1 // SPDX-License-Identifier: GPL-2.0 2 // rc-main.c - Remote Controller core module 3 // 4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <media/rc-core.h> 9 #include <linux/bsearch.h> 10 #include <linux/spinlock.h> 11 #include <linux/delay.h> 12 #include <linux/input.h> 13 #include <linux/leds.h> 14 #include <linux/slab.h> 15 #include <linux/idr.h> 16 #include <linux/device.h> 17 #include <linux/module.h> 18 #include "rc-core-priv.h" 19 20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 21 #define IR_TAB_MIN_SIZE 256 22 #define IR_TAB_MAX_SIZE 8192 23 24 static const struct { 25 const char *name; 26 unsigned int repeat_period; 27 unsigned int scancode_bits; 28 } protocols[] = { 29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 }, 30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 }, 31 [RC_PROTO_RC5] = { .name = "rc-5", 32 .scancode_bits = 0x1f7f, .repeat_period = 114 }, 33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", 34 .scancode_bits = 0x1f7f3f, .repeat_period = 114 }, 35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", 36 .scancode_bits = 0x2fff, .repeat_period = 114 }, 37 [RC_PROTO_JVC] = { .name = "jvc", 38 .scancode_bits = 0xffff, .repeat_period = 125 }, 39 [RC_PROTO_SONY12] = { .name = "sony-12", 40 .scancode_bits = 0x1f007f, .repeat_period = 100 }, 41 [RC_PROTO_SONY15] = { .name = "sony-15", 42 .scancode_bits = 0xff007f, .repeat_period = 100 }, 43 [RC_PROTO_SONY20] = { .name = "sony-20", 44 .scancode_bits = 0x1fff7f, .repeat_period = 100 }, 45 [RC_PROTO_NEC] = { .name = "nec", 46 .scancode_bits = 0xffff, .repeat_period = 110 }, 47 [RC_PROTO_NECX] = { .name = "nec-x", 48 .scancode_bits = 0xffffff, .repeat_period = 110 }, 49 [RC_PROTO_NEC32] = { .name = "nec-32", 50 .scancode_bits = 0xffffffff, .repeat_period = 110 }, 51 [RC_PROTO_SANYO] = { .name = "sanyo", 52 .scancode_bits = 0x1fffff, .repeat_period = 125 }, 53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", 54 .scancode_bits = 0xffffff, .repeat_period = 100 }, 55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", 56 .scancode_bits = 0x1fffff, .repeat_period = 100 }, 57 [RC_PROTO_RC6_0] = { .name = "rc-6-0", 58 .scancode_bits = 0xffff, .repeat_period = 114 }, 59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", 60 .scancode_bits = 0xfffff, .repeat_period = 114 }, 61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", 62 .scancode_bits = 0xffffff, .repeat_period = 114 }, 63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", 64 .scancode_bits = 0xffffffff, .repeat_period = 114 }, 65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", 66 .scancode_bits = 0xffff7fff, .repeat_period = 114 }, 67 [RC_PROTO_SHARP] = { .name = "sharp", 68 .scancode_bits = 0x1fff, .repeat_period = 125 }, 69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 }, 70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 }, 71 [RC_PROTO_IMON] = { .name = "imon", 72 .scancode_bits = 0x7fffffff, .repeat_period = 114 }, 73 }; 74 75 /* Used to keep track of known keymaps */ 76 static LIST_HEAD(rc_map_list); 77 static DEFINE_SPINLOCK(rc_map_lock); 78 static struct led_trigger *led_feedback; 79 80 /* Used to keep track of rc devices */ 81 static DEFINE_IDA(rc_ida); 82 83 static struct rc_map_list *seek_rc_map(const char *name) 84 { 85 struct rc_map_list *map = NULL; 86 87 spin_lock(&rc_map_lock); 88 list_for_each_entry(map, &rc_map_list, list) { 89 if (!strcmp(name, map->map.name)) { 90 spin_unlock(&rc_map_lock); 91 return map; 92 } 93 } 94 spin_unlock(&rc_map_lock); 95 96 return NULL; 97 } 98 99 struct rc_map *rc_map_get(const char *name) 100 { 101 102 struct rc_map_list *map; 103 104 map = seek_rc_map(name); 105 #ifdef CONFIG_MODULES 106 if (!map) { 107 int rc = request_module("%s", name); 108 if (rc < 0) { 109 pr_err("Couldn't load IR keymap %s\n", name); 110 return NULL; 111 } 112 msleep(20); /* Give some time for IR to register */ 113 114 map = seek_rc_map(name); 115 } 116 #endif 117 if (!map) { 118 pr_err("IR keymap %s not found\n", name); 119 return NULL; 120 } 121 122 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 123 124 return &map->map; 125 } 126 EXPORT_SYMBOL_GPL(rc_map_get); 127 128 int rc_map_register(struct rc_map_list *map) 129 { 130 spin_lock(&rc_map_lock); 131 list_add_tail(&map->list, &rc_map_list); 132 spin_unlock(&rc_map_lock); 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(rc_map_register); 136 137 void rc_map_unregister(struct rc_map_list *map) 138 { 139 spin_lock(&rc_map_lock); 140 list_del(&map->list); 141 spin_unlock(&rc_map_lock); 142 } 143 EXPORT_SYMBOL_GPL(rc_map_unregister); 144 145 146 static struct rc_map_table empty[] = { 147 { 0x2a, KEY_COFFEE }, 148 }; 149 150 static struct rc_map_list empty_map = { 151 .map = { 152 .scan = empty, 153 .size = ARRAY_SIZE(empty), 154 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ 155 .name = RC_MAP_EMPTY, 156 } 157 }; 158 159 /** 160 * ir_create_table() - initializes a scancode table 161 * @dev: the rc_dev device 162 * @rc_map: the rc_map to initialize 163 * @name: name to assign to the table 164 * @rc_proto: ir type to assign to the new table 165 * @size: initial size of the table 166 * 167 * This routine will initialize the rc_map and will allocate 168 * memory to hold at least the specified number of elements. 169 * 170 * return: zero on success or a negative error code 171 */ 172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, 173 const char *name, u64 rc_proto, size_t size) 174 { 175 rc_map->name = kstrdup(name, GFP_KERNEL); 176 if (!rc_map->name) 177 return -ENOMEM; 178 rc_map->rc_proto = rc_proto; 179 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 180 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 181 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 182 if (!rc_map->scan) { 183 kfree(rc_map->name); 184 rc_map->name = NULL; 185 return -ENOMEM; 186 } 187 188 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", 189 rc_map->size, rc_map->alloc); 190 return 0; 191 } 192 193 /** 194 * ir_free_table() - frees memory allocated by a scancode table 195 * @rc_map: the table whose mappings need to be freed 196 * 197 * This routine will free memory alloctaed for key mappings used by given 198 * scancode table. 199 */ 200 static void ir_free_table(struct rc_map *rc_map) 201 { 202 rc_map->size = 0; 203 kfree(rc_map->name); 204 rc_map->name = NULL; 205 kfree(rc_map->scan); 206 rc_map->scan = NULL; 207 } 208 209 /** 210 * ir_resize_table() - resizes a scancode table if necessary 211 * @dev: the rc_dev device 212 * @rc_map: the rc_map to resize 213 * @gfp_flags: gfp flags to use when allocating memory 214 * 215 * This routine will shrink the rc_map if it has lots of 216 * unused entries and grow it if it is full. 217 * 218 * return: zero on success or a negative error code 219 */ 220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, 221 gfp_t gfp_flags) 222 { 223 unsigned int oldalloc = rc_map->alloc; 224 unsigned int newalloc = oldalloc; 225 struct rc_map_table *oldscan = rc_map->scan; 226 struct rc_map_table *newscan; 227 228 if (rc_map->size == rc_map->len) { 229 /* All entries in use -> grow keytable */ 230 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 231 return -ENOMEM; 232 233 newalloc *= 2; 234 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); 235 } 236 237 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 238 /* Less than 1/3 of entries in use -> shrink keytable */ 239 newalloc /= 2; 240 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); 241 } 242 243 if (newalloc == oldalloc) 244 return 0; 245 246 newscan = kmalloc(newalloc, gfp_flags); 247 if (!newscan) 248 return -ENOMEM; 249 250 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 251 rc_map->scan = newscan; 252 rc_map->alloc = newalloc; 253 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 254 kfree(oldscan); 255 return 0; 256 } 257 258 /** 259 * ir_update_mapping() - set a keycode in the scancode->keycode table 260 * @dev: the struct rc_dev device descriptor 261 * @rc_map: scancode table to be adjusted 262 * @index: index of the mapping that needs to be updated 263 * @new_keycode: the desired keycode 264 * 265 * This routine is used to update scancode->keycode mapping at given 266 * position. 