1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/spinlock.h> 17 #include <linux/delay.h> 18 #include <linux/input.h> 19 #include <linux/slab.h> 20 #include <linux/device.h> 21 #include "rc-core-priv.h" 22 23 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 24 #define IR_TAB_MIN_SIZE 256 25 #define IR_TAB_MAX_SIZE 8192 26 27 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 28 #define IR_KEYPRESS_TIMEOUT 250 29 30 /* Used to keep track of known keymaps */ 31 static LIST_HEAD(rc_map_list); 32 static DEFINE_SPINLOCK(rc_map_lock); 33 34 static struct rc_map_list *seek_rc_map(const char *name) 35 { 36 struct rc_map_list *map = NULL; 37 38 spin_lock(&rc_map_lock); 39 list_for_each_entry(map, &rc_map_list, list) { 40 if (!strcmp(name, map->map.name)) { 41 spin_unlock(&rc_map_lock); 42 return map; 43 } 44 } 45 spin_unlock(&rc_map_lock); 46 47 return NULL; 48 } 49 50 struct rc_map *rc_map_get(const char *name) 51 { 52 53 struct rc_map_list *map; 54 55 map = seek_rc_map(name); 56 #ifdef MODULE 57 if (!map) { 58 int rc = request_module(name); 59 if (rc < 0) { 60 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 61 return NULL; 62 } 63 msleep(20); /* Give some time for IR to register */ 64 65 map = seek_rc_map(name); 66 } 67 #endif 68 if (!map) { 69 printk(KERN_ERR "IR keymap %s not found\n", name); 70 return NULL; 71 } 72 73 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 74 75 return &map->map; 76 } 77 EXPORT_SYMBOL_GPL(rc_map_get); 78 79 int rc_map_register(struct rc_map_list *map) 80 { 81 spin_lock(&rc_map_lock); 82 list_add_tail(&map->list, &rc_map_list); 83 spin_unlock(&rc_map_lock); 84 return 0; 85 } 86 EXPORT_SYMBOL_GPL(rc_map_register); 87 88 void rc_map_unregister(struct rc_map_list *map) 89 { 90 spin_lock(&rc_map_lock); 91 list_del(&map->list); 92 spin_unlock(&rc_map_lock); 93 } 94 EXPORT_SYMBOL_GPL(rc_map_unregister); 95 96 97 static struct rc_map_table empty[] = { 98 { 0x2a, KEY_COFFEE }, 99 }; 100 101 static struct rc_map_list empty_map = { 102 .map = { 103 .scan = empty, 104 .size = ARRAY_SIZE(empty), 105 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 106 .name = RC_MAP_EMPTY, 107 } 108 }; 109 110 /** 111 * ir_create_table() - initializes a scancode table 112 * @rc_map: the rc_map to initialize 113 * @name: name to assign to the table 114 * @rc_type: ir type to assign to the new table 115 * @size: initial size of the table 116 * @return: zero on success or a negative error code 117 * 118 * This routine will initialize the rc_map and will allocate 119 * memory to hold at least the specified number of elements. 120 */ 121 static int ir_create_table(struct rc_map *rc_map, 122 const char *name, u64 rc_type, size_t size) 123 { 124 rc_map->name = name; 125 rc_map->rc_type = rc_type; 126 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 127 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 128 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 129 if (!rc_map->scan) 130 return -ENOMEM; 131 132 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 133 rc_map->size, rc_map->alloc); 134 return 0; 135 } 136 137 /** 138 * ir_free_table() - frees memory allocated by a scancode table 139 * @rc_map: the table whose mappings need to be freed 140 * 141 * This routine will free memory alloctaed for key mappings used by given 142 * scancode table. 143 */ 144 static void ir_free_table(struct rc_map *rc_map) 145 { 146 rc_map->size = 0; 147 kfree(rc_map->scan); 148 rc_map->scan = NULL; 149 } 150 151 /** 152 * ir_resize_table() - resizes a scancode table if necessary 153 * @rc_map: the rc_map to resize 154 * @gfp_flags: gfp flags to use when allocating memory 155 * @return: zero on success or a negative error code 156 * 157 * This routine will shrink the rc_map if it has lots of 158 * unused entries and grow it if it is full. 159 */ 160 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 161 { 162 unsigned int oldalloc = rc_map->alloc; 163 unsigned int newalloc = oldalloc; 164 struct rc_map_table *oldscan = rc_map->scan; 165 struct rc_map_table *newscan; 166 167 if (rc_map->size == rc_map->len) { 168 /* All entries in use -> grow keytable */ 169 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 170 return -ENOMEM; 171 172 newalloc *= 2; 173 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 174 } 175 176 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 177 /* Less than 1/3 of entries in use -> shrink keytable */ 178 newalloc /= 2; 179 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 180 } 181 182 if (newalloc == oldalloc) 183 return 0; 184 185 newscan = kmalloc(newalloc, gfp_flags); 186 if (!newscan) { 187 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 188 return -ENOMEM; 189 } 190 191 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 192 rc_map->scan = newscan; 193 rc_map->alloc = newalloc; 194 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 195 kfree(oldscan); 196 return 0; 197 } 198 199 /** 200 * ir_update_mapping() - set a keycode in the scancode->keycode table 201 * @dev: the struct rc_dev device descriptor 202 * @rc_map: scancode table to be adjusted 203 * @index: index of the mapping that needs to be updated 204 * @keycode: the desired keycode 205 * @return: previous keycode assigned to the mapping 206 * 207 * This routine is used to update scancode->keycode mapping at given 208 * position. 209 */ 210 static unsigned int ir_update_mapping(struct rc_dev *dev, 211 struct rc_map *rc_map, 212 unsigned int index, 213 unsigned int new_keycode) 214 { 215 int old_keycode = rc_map->scan[index].keycode; 216 int i; 217 218 /* Did the user wish to remove the mapping? */ 219 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 220 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 221 index, rc_map->scan[index].scancode); 222 rc_map->len--; 223 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 224 (rc_map->len - index) * sizeof(struct rc_map_table)); 225 } else { 226 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 227 index, 228 old_keycode == KEY_RESERVED ? "New" : "Replacing", 229 rc_map->scan[index].scancode, new_keycode); 230 rc_map->scan[index].keycode = new_keycode; 231 __set_bit(new_keycode, dev->input_dev->keybit); 232 } 233 234 if (old_keycode != KEY_RESERVED) { 235 /* A previous mapping was updated... */ 236 __clear_bit(old_keycode, dev->input_dev->keybit); 237 /* ... but another scancode might use the same keycode */ 238 for (i = 0; i < rc_map->len; i++) { 239 if (rc_map->scan[i].keycode == old_keycode) { 240 __set_bit(old_keycode, dev->input_dev->keybit); 241 break; 242 } 243 } 244 245 /* Possibly shrink the keytable, failure is not a problem */ 246 ir_resize_table(rc_map, GFP_ATOMIC); 247 } 248 249 return old_keycode; 250 } 251 252 /** 253 * ir_establish_scancode() - set a keycode in the scancode->keycode table 254 * @dev: the struct rc_dev device descriptor 255 * @rc_map: scancode table to be searched 256 * @scancode: the desired scancode 257 * @resize: controls whether we allowed to resize the table to 258 * accomodate not yet present scancodes 259 * @return: index of the mapping containing scancode in question 260 * or -1U in case of failure. 261 * 262 * This routine is used to locate given scancode in rc_map. 263 * If scancode is not yet present the routine will allocate a new slot 264 * for it. 265 */ 266 static unsigned int ir_establish_scancode(struct rc_dev *dev, 267 struct rc_map *rc_map, 268 unsigned int scancode, 269 bool resize) 270 { 271 unsigned int i; 272 273 /* 274 * Unfortunately, some hardware-based IR decoders don't provide 275 * all bits for the complete IR code. In general, they provide only 276 * the command part of the IR code. Yet, as it is possible to replace 277 * the provided IR with another one, it is needed to allow loading 278 * IR tables from other remotes. So, we support specifying a mask to 279 * indicate the valid bits of the scancodes. 