1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/atomic.h> 17 #include <linux/spinlock.h> 18 #include <linux/delay.h> 19 #include <linux/input.h> 20 #include <linux/leds.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/device.h> 24 #include <linux/module.h> 25 #include "rc-core-priv.h" 26 27 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 28 #define IR_TAB_MIN_SIZE 256 29 #define IR_TAB_MAX_SIZE 8192 30 #define RC_DEV_MAX 256 31 32 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 33 #define IR_KEYPRESS_TIMEOUT 250 34 35 /* Used to keep track of known keymaps */ 36 static LIST_HEAD(rc_map_list); 37 static DEFINE_SPINLOCK(rc_map_lock); 38 static struct led_trigger *led_feedback; 39 40 /* Used to keep track of rc devices */ 41 static DEFINE_IDA(rc_ida); 42 43 static struct rc_map_list *seek_rc_map(const char *name) 44 { 45 struct rc_map_list *map = NULL; 46 47 spin_lock(&rc_map_lock); 48 list_for_each_entry(map, &rc_map_list, list) { 49 if (!strcmp(name, map->map.name)) { 50 spin_unlock(&rc_map_lock); 51 return map; 52 } 53 } 54 spin_unlock(&rc_map_lock); 55 56 return NULL; 57 } 58 59 struct rc_map *rc_map_get(const char *name) 60 { 61 62 struct rc_map_list *map; 63 64 map = seek_rc_map(name); 65 #ifdef CONFIG_MODULES 66 if (!map) { 67 int rc = request_module("%s", name); 68 if (rc < 0) { 69 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 70 return NULL; 71 } 72 msleep(20); /* Give some time for IR to register */ 73 74 map = seek_rc_map(name); 75 } 76 #endif 77 if (!map) { 78 printk(KERN_ERR "IR keymap %s not found\n", name); 79 return NULL; 80 } 81 82 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 83 84 return &map->map; 85 } 86 EXPORT_SYMBOL_GPL(rc_map_get); 87 88 int rc_map_register(struct rc_map_list *map) 89 { 90 spin_lock(&rc_map_lock); 91 list_add_tail(&map->list, &rc_map_list); 92 spin_unlock(&rc_map_lock); 93 return 0; 94 } 95 EXPORT_SYMBOL_GPL(rc_map_register); 96 97 void rc_map_unregister(struct rc_map_list *map) 98 { 99 spin_lock(&rc_map_lock); 100 list_del(&map->list); 101 spin_unlock(&rc_map_lock); 102 } 103 EXPORT_SYMBOL_GPL(rc_map_unregister); 104 105 106 static struct rc_map_table empty[] = { 107 { 0x2a, KEY_COFFEE }, 108 }; 109 110 static struct rc_map_list empty_map = { 111 .map = { 112 .scan = empty, 113 .size = ARRAY_SIZE(empty), 114 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 115 .name = RC_MAP_EMPTY, 116 } 117 }; 118 119 /** 120 * ir_create_table() - initializes a scancode table 121 * @rc_map: the rc_map to initialize 122 * @name: name to assign to the table 123 * @rc_type: ir type to assign to the new table 124 * @size: initial size of the table 125 * @return: zero on success or a negative error code 126 * 127 * This routine will initialize the rc_map and will allocate 128 * memory to hold at least the specified number of elements. 129 */ 130 static int ir_create_table(struct rc_map *rc_map, 131 const char *name, u64 rc_type, size_t size) 132 { 133 rc_map->name = kstrdup(name, GFP_KERNEL); 134 if (!rc_map->name) 135 return -ENOMEM; 136 rc_map->rc_type = rc_type; 137 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 138 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 139 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 140 if (!rc_map->scan) { 141 kfree(rc_map->name); 142 rc_map->name = NULL; 143 return -ENOMEM; 144 } 145 146 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 147 rc_map->size, rc_map->alloc); 148 return 0; 149 } 150 151 /** 152 * ir_free_table() - frees memory allocated by a scancode table 153 * @rc_map: the table whose mappings need to be freed 154 * 155 * This routine will free memory alloctaed for key mappings used by given 156 * scancode table. 157 */ 158 static void ir_free_table(struct rc_map *rc_map) 159 { 160 rc_map->size = 0; 161 kfree(rc_map->name); 162 kfree(rc_map->scan); 163 rc_map->scan = NULL; 164 } 165 166 /** 167 * ir_resize_table() - resizes a scancode table if necessary 168 * @rc_map: the rc_map to resize 169 * @gfp_flags: gfp flags to use when allocating memory 170 * @return: zero on success or a negative error code 171 * 172 * This routine will shrink the rc_map if it has lots of 173 * unused entries and grow it if it is full. 174 */ 175 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 176 { 177 unsigned int oldalloc = rc_map->alloc; 178 unsigned int newalloc = oldalloc; 179 struct rc_map_table *oldscan = rc_map->scan; 180 struct rc_map_table *newscan; 181 182 if (rc_map->size == rc_map->len) { 183 /* All entries in use -> grow keytable */ 184 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 185 return -ENOMEM; 186 187 newalloc *= 2; 188 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 189 } 190 191 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 192 /* Less than 1/3 of entries in use -> shrink keytable */ 193 newalloc /= 2; 194 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 195 } 196 197 if (newalloc == oldalloc) 198 return 0; 199 200 newscan = kmalloc(newalloc, gfp_flags); 201 if (!newscan) { 202 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 203 return -ENOMEM; 204 } 205 206 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 207 rc_map->scan = newscan; 208 rc_map->alloc = newalloc; 209 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 210 kfree(oldscan); 211 return 0; 212 } 213 214 /** 215 * ir_update_mapping() - set a keycode in the scancode->keycode table 216 * @dev: the struct rc_dev device descriptor 217 * @rc_map: scancode table to be adjusted 218 * @index: index of the mapping that needs to be updated 219 * @keycode: the desired keycode 220 * @return: previous keycode assigned to the mapping 221 * 222 * This routine is used to update scancode->keycode mapping at given 223 * position. 