xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 455f9726)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/device.h>
22 #include <linux/module.h>
23 #include "rc-core-priv.h"
24 
25 /* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
26 #define IRRCV_NUM_DEVICES      256
27 static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
28 
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE	256
31 #define IR_TAB_MAX_SIZE	8192
32 
33 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
34 #define IR_KEYPRESS_TIMEOUT 250
35 
36 /* Used to keep track of known keymaps */
37 static LIST_HEAD(rc_map_list);
38 static DEFINE_SPINLOCK(rc_map_lock);
39 static struct led_trigger *led_feedback;
40 
41 static struct rc_map_list *seek_rc_map(const char *name)
42 {
43 	struct rc_map_list *map = NULL;
44 
45 	spin_lock(&rc_map_lock);
46 	list_for_each_entry(map, &rc_map_list, list) {
47 		if (!strcmp(name, map->map.name)) {
48 			spin_unlock(&rc_map_lock);
49 			return map;
50 		}
51 	}
52 	spin_unlock(&rc_map_lock);
53 
54 	return NULL;
55 }
56 
57 struct rc_map *rc_map_get(const char *name)
58 {
59 
60 	struct rc_map_list *map;
61 
62 	map = seek_rc_map(name);
63 #ifdef MODULE
64 	if (!map) {
65 		int rc = request_module("%s", name);
66 		if (rc < 0) {
67 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
68 			return NULL;
69 		}
70 		msleep(20);	/* Give some time for IR to register */
71 
72 		map = seek_rc_map(name);
73 	}
74 #endif
75 	if (!map) {
76 		printk(KERN_ERR "IR keymap %s not found\n", name);
77 		return NULL;
78 	}
79 
80 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
81 
82 	return &map->map;
83 }
84 EXPORT_SYMBOL_GPL(rc_map_get);
85 
86 int rc_map_register(struct rc_map_list *map)
87 {
88 	spin_lock(&rc_map_lock);
89 	list_add_tail(&map->list, &rc_map_list);
90 	spin_unlock(&rc_map_lock);
91 	return 0;
92 }
93 EXPORT_SYMBOL_GPL(rc_map_register);
94 
95 void rc_map_unregister(struct rc_map_list *map)
96 {
97 	spin_lock(&rc_map_lock);
98 	list_del(&map->list);
99 	spin_unlock(&rc_map_lock);
100 }
101 EXPORT_SYMBOL_GPL(rc_map_unregister);
102 
103 
104 static struct rc_map_table empty[] = {
105 	{ 0x2a, KEY_COFFEE },
106 };
107 
108 static struct rc_map_list empty_map = {
109 	.map = {
110 		.scan    = empty,
111 		.size    = ARRAY_SIZE(empty),
112 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
113 		.name    = RC_MAP_EMPTY,
114 	}
115 };
116 
117 /**
118  * ir_create_table() - initializes a scancode table
119  * @rc_map:	the rc_map to initialize
120  * @name:	name to assign to the table
121  * @rc_type:	ir type to assign to the new table
122  * @size:	initial size of the table
123  * @return:	zero on success or a negative error code
124  *
125  * This routine will initialize the rc_map and will allocate
126  * memory to hold at least the specified number of elements.
127  */
128 static int ir_create_table(struct rc_map *rc_map,
129 			   const char *name, u64 rc_type, size_t size)
130 {
131 	rc_map->name = name;
132 	rc_map->rc_type = rc_type;
133 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
134 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
135 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
136 	if (!rc_map->scan)
137 		return -ENOMEM;
138 
139 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140 		   rc_map->size, rc_map->alloc);
141 	return 0;
142 }
143 
144 /**
145  * ir_free_table() - frees memory allocated by a scancode table
146  * @rc_map:	the table whose mappings need to be freed
147  *
148  * This routine will free memory alloctaed for key mappings used by given
149  * scancode table.
150  */
151 static void ir_free_table(struct rc_map *rc_map)
152 {
153 	rc_map->size = 0;
154 	kfree(rc_map->scan);
155 	rc_map->scan = NULL;
156 }
157 
158 /**
159  * ir_resize_table() - resizes a scancode table if necessary
160  * @rc_map:	the rc_map to resize
161  * @gfp_flags:	gfp flags to use when allocating memory
162  * @return:	zero on success or a negative error code
163  *
164  * This routine will shrink the rc_map if it has lots of
165  * unused entries and grow it if it is full.