280 */ 281 if (dev->scanmask) 282 scancode &= dev->scanmask; 283 284 /* First check if we already have a mapping for this ir command */ 285 for (i = 0; i < rc_map->len; i++) { 286 if (rc_map->scan[i].scancode == scancode) 287 return i; 288 289 /* Keytable is sorted from lowest to highest scancode */ 290 if (rc_map->scan[i].scancode >= scancode) 291 break; 292 } 293 294 /* No previous mapping found, we might need to grow the table */ 295 if (rc_map->size == rc_map->len) { 296 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 297 return -1U; 298 } 299 300 /* i is the proper index to insert our new keycode */ 301 if (i < rc_map->len) 302 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 303 (rc_map->len - i) * sizeof(struct rc_map_table)); 304 rc_map->scan[i].scancode = scancode; 305 rc_map->scan[i].keycode = KEY_RESERVED; 306 rc_map->len++; 307 308 return i; 309 } 310 311 /** 312 * ir_setkeycode() - set a keycode in the scancode->keycode table 313 * @idev: the struct input_dev device descriptor 314 * @scancode: the desired scancode 315 * @keycode: result 316 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 317 * 318 * This routine is used to handle evdev EVIOCSKEY ioctl. 319 */ 320 static int ir_setkeycode(struct input_dev *idev, 321 const struct input_keymap_entry *ke, 322 unsigned int *old_keycode) 323 { 324 struct rc_dev *rdev = input_get_drvdata(idev); 325 struct rc_map *rc_map = &rdev->rc_map; 326 unsigned int index; 327 unsigned int scancode; 328 int retval = 0; 329 unsigned long flags; 330 331 spin_lock_irqsave(&rc_map->lock, flags); 332 333 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 334 index = ke->index; 335 if (index >= rc_map->len) { 336 retval = -EINVAL; 337 goto out; 338 } 339 } else { 340 retval = input_scancode_to_scalar(ke, &scancode); 341 if (retval) 342 goto out; 343 344 index = ir_establish_scancode(rdev, rc_map, scancode, true); 345 if (index >= rc_map->len) { 346 retval = -ENOMEM; 347 goto out; 348 } 349 } 350 351 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 352 353 out: 354 spin_unlock_irqrestore(&rc_map->lock, flags); 355 return retval; 356 } 357 358 /** 359 * ir_setkeytable() - sets several entries in the scancode->keycode table 360 * @dev: the struct rc_dev device descriptor 361 * @to: the struct rc_map to copy entries to 362 * @from: the struct rc_map to copy entries from 363 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 364 * 365 * This routine is used to handle table initialization. 366 */ 367 static int ir_setkeytable(struct rc_dev *dev, 368 const struct rc_map *from) 369 { 370 struct rc_map *rc_map = &dev->rc_map; 371 unsigned int i, index; 372 int rc; 373 374 rc = ir_create_table(rc_map, from->name, 375 from->rc_type, from->size); 376 if (rc) 377 return rc; 378 379 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 380 rc_map->size, rc_map->alloc); 381 382 for (i = 0; i < from->size; i++) { 383 index = ir_establish_scancode(dev, rc_map, 384 from->scan[i].scancode, false); 385 if (index >= rc_map->len) { 386 rc = -ENOMEM; 387 break; 388 } 389 390 ir_update_mapping(dev, rc_map, index, 391 from->scan[i].keycode); 392 } 393 394 if (rc) 395 ir_free_table(rc_map); 396 397 return rc; 398 } 399 400 /** 401 * ir_lookup_by_scancode() - locate mapping by scancode 402 * @rc_map: the struct rc_map to search 403 * @scancode: scancode to look for in the table 404 * @return: index in the table, -1U if not found 405 * 406 * This routine performs binary search in RC keykeymap table for 407 * given scancode. 408 */ 409 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 410 unsigned int scancode) 411 { 412 int start = 0; 413 int end = rc_map->len - 1; 414 int mid; 415 416 while (start <= end) { 417 mid = (start + end) / 2; 418 if (rc_map->scan[mid].scancode < scancode) 419 start = mid + 1; 420 else if (rc_map->scan[mid].scancode > scancode) 421 end = mid - 1; 422 else 423 return mid; 424 } 425 426 return -1U; 427 } 428 429 /** 430 * ir_getkeycode() - get a keycode from the scancode->keycode table 431 * @idev: the struct input_dev device descriptor 432 * @scancode: the desired scancode 433 * @keycode: used to return the keycode, if found, or KEY_RESERVED 434 * @return: always returns zero. 435 * 436 * This routine is used to handle evdev EVIOCGKEY ioctl. 