224 */ 225 static unsigned int ir_update_mapping(struct rc_dev *dev, 226 struct rc_map *rc_map, 227 unsigned int index, 228 unsigned int new_keycode) 229 { 230 int old_keycode = rc_map->scan[index].keycode; 231 int i; 232 233 /* Did the user wish to remove the mapping? */ 234 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 235 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 236 index, rc_map->scan[index].scancode); 237 rc_map->len--; 238 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 239 (rc_map->len - index) * sizeof(struct rc_map_table)); 240 } else { 241 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 242 index, 243 old_keycode == KEY_RESERVED ? "New" : "Replacing", 244 rc_map->scan[index].scancode, new_keycode); 245 rc_map->scan[index].keycode = new_keycode; 246 __set_bit(new_keycode, dev->input_dev->keybit); 247 } 248 249 if (old_keycode != KEY_RESERVED) { 250 /* A previous mapping was updated... */ 251 __clear_bit(old_keycode, dev->input_dev->keybit); 252 /* ... but another scancode might use the same keycode */ 253 for (i = 0; i < rc_map->len; i++) { 254 if (rc_map->scan[i].keycode == old_keycode) { 255 __set_bit(old_keycode, dev->input_dev->keybit); 256 break; 257 } 258 } 259 260 /* Possibly shrink the keytable, failure is not a problem */ 261 ir_resize_table(rc_map, GFP_ATOMIC); 262 } 263 264 return old_keycode; 265 } 266 267 /** 268 * ir_establish_scancode() - set a keycode in the scancode->keycode table 269 * @dev: the struct rc_dev device descriptor 270 * @rc_map: scancode table to be searched 271 * @scancode: the desired scancode 272 * @resize: controls whether we allowed to resize the table to 273 * accommodate not yet present scancodes 274 * @return: index of the mapping containing scancode in question 275 * or -1U in case of failure. 276 * 277 * This routine is used to locate given scancode in rc_map. 278 * If scancode is not yet present the routine will allocate a new slot 279 * for it. 280 */ 281 static unsigned int ir_establish_scancode(struct rc_dev *dev, 282 struct rc_map *rc_map, 283 unsigned int scancode, 284 bool resize) 285 { 286 unsigned int i; 287 288 /* 289 * Unfortunately, some hardware-based IR decoders don't provide 290 * all bits for the complete IR code. In general, they provide only 291 * the command part of the IR code. Yet, as it is possible to replace 292 * the provided IR with another one, it is needed to allow loading 293 * IR tables from other remotes. So, we support specifying a mask to 294 * indicate the valid bits of the scancodes. 295 */ 296 if (dev->scancode_mask) 297 scancode &= dev->scancode_mask; 298 299 /* First check if we already have a mapping for this ir command */ 300 for (i = 0; i < rc_map->len; i++) { 301 if (rc_map->scan[i].scancode == scancode) 302 return i; 303 304 /* Keytable is sorted from lowest to highest scancode */ 305 if (rc_map->scan[i].scancode >= scancode) 306 break; 307 } 308 309 /* No previous mapping found, we might need to grow the table */ 310 if (rc_map->size == rc_map->len) { 311 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 312 return -1U; 313 } 314 315 /* i is the proper index to insert our new keycode */ 316 if (i < rc_map->len) 317 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 318 (rc_map->len - i) * sizeof(struct rc_map_table)); 319 rc_map->scan[i].scancode = scancode; 320 rc_map->scan[i].keycode = KEY_RESERVED; 321 rc_map->len++; 322 323 return i; 324 } 325 326 /** 327 * ir_setkeycode() - set a keycode in the scancode->keycode table 328 * @idev: the struct input_dev device descriptor 329 * @scancode: the desired scancode 330 * @keycode: result 331 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 332 * 333 * This routine is used to handle evdev EVIOCSKEY ioctl. 334 */ 335 static int ir_setkeycode(struct input_dev *idev, 336 const struct input_keymap_entry *ke, 337 unsigned int *old_keycode) 338 { 339 struct rc_dev *rdev = input_get_drvdata(idev); 340 struct rc_map *rc_map = &rdev->rc_map; 341 unsigned int index; 342 unsigned int scancode; 343 int retval = 0; 344 unsigned long flags; 345 346 spin_lock_irqsave(&rc_map->lock, flags); 347 348 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 349 index = ke->index; 350 if (index >= rc_map->len) { 351 retval = -EINVAL; 352 goto out; 353 } 354 } else { 355 retval = input_scancode_to_scalar(ke, &scancode); 356 if (retval) 357 goto out; 358 359 index = ir_establish_scancode(rdev, rc_map, scancode, true); 360 if (index >= rc_map->len) { 361 retval = -ENOMEM; 362 goto out; 363 } 364 } 365 366 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 367 368 out: 369 spin_unlock_irqrestore(&rc_map->lock, flags); 370 return retval; 371 } 372 373 /** 374 * ir_setkeytable() - sets several entries in the scancode->keycode table 375 * @dev: the struct rc_dev device descriptor 376 * @to: the struct rc_map to copy entries to 377 * @from: the struct rc_map to copy entries from 378 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 379 * 380 * This routine is used to handle table initialization. 381 */ 382 static int ir_setkeytable(struct rc_dev *dev, 383 const struct rc_map *from) 384 { 385 struct rc_map *rc_map = &dev->rc_map; 386 unsigned int i, index; 387 int rc; 388 389 rc = ir_create_table(rc_map, from->name, 390 from->rc_type, from->size); 391 if (rc) 392 return rc; 393 394 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 395 rc_map->size, rc_map->alloc); 396 397 for (i = 0; i < from->size; i++) { 398 index = ir_establish_scancode(dev, rc_map, 399 from->scan[i].scancode, false); 400 if (index >= rc_map->len) { 401 rc = -ENOMEM; 402 break; 403 } 404 405 ir_update_mapping(dev, rc_map, index, 406 from->scan[i].keycode); 407 } 408 409 if (rc) 410 ir_free_table(rc_map); 411 412 return rc; 413 } 414 415 /** 416 * ir_lookup_by_scancode() - locate mapping by scancode 417 * @rc_map: the struct rc_map to search 418 * @scancode: scancode to look for in the table 419 * @return: index in the table, -1U if not found 420 * 421 * This routine performs binary search in RC keykeymap table for 422 * given scancode. 