xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 6ecc07b9)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include "rc-core-priv.h"
22 
23 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
24 #define IR_TAB_MIN_SIZE	256
25 #define IR_TAB_MAX_SIZE	8192
26 
27 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
28 #define IR_KEYPRESS_TIMEOUT 250
29 
30 /* Used to keep track of known keymaps */
31 static LIST_HEAD(rc_map_list);
32 static DEFINE_SPINLOCK(rc_map_lock);
33 
34 static struct rc_map_list *seek_rc_map(const char *name)
35 {
36 	struct rc_map_list *map = NULL;
37 
38 	spin_lock(&rc_map_lock);
39 	list_for_each_entry(map, &rc_map_list, list) {
40 		if (!strcmp(name, map->map.name)) {
41 			spin_unlock(&rc_map_lock);
42 			return map;
43 		}
44 	}
45 	spin_unlock(&rc_map_lock);
46 
47 	return NULL;
48 }
49 
50 struct rc_map *rc_map_get(const char *name)
51 {
52 
53 	struct rc_map_list *map;
54 
55 	map = seek_rc_map(name);
56 #ifdef MODULE
57 	if (!map) {
58 		int rc = request_module(name);
59 		if (rc < 0) {
60 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
61 			return NULL;
62 		}
63 		msleep(20);	/* Give some time for IR to register */
64 
65 		map = seek_rc_map(name);
66 	}
67 #endif
68 	if (!map) {
69 		printk(KERN_ERR "IR keymap %s not found\n", name);
70 		return NULL;
71 	}
72 
73 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
74 
75 	return &map->map;
76 }
77 EXPORT_SYMBOL_GPL(rc_map_get);
78 
79 int rc_map_register(struct rc_map_list *map)
80 {
81 	spin_lock(&rc_map_lock);
82 	list_add_tail(&map->list, &rc_map_list);
83 	spin_unlock(&rc_map_lock);
84 	return 0;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_register);
87 
88 void rc_map_unregister(struct rc_map_list *map)
89 {
90 	spin_lock(&rc_map_lock);
91 	list_del(&map->list);
92 	spin_unlock(&rc_map_lock);
93 }
94 EXPORT_SYMBOL_GPL(rc_map_unregister);
95 
96 
97 static struct rc_map_table empty[] = {
98 	{ 0x2a, KEY_COFFEE },
99 };
100 
101 static struct rc_map_list empty_map = {
102 	.map = {
103 		.scan    = empty,
104 		.size    = ARRAY_SIZE(empty),
105 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
106 		.name    = RC_MAP_EMPTY,
107 	}
108 };
109 
110 /**
111  * ir_create_table() - initializes a scancode table
112  * @rc_map:	the rc_map to initialize
113  * @name:	name to assign to the table
114  * @rc_type:	ir type to assign to the new table
115  * @size:	initial size of the table
116  * @return:	zero on success or a negative error code
117  *
118  * This routine will initialize the rc_map and will allocate
119  * memory to hold at least the specified number of elements.
120  */
121 static int ir_create_table(struct rc_map *rc_map,
122 			   const char *name, u64 rc_type, size_t size)
123 {
124 	rc_map->name = name;
125 	rc_map->rc_type = rc_type;
126 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
127 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
128 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
129 	if (!rc_map->scan)
130 		return -ENOMEM;
131 
132 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
133 		   rc_map->size, rc_map->alloc);
134 	return 0;
135 }
136 
137 /**
138  * ir_free_table() - frees memory allocated by a scancode table
139  * @rc_map:	the table whose mappings need to be freed
140  *
141  * This routine will free memory alloctaed for key mappings used by given
142  * scancode table.
143  */
144 static void ir_free_table(struct rc_map *rc_map)
145 {
146 	rc_map->size = 0;
147 	kfree(rc_map->scan);
148 	rc_map->scan = NULL;
149 }
150 
151 /**
152  * ir_resize_table() - resizes a scancode table if necessary
153  * @rc_map:	the rc_map to resize
154  * @gfp_flags:	gfp flags to use when allocating memory
155  * @return:	zero on success or a negative error code
156  *
157  * This routine will shrink the rc_map if it has lots of
158  * unused entries and grow it if it is full.