166  */
167 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
168 {
169 	unsigned int oldalloc = rc_map->alloc;
170 	unsigned int newalloc = oldalloc;
171 	struct rc_map_table *oldscan = rc_map->scan;
172 	struct rc_map_table *newscan;
173 
174 	if (rc_map->size == rc_map->len) {
175 		/* All entries in use -> grow keytable */
176 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
177 			return -ENOMEM;
178 
179 		newalloc *= 2;
180 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
181 	}
182 
183 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
184 		/* Less than 1/3 of entries in use -> shrink keytable */
185 		newalloc /= 2;
186 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
187 	}
188 
189 	if (newalloc == oldalloc)
190 		return 0;
191 
192 	newscan = kmalloc(newalloc, gfp_flags);
193 	if (!newscan) {
194 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
195 		return -ENOMEM;
196 	}
197 
198 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
199 	rc_map->scan = newscan;
200 	rc_map->alloc = newalloc;
201 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
202 	kfree(oldscan);
203 	return 0;
204 }
205 
206 /**
207  * ir_update_mapping() - set a keycode in the scancode->keycode table
208  * @dev:	the struct rc_dev device descriptor
209  * @rc_map:	scancode table to be adjusted
210  * @index:	index of the mapping that needs to be updated
211  * @keycode:	the desired keycode
212  * @return:	previous keycode assigned to the mapping
213  *
214  * This routine is used to update scancode->keycode mapping at given
215  * position.
216  */
217 static unsigned int ir_update_mapping(struct rc_dev *dev,
218 				      struct rc_map *rc_map,
219 				      unsigned int index,
220 				      unsigned int new_keycode)
221 {
222 	int old_keycode = rc_map->scan[index].keycode;
223 	int i;
224 
225 	/* Did the user wish to remove the mapping? */
226 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
227 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228 			   index, rc_map->scan[index].scancode);
229 		rc_map->len--;
230 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
231 			(rc_map->len - index) * sizeof(struct rc_map_table));
232 	} else {
233 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
234 			   index,
235 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
236 			   rc_map->scan[index].scancode, new_keycode);
237 		rc_map->scan[index].keycode = new_keycode;
238 		__set_bit(new_keycode, dev->input_dev->keybit);
239 	}
240 
241 	if (old_keycode != KEY_RESERVED) {
242 		/* A previous mapping was updated... */
243 		__clear_bit(old_keycode, dev->input_dev->keybit);
244 		/* ... but another scancode might use the same keycode */
245 		for (i = 0; i < rc_map->len; i++) {
246 			if (rc_map->scan[i].keycode == old_keycode) {
247 				__set_bit(old_keycode, dev->input_dev->keybit);
248 				break;
249 			}
250 		}
251 
252 		/* Possibly shrink the keytable, failure is not a problem */
253 		ir_resize_table(rc_map, GFP_ATOMIC);
254 	}
255 
256 	return old_keycode;
257 }
258 
259 /**
260  * ir_establish_scancode() - set a keycode in the scancode->keycode table
261  * @dev:	the struct rc_dev device descriptor
262  * @rc_map:	scancode table to be searched
263  * @scancode:	the desired scancode
264  * @resize:	controls whether we allowed to resize the table to
265  *		accommodate not yet present scancodes
266  * @return:	index of the mapping containing scancode in question
267  *		or -1U in case of failure.
268  *
269  * This routine is used to locate given scancode in rc_map.
270  * If scancode is not yet present the routine will allocate a new slot
271  * for it.
272  */
273 static unsigned int ir_establish_scancode(struct rc_dev *dev,
274 					  struct rc_map *rc_map,
275 					  unsigned int scancode,
276 					  bool resize)
277 {
278 	unsigned int i;
279 
280 	/*
281 	 * Unfortunately, some hardware-based IR decoders don't provide
282 	 * all bits for the complete IR code. In general, they provide only
283 	 * the command part of the IR code. Yet, as it is possible to replace
284 	 * the provided IR with another one, it is needed to allow loading
285 	 * IR tables from other remotes. So, we support specifying a mask to
286 	 * indicate the valid bits of the scancodes.
