valid for that protocol
1383 		 */
1384 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1385 			ret = rc_validate_filter(dev, &new_filter);
1386 		else
1387 			ret = -EINVAL;
1388 
1389 		if (ret != 0)
1390 			goto unlock;
1391 	}
1392 
1393 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1394 	    val) {
1395 		/* refuse to set a filter unless a protocol is enabled */
1396 		ret = -EINVAL;
1397 		goto unlock;
1398 	}
1399 
1400 	ret = set_filter(dev, &new_filter);
1401 	if (ret < 0)
1402 		goto unlock;
1403 
1404 	*filter = new_filter;
1405 
1406 unlock:
1407 	mutex_unlock(&dev->lock);
1408 	return (ret < 0) ? ret : len;
1409 }
1410 
1411 /**
1412  * show_wakeup_protocols() - shows the wakeup IR protocol
1413  * @device:	the device descriptor
1414  * @mattr:	the device attribute struct
1415  * @buf:	a pointer to the output buffer
1416  *
1417  * This routine is a callback routine for input read the IR protocol type(s).
1418  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1419  * It returns the protocol names of supported protocols.
1420  * The enabled protocols are printed in brackets.
1421  *
1422  * dev->lock is taken to guard against races between
1423  * store_wakeup_protocols and show_wakeup_protocols.
1424  */
1425 static ssize_t show_wakeup_protocols(struct device *device,
1426 				     struct device_attribute *mattr,
1427 				     char *buf)
1428 {
1429 	struct rc_dev *dev = to_rc_dev(device);
1430 	u64 allowed;
1431 	enum rc_proto enabled;
1432 	char *tmp = buf;
1433 	int i;
1434 
1435 	mutex_lock(&dev->lock);
1436 
1437 	allowed = dev->allowed_wakeup_protocols;
1438 	enabled = dev->wakeup_protocol;
1439 
1440 	mutex_unlock(&dev->lock);
1441 
1442 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1443 		__func__, (long long)allowed, enabled);
1444 
1445 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1446 		if (allowed & (1ULL << i)) {
1447 			if (i == enabled)
1448 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1449 			else
1450 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1451 		}
1452 	}
1453 
1454 	if (tmp != buf)
1455 		tmp--;
1456 	*tmp = '\n';
1457 
1458 	return tmp + 1 - buf;
1459 }
1460 
1461 /**
1462  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1463  * @device:	the device descriptor
1464  * @mattr:	the device attribute struct
1465  * @buf:	a pointer to the input buffer
1466  * @len:	length of the input buffer
1467  *
1468  * This routine is for changing the IR protocol type.
1469  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1470  * Returns @len on success or a negative error code.
1471  *
1472  * dev->lock is taken to guard against races between
1473  * store_wakeup_protocols and show_wakeup_protocols.
1474  */
1475 static ssize_t store_wakeup_protocols(struct device *device,
1476 				      struct device_attribute *mattr,
1477 				      const char *buf, size_t len)
1478 {
1479 	struct rc_dev *dev = to_rc_dev(device);
1480 	enum rc_proto protocol;
1481 	ssize_t rc;
1482 	u64 allowed;
1483 	int i;
1484 
1485 	mutex_lock(&dev->lock);
1486 
1487 	allowed = dev->allowed_wakeup_protocols;
1488 
1489 	if (sysfs_streq(buf, "none")) {
1490 		protocol = RC_PROTO_UNKNOWN;
1491 	} else {
1492 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1493 			if ((allowed & (1ULL << i)) &&
1494 			    sysfs_streq(buf, protocols[i].name)) {
1495 				protocol = i;
1496 				break;
1497 			}
1498 		}
1499 
1500 		if (i == ARRAY_SIZE(protocols)) {
1501 			rc = -EINVAL;
1502 			goto out;
1503 		}
1504 
1505 		if (dev->encode_wakeup) {
1506 			u64 mask = 1ULL << protocol;
1507 
1508 			ir_raw_load_modules(&mask);
1509 			if (!mask) {
1510 				rc = -EINVAL;
1511 				goto out;
1512 			}
1513 		}
1514 	}
1515 
1516 	if (dev->wakeup_protocol != protocol) {
1517 		dev->wakeup_protocol = protocol;
1518 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1519 
1520 		if (protocol == RC_PROTO_RC6_MCE)
1521 			dev->scancode_wakeup_filter.data = 0x800f0000;