423 */ 424 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 425 unsigned int scancode) 426 { 427 int start = 0; 428 int end = rc_map->len - 1; 429 int mid; 430 431 while (start <= end) { 432 mid = (start + end) / 2; 433 if (rc_map->scan[mid].scancode < scancode) 434 start = mid + 1; 435 else if (rc_map->scan[mid].scancode > scancode) 436 end = mid - 1; 437 else 438 return mid; 439 } 440 441 return -1U; 442 } 443 444 /** 445 * ir_getkeycode() - get a keycode from the scancode->keycode table 446 * @idev: the struct input_dev device descriptor 447 * @scancode: the desired scancode 448 * @keycode: used to return the keycode, if found, or KEY_RESERVED 449 * @return: always returns zero. 450 * 451 * This routine is used to handle evdev EVIOCGKEY ioctl. 452 */ 453 static int ir_getkeycode(struct input_dev *idev, 454 struct input_keymap_entry *ke) 455 { 456 struct rc_dev *rdev = input_get_drvdata(idev); 457 struct rc_map *rc_map = &rdev->rc_map; 458 struct rc_map_table *entry; 459 unsigned long flags; 460 unsigned int index; 461 unsigned int scancode; 462 int retval; 463 464 spin_lock_irqsave(&rc_map->lock, flags); 465 466 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 467 index = ke->index; 468 } else { 469 retval = input_scancode_to_scalar(ke, &scancode); 470 if (retval) 471 goto out; 472 473 index = ir_lookup_by_scancode(rc_map, scancode); 474 } 475 476 if (index < rc_map->len) { 477 entry = &rc_map->scan[index]; 478 479 ke->index = index; 480 ke->keycode = entry->keycode; 481 ke->len = sizeof(entry->scancode); 482 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 483 484 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 485 /* 486 * We do not really know the valid range of scancodes 487 * so let's respond with KEY_RESERVED to anything we 488 * do not have mapping for [yet]. 489 */ 490 ke->index = index; 491 ke->keycode = KEY_RESERVED; 492 } else { 493 retval = -EINVAL; 494 goto out; 495 } 496 497 retval = 0; 498 499 out: 500 spin_unlock_irqrestore(&rc_map->lock, flags); 501 return retval; 502 } 503 504 /** 505 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 506 * @dev: the struct rc_dev descriptor of the device 507 * @scancode: the scancode to look for 508 * @return: the corresponding keycode, or KEY_RESERVED 509 * 510 * This routine is used by drivers which need to convert a scancode to a 511 * keycode. Normally it should not be used since drivers should have no 512 * interest in keycodes. 513 */ 514 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 515 { 516 struct rc_map *rc_map = &dev->rc_map; 517 unsigned int keycode; 518 unsigned int index; 519 unsigned long flags; 520 521 spin_lock_irqsave(&rc_map->lock, flags); 522 523 index = ir_lookup_by_scancode(rc_map, scancode); 524 keycode = index < rc_map->len ? 525 rc_map->scan[index].keycode : KEY_RESERVED; 526 527 spin_unlock_irqrestore(&rc_map->lock, flags); 528 529 if (keycode != KEY_RESERVED) 530 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 531 dev->input_name, scancode, keycode); 532 533 return keycode; 534 } 535 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 536 537 /** 538 * ir_do_keyup() - internal function to signal the release of a keypress 539 * @dev: the struct rc_dev descriptor of the device 540 * @sync: whether or not to call input_sync 541 * 542 * This function is used internally to release a keypress, it must be 543 * called with keylock held. 544 */ 545 static void ir_do_keyup(struct rc_dev *dev, bool sync) 546 { 547 if (!dev->keypressed) 548 return; 549 550 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 551 input_report_key(dev->input_dev, dev->last_keycode, 0); 552 led_trigger_event(led_feedback, LED_OFF); 553 if (sync) 554 input_sync(dev->input_dev); 555 dev->keypressed = false; 556 } 557 558 /** 559 * rc_keyup() - signals the release of a keypress 560 * @dev: the struct rc_dev descriptor of the device 561 * 562 * This routine is used to signal that a key has been released on the 563 * remote control. 564 */ 565 void rc_keyup(struct rc_dev *dev) 566 { 567 unsigned long flags; 568 569 spin_lock_irqsave(&dev->keylock, flags); 570 ir_do_keyup(dev, true); 571 spin_unlock_irqrestore(&dev->keylock, flags); 572 } 573 EXPORT_SYMBOL_GPL(rc_keyup); 574 575 /** 576 * ir_timer_keyup() - generates a keyup event after a timeout 577 * @cookie: a pointer to the struct rc_dev for the device 578 * 579 * This routine will generate a keyup event some time after a keydown event 580 * is generated when no further activity has been detected. 581 */ 582 static void ir_timer_keyup(unsigned long cookie) 583 { 584 struct rc_dev *dev = (struct rc_dev *)cookie; 585 unsigned long flags; 586 587 /* 588 * ir->keyup_jiffies is used to prevent a race condition if a 589 * hardware interrupt occurs at this point and the keyup timer 590 * event is moved further into the future as a result. 591 * 592 * The timer will then be reactivated and this function called 593 * again in the future. We need to exit gracefully in that case 594 * to allow the input subsystem to do its auto-repeat magic or 595 * a keyup event might follow immediately after the keydown. 