287 	 */
288 	if (dev->scancode_mask)
289 		scancode &= dev->scancode_mask;
290 
291 	/* First check if we already have a mapping for this ir command */
292 	for (i = 0; i < rc_map->len; i++) {
293 		if (rc_map->scan[i].scancode == scancode)
294 			return i;
295 
296 		/* Keytable is sorted from lowest to highest scancode */
297 		if (rc_map->scan[i].scancode >= scancode)
298 			break;
299 	}
300 
301 	/* No previous mapping found, we might need to grow the table */
302 	if (rc_map->size == rc_map->len) {
303 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
304 			return -1U;
305 	}
306 
307 	/* i is the proper index to insert our new keycode */
308 	if (i < rc_map->len)
309 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
310 			(rc_map->len - i) * sizeof(struct rc_map_table));
311 	rc_map->scan[i].scancode = scancode;
312 	rc_map->scan[i].keycode = KEY_RESERVED;
313 	rc_map->len++;
314 
315 	return i;
316 }
317 
318 /**
319  * ir_setkeycode() - set a keycode in the scancode->keycode table
320  * @idev:	the struct input_dev device descriptor
321  * @scancode:	the desired scancode
322  * @keycode:	result
323  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
324  *
325  * This routine is used to handle evdev EVIOCSKEY ioctl.
326  */
327 static int ir_setkeycode(struct input_dev *idev,
328 			 const struct input_keymap_entry *ke,
329 			 unsigned int *old_keycode)
330 {
331 	struct rc_dev *rdev = input_get_drvdata(idev);
332 	struct rc_map *rc_map = &rdev->rc_map;
333 	unsigned int index;
334 	unsigned int scancode;
335 	int retval = 0;
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(&rc_map->lock, flags);
339 
340 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
341 		index = ke->index;
342 		if (index >= rc_map->len) {
343 			retval = -EINVAL;
344 			goto out;
345 		}
346 	} else {
347 		retval = input_scancode_to_scalar(ke, &scancode);
348 		if (retval)
349 			goto out;
350 
351 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
352 		if (index >= rc_map->len) {
353 			retval = -ENOMEM;
354 			goto out;
355 		}
356 	}
357 
358 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
359 
360 out:
361 	spin_unlock_irqrestore(&rc_map->lock, flags);
362 	return retval;
363 }
364 
365 /**
366  * ir_setkeytable() - sets several entries in the scancode->keycode table
367  * @dev:	the struct rc_dev device descriptor
368  * @to:		the struct rc_map to copy entries to
369  * @from:	the struct rc_map to copy entries from
370  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
371  *
372  * This routine is used to handle table initialization.
373  */
374 static int ir_setkeytable(struct rc_dev *dev,
375 			  const struct rc_map *from)
376 {
377 	struct rc_map *rc_map = &dev->rc_map;
378 	unsigned int i, index;
379 	int rc;
380 
381 	rc = ir_create_table(rc_map, from->name,
382 			     from->rc_type, from->size);
383 	if (rc)
384 		return rc;
385 
386 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387 		   rc_map->size, rc_map->alloc);
388 
389 	for (i = 0; i < from->size; i++) {
390 		index = ir_establish_scancode(dev, rc_map,
391 					      from->scan[i].scancode, false);
392 		if (index >= rc_map->len) {
393 			rc = -ENOMEM;
394 			break;
395 		}
396 
397 		ir_update_mapping(dev, rc_map, index,
398 				  from->scan[i].keycode);
399 	}
400 
401 	if (rc)
402 		ir_free_table(rc_map);
403 
404 	return rc;
405 }
406 
407 /**
408  * ir_lookup_by_scancode() - locate mapping by scancode
409  * @rc_map:	the struct rc_map to search
410  * @scancode:	scancode to look for in the table
411  * @return:	index in the table, -1U if not found
412  *
413  * This routine performs binary search in RC keykeymap table for
414  * given scancode.
415  */
416 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
417 					  unsigned int scancode)
418 {
419 	int start = 0;
420 	int end = rc_map->len - 1;
421 	int mid;
422 
423 	while (start <= end) {
424 		mid = (start + end) / 2;
425 		if (rc_map->scan[mid].scancode < scancode)
426 			start = mid + 1;
427 		else if (rc_map->scan[mid].scancode > scancode)
428 			end = mid - 1;
429 		else
430 			return mid;
431 	}
432 
433 	return -1U;
434 }
435 
436 /**
437  * ir_getkeycode() - get a keycode from the scancode->keycode table
438  * @idev:	the struct input_dev device descriptor
439  * @scancode:	the desired scancode
440  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
441  * @return:	always returns zero.