1522 		else
1523 			dev->scancode_wakeup_filter.data = 0;
1524 		dev->scancode_wakeup_filter.mask = 0;
1525 
1526 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1527 		if (rc == 0)
1528 			rc = len;
1529 	} else {
1530 		rc = len;
1531 	}
1532 
1533 out:
1534 	mutex_unlock(&dev->lock);
1535 	return rc;
1536 }
1537 
1538 static void rc_dev_release(struct device *device)
1539 {
1540 	struct rc_dev *dev = to_rc_dev(device);
1541 
1542 	kfree(dev);
1543 }
1544 
1545 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1546 	do {								\
1547 		int err = add_uevent_var(env, fmt, val);		\
1548 		if (err)						\
1549 			return err;					\
1550 	} while (0)
1551 
1552 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1553 {
1554 	struct rc_dev *dev = to_rc_dev(device);
1555 
1556 	if (dev->rc_map.name)
1557 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1558 	if (dev->driver_name)
1559 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1560 	if (dev->device_name)
1561 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1562 
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Static device attribute struct with the sysfs attributes for IR's
1568  */
1569 static struct device_attribute dev_attr_ro_protocols =
1570 __ATTR(protocols, 0444, show_protocols, NULL);
1571 static struct device_attribute dev_attr_rw_protocols =
1572 __ATTR(protocols, 0644, show_protocols, store_protocols);
1573 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1574 		   store_wakeup_protocols);
1575 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1576 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1577 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1578 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1579 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1580 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1581 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1582 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1583 
1584 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1585 	&dev_attr_rw_protocols.attr,
1586 	NULL,
1587 };
1588 
1589 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1590 	.attrs	= rc_dev_rw_protocol_attrs,
1591 };
1592 
1593 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1594 	&dev_attr_ro_protocols.attr,
1595 	NULL,
1596 };
1597 
1598 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1599 	.attrs	= rc_dev_ro_protocol_attrs,
1600 };
1601 
1602 static struct attribute *rc_dev_filter_attrs[] = {
1603 	&dev_attr_filter.attr.attr,
1604 	&dev_attr_filter_mask.attr.attr,
1605 	NULL,
1606 };
1607 
1608 static const struct attribute_group rc_dev_filter_attr_grp = {
1609 	.attrs	= rc_dev_filter_attrs,
1610 };
1611 
1612 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1613 	&dev_attr_wakeup_filter.attr.attr,
1614 	&dev_attr_wakeup_filter_mask.attr.attr,
1615 	&dev_attr_wakeup_protocols.attr,
1616 	NULL,
1617 };
1618 
1619 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1620 	.attrs	= rc_dev_wakeup_filter_attrs,
1621 };
1622 
1623 static const struct device_type rc_dev_type = {
1624 	.release	= rc_dev_release,
1625 	.uevent		= rc_dev_uevent,
1626 };
1627 
1628 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1629 {
1630 	struct rc_dev *dev;
1631 
1632 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1633 	if (!dev)
1634 		return NULL;
1635 
1636 	if (type != RC_DRIVER_IR_RAW_TX) {
1637 		dev->input_dev = input_allocate_device();
1638 		if (!dev->input_dev) {
1639 			kfree(dev);
1640 			return NULL;
1641 		}
1642 
1643 		dev->input_dev->getkeycode = ir_getkeycode;
1644 		dev->input_dev->setkeycode = ir_setkeycode;
1645 		input_set_drvdata(dev->input_dev, dev);
1646 
1647 		dev->timeout = IR_DEFAULT_TIMEOUT;
1648 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1649 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1650 
1651 		spin_lock_init(&dev->rc_map.lock);
1652 		spin_lock_init(&dev->keylock);