267 * 268 * return: previous keycode assigned to the mapping 269 * 270 */ 271 static unsigned int ir_update_mapping(struct rc_dev *dev, 272 struct rc_map *rc_map, 273 unsigned int index, 274 unsigned int new_keycode) 275 { 276 int old_keycode = rc_map->scan[index].keycode; 277 278 /* Did the user wish to remove the mapping? */ 279 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 280 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n", 281 index, rc_map->scan[index].scancode); 282 rc_map->len--; 283 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 284 (rc_map->len - index) * sizeof(struct rc_map_table)); 285 } else { 286 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n", 287 index, 288 old_keycode == KEY_RESERVED ? "New" : "Replacing", 289 rc_map->scan[index].scancode, new_keycode); 290 rc_map->scan[index].keycode = new_keycode; 291 } 292 293 if (old_keycode != KEY_RESERVED) { 294 /* Possibly shrink the keytable, failure is not a problem */ 295 ir_resize_table(dev, rc_map, GFP_ATOMIC); 296 } 297 298 return old_keycode; 299 } 300 301 /** 302 * ir_establish_scancode() - set a keycode in the scancode->keycode table 303 * @dev: the struct rc_dev device descriptor 304 * @rc_map: scancode table to be searched 305 * @scancode: the desired scancode 306 * @resize: controls whether we allowed to resize the table to 307 * accommodate not yet present scancodes 308 * 309 * This routine is used to locate given scancode in rc_map. 310 * If scancode is not yet present the routine will allocate a new slot 311 * for it. 312 * 313 * return: index of the mapping containing scancode in question 314 * or -1U in case of failure. 315 */ 316 static unsigned int ir_establish_scancode(struct rc_dev *dev, 317 struct rc_map *rc_map, 318 unsigned int scancode, 319 bool resize) 320 { 321 unsigned int i; 322 323 /* 324 * Unfortunately, some hardware-based IR decoders don't provide 325 * all bits for the complete IR code. In general, they provide only 326 * the command part of the IR code. Yet, as it is possible to replace 327 * the provided IR with another one, it is needed to allow loading 328 * IR tables from other remotes. So, we support specifying a mask to 329 * indicate the valid bits of the scancodes. 330 */ 331 if (dev->scancode_mask) 332 scancode &= dev->scancode_mask; 333 334 /* First check if we already have a mapping for this ir command */ 335 for (i = 0; i < rc_map->len; i++) { 336 if (rc_map->scan[i].scancode == scancode) 337 return i; 338 339 /* Keytable is sorted from lowest to highest scancode */ 340 if (rc_map->scan[i].scancode >= scancode) 341 break; 342 } 343 344 /* No previous mapping found, we might need to grow the table */ 345 if (rc_map->size == rc_map->len) { 346 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) 347 return -1U; 348 } 349 350 /* i is the proper index to insert our new keycode */ 351 if (i < rc_map->len) 352 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 353 (rc_map->len - i) * sizeof(struct rc_map_table)); 354 rc_map->scan[i].scancode = scancode; 355 rc_map->scan[i].keycode = KEY_RESERVED; 356 rc_map->len++; 357 358 return i; 359 } 360 361 /** 362 * ir_setkeycode() - set a keycode in the scancode->keycode table 363 * @idev: the struct input_dev device descriptor 364 * @ke: Input keymap entry 365 * @old_keycode: result 366 * 367 * This routine is used to handle evdev EVIOCSKEY ioctl. 368 * 369 * return: -EINVAL if the keycode could not be inserted, otherwise zero. 370 */ 371 static int ir_setkeycode(struct input_dev *idev, 372 const struct input_keymap_entry *ke, 373 unsigned int *old_keycode) 374 { 375 struct rc_dev *rdev = input_get_drvdata(idev); 376 struct rc_map *rc_map = &rdev->rc_map; 377 unsigned int index; 378 unsigned int scancode; 379 int retval = 0; 380 unsigned long flags; 381 382 spin_lock_irqsave(&rc_map->lock, flags); 383 384 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 385 index = ke->index; 386 if (index >= rc_map->len) { 387 retval = -EINVAL; 388 goto out; 389 } 390 } else { 391 retval = input_scancode_to_scalar(ke, &scancode); 392 if (retval) 393 goto out; 394 395 index = ir_establish_scancode(rdev, rc_map, scancode, true); 396 if (index >= rc_map->len) { 397 retval = -ENOMEM; 398 goto out; 399 } 400 } 401 402 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 403 404 out: 405 spin_unlock_irqrestore(&rc_map->lock, flags); 406 return retval; 407 } 408 409 /** 410 * ir_setkeytable() - sets several entries in the scancode->keycode table 411 * @dev: the struct rc_dev device descriptor 412 * @from: the struct rc_map to copy entries from 413 * 414 * This routine is used to handle table initialization. 415 * 416 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 417 */ 418 static int ir_setkeytable(struct rc_dev *dev, 419 const struct rc_map *from) 420 { 421 struct rc_map *rc_map = &dev->rc_map; 422 unsigned int i, index; 423 int rc; 424 425 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, 426 from->size); 427 if (rc) 428 return rc; 429 430 for (i = 0; i < from->size; i++) { 431 index = ir_establish_scancode(dev, rc_map, 432 from->scan[i].scancode, false); 433 if (index >= rc_map->len) { 434 rc = -ENOMEM; 435 break; 436 } 437 438 ir_update_mapping(dev, rc_map, index, 439 from->scan[i].keycode); 440 } 441 442 if (rc) 443 ir_free_table(rc_map); 444 445 return rc; 446 } 447 448 static int rc_map_cmp(const void *key, const void *elt) 449 { 450 const unsigned int *scancode = key; 451 const struct rc_map_table *e = elt; 452 453 if (*scancode < e->scancode) 454 return -1; 455 else if (*scancode > e->scancode) 456 return 1; 457 return 0; 458 } 459 460 /** 461 * ir_lookup_by_scancode() - locate mapping by scancode 462 * @rc_map: the struct rc_map to search 463 * @scancode: scancode to look for in the table 464 * 465 * This routine performs binary search in RC keykeymap table for 466 * given scancode. 467 * 468 * return: index in the table, -1U if not found 469 */ 470 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 471 unsigned int scancode) 472 { 473 struct rc_map_table *res; 474 475 res = bsearch(&scancode, rc_map->scan, rc_map->len, 476 sizeof(struct rc_map_table), rc_map_cmp); 477 if (!res) 478 return -1U; 479 else 480 return res - rc_map->scan; 481 } 482 483 /** 484 * ir_getkeycode() - get a keycode from the scancode->keycode table 485 * @idev: the struct input_dev device descriptor 486 * @ke: Input keymap entry 487 * 488 * This routine is used to handle evdev EVIOCGKEY ioctl. 