442  *
443  * This routine is used to handle evdev EVIOCGKEY ioctl.
444  */
445 static int ir_getkeycode(struct input_dev *idev,
446 			 struct input_keymap_entry *ke)
447 {
448 	struct rc_dev *rdev = input_get_drvdata(idev);
449 	struct rc_map *rc_map = &rdev->rc_map;
450 	struct rc_map_table *entry;
451 	unsigned long flags;
452 	unsigned int index;
453 	unsigned int scancode;
454 	int retval;
455 
456 	spin_lock_irqsave(&rc_map->lock, flags);
457 
458 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
459 		index = ke->index;
460 	} else {
461 		retval = input_scancode_to_scalar(ke, &scancode);
462 		if (retval)
463 			goto out;
464 
465 		index = ir_lookup_by_scancode(rc_map, scancode);
466 	}
467 
468 	if (index < rc_map->len) {
469 		entry = &rc_map->scan[index];
470 
471 		ke->index = index;
472 		ke->keycode = entry->keycode;
473 		ke->len = sizeof(entry->scancode);
474 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
475 
476 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
477 		/*
478 		 * We do not really know the valid range of scancodes
479 		 * so let's respond with KEY_RESERVED to anything we
480 		 * do not have mapping for [yet].
481 		 */
482 		ke->index = index;
483 		ke->keycode = KEY_RESERVED;
484 	} else {
485 		retval = -EINVAL;
486 		goto out;
487 	}
488 
489 	retval = 0;
490 
491 out:
492 	spin_unlock_irqrestore(&rc_map->lock, flags);
493 	return retval;
494 }
495 
496 /**
497  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498  * @dev:	the struct rc_dev descriptor of the device
499  * @scancode:	the scancode to look for
500  * @return:	the corresponding keycode, or KEY_RESERVED
501  *
502  * This routine is used by drivers which need to convert a scancode to a
503  * keycode. Normally it should not be used since drivers should have no
504  * interest in keycodes.
505  */
506 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
507 {
508 	struct rc_map *rc_map = &dev->rc_map;
509 	unsigned int keycode;
510 	unsigned int index;
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&rc_map->lock, flags);
514 
515 	index = ir_lookup_by_scancode(rc_map, scancode);
516 	keycode = index < rc_map->len ?
517 			rc_map->scan[index].keycode : KEY_RESERVED;
518 
519 	spin_unlock_irqrestore(&rc_map->lock, flags);
520 
521 	if (keycode != KEY_RESERVED)
522 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523 			   dev->input_name, scancode, keycode);
524 
525 	return keycode;
526 }
527 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
528 
529 /**
530  * ir_do_keyup() - internal function to signal the release of a keypress
531  * @dev:	the struct rc_dev descriptor of the device
532  * @sync:	whether or not to call input_sync
533  *
534  * This function is used internally to release a keypress, it must be
535  * called with keylock held.
536  */
537 static void ir_do_keyup(struct rc_dev *dev, bool sync)
538 {
539 	if (!dev->keypressed)
540 		return;
541 
542 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
543 	input_report_key(dev->input_dev, dev->last_keycode, 0);
544 	led_trigger_event(led_feedback, LED_OFF);
545 	if (sync)
546 		input_sync(dev->input_dev);
547 	dev->keypressed = false;
548 }
549 
550 /**
551  * rc_keyup() - signals the release of a keypress
552  * @dev:	the struct rc_dev descriptor of the device
553  *
554  * This routine is used to signal that a key has been released on the
555  * remote control.
556  */
557 void rc_keyup(struct rc_dev *dev)
558 {
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&dev->keylock, flags);
562 	ir_do_keyup(dev, true);
563 	spin_unlock_irqrestore(&dev->keylock, flags);
564 }
565 EXPORT_SYMBOL_GPL(rc_keyup);
566 
567 /**
568  * ir_timer_keyup() - generates a keyup event after a timeout
569  * @cookie:	a pointer to the struct rc_dev for the device
570  *
571  * This routine will generate a keyup event some time after a keydown event
572  * is generated when no further activity has been detected.
573  */
574 static void ir_timer_keyup(unsigned long cookie)
575 {
576 	struct rc_dev *dev = (struct rc_dev *)cookie;
577 	unsigned long flags;
578 
579 	/*
580 	 * ir->keyup_jiffies is used to prevent a race condition if a
581 	 * hardware interrupt occurs at this point and the keyup timer
582 	 * event is moved further into the future as a result.