596 */ 597 spin_lock_irqsave(&dev->keylock, flags); 598 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 599 ir_do_keyup(dev, true); 600 spin_unlock_irqrestore(&dev->keylock, flags); 601 } 602 603 /** 604 * rc_repeat() - signals that a key is still pressed 605 * @dev: the struct rc_dev descriptor of the device 606 * 607 * This routine is used by IR decoders when a repeat message which does 608 * not include the necessary bits to reproduce the scancode has been 609 * received. 610 */ 611 void rc_repeat(struct rc_dev *dev) 612 { 613 unsigned long flags; 614 615 spin_lock_irqsave(&dev->keylock, flags); 616 617 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 618 input_sync(dev->input_dev); 619 620 if (!dev->keypressed) 621 goto out; 622 623 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 624 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 625 626 out: 627 spin_unlock_irqrestore(&dev->keylock, flags); 628 } 629 EXPORT_SYMBOL_GPL(rc_repeat); 630 631 /** 632 * ir_do_keydown() - internal function to process a keypress 633 * @dev: the struct rc_dev descriptor of the device 634 * @protocol: the protocol of the keypress 635 * @scancode: the scancode of the keypress 636 * @keycode: the keycode of the keypress 637 * @toggle: the toggle value of the keypress 638 * 639 * This function is used internally to register a keypress, it must be 640 * called with keylock held. 641 */ 642 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol, 643 u32 scancode, u32 keycode, u8 toggle) 644 { 645 bool new_event = (!dev->keypressed || 646 dev->last_protocol != protocol || 647 dev->last_scancode != scancode || 648 dev->last_toggle != toggle); 649 650 if (new_event && dev->keypressed) 651 ir_do_keyup(dev, false); 652 653 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 654 655 if (new_event && keycode != KEY_RESERVED) { 656 /* Register a keypress */ 657 dev->keypressed = true; 658 dev->last_protocol = protocol; 659 dev->last_scancode = scancode; 660 dev->last_toggle = toggle; 661 dev->last_keycode = keycode; 662 663 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 664 dev->input_name, keycode, protocol, scancode); 665 input_report_key(dev->input_dev, keycode, 1); 666 667 led_trigger_event(led_feedback, LED_FULL); 668 } 669 670 input_sync(dev->input_dev); 671 } 672 673 /** 674 * rc_keydown() - generates input event for a key press 675 * @dev: the struct rc_dev descriptor of the device 676 * @protocol: the protocol for the keypress 677 * @scancode: the scancode for the keypress 678 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 679 * support toggle values, this should be set to zero) 680 * 681 * This routine is used to signal that a key has been pressed on the 682 * remote control. 683 */ 684 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle) 685 { 686 unsigned long flags; 687 u32 keycode = rc_g_keycode_from_table(dev, scancode); 688 689 spin_lock_irqsave(&dev->keylock, flags); 690 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 691 692 if (dev->keypressed) { 693 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 694 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 695 } 696 spin_unlock_irqrestore(&dev->keylock, flags); 697 } 698 EXPORT_SYMBOL_GPL(rc_keydown); 699 700 /** 701 * rc_keydown_notimeout() - generates input event for a key press without 702 * an automatic keyup event at a later time 703 * @dev: the struct rc_dev descriptor of the device 704 * @protocol: the protocol for the keypress 705 * @scancode: the scancode for the keypress 706 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 707 * support toggle values, this should be set to zero) 708 * 709 * This routine is used to signal that a key has been pressed on the 710 * remote control. The driver must manually call rc_keyup() at a later stage. 711 */ 712 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol, 713 u32 scancode, u8 toggle) 714 { 715 unsigned long flags; 716 u32 keycode = rc_g_keycode_from_table(dev, scancode); 717 718 spin_lock_irqsave(&dev->keylock, flags); 719 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 720 spin_unlock_irqrestore(&dev->keylock, flags); 721 } 722 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 723 724 int rc_open(struct rc_dev *rdev) 725 { 726 int rval = 0; 727 728 if (!rdev) 729 return -EINVAL; 730 731 mutex_lock(&rdev->lock); 732 733 if (!rdev->users++ && rdev->open != NULL) 734 rval = rdev->open(rdev); 735 736 if (rval) 737 rdev->users--; 738 739 mutex_unlock(&rdev->lock); 740 741 return rval; 742 } 743 EXPORT_SYMBOL_GPL(rc_open); 744 745 static int ir_open(struct input_dev *idev) 746 { 747 struct rc_dev *rdev = input_get_drvdata(idev); 748 749 return rc_open(rdev); 750 } 751 752 void rc_close(struct rc_dev *rdev) 753 { 754 if (rdev) { 755 mutex_lock(&rdev->lock); 756 757 if (!--rdev->users && rdev->close != NULL) 758 rdev->close(rdev); 759 760 mutex_unlock(&rdev->lock); 761 } 762 } 763 EXPORT_SYMBOL_GPL(rc_close); 764 765 static void ir_close(struct input_dev *idev) 766 { 767 struct rc_dev *rdev = input_get_drvdata(idev); 768 rc_close(rdev); 769 } 770 771 /* class for /sys/class/rc */ 772 static char *rc_devnode(struct device *dev, umode_t *mode) 773 { 774 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 775 } 776 777 static struct class rc_class = { 778 .name = "rc", 779 .devnode = rc_devnode, 780 }; 781 782 /* 783 * These are the protocol textual descriptions that are 784 * used by the sysfs protocols file. Note that the order 785 * of the entries is relevant. 