489 * 490 * return: always returns zero. 491 */ 492 static int ir_getkeycode(struct input_dev *idev, 493 struct input_keymap_entry *ke) 494 { 495 struct rc_dev *rdev = input_get_drvdata(idev); 496 struct rc_map *rc_map = &rdev->rc_map; 497 struct rc_map_table *entry; 498 unsigned long flags; 499 unsigned int index; 500 unsigned int scancode; 501 int retval; 502 503 spin_lock_irqsave(&rc_map->lock, flags); 504 505 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 506 index = ke->index; 507 } else { 508 retval = input_scancode_to_scalar(ke, &scancode); 509 if (retval) 510 goto out; 511 512 index = ir_lookup_by_scancode(rc_map, scancode); 513 } 514 515 if (index < rc_map->len) { 516 entry = &rc_map->scan[index]; 517 518 ke->index = index; 519 ke->keycode = entry->keycode; 520 ke->len = sizeof(entry->scancode); 521 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 522 523 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 524 /* 525 * We do not really know the valid range of scancodes 526 * so let's respond with KEY_RESERVED to anything we 527 * do not have mapping for [yet]. 528 */ 529 ke->index = index; 530 ke->keycode = KEY_RESERVED; 531 } else { 532 retval = -EINVAL; 533 goto out; 534 } 535 536 retval = 0; 537 538 out: 539 spin_unlock_irqrestore(&rc_map->lock, flags); 540 return retval; 541 } 542 543 /** 544 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 545 * @dev: the struct rc_dev descriptor of the device 546 * @scancode: the scancode to look for 547 * 548 * This routine is used by drivers which need to convert a scancode to a 549 * keycode. Normally it should not be used since drivers should have no 550 * interest in keycodes. 551 * 552 * return: the corresponding keycode, or KEY_RESERVED 553 */ 554 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 555 { 556 struct rc_map *rc_map = &dev->rc_map; 557 unsigned int keycode; 558 unsigned int index; 559 unsigned long flags; 560 561 spin_lock_irqsave(&rc_map->lock, flags); 562 563 index = ir_lookup_by_scancode(rc_map, scancode); 564 keycode = index < rc_map->len ? 565 rc_map->scan[index].keycode : KEY_RESERVED; 566 567 spin_unlock_irqrestore(&rc_map->lock, flags); 568 569 if (keycode != KEY_RESERVED) 570 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n", 571 dev->device_name, scancode, keycode); 572 573 return keycode; 574 } 575 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 576 577 /** 578 * ir_do_keyup() - internal function to signal the release of a keypress 579 * @dev: the struct rc_dev descriptor of the device 580 * @sync: whether or not to call input_sync 581 * 582 * This function is used internally to release a keypress, it must be 583 * called with keylock held. 584 */ 585 static void ir_do_keyup(struct rc_dev *dev, bool sync) 586 { 587 if (!dev->keypressed) 588 return; 589 590 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); 591 del_timer(&dev->timer_repeat); 592 input_report_key(dev->input_dev, dev->last_keycode, 0); 593 led_trigger_event(led_feedback, LED_OFF); 594 if (sync) 595 input_sync(dev->input_dev); 596 dev->keypressed = false; 597 } 598 599 /** 600 * rc_keyup() - signals the release of a keypress 601 * @dev: the struct rc_dev descriptor of the device 602 * 603 * This routine is used to signal that a key has been released on the 604 * remote control. 605 */ 606 void rc_keyup(struct rc_dev *dev) 607 { 608 unsigned long flags; 609 610 spin_lock_irqsave(&dev->keylock, flags); 611 ir_do_keyup(dev, true); 612 spin_unlock_irqrestore(&dev->keylock, flags); 613 } 614 EXPORT_SYMBOL_GPL(rc_keyup); 615 616 /** 617 * ir_timer_keyup() - generates a keyup event after a timeout 618 * 619 * @t: a pointer to the struct timer_list 620 * 621 * This routine will generate a keyup event some time after a keydown event 622 * is generated when no further activity has been detected. 623 */ 624 static void ir_timer_keyup(struct timer_list *t) 625 { 626 struct rc_dev *dev = from_timer(dev, t, timer_keyup); 627 unsigned long flags; 628 629 /* 630 * ir->keyup_jiffies is used to prevent a race condition if a 631 * hardware interrupt occurs at this point and the keyup timer 632 * event is moved further into the future as a result. 633 * 634 * The timer will then be reactivated and this function called 635 * again in the future. We need to exit gracefully in that case 636 * to allow the input subsystem to do its auto-repeat magic or 637 * a keyup event might follow immediately after the keydown. 638 */ 639 spin_lock_irqsave(&dev->keylock, flags); 640 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 641 ir_do_keyup(dev, true); 642 spin_unlock_irqrestore(&dev->keylock, flags); 643 } 644 645 /** 646 * ir_timer_repeat() - generates a repeat event after a timeout 647 * 648 * @t: a pointer to the struct timer_list 649 * 650 * This routine will generate a soft repeat event every REP_PERIOD 651 * milliseconds. 652 */ 653 static void ir_timer_repeat(struct timer_list *t) 654 { 655 struct rc_dev *dev = from_timer(dev, t, timer_repeat); 656 struct input_dev *input = dev->input_dev; 657 unsigned long flags; 658 659 spin_lock_irqsave(&dev->keylock, flags); 660 if (dev->keypressed) { 661 input_event(input, EV_KEY, dev->last_keycode, 2); 662 input_sync(input); 663 if (input->rep[REP_PERIOD]) 664 mod_timer(&dev->timer_repeat, jiffies + 665 msecs_to_jiffies(input->rep[REP_PERIOD])); 666 } 667 spin_unlock_irqrestore(&dev->keylock, flags); 668 } 669 670 static unsigned int repeat_period(int protocol) 671 { 672 if (protocol >= ARRAY_SIZE(protocols)) 673 return 100; 674 675 return protocols[protocol].repeat_period; 676 } 677 678 /** 679 * rc_repeat() - signals that a key is still pressed 680 * @dev: the struct rc_dev descriptor of the device 681 * 682 * This routine is used by IR decoders when a repeat message which does 683 * not include the necessary bits to reproduce the scancode has been 684 * received. 685 */ 686 void rc_repeat(struct rc_dev *dev) 687 { 688 unsigned long flags; 689 unsigned int timeout = nsecs_to_jiffies(dev->timeout) + 690 msecs_to_jiffies(repeat_period(dev->last_protocol)); 691 struct lirc_scancode sc = { 692 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, 693 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, 694 .flags = LIRC_SCANCODE_FLAG_REPEAT | 695 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) 696 }; 697 698 ir_lirc_scancode_event(dev, &sc); 699 700 spin_lock_irqsave(&dev->keylock, flags); 701 702 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 703 input_sync(dev->input_dev); 704 705 if (dev->keypressed) { 706 dev->keyup_jiffies = jiffies + timeout; 707 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 708 } 709 710 spin_unlock_irqrestore(&dev->keylock, flags); 711 } 712 EXPORT_SYMBOL_GPL(rc_repeat); 713 714 /** 715 * ir_do_keydown() - internal function to process a keypress 716 * @dev: the struct rc_dev descriptor of the device 717 * @protocol: the protocol of the keypress 718 * @scancode: the scancode of the keypress 719 * @keycode: the keycode of the keypress 