159  */
160 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
161 {
162 	unsigned int oldalloc = rc_map->alloc;
163 	unsigned int newalloc = oldalloc;
164 	struct rc_map_table *oldscan = rc_map->scan;
165 	struct rc_map_table *newscan;
166 
167 	if (rc_map->size == rc_map->len) {
168 		/* All entries in use -> grow keytable */
169 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
170 			return -ENOMEM;
171 
172 		newalloc *= 2;
173 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
174 	}
175 
176 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
177 		/* Less than 1/3 of entries in use -> shrink keytable */
178 		newalloc /= 2;
179 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
180 	}
181 
182 	if (newalloc == oldalloc)
183 		return 0;
184 
185 	newscan = kmalloc(newalloc, gfp_flags);
186 	if (!newscan) {
187 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
188 		return -ENOMEM;
189 	}
190 
191 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
192 	rc_map->scan = newscan;
193 	rc_map->alloc = newalloc;
194 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
195 	kfree(oldscan);
196 	return 0;
197 }
198 
199 /**
200  * ir_update_mapping() - set a keycode in the scancode->keycode table
201  * @dev:	the struct rc_dev device descriptor
202  * @rc_map:	scancode table to be adjusted
203  * @index:	index of the mapping that needs to be updated
204  * @keycode:	the desired keycode
205  * @return:	previous keycode assigned to the mapping
206  *
207  * This routine is used to update scancode->keycode mapping at given
208  * position.
209  */
210 static unsigned int ir_update_mapping(struct rc_dev *dev,
211 				      struct rc_map *rc_map,
212 				      unsigned int index,
213 				      unsigned int new_keycode)
214 {
215 	int old_keycode = rc_map->scan[index].keycode;
216 	int i;
217 
218 	/* Did the user wish to remove the mapping? */
219 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
220 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
221 			   index, rc_map->scan[index].scancode);
222 		rc_map->len--;
223 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
224 			(rc_map->len - index) * sizeof(struct rc_map_table));
225 	} else {
226 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
227 			   index,
228 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
229 			   rc_map->scan[index].scancode, new_keycode);
230 		rc_map->scan[index].keycode = new_keycode;
231 		__set_bit(new_keycode, dev->input_dev->keybit);
232 	}
233 
234 	if (old_keycode != KEY_RESERVED) {
235 		/* A previous mapping was updated... */
236 		__clear_bit(old_keycode, dev->input_dev->keybit);
237 		/* ... but another scancode might use the same keycode */
238 		for (i = 0; i < rc_map->len; i++) {
239 			if (rc_map->scan[i].keycode == old_keycode) {
240 				__set_bit(old_keycode, dev->input_dev->keybit);
241 				break;
242 			}
243 		}
244 
245 		/* Possibly shrink the keytable, failure is not a problem */
246 		ir_resize_table(rc_map, GFP_ATOMIC);
247 	}
248 
249 	return old_keycode;
250 }
251 
252 /**
253  * ir_establish_scancode() - set a keycode in the scancode->keycode table
254  * @dev:	the struct rc_dev device descriptor
255  * @rc_map:	scancode table to be searched
256  * @scancode:	the desired scancode
257  * @resize:	controls whether we allowed to resize the table to
258  *		accommodate not yet present scancodes
259  * @return:	index of the mapping containing scancode in question
260  *		or -1U in case of failure.
261  *
262  * This routine is used to locate given scancode in rc_map.
263  * If scancode is not yet present the routine will allocate a new slot
264  * for it.
265  */
266 static unsigned int ir_establish_scancode(struct rc_dev *dev,
267 					  struct rc_map *rc_map,
268 					  unsigned int scancode,
269 					  bool resize)
270 {
271 	unsigned int i;
272 
273 	/*
274 	 * Unfortunately, some hardware-based IR decoders don't provide
275 	 * all bits for the complete IR code. In general, they provide only
276 	 * the command part of the IR code. Yet, as it is possible to replace
277 	 * the provided IR with another one, it is needed to allow loading
278 	 * IR tables from other remotes. So, we support specifying a mask to
279 	 * indicate the valid bits of the scancodes.
280 	 */
281 	if (dev->scanmask)
282 		scancode &= dev->scanmask;
283 
284 	/* First check if we already have a mapping for this ir command */
285 	for (i = 0; i < rc_map->len; i++) {
286 		if (rc_map->scan[i].scancode == scancode)
287 			return i;
288 
289 		/* Keytable is sorted from lowest to highest scancode */
290 		if (rc_map->scan[i].scancode >= scancode)
291 			break;
292 	}
293 
294 	/* No previous mapping found, we might need to grow the table */
295 	if (rc_map->size == rc_map->len) {
296 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
297 			return -1U;
298 	}
299 
300 	/* i is the proper index to insert our new keycode */
301 	if (i < rc_map->len)
302 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
303 			(rc_map->len - i) * sizeof(struct rc_map_table));
304 	rc_map->scan[i].scancode = scancode;
305 	rc_map->scan[i].keycode = KEY_RESERVED;
306 	rc_map->len++;
307 
308 	return i;
309 }
310 
311 /**
312  * ir_setkeycode() - set a keycode in the scancode->keycode table
313  * @idev:	the struct input_dev device descriptor
314  * @scancode:	the desired scancode
315  * @keycode:	result
316  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
317  *
318  * This routine is used to handle evdev EVIOCSKEY ioctl.