786 */ 787 static const struct { 788 u64 type; 789 const char *name; 790 const char *module_name; 791 } proto_names[] = { 792 { RC_BIT_NONE, "none", NULL }, 793 { RC_BIT_OTHER, "other", NULL }, 794 { RC_BIT_UNKNOWN, "unknown", NULL }, 795 { RC_BIT_RC5 | 796 RC_BIT_RC5X, "rc-5", "ir-rc5-decoder" }, 797 { RC_BIT_NEC | 798 RC_BIT_NECX | 799 RC_BIT_NEC32, "nec", "ir-nec-decoder" }, 800 { RC_BIT_RC6_0 | 801 RC_BIT_RC6_6A_20 | 802 RC_BIT_RC6_6A_24 | 803 RC_BIT_RC6_6A_32 | 804 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 805 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" }, 806 { RC_BIT_SONY12 | 807 RC_BIT_SONY15 | 808 RC_BIT_SONY20, "sony", "ir-sony-decoder" }, 809 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 810 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 811 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 812 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" }, 813 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" }, 814 { RC_BIT_CEC, "cec", NULL }, 815 }; 816 817 /** 818 * struct rc_filter_attribute - Device attribute relating to a filter type. 819 * @attr: Device attribute. 820 * @type: Filter type. 821 * @mask: false for filter value, true for filter mask. 822 */ 823 struct rc_filter_attribute { 824 struct device_attribute attr; 825 enum rc_filter_type type; 826 bool mask; 827 }; 828 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 829 830 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \ 831 struct rc_filter_attribute dev_attr_##_name = { \ 832 .attr = __ATTR(_name, _mode, _show, _store), \ 833 .type = (_type), \ 834 } 835 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 836 struct rc_filter_attribute dev_attr_##_name = { \ 837 .attr = __ATTR(_name, _mode, _show, _store), \ 838 .type = (_type), \ 839 .mask = (_mask), \ 840 } 841 842 static bool lirc_is_present(void) 843 { 844 #if defined(CONFIG_LIRC_MODULE) 845 struct module *lirc; 846 847 mutex_lock(&module_mutex); 848 lirc = find_module("lirc_dev"); 849 mutex_unlock(&module_mutex); 850 851 return lirc ? true : false; 852 #elif defined(CONFIG_LIRC) 853 return true; 854 #else 855 return false; 856 #endif 857 } 858 859 /** 860 * show_protocols() - shows the current/wakeup IR protocol(s) 861 * @device: the device descriptor 862 * @mattr: the device attribute struct 863 * @buf: a pointer to the output buffer 864 * 865 * This routine is a callback routine for input read the IR protocol type(s). 866 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols. 867 * It returns the protocol names of supported protocols. 868 * Enabled protocols are printed in brackets. 869 * 870 * dev->lock is taken to guard against races between device 871 * registration, store_protocols and show_protocols. 872 */ 873 static ssize_t show_protocols(struct device *device, 874 struct device_attribute *mattr, char *buf) 875 { 876 struct rc_dev *dev = to_rc_dev(device); 877 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 878 u64 allowed, enabled; 879 char *tmp = buf; 880 int i; 881 882 /* Device is being removed */ 883 if (!dev) 884 return -EINVAL; 885 886 if (!atomic_read(&dev->initialized)) 887 return -ERESTARTSYS; 888 889 mutex_lock(&dev->lock); 890 891 if (fattr->type == RC_FILTER_NORMAL) { 892 enabled = dev->enabled_protocols; 893 allowed = dev->allowed_protocols; 894 if (dev->raw && !allowed) 895 allowed = ir_raw_get_allowed_protocols(); 896 } else { 897 enabled = dev->enabled_wakeup_protocols; 898 allowed = dev->allowed_wakeup_protocols; 899 } 900 901 mutex_unlock(&dev->lock); 902 903 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 904 __func__, (long long)allowed, (long long)enabled); 905 906 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 907 if (allowed & enabled & proto_names[i].type) 908 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 909 else if (allowed & proto_names[i].type) 910 tmp += sprintf(tmp, "%s ", proto_names[i].name); 911 912 if (allowed & proto_names[i].type) 913 allowed &= ~proto_names[i].type; 914 } 915 916 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present()) 917 tmp += sprintf(tmp, "[lirc] "); 918 919 if (tmp != buf) 920 tmp--; 921 *tmp = '\n'; 922 923 return tmp + 1 - buf; 924 } 925 926 /** 927 * parse_protocol_change() - parses a protocol change request 928 * @protocols: pointer to the bitmask of current protocols 929 * @buf: pointer to the buffer with a list of changes 930 * 931 * Writing "+proto" will add a protocol to the protocol mask. 932 * Writing "-proto" will remove a protocol from protocol mask. 933 * Writing "proto" will enable only "proto". 934 * Writing "none" will disable all protocols. 935 * Returns the number of changes performed or a negative error code. 936 */ 937 static int parse_protocol_change(u64 *protocols, const char *buf) 938 { 939 const char *tmp; 940 unsigned count = 0; 941 bool enable, disable; 942 u64 mask; 943 int i; 944 945 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 946 if (!*tmp) 947 break; 948 949 if (*tmp == '+') { 950 enable = true; 951 disable = false; 952 tmp++; 953 } else if (*tmp == '-') { 954 enable = false; 955 disable = true; 956 tmp++; 957 } else { 958 enable = false; 959 disable = false; 960 } 961 962 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 963 if (!strcasecmp(tmp, proto_names[i].name)) { 964 mask = proto_names[i].type; 965 break; 966 } 967 } 968 969 if (i == ARRAY_SIZE(proto_names)) { 970 if (!strcasecmp(tmp, "lirc")) 971 mask = 0; 972 else { 973 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 974 return -EINVAL; 975 } 976 } 977 978 count++; 979 980 if (enable) 981 *protocols |= mask; 982 else if (disable) 983 *protocols &= ~mask; 984 else 985 *protocols = mask; 986 } 987 988 if (!count) { 989 IR_dprintk(1, "Protocol not specified\n"); 990 return -EINVAL; 991 } 992 993 return count; 994 } 995 996 static void ir_raw_load_modules(u64 *protocols) 997 998 { 999 u64 available; 1000 int i, ret; 1001 1002 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1003 if (proto_names[i].type == RC_BIT_NONE || 1004 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN)) 1005 continue; 1006 1007 available = ir_raw_get_allowed_protocols(); 1008 if (!