437 */ 438 static int ir_getkeycode(struct input_dev *idev, 439 struct input_keymap_entry *ke) 440 { 441 struct rc_dev *rdev = input_get_drvdata(idev); 442 struct rc_map *rc_map = &rdev->rc_map; 443 struct rc_map_table *entry; 444 unsigned long flags; 445 unsigned int index; 446 unsigned int scancode; 447 int retval; 448 449 spin_lock_irqsave(&rc_map->lock, flags); 450 451 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 452 index = ke->index; 453 } else { 454 retval = input_scancode_to_scalar(ke, &scancode); 455 if (retval) 456 goto out; 457 458 index = ir_lookup_by_scancode(rc_map, scancode); 459 } 460 461 if (index < rc_map->len) { 462 entry = &rc_map->scan[index]; 463 464 ke->index = index; 465 ke->keycode = entry->keycode; 466 ke->len = sizeof(entry->scancode); 467 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 468 469 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 470 /* 471 * We do not really know the valid range of scancodes 472 * so let's respond with KEY_RESERVED to anything we 473 * do not have mapping for [yet]. 474 */ 475 ke->index = index; 476 ke->keycode = KEY_RESERVED; 477 } else { 478 retval = -EINVAL; 479 goto out; 480 } 481 482 retval = 0; 483 484 out: 485 spin_unlock_irqrestore(&rc_map->lock, flags); 486 return retval; 487 } 488 489 /** 490 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 491 * @dev: the struct rc_dev descriptor of the device 492 * @scancode: the scancode to look for 493 * @return: the corresponding keycode, or KEY_RESERVED 494 * 495 * This routine is used by drivers which need to convert a scancode to a 496 * keycode. Normally it should not be used since drivers should have no 497 * interest in keycodes. 498 */ 499 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 500 { 501 struct rc_map *rc_map = &dev->rc_map; 502 unsigned int keycode; 503 unsigned int index; 504 unsigned long flags; 505 506 spin_lock_irqsave(&rc_map->lock, flags); 507 508 index = ir_lookup_by_scancode(rc_map, scancode); 509 keycode = index < rc_map->len ? 510 rc_map->scan[index].keycode : KEY_RESERVED; 511 512 spin_unlock_irqrestore(&rc_map->lock, flags); 513 514 if (keycode != KEY_RESERVED) 515 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 516 dev->input_name, scancode, keycode); 517 518 return keycode; 519 } 520 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 521 522 /** 523 * ir_do_keyup() - internal function to signal the release of a keypress 524 * @dev: the struct rc_dev descriptor of the device 525 * 526 * This function is used internally to release a keypress, it must be 527 * called with keylock held. 528 */ 529 static void ir_do_keyup(struct rc_dev *dev) 530 { 531 if (!dev->keypressed) 532 return; 533 534 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 535 input_report_key(dev->input_dev, dev->last_keycode, 0); 536 input_sync(dev->input_dev); 537 dev->keypressed = false; 538 } 539 540 /** 541 * rc_keyup() - signals the release of a keypress 542 * @dev: the struct rc_dev descriptor of the device 543 * 544 * This routine is used to signal that a key has been released on the 545 * remote control. 546 */ 547 void rc_keyup(struct rc_dev *dev) 548 { 549 unsigned long flags; 550 551 spin_lock_irqsave(&dev->keylock, flags); 552 ir_do_keyup(dev); 553 spin_unlock_irqrestore(&dev->keylock, flags); 554 } 555 EXPORT_SYMBOL_GPL(rc_keyup); 556 557 /** 558 * ir_timer_keyup() - generates a keyup event after a timeout 559 * @cookie: a pointer to the struct rc_dev for the device 560 * 561 * This routine will generate a keyup event some time after a keydown event 562 * is generated when no further activity has been detected. 