319  */
320 static int ir_setkeycode(struct input_dev *idev,
321 			 const struct input_keymap_entry *ke,
322 			 unsigned int *old_keycode)
323 {
324 	struct rc_dev *rdev = input_get_drvdata(idev);
325 	struct rc_map *rc_map = &rdev->rc_map;
326 	unsigned int index;
327 	unsigned int scancode;
328 	int retval = 0;
329 	unsigned long flags;
330 
331 	spin_lock_irqsave(&rc_map->lock, flags);
332 
333 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
334 		index = ke->index;
335 		if (index >= rc_map->len) {
336 			retval = -EINVAL;
337 			goto out;
338 		}
339 	} else {
340 		retval = input_scancode_to_scalar(ke, &scancode);
341 		if (retval)
342 			goto out;
343 
344 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
345 		if (index >= rc_map->len) {
346 			retval = -ENOMEM;
347 			goto out;
348 		}
349 	}
350 
351 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
352 
353 out:
354 	spin_unlock_irqrestore(&rc_map->lock, flags);
355 	return retval;
356 }
357 
358 /**
359  * ir_setkeytable() - sets several entries in the scancode->keycode table
360  * @dev:	the struct rc_dev device descriptor
361  * @to:		the struct rc_map to copy entries to
362  * @from:	the struct rc_map to copy entries from
363  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
364  *
365  * This routine is used to handle table initialization.
366  */
367 static int ir_setkeytable(struct rc_dev *dev,
368 			  const struct rc_map *from)
369 {
370 	struct rc_map *rc_map = &dev->rc_map;
371 	unsigned int i, index;
372 	int rc;
373 
374 	rc = ir_create_table(rc_map, from->name,
375 			     from->rc_type, from->size);
376 	if (rc)
377 		return rc;
378 
379 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
380 		   rc_map->size, rc_map->alloc);
381 
382 	for (i = 0; i < from->size; i++) {
383 		index = ir_establish_scancode(dev, rc_map,
384 					      from->scan[i].scancode, false);
385 		if (index >= rc_map->len) {
386 			rc = -ENOMEM;
387 			break;
388 		}
389 
390 		ir_update_mapping(dev, rc_map, index,
391 				  from->scan[i].keycode);
392 	}
393 
394 	if (rc)
395 		ir_free_table(rc_map);
396 
397 	return rc;
398 }
399 
400 /**
401  * ir_lookup_by_scancode() - locate mapping by scancode
402  * @rc_map:	the struct rc_map to search
403  * @scancode:	scancode to look for in the table
404  * @return:	index in the table, -1U if not found
405  *
406  * This routine performs binary search in RC keykeymap table for
407  * given scancode.
408  */
409 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
410 					  unsigned int scancode)
411 {
412 	int start = 0;
413 	int end = rc_map->len - 1;
414 	int mid;
415 
416 	while (start <= end) {
417 		mid = (start + end) / 2;
418 		if (rc_map->scan[mid].scancode < scancode)
419 			start = mid + 1;
420 		else if (rc_map->scan[mid].scancode > scancode)
421 			end = mid - 1;
422 		else
423 			return mid;
424 	}
425 
426 	return -1U;
427 }
428 
429 /**
430  * ir_getkeycode() - get a keycode from the scancode->keycode table
431  * @idev:	the struct input_dev device descriptor
432  * @scancode:	the desired scancode
433  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
434  * @return:	always returns zero.
435  *
436  * This routine is used to handle evdev EVIOCGKEY ioctl.
437  */
438 static int ir_getkeycode(struct input_dev *idev,
439 			 struct input_keymap_entry *ke)
440 {
441 	struct rc_dev *rdev = input_get_drvdata(idev);
442 	struct rc_map *rc_map = &rdev->rc_map;
443 	struct rc_map_table *entry;
444 	unsigned long flags;
445 	unsigned int index;
446 	unsigned int scancode;
447 	int retval;
448 
449 	spin_lock_irqsave(&rc_map->lock, flags);
450 
451 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
452 		index = ke->index;
453 	} else {
454 		retval = input_scancode_to_scalar(ke, &scancode);
455 		if (retval)
456 			goto out;
457 
458 		index = ir_lookup_by_scancode(rc_map, scancode);
459 	}
460 
461 	if (index < rc_map->len) {
462 		entry = &rc_map->scan[index];
463 
464 		ke->index = index;
465 		ke->keycode = entry->keycode;
466 		ke->len = sizeof(entry->scancode);
467 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
468 
469 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
470 		/*
471 		 * We do not really know the valid range of scancodes
472 		 * so let's respond with KEY_RESERVED to anything we
473 		 * do not have mapping for [yet].