720 * @toggle: the toggle value of the keypress 721 * 722 * This function is used internally to register a keypress, it must be 723 * called with keylock held. 724 */ 725 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, 726 u32 scancode, u32 keycode, u8 toggle) 727 { 728 bool new_event = (!dev->keypressed || 729 dev->last_protocol != protocol || 730 dev->last_scancode != scancode || 731 dev->last_toggle != toggle); 732 struct lirc_scancode sc = { 733 .scancode = scancode, .rc_proto = protocol, 734 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, 735 .keycode = keycode 736 }; 737 738 ir_lirc_scancode_event(dev, &sc); 739 740 if (new_event && dev->keypressed) 741 ir_do_keyup(dev, false); 742 743 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 744 745 dev->last_protocol = protocol; 746 dev->last_scancode = scancode; 747 dev->last_toggle = toggle; 748 dev->last_keycode = keycode; 749 750 if (new_event && keycode != KEY_RESERVED) { 751 /* Register a keypress */ 752 dev->keypressed = true; 753 754 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 755 dev->device_name, keycode, protocol, scancode); 756 input_report_key(dev->input_dev, keycode, 1); 757 758 led_trigger_event(led_feedback, LED_FULL); 759 } 760 761 /* 762 * For CEC, start sending repeat messages as soon as the first 763 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD 764 * is non-zero. Otherwise, the input layer will generate repeat 765 * messages. 766 */ 767 if (!new_event && keycode != KEY_RESERVED && 768 dev->allowed_protocols == RC_PROTO_BIT_CEC && 769 !timer_pending(&dev->timer_repeat) && 770 dev->input_dev->rep[REP_PERIOD] && 771 !dev->input_dev->rep[REP_DELAY]) { 772 input_event(dev->input_dev, EV_KEY, keycode, 2); 773 mod_timer(&dev->timer_repeat, jiffies + 774 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); 775 } 776 777 input_sync(dev->input_dev); 778 } 779 780 /** 781 * rc_keydown() - generates input event for a key press 782 * @dev: the struct rc_dev descriptor of the device 783 * @protocol: the protocol for the keypress 784 * @scancode: the scancode for the keypress 785 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 786 * support toggle values, this should be set to zero) 787 * 788 * This routine is used to signal that a key has been pressed on the 789 * remote control. 790 */ 791 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, 792 u8 toggle) 793 { 794 unsigned long flags; 795 u32 keycode = rc_g_keycode_from_table(dev, scancode); 796 797 spin_lock_irqsave(&dev->keylock, flags); 798 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 799 800 if (dev->keypressed) { 801 dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) + 802 msecs_to_jiffies(repeat_period(protocol)); 803 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 804 } 805 spin_unlock_irqrestore(&dev->keylock, flags); 806 } 807 EXPORT_SYMBOL_GPL(rc_keydown); 808 809 /** 810 * rc_keydown_notimeout() - generates input event for a key press without 811 * an automatic keyup event at a later time 812 * @dev: the struct rc_dev descriptor of the device 813 * @protocol: the protocol for the keypress 814 * @scancode: the scancode for the keypress 815 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 816 * support toggle values, this should be set to zero) 817 * 818 * This routine is used to signal that a key has been pressed on the 819 * remote control. The driver must manually call rc_keyup() at a later stage. 820 */ 821 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, 822 u32 scancode, u8 toggle) 823 { 824 unsigned long flags; 825 u32 keycode = rc_g_keycode_from_table(dev, scancode); 826 827 spin_lock_irqsave(&dev->keylock, flags); 828 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 829 spin_unlock_irqrestore(&dev->keylock, flags); 830 } 831 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 832 833 /** 834 * rc_validate_scancode() - checks that a scancode is valid for a protocol. 835 * For nec, it should do the opposite of ir_nec_bytes_to_scancode() 836 * @proto: protocol 837 * @scancode: scancode 838 */ 839 bool rc_validate_scancode(enum rc_proto proto, u32 scancode) 840 { 841 switch (proto) { 842 /* 843 * NECX has a 16-bit address; if the lower 8 bits match the upper 844 * 8 bits inverted, then the address would match regular nec. 845 */ 846 case RC_PROTO_NECX: 847 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) 848 return false; 849 break; 850 /* 851 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits 852 * of the command match the upper 8 bits inverted, then it would 853 * be either NEC or NECX. 854 */ 855 case RC_PROTO_NEC32: 856 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) 857 return false; 858 break; 859 /* 860 * If the customer code (top 32-bit) is 0x800f, it is MCE else it 861 * is regular mode-6a 32 bit 862 */ 863 case RC_PROTO_RC6_MCE: 864 if ((scancode & 0xffff0000) != 0x800f0000) 865 return false; 866 break; 867 case RC_PROTO_RC6_6A_32: 868 if ((scancode & 0xffff0000) == 0x800f0000) 869 return false; 870 break; 871 default: 872 break; 873 } 874 875 return true; 876 } 877 878 /** 879 * rc_validate_filter() - checks that the scancode and mask are valid and 880 * provides sensible defaults 881 * @dev: the struct rc_dev descriptor of the device 882 * @filter: the scancode and mask 883 * 884 * return: 0 or -EINVAL if the filter is not valid 885 */ 886 static int rc_validate_filter(struct rc_dev *dev, 887 struct rc_scancode_filter *filter) 888 { 889 u32 mask, s = filter->data; 890 enum rc_proto protocol = dev->wakeup_protocol; 891 892 if (protocol >= ARRAY_SIZE(protocols)) 893 return -EINVAL; 894 895 mask = protocols[protocol].scancode_bits; 896 897 if (!rc_validate_scancode(protocol, s)) 898 return -EINVAL; 899 900 filter->data &= mask; 901 filter->mask &= mask; 902 903 /* 904 * If we have to raw encode the IR for wakeup, we cannot have a mask 905 */ 906 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) 907 return -EINVAL; 908 909 return 0; 910 } 911 912 int rc_open(struct rc_dev *rdev) 913 { 914 int rval = 0; 915 916 if (!rdev) 917 return -EINVAL; 918 919 mutex_lock(&rdev->lock); 920 921 if (!rdev->registered) { 922 rval = -ENODEV; 923 } else { 924 if (!rdev->users++ && rdev->open) 925 rval = rdev->open(rdev); 926 927 if (rval) 928 rdev->users--; 929 } 930 931 mutex_unlock(&rdev->lock); 932 933 return rval; 934 } 935 936 static int ir_open(struct input_dev *idev) 937 { 938 struct rc_dev *rdev = input_get_drvdata(idev); 939 940 return rc_open(rdev); 941 } 942 943 void rc_close(struct rc_dev *rdev) 944 { 945 if (rdev) { 946 mutex_lock(&rdev->lock); 947 948 if (!--rdev->users && rdev->close && rdev->registered) 949 rdev->close(rdev); 950 951 mutex_unlock(&rdev->lock); 952 } 953 } 954 955 static void ir_close(struct input_dev *idev) 956 { 957 struct rc_dev *rdev = input_get_drvdata(idev); 958 rc_close(rdev); 959 } 960 961 /* class for /sys/class/rc */ 962 static char *rc_devnode(struct device *dev, umode_t *mode) 963 { 964 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 965 } 966 967 static struct class rc_class = { 968 .name = "rc", 969 .devnode = rc_devnode, 970 }; 971 972 /* 973 * These are the protocol textual descriptions that are 974 * used by the sysfs protocols file. Note that the order 975 * of the entries is relevant. 