(*protocols & proto_names[i].type & ~available)) 1009 continue; 1010 1011 if (!proto_names[i].module_name) { 1012 pr_err("Can't enable IR protocol %s\n", 1013 proto_names[i].name); 1014 *protocols &= ~proto_names[i].type; 1015 continue; 1016 } 1017 1018 ret = request_module("%s", proto_names[i].module_name); 1019 if (ret < 0) { 1020 pr_err("Couldn't load IR protocol module %s\n", 1021 proto_names[i].module_name); 1022 *protocols &= ~proto_names[i].type; 1023 continue; 1024 } 1025 msleep(20); 1026 available = ir_raw_get_allowed_protocols(); 1027 if (!(*protocols & proto_names[i].type & ~available)) 1028 continue; 1029 1030 pr_err("Loaded IR protocol module %s, \ 1031 but protocol %s still not available\n", 1032 proto_names[i].module_name, 1033 proto_names[i].name); 1034 *protocols &= ~proto_names[i].type; 1035 } 1036 } 1037 1038 /** 1039 * store_protocols() - changes the current/wakeup IR protocol(s) 1040 * @device: the device descriptor 1041 * @mattr: the device attribute struct 1042 * @buf: a pointer to the input buffer 1043 * @len: length of the input buffer 1044 * 1045 * This routine is for changing the IR protocol type. 1046 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1047 * See parse_protocol_change() for the valid commands. 1048 * Returns @len on success or a negative error code. 1049 * 1050 * dev->lock is taken to guard against races between device 1051 * registration, store_protocols and show_protocols. 1052 */ 1053 static ssize_t store_protocols(struct device *device, 1054 struct device_attribute *mattr, 1055 const char *buf, size_t len) 1056 { 1057 struct rc_dev *dev = to_rc_dev(device); 1058 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 1059 u64 *current_protocols; 1060 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type); 1061 struct rc_scancode_filter *filter; 1062 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1063 u64 old_protocols, new_protocols; 1064 ssize_t rc; 1065 1066 /* Device is being removed */ 1067 if (!dev) 1068 return -EINVAL; 1069 1070 if (!atomic_read(&dev->initialized)) 1071 return -ERESTARTSYS; 1072 1073 if (fattr->type == RC_FILTER_NORMAL) { 1074 IR_dprintk(1, "Normal protocol change requested\n"); 1075 current_protocols = &dev->enabled_protocols; 1076 change_protocol = dev->change_protocol; 1077 filter = &dev->scancode_filter; 1078 set_filter = dev->s_filter; 1079 } else { 1080 IR_dprintk(1, "Wakeup protocol change requested\n"); 1081 current_protocols = &dev->enabled_wakeup_protocols; 1082 change_protocol = dev->change_wakeup_protocol; 1083 filter = &dev->scancode_wakeup_filter; 1084 set_filter = dev->s_wakeup_filter; 1085 } 1086 1087 if (!change_protocol) { 1088 IR_dprintk(1, "Protocol switching not supported\n"); 1089 return -EINVAL; 1090 } 1091 1092 mutex_lock(&dev->lock); 1093 1094 old_protocols = *current_protocols; 1095 new_protocols = old_protocols; 1096 rc = parse_protocol_change(&new_protocols, buf); 1097 if (rc < 0) 1098 goto out; 1099 1100 rc = change_protocol(dev, &new_protocols); 1101 if (rc < 0) { 1102 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 1103 (long long)new_protocols); 1104 goto out; 1105 } 1106 1107 if (dev->driver_type == RC_DRIVER_IR_RAW) 1108 ir_raw_load_modules(&new_protocols); 1109 1110 if (new_protocols != old_protocols) { 1111 *current_protocols = new_protocols; 1112 IR_dprintk(1, "Protocols changed to 0x%llx\n", 1113 (long long)new_protocols); 1114 } 1115 1116 /* 1117 * If a protocol change was attempted the filter may need updating, even 1118 * if the actual protocol mask hasn't changed (since the driver may have 1119 * cleared the filter). 1120 * Try setting the same filter with the new protocol (if any). 1121 * Fall back to clearing the filter. 1122 */ 1123 if (set_filter && filter->mask) { 1124 if (new_protocols) 1125 rc = set_filter(dev, filter); 1126 else 1127 rc = -1; 1128 1129 if (rc < 0) { 1130 filter->data = 0; 1131 filter->mask = 0; 1132 set_filter(dev, filter); 1133 } 1134 } 1135 1136 rc = len; 1137 1138 out: 1139 mutex_unlock(&dev->lock); 1140 return rc; 1141 } 1142 1143 /** 1144 * show_filter() - shows the current scancode filter value or mask 1145 * @device: the device descriptor 1146 * @attr: the device attribute struct 1147 * @buf: a pointer to the output buffer 1148 * 1149 * This routine is a callback routine to read a scancode filter value or mask. 1150 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1151 * It prints the current scancode filter value or mask of the appropriate filter 1152 * type in hexadecimal into @buf and returns the size of the buffer. 1153 * 1154 * Bits of the filter value corresponding to set bits in the filter mask are 1155 * compared against input scancodes and non-matching scancodes are discarded. 1156 * 1157 * dev->lock is taken to guard against races between device registration, 1158 * store_filter and show_filter. 1159 */ 1160 static ssize_t show_filter(struct device *device, 1161 struct device_attribute *attr, 1162 char *buf) 1163 { 1164 struct rc_dev *dev = to_rc_dev(device); 1165 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1166 struct rc_scancode_filter *filter; 1167 u32 val; 1168 1169 /* Device is being removed */ 1170 if (!dev) 1171 return -EINVAL; 1172 1173 if (!atomic_read(&dev->initialized)) 1174 return -ERESTARTSYS; 1175 1176 mutex_lock(&dev->lock); 1177 1178 if (fattr->type == RC_FILTER_NORMAL) 1179 filter = &dev->scancode_filter; 1180 else 1181 filter = &dev->scancode_wakeup_filter; 1182 1183 if (fattr->mask) 1184 val = filter->mask; 1185 else 1186 val = filter->data; 1187 mutex_unlock(&dev->lock); 1188 1189 return sprintf(buf, "%#x\n", val); 1190 } 1191 1192 /** 1193 * store_filter() - changes the scancode filter value 1194 * @device: the device descriptor 1195 * @attr: the device attribute struct 1196 * @buf: a pointer to the input buffer 1197 * @len: length of the input buffer 1198 * 1199 * This routine is for changing a scancode filter value or mask. 1200 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1201 * Returns -EINVAL if an invalid filter value for the current protocol was 1202 * specified or if scancode filtering is not supported by the driver, otherwise 1203 * returns @len. 1204 * 1205 * Bits of the filter value corresponding to set bits in the filter mask are 1206 * compared against input scancodes and non-matching scancodes are discarded. 