474 		 */
475 		ke->index = index;
476 		ke->keycode = KEY_RESERVED;
477 	} else {
478 		retval = -EINVAL;
479 		goto out;
480 	}
481 
482 	retval = 0;
483 
484 out:
485 	spin_unlock_irqrestore(&rc_map->lock, flags);
486 	return retval;
487 }
488 
489 /**
490  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
491  * @dev:	the struct rc_dev descriptor of the device
492  * @scancode:	the scancode to look for
493  * @return:	the corresponding keycode, or KEY_RESERVED
494  *
495  * This routine is used by drivers which need to convert a scancode to a
496  * keycode. Normally it should not be used since drivers should have no
497  * interest in keycodes.
498  */
499 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
500 {
501 	struct rc_map *rc_map = &dev->rc_map;
502 	unsigned int keycode;
503 	unsigned int index;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&rc_map->lock, flags);
507 
508 	index = ir_lookup_by_scancode(rc_map, scancode);
509 	keycode = index < rc_map->len ?
510 			rc_map->scan[index].keycode : KEY_RESERVED;
511 
512 	spin_unlock_irqrestore(&rc_map->lock, flags);
513 
514 	if (keycode != KEY_RESERVED)
515 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
516 			   dev->input_name, scancode, keycode);
517 
518 	return keycode;
519 }
520 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
521 
522 /**
523  * ir_do_keyup() - internal function to signal the release of a keypress
524  * @dev:	the struct rc_dev descriptor of the device
525  * @sync:	whether or not to call input_sync
526  *
527  * This function is used internally to release a keypress, it must be
528  * called with keylock held.
529  */
530 static void ir_do_keyup(struct rc_dev *dev, bool sync)
531 {
532 	if (!dev->keypressed)
533 		return;
534 
535 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
536 	input_report_key(dev->input_dev, dev->last_keycode, 0);
537 	if (sync)
538 		input_sync(dev->input_dev);
539 	dev->keypressed = false;
540 }
541 
542 /**
543  * rc_keyup() - signals the release of a keypress
544  * @dev:	the struct rc_dev descriptor of the device
545  *
546  * This routine is used to signal that a key has been released on the
547  * remote control.
548  */
549 void rc_keyup(struct rc_dev *dev)
550 {
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&dev->keylock, flags);
554 	ir_do_keyup(dev, true);
555 	spin_unlock_irqrestore(&dev->keylock, flags);
556 }
557 EXPORT_SYMBOL_GPL(rc_keyup);
558 
559 /**
560  * ir_timer_keyup() - generates a keyup event after a timeout
561  * @cookie:	a pointer to the struct rc_dev for the device
562  *
563  * This routine will generate a keyup event some time after a keydown event
564  * is generated when no further activity has been detected.
565  */
566 static void ir_timer_keyup(unsigned long cookie)
567 {
568 	struct rc_dev *dev = (struct rc_dev *)cookie;
569 	unsigned long flags;
570 
571 	/*
572 	 * ir->keyup_jiffies is used to prevent a race condition if a
573 	 * hardware interrupt occurs at this point and the keyup timer
574 	 * event is moved further into the future as a result.
575 	 *
576 	 * The timer will then be reactivated and this function called
577 	 * again in the future. We need to exit gracefully in that case
578 	 * to allow the input subsystem to do its auto-repeat magic or
579 	 * a keyup event might follow immediately after the keydown.
580 	 */
581 	spin_lock_irqsave(&dev->keylock, flags);
582 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
583 		ir_do_keyup(dev, true);
584 	spin_unlock_irqrestore(&dev->keylock, flags);
585 }
586 
587 /**
588  * rc_repeat() - signals that a key is still pressed
589  * @dev:	the struct rc_dev descriptor of the device
590  *
591  * This routine is used by IR decoders when a repeat message which does
592  * not include the necessary bits to reproduce the scancode has been
593  * received.