563 */ 564 static void ir_timer_keyup(unsigned long cookie) 565 { 566 struct rc_dev *dev = (struct rc_dev *)cookie; 567 unsigned long flags; 568 569 /* 570 * ir->keyup_jiffies is used to prevent a race condition if a 571 * hardware interrupt occurs at this point and the keyup timer 572 * event is moved further into the future as a result. 573 * 574 * The timer will then be reactivated and this function called 575 * again in the future. We need to exit gracefully in that case 576 * to allow the input subsystem to do its auto-repeat magic or 577 * a keyup event might follow immediately after the keydown. 578 */ 579 spin_lock_irqsave(&dev->keylock, flags); 580 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 581 ir_do_keyup(dev); 582 spin_unlock_irqrestore(&dev->keylock, flags); 583 } 584 585 /** 586 * rc_repeat() - signals that a key is still pressed 587 * @dev: the struct rc_dev descriptor of the device 588 * 589 * This routine is used by IR decoders when a repeat message which does 590 * not include the necessary bits to reproduce the scancode has been 591 * received. 592 */ 593 void rc_repeat(struct rc_dev *dev) 594 { 595 unsigned long flags; 596 597 spin_lock_irqsave(&dev->keylock, flags); 598 599 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 600 601 if (!dev->keypressed) 602 goto out; 603 604 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 605 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 606 607 out: 608 spin_unlock_irqrestore(&dev->keylock, flags); 609 } 610 EXPORT_SYMBOL_GPL(rc_repeat); 611 612 /** 613 * ir_do_keydown() - internal function to process a keypress 614 * @dev: the struct rc_dev descriptor of the device 615 * @scancode: the scancode of the keypress 616 * @keycode: the keycode of the keypress 617 * @toggle: the toggle value of the keypress 618 * 619 * This function is used internally to register a keypress, it must be 620 * called with keylock held. 621 */ 622 static void ir_do_keydown(struct rc_dev *dev, int scancode, 623 u32 keycode, u8 toggle) 624 { 625 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 626 627 /* Repeat event? */ 628 if (dev->keypressed && 629 dev->last_scancode == scancode && 630 dev->last_toggle == toggle) 631 return; 632 633 /* Release old keypress */ 634 ir_do_keyup(dev); 635 636 dev->last_scancode = scancode; 637 dev->last_toggle = toggle; 638 dev->last_keycode = keycode; 639 640 if (keycode == KEY_RESERVED) 641 return; 642 643 /* Register a keypress */ 644 dev->keypressed = true; 645 IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n", 646 dev->input_name, keycode, scancode); 647 input_report_key(dev->input_dev, dev->last_keycode, 1); 648 input_sync(dev->input_dev); 649 } 650 651 /** 652 * rc_keydown() - generates input event for a key press 653 * @dev: the struct rc_dev descriptor of the device 654 * @scancode: the scancode that we're seeking 655 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 656 * support toggle values, this should be set to zero) 657 * 658 * This routine is used to signal that a key has been pressed on the 659 * remote control. 660 */ 661 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle) 662 { 663 unsigned long flags; 664 u32 keycode = rc_g_keycode_from_table(dev, scancode); 665 666 spin_lock_irqsave(&dev->keylock, flags); 667 ir_do_keydown(dev, scancode, keycode, toggle); 668 669 if (dev->keypressed) { 670 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 671 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 672 } 673 spin_unlock_irqrestore(&dev->keylock, flags); 674 } 675 EXPORT_SYMBOL_GPL(rc_keydown); 676 677 /** 678 * rc_keydown_notimeout() - generates input event for a key press without 679 * an automatic keyup event at a later time 680 * @dev: the struct rc_dev descriptor of the device 681 * @scancode: the scancode that we're seeking 682 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 683 * support toggle values, this should be set to zero) 684 * 685 * This routine is used to signal that a key has been pressed on the 686 * remote control. The driver must manually call rc_keyup() at a later stage. 