1653 	}
1654 	mutex_init(&dev->lock);
1655 
1656 	dev->dev.type = &rc_dev_type;
1657 	dev->dev.class = &rc_class;
1658 	device_initialize(&dev->dev);
1659 
1660 	dev->driver_type = type;
1661 
1662 	__module_get(THIS_MODULE);
1663 	return dev;
1664 }
1665 EXPORT_SYMBOL_GPL(rc_allocate_device);
1666 
1667 void rc_free_device(struct rc_dev *dev)
1668 {
1669 	if (!dev)
1670 		return;
1671 
1672 	input_free_device(dev->input_dev);
1673 
1674 	put_device(&dev->dev);
1675 
1676 	/* kfree(dev) will be called by the callback function
1677 	   rc_dev_release() */
1678 
1679 	module_put(THIS_MODULE);
1680 }
1681 EXPORT_SYMBOL_GPL(rc_free_device);
1682 
1683 static void devm_rc_alloc_release(struct device *dev, void *res)
1684 {
1685 	rc_free_device(*(struct rc_dev **)res);
1686 }
1687 
1688 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1689 				       enum rc_driver_type type)
1690 {
1691 	struct rc_dev **dr, *rc;
1692 
1693 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1694 	if (!dr)
1695 		return NULL;
1696 
1697 	rc = rc_allocate_device(type);
1698 	if (!rc) {
1699 		devres_free(dr);
1700 		return NULL;
1701 	}
1702 
1703 	rc->dev.parent = dev;
1704 	rc->managed_alloc = true;
1705 	*dr = rc;
1706 	devres_add(dev, dr);
1707 
1708 	return rc;
1709 }
1710 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1711 
1712 static int rc_prepare_rx_device(struct rc_dev *dev)
1713 {
1714 	int rc;
1715 	struct rc_map *rc_map;
1716 	u64 rc_proto;
1717 
1718 	if (!dev->map_name)
1719 		return -EINVAL;
1720 
1721 	rc_map = rc_map_get(dev->map_name);
1722 	if (!rc_map)
1723 		rc_map = rc_map_get(RC_MAP_EMPTY);
1724 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1725 		return -EINVAL;
1726 
1727 	rc = ir_setkeytable(dev, rc_map);
1728 	if (rc)
1729 		return rc;
1730 
1731 	rc_proto = BIT_ULL(rc_map->rc_proto);
1732 
1733 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1734 		dev->enabled_protocols = dev->allowed_protocols;
1735 
1736 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1737 		ir_raw_load_modules(&rc_proto);
1738 
1739 	if (dev->change_protocol) {
1740 		rc = dev->change_protocol(dev, &rc_proto);
1741 		if (rc < 0)
1742 			goto out_table;
1743 		dev->enabled_protocols = rc_proto;
1744 	}
1745 
1746 	/* Keyboard events */
1747 	set_bit(EV_KEY, dev->input_dev->evbit);
1748 	set_bit(EV_REP, dev->input_dev->evbit);
1749 	set_bit(EV_MSC, dev->input_dev->evbit);
1750 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1751 	bitmap_fill(dev->input_dev->keybit, KEY_CNT);
1752 
1753 	/* Pointer/mouse events */
1754 	set_bit(EV_REL, dev->input_dev->evbit);
1755 	set_bit(REL_X, dev->input_dev->relbit);
1756 	set_bit(REL_Y, dev->input_dev->relbit);
1757 
1758 	if (dev->open)
1759 		dev->input_dev->open = ir_open;
1760 	if (dev->close)
1761 		dev->input_dev->close = ir_close;
1762 
1763 	dev->input_dev->dev.parent = &dev->dev;
1764 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1765 	dev->input_dev->phys = dev->input_phys;
1766 	dev->input_dev->name = dev->device_name;
1767 
1768 	return 0;
1769 
1770 out_table:
1771 	ir_free_table(&dev->rc_map);
1772 
1773 	return rc;
1774 }
1775 
1776 static int rc_setup_rx_device(struct rc_dev *dev)
1777 {
1778 	int rc;
1779 
1780 	/* rc_open will be called here */
1781 	rc = input_register_device(dev->input_dev);
1782 	if (rc)
1783 		return rc;
1784 
1785 	/*
1786 	 * Default delay of 250ms is too short for some protocols, especially
1787 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1788 	 * to avoid wrong repetition of the keycodes. Note that this must be
1789 	 * set after the call to input_register_device().
1790 	 */
1791 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1792 		dev->input_dev->rep[REP_DELAY] = 0;
1793 	else
1794 		dev->input_dev->rep[REP_DELAY] = 500;
1795 
1796 	/*
1797 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1798 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1799 	 * to do.