594  */
595 void rc_repeat(struct rc_dev *dev)
596 {
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&dev->keylock, flags);
600 
601 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
602 	input_sync(dev->input_dev);
603 
604 	if (!dev->keypressed)
605 		goto out;
606 
607 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
608 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
609 
610 out:
611 	spin_unlock_irqrestore(&dev->keylock, flags);
612 }
613 EXPORT_SYMBOL_GPL(rc_repeat);
614 
615 /**
616  * ir_do_keydown() - internal function to process a keypress
617  * @dev:	the struct rc_dev descriptor of the device
618  * @scancode:   the scancode of the keypress
619  * @keycode:    the keycode of the keypress
620  * @toggle:     the toggle value of the keypress
621  *
622  * This function is used internally to register a keypress, it must be
623  * called with keylock held.
624  */
625 static void ir_do_keydown(struct rc_dev *dev, int scancode,
626 			  u32 keycode, u8 toggle)
627 {
628 	bool new_event = !dev->keypressed ||
629 			 dev->last_scancode != scancode ||
630 			 dev->last_toggle != toggle;
631 
632 	if (new_event && dev->keypressed)
633 		ir_do_keyup(dev, false);
634 
635 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
636 
637 	if (new_event && keycode != KEY_RESERVED) {
638 		/* Register a keypress */
639 		dev->keypressed = true;
640 		dev->last_scancode = scancode;
641 		dev->last_toggle = toggle;
642 		dev->last_keycode = keycode;
643 
644 		IR_dprintk(1, "%s: key down event, "
645 			   "key 0x%04x, scancode 0x%04x\n",
646 			   dev->input_name, keycode, scancode);
647 		input_report_key(dev->input_dev, keycode, 1);
648 	}
649 
650 	input_sync(dev->input_dev);
651 }
652 
653 /**
654  * rc_keydown() - generates input event for a key press
655  * @dev:	the struct rc_dev descriptor of the device
656  * @scancode:   the scancode that we're seeking
657  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
658  *              support toggle values, this should be set to zero)
659  *
660  * This routine is used to signal that a key has been pressed on the
661  * remote control.
662  */
663 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
664 {
665 	unsigned long flags;
666 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
667 
668 	spin_lock_irqsave(&dev->keylock, flags);
669 	ir_do_keydown(dev, scancode, keycode, toggle);
670 
671 	if (dev->keypressed) {
672 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
673 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
674 	}
675 	spin_unlock_irqrestore(&dev->keylock, flags);
676 }
677 EXPORT_SYMBOL_GPL(rc_keydown);
678 
679 /**
680  * rc_keydown_notimeout() - generates input event for a key press without
681  *                          an automatic keyup event at a later time
682  * @dev:	the struct rc_dev descriptor of the device
683  * @scancode:   the scancode that we're seeking
684  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
685  *              support toggle values, this should be set to zero)
686  *
687  * This routine is used to signal that a key has been pressed on the
688  * remote control. The driver must manually call rc_keyup() at a later stage.
689  */
690 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
691 {
692 	unsigned long flags;
693 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
694 
695 	spin_lock_irqsave(&dev->keylock, flags);
696 	ir_do_keydown(dev, scancode, keycode, toggle);
697 	spin_unlock_irqrestore(&dev->keylock, flags);
698 }
699 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
700 
701 static int ir_open(struct input_dev *idev)
702 {
703 	struct rc_dev *rdev = input_get_drvdata(idev);
704 
705 	return rdev->open(rdev);
706 }
707 
708 static void ir_close(struct input_dev *idev)
709 {
710 	struct rc_dev *rdev = input_get_drvdata(idev);
711 
712 	 if (rdev)
713 		rdev->close(rdev);
714 }
715 
716 /* class for /sys/class/rc */
717 static char *ir_devnode(struct device *dev, mode_t *mode)
718 {
719 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
720 }
721 
722 static struct class ir_input_class = {
723 	.name		= "rc",
724 	.devnode	= ir_devnode,
725 };
726 
727 static struct {
728 	u64	type;
729 	char	*name;
730 } proto_names[] = {
731 	{ RC_TYPE_UNKNOWN,	"unknown"	},
732 	{ RC_TYPE_RC5,		"rc-5"		},
733 	{ RC_TYPE_NEC,		"nec"		},
734 	{ RC_TYPE_RC6,		"rc-6"		},
735 	{ RC_TYPE_JVC,		"jvc"		},
736 	{ RC_TYPE_SONY,		"sony"		},
737 	{ RC_TYPE_RC5_SZ,	"rc-5-sz"	},
738 	{ RC_TYPE_MCE_KBD,	"mce_kbd"	},
739 	{ RC_TYPE_LIRC,		"lirc"		},
740 	{ RC_TYPE_OTHER,	"other"		},
741 };
742 
743 #define PROTO_NONE	"none"
744 
745 /**
746  * show_protocols() - shows the current IR protocol(s)
747  * @device:	the device descriptor
748  * @mattr:	the device attribute struct (unused)
749  * @buf:	a pointer to the output buffer
750  *
751  * This routine is a callback routine for input read the IR protocol type(s).