976 */ 977 static const struct { 978 u64 type; 979 const char *name; 980 const char *module_name; 981 } proto_names[] = { 982 { RC_PROTO_BIT_NONE, "none", NULL }, 983 { RC_PROTO_BIT_OTHER, "other", NULL }, 984 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, 985 { RC_PROTO_BIT_RC5 | 986 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, 987 { RC_PROTO_BIT_NEC | 988 RC_PROTO_BIT_NECX | 989 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, 990 { RC_PROTO_BIT_RC6_0 | 991 RC_PROTO_BIT_RC6_6A_20 | 992 RC_PROTO_BIT_RC6_6A_24 | 993 RC_PROTO_BIT_RC6_6A_32 | 994 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 995 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, 996 { RC_PROTO_BIT_SONY12 | 997 RC_PROTO_BIT_SONY15 | 998 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, 999 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 1000 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 1001 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 1002 { RC_PROTO_BIT_MCIR2_KBD | 1003 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, 1004 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, 1005 { RC_PROTO_BIT_CEC, "cec", NULL }, 1006 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" }, 1007 }; 1008 1009 /** 1010 * struct rc_filter_attribute - Device attribute relating to a filter type. 1011 * @attr: Device attribute. 1012 * @type: Filter type. 1013 * @mask: false for filter value, true for filter mask. 1014 */ 1015 struct rc_filter_attribute { 1016 struct device_attribute attr; 1017 enum rc_filter_type type; 1018 bool mask; 1019 }; 1020 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 1021 1022 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 1023 struct rc_filter_attribute dev_attr_##_name = { \ 1024 .attr = __ATTR(_name, _mode, _show, _store), \ 1025 .type = (_type), \ 1026 .mask = (_mask), \ 1027 } 1028 1029 /** 1030 * show_protocols() - shows the current IR protocol(s) 1031 * @device: the device descriptor 1032 * @mattr: the device attribute struct 1033 * @buf: a pointer to the output buffer 1034 * 1035 * This routine is a callback routine for input read the IR protocol type(s). 1036 * it is trigged by reading /sys/class/rc/rc?/protocols. 1037 * It returns the protocol names of supported protocols. 1038 * Enabled protocols are printed in brackets. 1039 * 1040 * dev->lock is taken to guard against races between 1041 * store_protocols and show_protocols. 1042 */ 1043 static ssize_t show_protocols(struct device *device, 1044 struct device_attribute *mattr, char *buf) 1045 { 1046 struct rc_dev *dev = to_rc_dev(device); 1047 u64 allowed, enabled; 1048 char *tmp = buf; 1049 int i; 1050 1051 mutex_lock(&dev->lock); 1052 1053 enabled = dev->enabled_protocols; 1054 allowed = dev->allowed_protocols; 1055 if (dev->raw && !allowed) 1056 allowed = ir_raw_get_allowed_protocols(); 1057 1058 mutex_unlock(&dev->lock); 1059 1060 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 1061 __func__, (long long)allowed, (long long)enabled); 1062 1063 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1064 if (allowed & enabled & proto_names[i].type) 1065 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 1066 else if (allowed & proto_names[i].type) 1067 tmp += sprintf(tmp, "%s ", proto_names[i].name); 1068 1069 if (allowed & proto_names[i].type) 1070 allowed &= ~proto_names[i].type; 1071 } 1072 1073 #ifdef CONFIG_LIRC 1074 if (dev->driver_type == RC_DRIVER_IR_RAW) 1075 tmp += sprintf(tmp, "[lirc] "); 1076 #endif 1077 1078 if (tmp != buf) 1079 tmp--; 1080 *tmp = '\n'; 1081 1082 return tmp + 1 - buf; 1083 } 1084 1085 /** 1086 * parse_protocol_change() - parses a protocol change request 1087 * @dev: rc_dev device 1088 * @protocols: pointer to the bitmask of current protocols 1089 * @buf: pointer to the buffer with a list of changes 1090 * 1091 * Writing "+proto" will add a protocol to the protocol mask. 1092 * Writing "-proto" will remove a protocol from protocol mask. 1093 * Writing "proto" will enable only "proto". 1094 * Writing "none" will disable all protocols. 1095 * Returns the number of changes performed or a negative error code. 1096 */ 1097 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, 1098 const char *buf) 1099 { 1100 const char *tmp; 1101 unsigned count = 0; 1102 bool enable, disable; 1103 u64 mask; 1104 int i; 1105 1106 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 1107 if (!*tmp) 1108 break; 1109 1110 if (*tmp == '+') { 1111 enable = true; 1112 disable = false; 1113 tmp++; 1114 } else if (*tmp == '-') { 1115 enable = false; 1116 disable = true; 1117 tmp++; 1118 } else { 1119 enable = false; 1120 disable = false; 1121 } 1122 1123 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1124 if (!strcasecmp(tmp, proto_names[i].name)) { 1125 mask = proto_names[i].type; 1126 break; 1127 } 1128 } 1129 1130 if (i == ARRAY_SIZE(proto_names)) { 1131 if (!strcasecmp(tmp, "lirc")) 1132 mask = 0; 1133 else { 1134 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", 1135 tmp); 1136 return -EINVAL; 1137 } 1138 } 1139 1140 count++; 1141 1142 if (enable) 1143 *protocols |= mask; 1144 else if (disable) 1145 *protocols &= ~mask; 1146 else 1147 *protocols = mask; 1148 } 1149 1150 if (!count) { 1151 dev_dbg(&dev->dev, "Protocol not specified\n"); 1152 return -EINVAL; 1153 } 1154 1155 return count; 1156 } 1157 1158 void ir_raw_load_modules(u64 *protocols) 1159 { 1160 u64 available; 1161 int i, ret; 1162 1163 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1164 if (proto_names[i].type == RC_PROTO_BIT_NONE || 1165 proto_names[i].type & (RC_PROTO_BIT_OTHER | 1166 RC_PROTO_BIT_UNKNOWN)) 1167 continue; 1168 1169 available = ir_raw_get_allowed_protocols(); 1170 if (!(*protocols & proto_names[i].type & ~available)) 1171 continue; 1172 1173 if (!proto_names[i].module_name) { 1174 pr_err("Can't enable IR protocol %s\n", 1175 proto_names[i].name); 1176 *protocols &= ~proto_names[i].type; 1177 continue; 1178 } 1179 1180 ret = request_module("%s", proto_names[i].module_name); 1181 if (ret < 0) { 1182 pr_err("Couldn't load IR protocol module %s\n", 1183 proto_names[i].module_name); 1184 *protocols &= ~proto_names[i].type; 1185 continue; 1186 } 1187 msleep(20); 1188 available = ir_raw_get_allowed_protocols(); 1189 if (!(*protocols & proto_names[i].type & ~available)) 1190 continue; 1191 1192 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", 1193 proto_names[i].module_name, 1194 proto_names[i].name); 1195 *protocols &= ~proto_names[i].type; 1196 } 1197 } 1198 1199 /** 1200 * store_protocols() - changes the current/wakeup IR protocol(s) 1201 * @device: the device descriptor 1202 * @mattr: the device attribute struct 1203 * @buf: a pointer to the input buffer 1204 * @len: length of the input buffer 1205 * 1206 * This routine is for changing the IR protocol type. 1207 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1208 * See parse_protocol_change() for the valid commands. 1209 * Returns @len on success or a negative error code. 1210 * 1211 * dev->lock is taken to guard against races between 1212 * store_protocols and show_protocols. 