687 */ 688 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle) 689 { 690 unsigned long flags; 691 u32 keycode = rc_g_keycode_from_table(dev, scancode); 692 693 spin_lock_irqsave(&dev->keylock, flags); 694 ir_do_keydown(dev, scancode, keycode, toggle); 695 spin_unlock_irqrestore(&dev->keylock, flags); 696 } 697 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 698 699 static int ir_open(struct input_dev *idev) 700 { 701 struct rc_dev *rdev = input_get_drvdata(idev); 702 703 return rdev->open(rdev); 704 } 705 706 static void ir_close(struct input_dev *idev) 707 { 708 struct rc_dev *rdev = input_get_drvdata(idev); 709 710 rdev->close(rdev); 711 } 712 713 /* class for /sys/class/rc */ 714 static char *ir_devnode(struct device *dev, mode_t *mode) 715 { 716 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 717 } 718 719 static struct class ir_input_class = { 720 .name = "rc", 721 .devnode = ir_devnode, 722 }; 723 724 static struct { 725 u64 type; 726 char *name; 727 } proto_names[] = { 728 { RC_TYPE_UNKNOWN, "unknown" }, 729 { RC_TYPE_RC5, "rc-5" }, 730 { RC_TYPE_NEC, "nec" }, 731 { RC_TYPE_RC6, "rc-6" }, 732 { RC_TYPE_JVC, "jvc" }, 733 { RC_TYPE_SONY, "sony" }, 734 { RC_TYPE_RC5_SZ, "rc-5-sz" }, 735 { RC_TYPE_LIRC, "lirc" }, 736 }; 737 738 #define PROTO_NONE "none" 739 740 /** 741 * show_protocols() - shows the current IR protocol(s) 742 * @device: the device descriptor 743 * @mattr: the device attribute struct (unused) 744 * @buf: a pointer to the output buffer 745 * 746 * This routine is a callback routine for input read the IR protocol type(s). 747 * it is trigged by reading /sys/class/rc/rc?/protocols. 748 * It returns the protocol names of supported protocols. 749 * Enabled protocols are printed in brackets. 750 */ 751 static ssize_t show_protocols(struct device *device, 752 struct device_attribute *mattr, char *buf) 753 { 754 struct rc_dev *dev = to_rc_dev(device); 755 u64 allowed, enabled; 756 char *tmp = buf; 757 int i; 758 759 /* Device is being removed */ 760 if (!dev) 761 return -EINVAL; 762 763 if (dev->driver_type == RC_DRIVER_SCANCODE) { 764 enabled = dev->rc_map.rc_type; 765 allowed = dev->allowed_protos; 766 } else { 767 enabled = dev->raw->enabled_protocols; 768 allowed = ir_raw_get_allowed_protocols(); 769 } 770 771 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n", 772 (long long)allowed, 773 (long long)enabled); 774 775 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 776 if (allowed & enabled & proto_names[i].type) 777 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 778 else if (allowed & proto_names[i].type) 779 tmp += sprintf(tmp, "%s ", proto_names[i].name); 780 } 781 782 if (tmp != buf) 783 tmp--; 784 *tmp = '\n'; 785 return tmp + 1 - buf; 786 } 787 788 /** 789 * store_protocols() - changes the current IR protocol(s) 790 * @device: the device descriptor 791 * @mattr: the device attribute struct (unused) 792 * @buf: a pointer to the input buffer 793 * @len: length of the input buffer 794 * 795 * This routine is for changing the IR protocol type. 796 * It is trigged by writing to /sys/class/rc/rc?/protocols. 797 * Writing "+proto" will add a protocol to the list of enabled protocols. 798 * Writing "-proto" will remove a protocol from the list of enabled protocols. 799 * Writing "proto" will enable only "proto". 800 * Writing "none" will disable all protocols. 801 * Returns -EINVAL if an invalid protocol combination or unknown protocol name 802 * is used, otherwise @len. 803 */ 804 static ssize_t store_protocols(struct device *device, 805 struct device_attribute *mattr, 806 const char *data, 807 size_t len) 808 { 809 struct rc_dev *dev = to_rc_dev(device); 810 bool enable, disable; 811 const char *tmp; 812 u64 type; 813 u64 mask; 814 int rc, i, count = 0; 815 unsigned long flags; 816 817 /* Device is being removed */ 818 if (!dev) 819 return -EINVAL; 820 821 if (dev->driver_type == RC_DRIVER_SCANCODE) 822 type = dev->rc_map.rc_type; 823 else if (dev->raw) 824 type = dev->raw->enabled_protocols; 825 else { 826 IR_dprintk(1, "Protocol switching not supported\n"); 827 return -EINVAL; 828 } 829 830 while ((tmp = strsep((char **) &data, " \n")) != NULL) { 831 if (!