752  * it is trigged by reading /sys/class/rc/rc?/protocols.
753  * It returns the protocol names of supported protocols.
754  * Enabled protocols are printed in brackets.
755  *
756  * dev->lock is taken to guard against races between device
757  * registration, store_protocols and show_protocols.
758  */
759 static ssize_t show_protocols(struct device *device,
760 			      struct device_attribute *mattr, char *buf)
761 {
762 	struct rc_dev *dev = to_rc_dev(device);
763 	u64 allowed, enabled;
764 	char *tmp = buf;
765 	int i;
766 
767 	/* Device is being removed */
768 	if (!dev)
769 		return -EINVAL;
770 
771 	mutex_lock(&dev->lock);
772 
773 	if (dev->driver_type == RC_DRIVER_SCANCODE) {
774 		enabled = dev->rc_map.rc_type;
775 		allowed = dev->allowed_protos;
776 	} else {
777 		enabled = dev->raw->enabled_protocols;
778 		allowed = ir_raw_get_allowed_protocols();
779 	}
780 
781 	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
782 		   (long long)allowed,
783 		   (long long)enabled);
784 
785 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
786 		if (allowed & enabled & proto_names[i].type)
787 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
788 		else if (allowed & proto_names[i].type)
789 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
790 	}
791 
792 	if (tmp != buf)
793 		tmp--;
794 	*tmp = '\n';
795 
796 	mutex_unlock(&dev->lock);
797 
798 	return tmp + 1 - buf;
799 }
800 
801 /**
802  * store_protocols() - changes the current IR protocol(s)
803  * @device:	the device descriptor
804  * @mattr:	the device attribute struct (unused)
805  * @buf:	a pointer to the input buffer
806  * @len:	length of the input buffer
807  *
808  * This routine is for changing the IR protocol type.
809  * It is trigged by writing to /sys/class/rc/rc?/protocols.
810  * Writing "+proto" will add a protocol to the list of enabled protocols.
811  * Writing "-proto" will remove a protocol from the list of enabled protocols.
812  * Writing "proto" will enable only "proto".
813  * Writing "none" will disable all protocols.
814  * Returns -EINVAL if an invalid protocol combination or unknown protocol name
815  * is used, otherwise @len.
816  *
817  * dev->lock is taken to guard against races between device
818  * registration, store_protocols and show_protocols.
819  */
820 static ssize_t store_protocols(struct device *device,
821 			       struct device_attribute *mattr,
822 			       const char *data,
823 			       size_t len)
824 {
825 	struct rc_dev *dev = to_rc_dev(device);
826 	bool enable, disable;
827 	const char *tmp;
828 	u64 type;
829 	u64 mask;
830 	int rc, i, count = 0;
831 	unsigned long flags;
832 	ssize_t ret;
833 
834 	/* Device is being removed */
835 	if (!dev)
836 		return -EINVAL;
837 
838 	mutex_lock(&dev->lock);
839 
840 	if (dev->driver_type == RC_DRIVER_SCANCODE)
841 		type = dev->rc_map.rc_type;
842 	else if (dev->raw)
843 		type = dev->raw->enabled_protocols;
844 	else {
845 		IR_dprintk(1, "Protocol switching not supported\n");
846 		ret = -EINVAL;
847 		goto out;
848 	}
849 
850 	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
851 		if (!*tmp)
852 			break;
853 
854 		if (*tmp == '+') {
855 			enable = true;
856 			disable = false;
857 			tmp++;
858 		} else if (*tmp == '-') {
859 			enable = false;
860 			disable = true;
861 			tmp++;
862 		} else {
863 			enable = false;
864 			disable = false;
865 		}
866 
867 		if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
868 			tmp += sizeof(PROTO_NONE);
869 			mask = 0;
870 			count++;
871 		} else {
872 			for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
873 				if (!strcasecmp(tmp, proto_names[i].name)) {
874 					tmp += strlen(proto_names[i].name);
875 					mask = proto_names[i].type;
876 					break;
877 				}
878 			}
879 			if (i == ARRAY_SIZE(proto_names)) {
880 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
881 				ret = -EINVAL;
882 				goto out;
883 			}
884 			count++;
885 		}
886 
887 		if (enable)
888 			type |= mask;
889 		else if (disable)
890 			type &= ~mask;
891 		else
892 			type = mask;
893 	}
894 
895 	if (!count) {
896 		IR_dprintk(1, "Protocol not specified\n");