1207 * 1208 * dev->lock is taken to guard against races between device registration, 1209 * store_filter and show_filter. 1210 */ 1211 static ssize_t store_filter(struct device *device, 1212 struct device_attribute *attr, 1213 const char *buf, size_t len) 1214 { 1215 struct rc_dev *dev = to_rc_dev(device); 1216 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1217 struct rc_scancode_filter new_filter, *filter; 1218 int ret; 1219 unsigned long val; 1220 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1221 u64 *enabled_protocols; 1222 1223 /* Device is being removed */ 1224 if (!dev) 1225 return -EINVAL; 1226 1227 if (!atomic_read(&dev->initialized)) 1228 return -ERESTARTSYS; 1229 1230 ret = kstrtoul(buf, 0, &val); 1231 if (ret < 0) 1232 return ret; 1233 1234 if (fattr->type == RC_FILTER_NORMAL) { 1235 set_filter = dev->s_filter; 1236 enabled_protocols = &dev->enabled_protocols; 1237 filter = &dev->scancode_filter; 1238 } else { 1239 set_filter = dev->s_wakeup_filter; 1240 enabled_protocols = &dev->enabled_wakeup_protocols; 1241 filter = &dev->scancode_wakeup_filter; 1242 } 1243 1244 if (!set_filter) 1245 return -EINVAL; 1246 1247 mutex_lock(&dev->lock); 1248 1249 new_filter = *filter; 1250 if (fattr->mask) 1251 new_filter.mask = val; 1252 else 1253 new_filter.data = val; 1254 1255 if (!*enabled_protocols && val) { 1256 /* refuse to set a filter unless a protocol is enabled */ 1257 ret = -EINVAL; 1258 goto unlock; 1259 } 1260 1261 ret = set_filter(dev, &new_filter); 1262 if (ret < 0) 1263 goto unlock; 1264 1265 *filter = new_filter; 1266 1267 unlock: 1268 mutex_unlock(&dev->lock); 1269 return (ret < 0) ? ret : len; 1270 } 1271 1272 static void rc_dev_release(struct device *device) 1273 { 1274 struct rc_dev *dev = to_rc_dev(device); 1275 1276 kfree(dev); 1277 } 1278 1279 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1280 do { \ 1281 int err = add_uevent_var(env, fmt, val); \ 1282 if (err) \ 1283 return err; \ 1284 } while (0) 1285 1286 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1287 { 1288 struct rc_dev *dev = to_rc_dev(device); 1289 1290 if (dev->rc_map.name) 1291 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1292 if (dev->driver_name) 1293 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1294 1295 return 0; 1296 } 1297 1298 /* 1299 * Static device attribute struct with the sysfs attributes for IR's 1300 */ 1301 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR, 1302 show_protocols, store_protocols, RC_FILTER_NORMAL); 1303 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR, 1304 show_protocols, store_protocols, RC_FILTER_WAKEUP); 1305 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1306 show_filter, store_filter, RC_FILTER_NORMAL, false); 1307 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1308 show_filter, store_filter, RC_FILTER_NORMAL, true); 1309 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1310 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1311 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1312 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1313 1314 static struct attribute *rc_dev_protocol_attrs[] = { 1315 &dev_attr_protocols.attr.attr, 1316 NULL, 1317 }; 1318 1319 static struct attribute_group rc_dev_protocol_attr_grp = { 1320 .attrs = rc_dev_protocol_attrs, 1321 }; 1322 1323 static struct attribute *rc_dev_wakeup_protocol_attrs[] = { 1324 &dev_attr_wakeup_protocols.attr.attr, 1325 NULL, 1326 }; 1327 1328 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = { 1329 .attrs = rc_dev_wakeup_protocol_attrs, 1330 }; 1331 1332 static struct attribute *rc_dev_filter_attrs[] = { 1333 &dev_attr_filter.attr.attr, 1334 &dev_attr_filter_mask.attr.attr, 1335 NULL, 1336 }; 1337 1338 static struct attribute_group rc_dev_filter_attr_grp = { 1339 .attrs = rc_dev_filter_attrs, 1340 }; 1341 1342 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1343 &dev_attr_wakeup_filter.attr.attr, 1344 &dev_attr_wakeup_filter_mask.attr.attr, 1345 NULL, 1346 }; 1347 1348 static struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1349 .attrs = rc_dev_wakeup_filter_attrs, 1350 }; 1351 1352 static struct device_type rc_dev_type = { 1353 .release = rc_dev_release, 1354 .uevent = rc_dev_uevent, 1355 }; 1356 1357 struct rc_dev *rc_allocate_device(void) 1358 { 1359 struct rc_dev *dev; 1360 1361 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1362 if (!dev) 1363 return NULL; 1364 1365 dev->input_dev = input_allocate_device(); 1366 if (!dev->input_dev) { 1367 kfree(dev); 1368 return NULL; 1369 } 1370 1371 dev->input_dev->getkeycode = ir_getkeycode; 1372 dev->input_dev->setkeycode = ir_setkeycode; 1373 input_set_drvdata(dev->input_dev, dev); 1374 1375 spin_lock_init(&dev->rc_map.lock); 1376 spin_lock_init(&dev->keylock); 1377 mutex_init(&dev->lock); 1378 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1379 1380 dev->dev.type = &rc_dev_type; 1381 dev->dev.class = &rc_class; 1382 device_initialize(&dev->dev); 1383 1384 __module_get(THIS_MODULE); 1385 return dev; 1386 } 1387 