1213 */ 1214 static ssize_t store_protocols(struct device *device, 1215 struct device_attribute *mattr, 1216 const char *buf, size_t len) 1217 { 1218 struct rc_dev *dev = to_rc_dev(device); 1219 u64 *current_protocols; 1220 struct rc_scancode_filter *filter; 1221 u64 old_protocols, new_protocols; 1222 ssize_t rc; 1223 1224 dev_dbg(&dev->dev, "Normal protocol change requested\n"); 1225 current_protocols = &dev->enabled_protocols; 1226 filter = &dev->scancode_filter; 1227 1228 if (!dev->change_protocol) { 1229 dev_dbg(&dev->dev, "Protocol switching not supported\n"); 1230 return -EINVAL; 1231 } 1232 1233 mutex_lock(&dev->lock); 1234 1235 old_protocols = *current_protocols; 1236 new_protocols = old_protocols; 1237 rc = parse_protocol_change(dev, &new_protocols, buf); 1238 if (rc < 0) 1239 goto out; 1240 1241 if (dev->driver_type == RC_DRIVER_IR_RAW) 1242 ir_raw_load_modules(&new_protocols); 1243 1244 rc = dev->change_protocol(dev, &new_protocols); 1245 if (rc < 0) { 1246 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", 1247 (long long)new_protocols); 1248 goto out; 1249 } 1250 1251 if (new_protocols != old_protocols) { 1252 *current_protocols = new_protocols; 1253 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", 1254 (long long)new_protocols); 1255 } 1256 1257 /* 1258 * If a protocol change was attempted the filter may need updating, even 1259 * if the actual protocol mask hasn't changed (since the driver may have 1260 * cleared the filter). 1261 * Try setting the same filter with the new protocol (if any). 1262 * Fall back to clearing the filter. 1263 */ 1264 if (dev->s_filter && filter->mask) { 1265 if (new_protocols) 1266 rc = dev->s_filter(dev, filter); 1267 else 1268 rc = -1; 1269 1270 if (rc < 0) { 1271 filter->data = 0; 1272 filter->mask = 0; 1273 dev->s_filter(dev, filter); 1274 } 1275 } 1276 1277 rc = len; 1278 1279 out: 1280 mutex_unlock(&dev->lock); 1281 return rc; 1282 } 1283 1284 /** 1285 * show_filter() - shows the current scancode filter value or mask 1286 * @device: the device descriptor 1287 * @attr: the device attribute struct 1288 * @buf: a pointer to the output buffer 1289 * 1290 * This routine is a callback routine to read a scancode filter value or mask. 1291 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1292 * It prints the current scancode filter value or mask of the appropriate filter 1293 * type in hexadecimal into @buf and returns the size of the buffer. 1294 * 1295 * Bits of the filter value corresponding to set bits in the filter mask are 1296 * compared against input scancodes and non-matching scancodes are discarded. 1297 * 1298 * dev->lock is taken to guard against races between 1299 * store_filter and show_filter. 1300 */ 1301 static ssize_t show_filter(struct device *device, 1302 struct device_attribute *attr, 1303 char *buf) 1304 { 1305 struct rc_dev *dev = to_rc_dev(device); 1306 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1307 struct rc_scancode_filter *filter; 1308 u32 val; 1309 1310 mutex_lock(&dev->lock); 1311 1312 if (fattr->type == RC_FILTER_NORMAL) 1313 filter = &dev->scancode_filter; 1314 else 1315 filter = &dev->scancode_wakeup_filter; 1316 1317 if (fattr->mask) 1318 val = filter->mask; 1319 else 1320 val = filter->data; 1321 mutex_unlock(&dev->lock); 1322 1323 return sprintf(buf, "%#x\n", val); 1324 } 1325 1326 /** 1327 * store_filter() - changes the scancode filter value 1328 * @device: the device descriptor 1329 * @attr: the device attribute struct 1330 * @buf: a pointer to the input buffer 1331 * @len: length of the input buffer 1332 * 1333 * This routine is for changing a scancode filter value or mask. 1334 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1335 * Returns -EINVAL if an invalid filter value for the current protocol was 1336 * specified or if scancode filtering is not supported by the driver, otherwise 1337 * returns @len. 1338 * 1339 * Bits of the filter value corresponding to set bits in the filter mask are 1340 * compared against input scancodes and non-matching scancodes are discarded. 1341 * 1342 * dev->lock is taken to guard against races between 1343 * store_filter and show_filter. 1344 */ 1345 static ssize_t store_filter(struct device *device, 1346 struct device_attribute *attr, 1347 const char *buf, size_t len) 1348 { 1349 struct rc_dev *dev = to_rc_dev(device); 1350 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1351 struct rc_scancode_filter new_filter, *filter; 1352 int ret; 1353 unsigned long val; 1354 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1355 1356 ret = kstrtoul(buf, 0, &val); 1357 if (ret < 0) 1358 return ret; 1359 1360 if (fattr->type == RC_FILTER_NORMAL) { 1361 set_filter = dev->s_filter; 1362 filter = &dev->scancode_filter; 1363 } else { 1364 set_filter = dev->s_wakeup_filter; 1365 filter = &dev->scancode_wakeup_filter; 1366 } 1367 1368 if (!set_filter) 1369 return -EINVAL; 1370 1371 mutex_lock(&dev->lock); 1372 1373 new_filter = *filter; 1374 if (fattr->mask) 1375 new_filter.mask = val; 1376 else 1377 new_filter.data = val; 1378 1379 if (fattr->type == RC_FILTER_WAKEUP) { 1380 /* 1381 * Refuse to set a filter unless a protocol is enabled 1382 * and the filter is valid for that protocol 1383 */ 1384 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) 1385 ret = rc_validate_filter(dev, &new_filter); 1386 else 1387 ret = -EINVAL; 1388 1389 if (ret != 0) 1390 goto unlock; 1391 } 1392 1393 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && 1394 val) { 1395 /* refuse to set a filter unless a protocol is enabled */ 1396 ret = -EINVAL; 1397 goto unlock; 1398 } 1399 1400 ret = set_filter(dev, &new_filter); 1401 if (ret < 0) 1402 goto unlock; 1403 1404 *filter = new_filter; 1405 1406 unlock: 1407 mutex_unlock(&dev->lock); 1408 return (ret < 0) ? ret : len; 1409 } 1410 1411 /** 1412 * show_wakeup_protocols() - shows the wakeup IR protocol 1413 * @device: the device descriptor 1414 * @mattr: the device attribute struct 1415 * @buf: a pointer to the output buffer 1416 * 1417 * This routine is a callback routine for input read the IR protocol type(s). 1418 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols. 1419 * It returns the protocol names of supported protocols. 1420 * The enabled protocols are printed in brackets. 1421 * 1422 * dev->lock is taken to guard against races between 1423 * store_wakeup_protocols and show_wakeup_protocols. 1424 */ 1425 static ssize_t show_wakeup_protocols(struct device *device, 1426 struct device_attribute *mattr, 1427 char *buf) 1428 { 1429 struct rc_dev *dev = to_rc_dev(device); 1430 u64 allowed; 1431 enum rc_proto enabled; 1432 char *tmp = buf; 1433 int i; 1434 1435 mutex_lock(&dev->lock); 1436 1437 allowed = dev->allowed_wakeup_protocols; 1438 enabled = dev->wakeup_protocol; 1439 1440 mutex_unlock(&dev->lock); 1441 1442 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", 1443 __func__, (long long)allowed, enabled); 1444 1445 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1446 if (allowed & (1ULL << i)) { 1447 if (i == enabled) 1448 tmp += sprintf(tmp, "[%s] ", protocols[i].name); 1449 else 1450 tmp += sprintf(tmp, "%s ", protocols[i].name); 1451 } 1452 } 1453 1454 if (tmp != buf) 1455 tmp--; 1456 *tmp = '\n'; 1457 1458 return tmp + 1 - buf; 1459 } 1460 1461 /** 1462 * store_wakeup_protocols() - changes the wakeup IR protocol(s) 1463 * @device: the device descriptor 1464 * @mattr: the device attribute struct 1465 * @buf: a pointer to the input buffer 1466 * @len: length of the input buffer 1467 * 1468 * This routine is for changing the IR protocol type. 1469 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols. 1470 * Returns @len on success or a negative error code. 1471 * 1472 * dev->lock is taken to guard against races between 1473 * store_wakeup_protocols and show_wakeup_protocols. 