897 		ret = -EINVAL;
898 		goto out;
899 	}
900 
901 	if (dev->change_protocol) {
902 		rc = dev->change_protocol(dev, type);
903 		if (rc < 0) {
904 			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
905 				   (long long)type);
906 			ret = -EINVAL;
907 			goto out;
908 		}
909 	}
910 
911 	if (dev->driver_type == RC_DRIVER_SCANCODE) {
912 		spin_lock_irqsave(&dev->rc_map.lock, flags);
913 		dev->rc_map.rc_type = type;
914 		spin_unlock_irqrestore(&dev->rc_map.lock, flags);
915 	} else {
916 		dev->raw->enabled_protocols = type;
917 	}
918 
919 	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
920 		   (long long)type);
921 
922 	ret = len;
923 
924 out:
925 	mutex_unlock(&dev->lock);
926 	return ret;
927 }
928 
929 static void rc_dev_release(struct device *device)
930 {
931 	struct rc_dev *dev = to_rc_dev(device);
932 
933 	kfree(dev);
934 	module_put(THIS_MODULE);
935 }
936 
937 #define ADD_HOTPLUG_VAR(fmt, val...)					\
938 	do {								\
939 		int err = add_uevent_var(env, fmt, val);		\
940 		if (err)						\
941 			return err;					\
942 	} while (0)
943 
944 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
945 {
946 	struct rc_dev *dev = to_rc_dev(device);
947 
948 	if (dev->rc_map.name)
949 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
950 	if (dev->driver_name)
951 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
952 
953 	return 0;
954 }
955 
956 /*
957  * Static device attribute struct with the sysfs attributes for IR's
958  */
959 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
960 		   show_protocols, store_protocols);
961 
962 static struct attribute *rc_dev_attrs[] = {
963 	&dev_attr_protocols.attr,
964 	NULL,
965 };
966 
967 static struct attribute_group rc_dev_attr_grp = {
968 	.attrs	= rc_dev_attrs,
969 };
970 
971 static const struct attribute_group *rc_dev_attr_groups[] = {
972 	&rc_dev_attr_grp,
973 	NULL
974 };
975 
976 static struct device_type rc_dev_type = {
977 	.groups		= rc_dev_attr_groups,
978 	.release	= rc_dev_release,
979 	.uevent		= rc_dev_uevent,
980 };
981 
982 struct rc_dev *rc_allocate_device(void)
983 {
984 	struct rc_dev *dev;
985 
986 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
987 	if (!dev)
988 		return NULL;
989 
990 	dev->input_dev = input_allocate_device();
991 	if (!dev->input_dev) {
992 		kfree(dev);
993 		return NULL;
994 	}
995 
996 	dev->input_dev->getkeycode = ir_getkeycode;
997 	dev->input_dev->setkeycode = ir_setkeycode;
998 	input_set_drvdata(dev->input_dev, dev);
999 
1000 	spin_lock_init(&dev->rc_map.lock);
1001 	spin_lock_init(&dev->keylock);
1002 	mutex_init(&dev->lock);
1003 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1004 
1005 	dev->dev.type = &rc_dev_type;
1006 	dev->dev.class = &ir_input_class;
1007 	device_initialize(&dev->dev);
1008 
1009 	__module_get(THIS_MODULE);
1010 	return dev;
1011 }
1012 EXPORT_SYMBOL_GPL(rc_allocate_device);
1013 
1014 void rc_free_device(struct rc_dev *dev)
1015 {
1016 	if (dev) {
1017 		input_free_device(dev->input_dev);
1018 		put_device(&dev->dev);
1019 	}
1020 }
1021 EXPORT_SYMBOL_GPL(rc_free_device);
1022 
1023 int rc_register_device(struct rc_dev *dev)
1024 {
1025 	static atomic_t devno = ATOMIC_INIT(0);
1026 	struct rc_map *rc_map;
1027 	const char *path;
1028 	int rc;
1029 
1030 	if (!dev || !dev->map_name)
1031 		return -EINVAL;
1032 
1033 	rc_map = rc_map_get(dev->map_name);
1034 	if (!rc_map)
1035 		rc_map = rc_map_get(RC_MAP_EMPTY);
1036 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1037 		return -EINVAL;
1038 
1039 	set_bit(EV_KEY, dev->input_dev->evbit);
1040 	set_bit(EV_REP, dev->input_dev->evbit);
1041 	set_bit(EV_MSC, dev->input_dev->evbit);
1042 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1043 	if (dev->open)
1044 		dev->input_dev->open = ir_open;
1045 	if (dev->close)
1046 		dev->input_dev->close = ir_close;
1047 
1048 	/*
1049 	 * Take the lock here, as the device sysfs node will appear
1050 	 * when device_add() is called, which may trigger an ir-keytable udev
1051 	 * rule, which will in turn call show_protocols and access either
1052 	 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
1053 	 * been initialized.