583 	 *
584 	 * The timer will then be reactivated and this function called
585 	 * again in the future. We need to exit gracefully in that case
586 	 * to allow the input subsystem to do its auto-repeat magic or
587 	 * a keyup event might follow immediately after the keydown.
588 	 */
589 	spin_lock_irqsave(&dev->keylock, flags);
590 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
591 		ir_do_keyup(dev, true);
592 	spin_unlock_irqrestore(&dev->keylock, flags);
593 }
594 
595 /**
596  * rc_repeat() - signals that a key is still pressed
597  * @dev:	the struct rc_dev descriptor of the device
598  *
599  * This routine is used by IR decoders when a repeat message which does
600  * not include the necessary bits to reproduce the scancode has been
601  * received.
602  */
603 void rc_repeat(struct rc_dev *dev)
604 {
605 	unsigned long flags;
606 
607 	spin_lock_irqsave(&dev->keylock, flags);
608 
609 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
610 	input_sync(dev->input_dev);
611 
612 	if (!dev->keypressed)
613 		goto out;
614 
615 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
616 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
617 
618 out:
619 	spin_unlock_irqrestore(&dev->keylock, flags);
620 }
621 EXPORT_SYMBOL_GPL(rc_repeat);
622 
623 /**
624  * ir_do_keydown() - internal function to process a keypress
625  * @dev:	the struct rc_dev descriptor of the device
626  * @protocol:	the protocol of the keypress
627  * @scancode:   the scancode of the keypress
628  * @keycode:    the keycode of the keypress
629  * @toggle:     the toggle value of the keypress
630  *
631  * This function is used internally to register a keypress, it must be
632  * called with keylock held.
633  */
634 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
635 			  u32 scancode, u32 keycode, u8 toggle)
636 {
637 	bool new_event = (!dev->keypressed		 ||
638 			  dev->last_protocol != protocol ||
639 			  dev->last_scancode != scancode ||
640 			  dev->last_toggle   != toggle);
641 
642 	if (new_event && dev->keypressed)
643 		ir_do_keyup(dev, false);
644 
645 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
646 
647 	if (new_event && keycode != KEY_RESERVED) {
648 		/* Register a keypress */
649 		dev->keypressed = true;
650 		dev->last_protocol = protocol;
651 		dev->last_scancode = scancode;
652 		dev->last_toggle = toggle;
653 		dev->last_keycode = keycode;
654 
655 		IR_dprintk(1, "%s: key down event, "
656 			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
657 			   dev->input_name, keycode, protocol, scancode);
658 		input_report_key(dev->input_dev, keycode, 1);
659 
660 		led_trigger_event(led_feedback, LED_FULL);
661 	}
662 
663 	input_sync(dev->input_dev);
664 }
665 
666 /**
667  * rc_keydown() - generates input event for a key press
668  * @dev:	the struct rc_dev descriptor of the device
669  * @protocol:	the protocol for the keypress
670  * @scancode:	the scancode for the keypress
671  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
672  *              support toggle values, this should be set to zero)
673  *
674  * This routine is used to signal that a key has been pressed on the
675  * remote control.
676  */
677 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
678 {
679 	unsigned long flags;
680 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
681 
682 	spin_lock_irqsave(&dev->keylock, flags);
683 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
684 
685 	if (dev->keypressed) {
686 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
687 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
688 	}
689 	spin_unlock_irqrestore(&dev->keylock, flags);
690 }
691 EXPORT_SYMBOL_GPL(rc_keydown);
692 
693 /**
694  * rc_keydown_notimeout() - generates input event for a key press without
695  *                          an automatic keyup event at a later time
696  * @dev:	the struct rc_dev descriptor of the device
697  * @protocol:	the protocol for the keypress
698  * @scancode:	the scancode for the keypress
699  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
700  *              support toggle values, this should be set to zero)
701  *
702  * This routine is used to signal that a key has been pressed on the
703  * remote control. The driver must manually call rc_keyup() at a later stage.