1474 */ 1475 static ssize_t store_wakeup_protocols(struct device *device, 1476 struct device_attribute *mattr, 1477 const char *buf, size_t len) 1478 { 1479 struct rc_dev *dev = to_rc_dev(device); 1480 enum rc_proto protocol; 1481 ssize_t rc; 1482 u64 allowed; 1483 int i; 1484 1485 mutex_lock(&dev->lock); 1486 1487 allowed = dev->allowed_wakeup_protocols; 1488 1489 if (sysfs_streq(buf, "none")) { 1490 protocol = RC_PROTO_UNKNOWN; 1491 } else { 1492 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1493 if ((allowed & (1ULL << i)) && 1494 sysfs_streq(buf, protocols[i].name)) { 1495 protocol = i; 1496 break; 1497 } 1498 } 1499 1500 if (i == ARRAY_SIZE(protocols)) { 1501 rc = -EINVAL; 1502 goto out; 1503 } 1504 1505 if (dev->encode_wakeup) { 1506 u64 mask = 1ULL << protocol; 1507 1508 ir_raw_load_modules(&mask); 1509 if (!mask) { 1510 rc = -EINVAL; 1511 goto out; 1512 } 1513 } 1514 } 1515 1516 if (dev->wakeup_protocol != protocol) { 1517 dev->wakeup_protocol = protocol; 1518 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); 1519 1520 if (protocol == RC_PROTO_RC6_MCE) 1521 dev->scancode_wakeup_filter.data = 0x800f0000; 1522 else 1523 dev->scancode_wakeup_filter.data = 0; 1524 dev->scancode_wakeup_filter.mask = 0; 1525 1526 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); 1527 if (rc == 0) 1528 rc = len; 1529 } else { 1530 rc = len; 1531 } 1532 1533 out: 1534 mutex_unlock(&dev->lock); 1535 return rc; 1536 } 1537 1538 static void rc_dev_release(struct device *device) 1539 { 1540 struct rc_dev *dev = to_rc_dev(device); 1541 1542 kfree(dev); 1543 } 1544 1545 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1546 do { \ 1547 int err = add_uevent_var(env, fmt, val); \ 1548 if (err) \ 1549 return err; \ 1550 } while (0) 1551 1552 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1553 { 1554 struct rc_dev *dev = to_rc_dev(device); 1555 1556 if (dev->rc_map.name) 1557 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1558 if (dev->driver_name) 1559 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1560 if (dev->device_name) 1561 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); 1562 1563 return 0; 1564 } 1565 1566 /* 1567 * Static device attribute struct with the sysfs attributes for IR's 1568 */ 1569 static struct device_attribute dev_attr_ro_protocols = 1570 __ATTR(protocols, 0444, show_protocols, NULL); 1571 static struct device_attribute dev_attr_rw_protocols = 1572 __ATTR(protocols, 0644, show_protocols, store_protocols); 1573 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, 1574 store_wakeup_protocols); 1575 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1576 show_filter, store_filter, RC_FILTER_NORMAL, false); 1577 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1578 show_filter, store_filter, RC_FILTER_NORMAL, true); 1579 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1580 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1581 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1582 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1583 1584 static struct attribute *rc_dev_rw_protocol_attrs[] = { 1585 &dev_attr_rw_protocols.attr, 1586 NULL, 1587 }; 1588 1589 static const struct attribute_group rc_dev_rw_protocol_attr_grp = { 1590 .attrs = rc_dev_rw_protocol_attrs, 1591 }; 1592 1593 static struct attribute *rc_dev_ro_protocol_attrs[] = { 1594 &dev_attr_ro_protocols.attr, 1595 NULL, 1596 }; 1597 1598 static const struct attribute_group rc_dev_ro_protocol_attr_grp = { 1599 .attrs = rc_dev_ro_protocol_attrs, 1600 }; 1601 1602 static struct attribute *rc_dev_filter_attrs[] = { 1603 &dev_attr_filter.attr.attr, 1604 &dev_attr_filter_mask.attr.attr, 1605 NULL, 1606 }; 1607 1608 static const struct attribute_group rc_dev_filter_attr_grp = { 1609 .attrs = rc_dev_filter_attrs, 1610 }; 1611 1612 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1613 &dev_attr_wakeup_filter.attr.attr, 1614 &dev_attr_wakeup_filter_mask.attr.attr, 1615 &dev_attr_wakeup_protocols.attr, 1616 NULL, 1617 }; 1618 1619 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1620 .attrs = rc_dev_wakeup_filter_attrs, 1621 }; 1622 1623 static const struct device_type rc_dev_type = { 1624 .release = rc_dev_release, 1625 .uevent = rc_dev_uevent, 1626 }; 1627 1628 struct rc_dev *rc_allocate_device(enum rc_driver_type type) 1629 { 1630 struct rc_dev *dev; 1631 1632 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1633 if (!dev) 1634 return NULL; 1635 1636 if (type != RC_DRIVER_IR_RAW_TX) { 1637 dev->input_dev = input_allocate_device(); 1638 if (!dev->input_dev) { 1639 kfree(dev); 1640 return NULL; 1641 } 1642 1643 dev->input_dev->getkeycode = ir_getkeycode; 1644 dev->input_dev->setkeycode = ir_setkeycode; 1645 input_set_drvdata(dev->input_dev, dev); 1646 1647 dev->timeout = IR_DEFAULT_TIMEOUT; 1648 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); 1649 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); 1650 1651 spin_lock_init(&dev->rc_map.lock); 1652 spin_lock_init(&dev->keylock); 1653 } 1654 mutex_init(&dev->lock); 1655 1656 dev->dev.type = &rc_dev_type; 1657 dev->dev.class = &rc_class; 1658 device_initialize(&dev->dev); 1659 1660 dev->driver_type = type; 1661 1662 __module_get(THIS_MODULE); 1663 return dev; 1664 } 1665 EXPORT_SYMBOL_GPL(rc_allocate_device); 1666 1667 void rc_free_device(struct rc_dev *dev) 1668 { 1669 if (!dev) 1670 return; 1671 1672 input_free_device(dev->input_dev); 1673 1674 put_device(&dev->dev); 1675 1676 /* kfree(dev) will be called by the callback function 1677 rc_dev_release() */ 1678 1679 module_put(THIS_MODULE); 1680 } 1681 EXPORT_SYMBOL_GPL(rc_free_device); 1682 1683 static void devm_rc_alloc_release(struct device *dev, void *res) 1684 { 1685 rc_free_device(*(struct rc_dev **)res); 1686 } 1687 1688 struct rc_dev *devm_rc_allocate_device(struct device *dev, 1689 enum rc_driver_type type) 1690 { 1691 struct rc_dev **dr, *rc; 1692 1693 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1694 if (!dr) 1695 return NULL; 1696 1697 rc = rc_allocate_device(type); 1698 if (!rc) { 1699 devres_free(dr); 1700 return NULL; 1701 } 1702 1703 rc->dev.parent = dev; 1704 rc->managed_alloc = true; 1705 *dr = rc; 1706 devres_add(dev, dr); 1707 1708 return rc; 1709 } 1710 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1711 1712 static int rc_prepare_rx_device(struct rc_dev *dev) 1713 { 1714 int rc; 1715 struct rc_map *rc_map; 1716 u64 rc_proto; 1717 1718 if (!dev->map_name) 1719 return -EINVAL; 1720 1721 rc_map = rc_map_get(dev->map_name); 1722 if (!rc_map) 1723 rc_map = rc_map_get(RC_MAP_EMPTY); 1724 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1725 return -EINVAL; 1726 1727 rc = ir_setkeytable(dev, rc_map); 1728 if (rc) 1729 return rc; 1730 1731 rc_proto = BIT_ULL(rc_map->rc_proto); 