1054 	 */
1055 	mutex_lock(&dev->lock);
1056 
1057 	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1058 	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1059 	dev_set_drvdata(&dev->dev, dev);
1060 	rc = device_add(&dev->dev);
1061 	if (rc)
1062 		goto out_unlock;
1063 
1064 	rc = ir_setkeytable(dev, rc_map);
1065 	if (rc)
1066 		goto out_dev;
1067 
1068 	dev->input_dev->dev.parent = &dev->dev;
1069 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1070 	dev->input_dev->phys = dev->input_phys;
1071 	dev->input_dev->name = dev->input_name;
1072 	rc = input_register_device(dev->input_dev);
1073 	if (rc)
1074 		goto out_table;
1075 
1076 	/*
1077 	 * Default delay of 250ms is too short for some protocols, especially
1078 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1079 	 * to avoid wrong repetition of the keycodes. Note that this must be
1080 	 * set after the call to input_register_device().
1081 	 */
1082 	dev->input_dev->rep[REP_DELAY] = 500;
1083 
1084 	/*
1085 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1086 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1087 	 * to do.
1088 	 */
1089 	dev->input_dev->rep[REP_PERIOD] = 125;
1090 
1091 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1092 	printk(KERN_INFO "%s: %s as %s\n",
1093 		dev_name(&dev->dev),
1094 		dev->input_name ? dev->input_name : "Unspecified device",
1095 		path ? path : "N/A");
1096 	kfree(path);
1097 
1098 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1099 		rc = ir_raw_event_register(dev);
1100 		if (rc < 0)
1101 			goto out_input;
1102 	}
1103 
1104 	if (dev->change_protocol) {
1105 		rc = dev->change_protocol(dev, rc_map->rc_type);
1106 		if (rc < 0)
1107 			goto out_raw;
1108 	}
1109 
1110 	mutex_unlock(&dev->lock);
1111 
1112 	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1113 		   dev->devno,
1114 		   dev->driver_name ? dev->driver_name : "unknown",
1115 		   rc_map->name ? rc_map->name : "unknown",
1116 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1117 
1118 	return 0;
1119 
1120 out_raw:
1121 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1122 		ir_raw_event_unregister(dev);
1123 out_input:
1124 	input_unregister_device(dev->input_dev);
1125 	dev->input_dev = NULL;
1126 out_table:
1127 	ir_free_table(&dev->rc_map);
1128 out_dev:
1129 	device_del(&dev->dev);
1130 out_unlock:
1131 	mutex_unlock(&dev->lock);
1132 	return rc;
1133 }
1134 EXPORT_SYMBOL_GPL(rc_register_device);
1135 
1136 void rc_unregister_device(struct rc_dev *dev)
1137 {
1138 	if (!dev)
1139 		return;
1140 
1141 	del_timer_sync(&dev->timer_keyup);
1142 
1143 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1144 		ir_raw_event_unregister(dev);
1145 
1146 	input_unregister_device(dev->input_dev);
1147 	dev->input_dev = NULL;
1148 
1149 	ir_free_table(&dev->rc_map);
1150 	IR_dprintk(1, "Freed keycode table\n");
1151 
1152 	device_unregister(&dev->dev);
1153 }
1154 EXPORT_SYMBOL_GPL(rc_unregister_device);
1155 
1156 /*
1157  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1158  */
1159 
1160 static int __init rc_core_init(void)
1161 {
1162 	int rc = class_register(&ir_input_class);
1163 	if (rc) {
1164 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1165 		return rc;
1166 	}
1167 
1168 	/* Initialize/load the decoders/keymap code that will be used */
1169 	ir_raw_init();
1170 	rc_map_register(&empty_map);
1171 
1172 	return 0;
1173 }
1174 
1175 static void __exit rc_core_exit(void)
1176 {
1177 	class_unregister(&ir_input_class);
1178 	rc_map_unregister(&empty_map);
1179 }
1180 
1181 module_init(rc_core_init);
1182 module_exit(rc_core_exit);
1183 
1184 int rc_core_debug;    /* ir_debug level (0,1,2) */
1185 EXPORT_SYMBOL_GPL(rc_core_debug);
1186 module_param_named(debug, rc_core_debug, int, 0644);
1187 
1188 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1189 MODULE_LICENSE("GPL");
1190