EXPORT_SYMBOL_GPL(rc_allocate_device); 1388 1389 void rc_free_device(struct rc_dev *dev) 1390 { 1391 if (!dev) 1392 return; 1393 1394 input_free_device(dev->input_dev); 1395 1396 put_device(&dev->dev); 1397 1398 /* kfree(dev) will be called by the callback function 1399 rc_dev_release() */ 1400 1401 module_put(THIS_MODULE); 1402 } 1403 EXPORT_SYMBOL_GPL(rc_free_device); 1404 1405 int rc_register_device(struct rc_dev *dev) 1406 { 1407 static bool raw_init = false; /* raw decoders loaded? */ 1408 struct rc_map *rc_map; 1409 const char *path; 1410 int attr = 0; 1411 int minor; 1412 int rc; 1413 1414 if (!dev || !dev->map_name) 1415 return -EINVAL; 1416 1417 rc_map = rc_map_get(dev->map_name); 1418 if (!rc_map) 1419 rc_map = rc_map_get(RC_MAP_EMPTY); 1420 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1421 return -EINVAL; 1422 1423 set_bit(EV_KEY, dev->input_dev->evbit); 1424 set_bit(EV_REP, dev->input_dev->evbit); 1425 set_bit(EV_MSC, dev->input_dev->evbit); 1426 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1427 if (dev->open) 1428 dev->input_dev->open = ir_open; 1429 if (dev->close) 1430 dev->input_dev->close = ir_close; 1431 1432 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1433 if (minor < 0) 1434 return minor; 1435 1436 dev->minor = minor; 1437 dev_set_name(&dev->dev, "rc%u", dev->minor); 1438 dev_set_drvdata(&dev->dev, dev); 1439 atomic_set(&dev->initialized, 0); 1440 1441 dev->dev.groups = dev->sysfs_groups; 1442 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp; 1443 if (dev->s_filter) 1444 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1445 if (dev->s_wakeup_filter) 1446 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1447 if (dev->change_wakeup_protocol) 1448 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp; 1449 dev->sysfs_groups[attr++] = NULL; 1450 1451 rc = device_add(&dev->dev); 1452 if (rc) 1453 goto out_unlock; 1454 1455 rc = ir_setkeytable(dev, rc_map); 1456 if (rc) 1457 goto out_dev; 1458 1459 dev->input_dev->dev.parent = &dev->dev; 1460 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1461 dev->input_dev->phys = dev->input_phys; 1462 dev->input_dev->name = dev->input_name; 1463 1464 rc = input_register_device(dev->input_dev); 1465 if (rc) 1466 goto out_table; 1467 1468 /* 1469 * Default delay of 250ms is too short for some protocols, especially 1470 * since the timeout is currently set to 250ms. Increase it to 500ms, 1471 * to avoid wrong repetition of the keycodes. Note that this must be 1472 * set after the call to input_register_device(). 1473 */ 1474 dev->input_dev->rep[REP_DELAY] = 500; 1475 1476 /* 1477 * As a repeat event on protocols like RC-5 and NEC take as long as 1478 * 110/114ms, using 33ms as a repeat period is not the right thing 1479 * to do. 1480 */ 1481 dev->input_dev->rep[REP_PERIOD] = 125; 1482 1483 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1484 dev_info(&dev->dev, "%s as %s\n", 1485 dev->input_name ?: "Unspecified device", path ?: "N/A"); 1486 kfree(path); 1487 1488 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1489 if (!raw_init) { 1490 request_module_nowait("ir-lirc-codec"); 1491 raw_init = true; 1492 } 1493 rc = ir_raw_event_register(dev); 1494 if (rc < 0) 1495 goto out_input; 1496 } 1497 1498 if (dev->change_protocol) { 1499 u64 rc_type = (1ll << rc_map->rc_type); 1500 rc = dev->change_protocol(dev, &rc_type); 1501 if (rc < 0) 1502 goto out_raw; 1503 dev->enabled_protocols = rc_type; 1504 } 1505 1506 /* Allow the RC sysfs nodes to be accessible */ 1507 atomic_set(&dev->initialized, 1); 1508 1509 IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n", 1510 dev->minor, 1511 dev->driver_name ? dev->driver_name : "unknown", 1512 rc_map->name ? rc_map->name : "unknown", 1513 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1514 1515 return 0; 1516 1517 out_raw: 1518 if (dev->driver_type == RC_DRIVER_IR_RAW) 1519 ir_raw_event_unregister(dev); 1520 out_input: 1521 input_unregister_device(dev->input_dev); 1522 dev->input_dev = NULL; 1523 out_table: 1524 ir_free_table(&dev->rc_map); 1525 out_dev: 1526 device_del(&dev->dev); 1527 out_unlock: 1528 ida_simple_remove(&rc_ida, minor); 1529 return rc; 1530 } 1531 EXPORT_SYMBOL_GPL(rc_register_device); 1532 1533 void rc_unregister_device(struct rc_dev *dev) 1534 { 1535 if (!dev) 1536 return; 1537 1538 del_timer_sync(&dev->timer_keyup); 1539 1540 if (dev->driver_type == RC_DRIVER_IR_RAW) 1541 ir_raw_event_unregister(dev); 1542 1543 /* Freeing the table should also call the stop callback */ 1544 ir_free_table(&dev->rc_map); 1545 IR_dprintk(1, "Freed keycode table\n"); 1546 1547 input_unregister_device(dev->input_dev); 1548 dev->input_dev = NULL; 1549 1550 device_del(&dev->dev); 1551 1552 ida_simple_remove(&rc_ida, dev->minor); 1553 1554 rc_free_device(dev); 1555 } 1556 1557 EXPORT_SYMBOL_GPL(rc_unregister_device); 1558 1559 /* 1560 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1561 */ 1562 1563 static int __init rc_core_init(void) 1564 { 1565 int rc = class_register(&rc_class); 1566 if (rc) { 1567 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1568 return rc; 1569 } 1570 1571 led_trigger_register_simple("rc-feedback", &led_feedback); 1572 rc_map_register(&empty_map); 1573 1574 return 0; 1575 } 1576 1577 static void __exit rc_core_exit(void) 1578 { 1579 class_unregister(&rc_class); 1580 led_trigger_unregister_simple(led_feedback); 1581 rc_map_unregister(&empty_map); 1582 } 1583 1584 subsys_initcall(rc_core_init); 1585 module_exit(rc_core_exit); 1586 1587 int rc_core_debug; /* ir_debug level (0,1,2) */ 1588 EXPORT_SYMBOL_GPL(rc_core_debug); 1589 module_param_named(debug, rc_core_debug, int, 0644); 1590 1591 MODULE_AUTHOR("Mauro Carvalho Chehab"); 1592 MODULE_LICENSE("GPL"); 1593