1732 1733 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1734 dev->enabled_protocols = dev->allowed_protocols; 1735 1736 if (dev->driver_type == RC_DRIVER_IR_RAW) 1737 ir_raw_load_modules(&rc_proto); 1738 1739 if (dev->change_protocol) { 1740 rc = dev->change_protocol(dev, &rc_proto); 1741 if (rc < 0) 1742 goto out_table; 1743 dev->enabled_protocols = rc_proto; 1744 } 1745 1746 /* Keyboard events */ 1747 set_bit(EV_KEY, dev->input_dev->evbit); 1748 set_bit(EV_REP, dev->input_dev->evbit); 1749 set_bit(EV_MSC, dev->input_dev->evbit); 1750 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1751 bitmap_fill(dev->input_dev->keybit, KEY_CNT); 1752 1753 /* Pointer/mouse events */ 1754 set_bit(EV_REL, dev->input_dev->evbit); 1755 set_bit(REL_X, dev->input_dev->relbit); 1756 set_bit(REL_Y, dev->input_dev->relbit); 1757 1758 if (dev->open) 1759 dev->input_dev->open = ir_open; 1760 if (dev->close) 1761 dev->input_dev->close = ir_close; 1762 1763 dev->input_dev->dev.parent = &dev->dev; 1764 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1765 dev->input_dev->phys = dev->input_phys; 1766 dev->input_dev->name = dev->device_name; 1767 1768 return 0; 1769 1770 out_table: 1771 ir_free_table(&dev->rc_map); 1772 1773 return rc; 1774 } 1775 1776 static int rc_setup_rx_device(struct rc_dev *dev) 1777 { 1778 int rc; 1779 1780 /* rc_open will be called here */ 1781 rc = input_register_device(dev->input_dev); 1782 if (rc) 1783 return rc; 1784 1785 /* 1786 * Default delay of 250ms is too short for some protocols, especially 1787 * since the timeout is currently set to 250ms. Increase it to 500ms, 1788 * to avoid wrong repetition of the keycodes. Note that this must be 1789 * set after the call to input_register_device(). 1790 */ 1791 if (dev->allowed_protocols == RC_PROTO_BIT_CEC) 1792 dev->input_dev->rep[REP_DELAY] = 0; 1793 else 1794 dev->input_dev->rep[REP_DELAY] = 500; 1795 1796 /* 1797 * As a repeat event on protocols like RC-5 and NEC take as long as 1798 * 110/114ms, using 33ms as a repeat period is not the right thing 1799 * to do. 1800 */ 1801 dev->input_dev->rep[REP_PERIOD] = 125; 1802 1803 return 0; 1804 } 1805 1806 static void rc_free_rx_device(struct rc_dev *dev) 1807 { 1808 if (!dev) 1809 return; 1810 1811 if (dev->input_dev) { 1812 input_unregister_device(dev->input_dev); 1813 dev->input_dev = NULL; 1814 } 1815 1816 ir_free_table(&dev->rc_map); 1817 } 1818 1819 int rc_register_device(struct rc_dev *dev) 1820 { 1821 const char *path; 1822 int attr = 0; 1823 int minor; 1824 int rc; 1825 1826 if (!dev) 1827 return -EINVAL; 1828 1829 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1830 if (minor < 0) 1831 return minor; 1832 1833 dev->minor = minor; 1834 dev_set_name(&dev->dev, "rc%u", dev->minor); 1835 dev_set_drvdata(&dev->dev, dev); 1836 1837 dev->dev.groups = dev->sysfs_groups; 1838 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1839 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; 1840 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) 1841 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; 1842 if (dev->s_filter) 1843 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1844 if (dev->s_wakeup_filter) 1845 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1846 dev->sysfs_groups[attr++] = NULL; 1847 1848 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1849 rc = ir_raw_event_prepare(dev); 1850 if (rc < 0) 1851 goto out_minor; 1852 } 1853 1854 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1855 rc = rc_prepare_rx_device(dev); 1856 if (rc) 1857 goto out_raw; 1858 } 1859 1860 rc = device_add(&dev->dev); 1861 if (rc) 1862 goto out_rx_free; 1863 1864 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1865 dev_info(&dev->dev, "%s as %s\n", 1866 dev->device_name ?: "Unspecified device", path ?: "N/A"); 1867 kfree(path); 1868 1869 dev->registered = true; 1870 1871 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1872 rc = rc_setup_rx_device(dev); 1873 if (rc) 1874 goto out_dev; 1875 } 1876 1877 /* Ensure that the lirc kfifo is setup before we start the thread */ 1878 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { 1879 rc = ir_lirc_register(dev); 1880 if (rc < 0) 1881 goto out_rx; 1882 } 1883 1884 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1885 rc = ir_raw_event_register(dev); 1886 if (rc < 0) 1887 goto out_lirc; 1888 } 1889 1890 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, 1891 dev->driver_name ? dev->driver_name : "unknown"); 1892 1893 return 0; 1894 1895 out_lirc: 1896 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1897 ir_lirc_unregister(dev); 1898 out_rx: 1899 rc_free_rx_device(dev); 1900 out_dev: 1901 device_del(&dev->dev); 1902 out_rx_free: 1903 ir_free_table(&dev->rc_map); 1904 out_raw: 1905 ir_raw_event_free(dev); 1906 out_minor: 1907 ida_simple_remove(&rc_ida, minor); 1908 return rc; 1909 } 1910 EXPORT_SYMBOL_GPL(rc_register_device); 1911 1912 static void devm_rc_release(struct device *dev, void *res) 1913 { 1914 rc_unregister_device(*(struct rc_dev **)res); 1915 } 1916 1917 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1918 { 1919 struct rc_dev **dr; 1920 int ret; 1921 1922 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1923 if (!dr) 1924 return -ENOMEM; 1925 1926 ret = rc_register_device(dev); 1927 if (ret) { 1928 devres_free(dr); 1929 return ret; 1930 } 1931 1932 *dr = dev; 1933 devres_add(parent, dr); 1934 1935 return 0; 1936 } 1937 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1938 1939 void rc_unregister_device(struct rc_dev *dev) 1940 { 1941 if (!dev) 1942 return; 1943 1944 if (dev->driver_type == RC_DRIVER_IR_RAW) 1945 ir_raw_event_unregister(dev); 1946 1947 del_timer_sync(&dev->timer_keyup); 1948 del_timer_sync(&dev->timer_repeat); 1949 1950 rc_free_rx_device(dev); 1951 1952 mutex_lock(&dev->lock); 1953 dev->registered = false; 1954 mutex_unlock(&dev->lock); 1955 1956 /* 1957 * lirc device should be freed with dev->registered = false, so 1958 * that userspace polling will get notified. 1959 */ 1960 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1961 ir_lirc_unregister(dev); 1962 1963 device_del(&dev->dev); 1964 1965 ida_simple_remove(&rc_ida, dev->minor); 1966 1967 if (!dev->managed_alloc) 1968 rc_free_device(dev); 1969 } 1970 1971 EXPORT_SYMBOL_GPL(rc_unregister_device); 1972 1973 /* 1974 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1975 */ 1976 1977 static int __init rc_core_init(void) 1978 { 1979 int rc = class_register(&rc_class); 1980 if (rc) { 1981 pr_err("rc_core: unable to register rc class\n"); 1982 return rc; 1983 } 1984 1985 rc = lirc_dev_init(); 1986 if (rc) { 1987 pr_err("rc_core: unable to init lirc\n"); 1988 class_unregister(&rc_class); 1989 return 0; 1990 } 1991 1992 led_trigger_register_simple("rc-feedback", &led_feedback); 1993 rc_map_register(&empty_map); 1994 1995 return 0; 1996 } 1997 1998 static void __exit rc_core_exit(void) 1999 { 2000 lirc_dev_exit(); 2001 class_unregister(&rc_class); 2002 led_trigger_unregister_simple(led_feedback); 2003 rc_map_unregister(&empty_map); 2004 } 2005 2006 subsys_initcall(rc_core_init); 2007 module_exit(rc_core_exit); 2008 2009 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2010 MODULE_LICENSE("GPL v2"); 2011