*tmp) 832 break; 833 834 if (*tmp == '+') { 835 enable = true; 836 disable = false; 837 tmp++; 838 } else if (*tmp == '-') { 839 enable = false; 840 disable = true; 841 tmp++; 842 } else { 843 enable = false; 844 disable = false; 845 } 846 847 if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) { 848 tmp += sizeof(PROTO_NONE); 849 mask = 0; 850 count++; 851 } else { 852 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 853 if (!strcasecmp(tmp, proto_names[i].name)) { 854 tmp += strlen(proto_names[i].name); 855 mask = proto_names[i].type; 856 break; 857 } 858 } 859 if (i == ARRAY_SIZE(proto_names)) { 860 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 861 return -EINVAL; 862 } 863 count++; 864 } 865 866 if (enable) 867 type |= mask; 868 else if (disable) 869 type &= ~mask; 870 else 871 type = mask; 872 } 873 874 if (!count) { 875 IR_dprintk(1, "Protocol not specified\n"); 876 return -EINVAL; 877 } 878 879 if (dev->change_protocol) { 880 rc = dev->change_protocol(dev, type); 881 if (rc < 0) { 882 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 883 (long long)type); 884 return -EINVAL; 885 } 886 } 887 888 if (dev->driver_type == RC_DRIVER_SCANCODE) { 889 spin_lock_irqsave(&dev->rc_map.lock, flags); 890 dev->rc_map.rc_type = type; 891 spin_unlock_irqrestore(&dev->rc_map.lock, flags); 892 } else { 893 dev->raw->enabled_protocols = type; 894 } 895 896 IR_dprintk(1, "Current protocol(s): 0x%llx\n", 897 (long long)type); 898 899 return len; 900 } 901 902 static void rc_dev_release(struct device *device) 903 { 904 struct rc_dev *dev = to_rc_dev(device); 905 906 kfree(dev); 907 module_put(THIS_MODULE); 908 } 909 910 #define ADD_HOTPLUG_VAR(fmt, val...) \ 911 do { \ 912 int err = add_uevent_var(env, fmt, val); \ 913 if (err) \ 914 return err; \ 915 } while (0) 916 917 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 918 { 919 struct rc_dev *dev = to_rc_dev(device); 920 921 if (dev->rc_map.name) 922 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 923 if (dev->driver_name) 924 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 925 926 return 0; 927 } 928 929 /* 930 * Static device attribute struct with the sysfs attributes for IR's 931 */ 932 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR, 933 show_protocols, store_protocols); 934 935 static struct attribute *rc_dev_attrs[] = { 936 &dev_attr_protocols.attr, 937 NULL, 938 }; 939 940 static struct attribute_group rc_dev_attr_grp = { 941 .attrs = rc_dev_attrs, 942 }; 943 944 static const struct attribute_group *rc_dev_attr_groups[] = { 945 &rc_dev_attr_grp, 946 NULL 947 }; 948 949 static struct device_type rc_dev_type = { 950 .groups = rc_dev_attr_groups, 951 .release = rc_dev_release, 952 .uevent = rc_dev_uevent, 953 }; 954 955 struct rc_dev *rc_allocate_device(void) 956 { 957 struct rc_dev *dev; 958 959 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 960 if (!dev) 961 return NULL; 962 963 dev->input_dev = input_allocate_device(); 964 if (!dev->input_dev) { 965 kfree(dev); 966 return NULL; 967 } 968 969 dev->input_dev->getkeycode_new = ir_getkeycode; 970 dev->input_dev->setkeycode_new = ir_setkeycode; 971 input_set_drvdata(dev->input_dev, dev); 972 973 spin_lock_init(&dev->rc_map.lock); 974 spin_lock_init(&dev->keylock); 975 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 976 977 dev->dev.type = &rc_dev_type; 978 dev->dev.class = &ir_input_class; 979 device_initialize(&dev->dev); 980 981 __module_get(THIS_MODULE); 982 return dev; 983 } 984 EXPORT_SYMBOL_GPL(rc_allocate_device); 985 986 void rc_free_device(struct rc_dev *dev) 987 { 988 if (dev) { 989 input_free_device(dev->input_dev); 990 put_device(&dev->dev); 991 } 992 } 993 EXPORT_SYMBOL_GPL(rc_free_device); 994 995 int rc_register_device(struct rc_dev *dev) 996 { 997 static atomic_t devno = ATOMIC_INIT(0); 998 struct rc_map *rc_map; 999 const char *path; 1000 int rc; 1001 1002 if (!dev || !dev->map_name) 1003 return -EINVAL; 1004 1005 rc_map = rc_map_get(dev->map_name); 1006 if (!rc_map) 1007 rc_map = rc_map_get(RC_MAP_EMPTY); 1008 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1009 return -EINVAL; 1010 1011 set_bit(EV_KEY, dev->input_dev->evbit); 1012 set_bit(EV_REP, dev->input_dev->evbit); 1013 set_bit(EV_MSC, dev->input_dev->evbit); 1014 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1015 if (dev->open) 1016 dev->input_dev->open = ir_open; 1017 if (dev->close) 1018 dev->input_dev->close = ir_close; 1019 1020 dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1); 1021 dev_set_name(&dev->dev, "rc%ld", dev->devno); 1022 dev_set_drvdata(&dev->dev, dev); 1023 rc = device_add(&dev->dev); 1024 if (rc) 1025 return rc; 1026 1027 rc = ir_setkeytable(dev, rc_map); 1028 if (rc) 1029 goto out_dev; 1030 1031 dev->input_dev->dev.parent = &dev->dev; 1032 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1033 dev->input_dev->phys = dev->input_phys; 1034 dev->input_dev->name = dev->input_name; 1035 rc = input_register_device(dev->input_dev); 1036 if (rc) 1037 goto out_table; 1038 1039 /* 1040 * Default delay of 250ms is too short for some protocols, expecially 1041 * since the timeout is currently set to 250ms. Increase it to 500ms, 1042 * to avoid wrong repetition of the keycodes. Note that this must be 1043 * set after the call to input_register_device(). 1044 */ 1045 dev->input_dev->rep[REP_DELAY] = 500; 1046 1047 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1048 printk(KERN_INFO "%s: %s as %s\n", 1049 dev_name(&dev->dev), 1050 dev->input_name ? dev->input_name : "Unspecified device", 1051 path ? path : "N/A"); 1052 kfree(path); 1053 1054 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1055 rc = ir_raw_event_register(dev); 1056 if (rc < 0) 1057 goto out_input; 1058 } 1059 1060 if (dev->change_protocol) { 1061 rc = dev->change_protocol(dev, rc_map->rc_type); 1062 if (rc < 0) 1063 goto out_raw; 1064 } 1065 1066 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n", 1067 dev->devno, 1068 dev->driver_name ? dev->driver_name : "unknown", 1069 rc_map->name ? rc_map->name : "unknown", 1070 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1071 1072 return 0; 1073 1074 out_raw: 1075 if (dev->driver_type == RC_DRIVER_IR_RAW) 1076 ir_raw_event_unregister(dev); 1077 out_input: 1078 input_unregister_device(dev->input_dev); 1079 dev->input_dev = NULL; 1080 out_table: 1081 ir_free_table(&dev->rc_map); 1082 out_dev: 1083 device_del(&dev->dev); 1084 return rc; 1085 } 1086 EXPORT_SYMBOL_GPL(rc_register_device); 1087 1088 void rc_unregister_device(struct rc_dev *dev) 1089 { 1090 if (!dev) 1091 return; 1092 1093 del_timer_sync(&dev->timer_keyup); 1094 1095 if (dev->driver_type == RC_DRIVER_IR_RAW) 1096 ir_raw_event_unregister(dev); 1097 1098 input_unregister_device(dev->input_dev); 1099 dev->input_dev = NULL; 1100 1101 ir_free_table(&dev->rc_map); 1102 IR_dprintk(1, "Freed keycode table\n"); 1103 1104 device_unregister(&dev->dev); 1105 } 1106 EXPORT_SYMBOL_GPL(rc_unregister_device); 1107 1108 /* 1109 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1110 */ 1111 1112 static int __init rc_core_init(void) 1113 { 1114 int rc = class_register(&ir_input_class); 1115 if (rc) { 1116 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1117 return rc; 1118 } 1119 1120 /* Initialize/load the decoders/keymap code that will be used */ 1121 ir_raw_init(); 1122 rc_map_register(&empty_map); 1123 1124 return 0; 1125 } 1126 1127 static void __exit rc_core_exit(void) 1128 { 1129 class_unregister(&ir_input_class); 1130 rc_map_unregister(&empty_map); 1131 } 1132 1133 module_init(rc_core_init); 1134 module_exit(rc_core_exit); 1135 1136 int rc_core_debug; /* ir_debug level (0,1,2) */ 1137 EXPORT_SYMBOL_GPL(rc_core_debug); 1138 module_param_named(debug, rc_core_debug, int, 0644); 1139 1140 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); 1141 MODULE_LICENSE("GPL"); 1142