1800 	 */
1801 	dev->input_dev->rep[REP_PERIOD] = 125;
1802 
1803 	return 0;
1804 }
1805 
1806 static void rc_free_rx_device(struct rc_dev *dev)
1807 {
1808 	if (!dev)
1809 		return;
1810 
1811 	if (dev->input_dev) {
1812 		input_unregister_device(dev->input_dev);
1813 		dev->input_dev = NULL;
1814 	}
1815 
1816 	ir_free_table(&dev->rc_map);
1817 }
1818 
1819 int rc_register_device(struct rc_dev *dev)
1820 {
1821 	const char *path;
1822 	int attr = 0;
1823 	int minor;
1824 	int rc;
1825 
1826 	if (!dev)
1827 		return -EINVAL;
1828 
1829 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1830 	if (minor < 0)
1831 		return minor;
1832 
1833 	dev->minor = minor;
1834 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1835 	dev_set_drvdata(&dev->dev, dev);
1836 
1837 	dev->dev.groups = dev->sysfs_groups;
1838 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1839 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1840 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1841 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1842 	if (dev->s_filter)
1843 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1844 	if (dev->s_wakeup_filter)
1845 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1846 	dev->sysfs_groups[attr++] = NULL;
1847 
1848 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1849 		rc = ir_raw_event_prepare(dev);
1850 		if (rc < 0)
1851 			goto out_minor;
1852 	}
1853 
1854 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1855 		rc = rc_prepare_rx_device(dev);
1856 		if (rc)
1857 			goto out_raw;
1858 	}
1859 
1860 	rc = device_add(&dev->dev);
1861 	if (rc)
1862 		goto out_rx_free;
1863 
1864 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1865 	dev_info(&dev->dev, "%s as %s\n",
1866 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1867 	kfree(path);
1868 
1869 	dev->registered = true;
1870 
1871 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1872 		rc = rc_setup_rx_device(dev);
1873 		if (rc)
1874 			goto out_dev;
1875 	}
1876 
1877 	/* Ensure that the lirc kfifo is setup before we start the thread */
1878 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1879 		rc = ir_lirc_register(dev);
1880 		if (rc < 0)
1881 			goto out_rx;
1882 	}
1883 
1884 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1885 		rc = ir_raw_event_register(dev);
1886 		if (rc < 0)
1887 			goto out_lirc;
1888 	}
1889 
1890 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1891 		dev->driver_name ? dev->driver_name : "unknown");
1892 
1893 	return 0;
1894 
1895 out_lirc:
1896 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1897 		ir_lirc_unregister(dev);
1898 out_rx:
1899 	rc_free_rx_device(dev);
1900 out_dev:
1901 	device_del(&dev->dev);
1902 out_rx_free:
1903 	ir_free_table(&dev->rc_map);
1904 out_raw:
1905 	ir_raw_event_free(dev);
1906 out_minor:
1907 	ida_simple_remove(&rc_ida, minor);
1908 	return rc;
1909 }
1910 EXPORT_SYMBOL_GPL(rc_register_device);
1911 
1912 static void devm_rc_release(struct device *dev, void *res)
1913 {
1914 	rc_unregister_device(*(struct rc_dev **)res);
1915 }
1916 
1917 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1918 {
1919 	struct rc_dev **dr;
1920 	int ret;
1921 
1922 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1923 	if (!dr)
1924 		return -ENOMEM;
1925 
1926 	ret = rc_register_device(dev);
1927 	if (ret) {
1928 		devres_free(dr);
1929 		return ret;
1930 	}
1931 
1932 	*dr = dev;
1933 	devres_add(parent, dr);
1934 
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1938 
1939 void rc_unregister_device(struct rc_dev *dev)
1940 {
1941 	if (!dev)
1942 		return;
1943 
1944 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1945 		ir_raw_event_unregister(dev);
1946 
1947 	del_timer_sync(&dev->timer_keyup);
1948 	del_timer_sync(&dev->timer_repeat);
1949 
1950 	rc_free_rx_device(dev);
1951 
1952 	mutex_lock(&dev->lock);
1953 	dev->registered = false;
1954 	mutex_unlock(&dev->lock);
1955 
1956 	/*
1957 	 * lirc device should be freed with dev->registered = false, so
1958 	 * that userspace polling will get notified.
1959 	 */
1960 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1961 		ir_lirc_unregister(dev);
1962 
1963 	device_del(&dev->dev);
1964 
1965 	ida_simple_remove(&rc_ida, dev->minor);
1966 
1967 	if (!dev->managed_alloc)
1968 		rc_free_device(dev);
1969 }
1970 
1971 EXPORT_SYMBOL_GPL(rc_unregister_device);
1972 
1973 /*
1974  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1975  */
1976 
1977 static int __init rc_core_init(void)
1978 {
1979 	int rc = class_register(&rc_class);
1980 	if (rc) {
1981 		pr_err("rc_core: unable to register rc class\n");
1982 		return rc;
1983 	}
1984 
1985 	rc = lirc_dev_init();
1986 	if (rc) {
1987 		pr_err("rc_core: unable to init lirc\n");
1988 		class_unregister(&rc_class);
1989 		return 0;
1990 	}
1991 
1992 	led_trigger_register_simple("rc-feedback", &led_feedback);
1993 	rc_map_register(&empty_map);
1994 
1995 	return 0;
1996 }
1997 
1998 static void __exit rc_core_exit(void)
1999 {
2000 	lirc_dev_exit();
2001 	class_unregister(&rc_class);
2002 	led_trigger_unregister_simple(led_feedback);
2003 	rc_map_unregister(&empty_map);
2004 }
2005 
2006 subsys_initcall(rc_core_init);
2007 module_exit(rc_core_exit);
2008 
2009 MODULE_AUTHOR("Mauro Carvalho Chehab");
2010 MODULE_LICENSE("GPL v2");
2011