704  */
705 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
706 			  u32 scancode, u8 toggle)
707 {
708 	unsigned long flags;
709 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
710 
711 	spin_lock_irqsave(&dev->keylock, flags);
712 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
713 	spin_unlock_irqrestore(&dev->keylock, flags);
714 }
715 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
716 
717 int rc_open(struct rc_dev *rdev)
718 {
719 	int rval = 0;
720 
721 	if (!rdev)
722 		return -EINVAL;
723 
724 	mutex_lock(&rdev->lock);
725 	if (!rdev->users++ && rdev->open != NULL)
726 		rval = rdev->open(rdev);
727 
728 	if (rval)
729 		rdev->users--;
730 
731 	mutex_unlock(&rdev->lock);
732 
733 	return rval;
734 }
735 EXPORT_SYMBOL_GPL(rc_open);
736 
737 static int ir_open(struct input_dev *idev)
738 {
739 	struct rc_dev *rdev = input_get_drvdata(idev);
740 
741 	return rc_open(rdev);
742 }
743 
744 void rc_close(struct rc_dev *rdev)
745 {
746 	if (rdev) {
747 		mutex_lock(&rdev->lock);
748 
749 		 if (!--rdev->users && rdev->close != NULL)
750 			rdev->close(rdev);
751 
752 		mutex_unlock(&rdev->lock);
753 	}
754 }
755 EXPORT_SYMBOL_GPL(rc_close);
756 
757 static void ir_close(struct input_dev *idev)
758 {
759 	struct rc_dev *rdev = input_get_drvdata(idev);
760 	rc_close(rdev);
761 }
762 
763 /* class for /sys/class/rc */
764 static char *rc_devnode(struct device *dev, umode_t *mode)
765 {
766 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
767 }
768 
769 static struct class rc_class = {
770 	.name		= "rc",
771 	.devnode	= rc_devnode,
772 };
773 
774 /*
775  * These are the protocol textual descriptions that are
776  * used by the sysfs protocols file. Note that the order
777  * of the entries is relevant.
778  */
779 static struct {
780 	u64	type;
781 	char	*name;
782 } proto_names[] = {
783 	{ RC_BIT_NONE,		"none"		},
784 	{ RC_BIT_OTHER,		"other"		},
785 	{ RC_BIT_UNKNOWN,	"unknown"	},
786 	{ RC_BIT_RC5 |
787 	  RC_BIT_RC5X,		"rc-5"		},
788 	{ RC_BIT_NEC,		"nec"		},
789 	{ RC_BIT_RC6_0 |
790 	  RC_BIT_RC6_6A_20 |
791 	  RC_BIT_RC6_6A_24 |
792 	  RC_BIT_RC6_6A_32 |
793 	  RC_BIT_RC6_MCE,	"rc-6"		},
794 	{ RC_BIT_JVC,		"jvc"		},
795 	{ RC_BIT_SONY12 |
796 	  RC_BIT_SONY15 |
797 	  RC_BIT_SONY20,	"sony"		},
798 	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
799 	{ RC_BIT_SANYO,		"sanyo"		},
800 	{ RC_BIT_SHARP,		"sharp"		},
801 	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
802 	{ RC_BIT_LIRC,		"lirc"		},
803 	{ RC_BIT_XMP,		"xmp"		},
804 };
805 
806 /**
807  * struct rc_filter_attribute - Device attribute relating to a filter type.
808  * @attr:	Device attribute.
809  * @type:	Filter type.
810  * @mask:	false for filter value, true for filter mask.
811  */
812 struct rc_filter_attribute {
813 	struct device_attribute		attr;
814 	enum rc_filter_type		type;
815 	bool				mask;
816 };
817 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
818 
819 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
820 	struct rc_filter_attribute dev_attr_##_name = {			\
821 		.attr = __ATTR(_name, _mode, _show, _store),		\
822 		.type = (_type),					\
823 	}
824 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
825 	struct rc_filter_attribute dev_attr_##_name = {			\
826 		.attr = __ATTR(_name, _mode, _show, _store),		\
827 		.type = (_type),					\
828 		.mask = (_mask),					\
829 	}
830 
831 /**
832  * show_protocols() - shows the current/wakeup IR protocol(s)
833  * @device:	the device descriptor
834  * @mattr:	the device attribute struct
835  * @buf:	a pointer to the output buffer
836  *
837  * This routine is a callback routine for input read the IR protocol type(s).
838  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
839  * It returns the protocol names of supported protocols.
840  * Enabled protocols are printed in brackets.
841  *
842  * dev->lock is taken to guard against races between device
843  * registration, store_protocols and show_protocols.
844  */
845 static ssize_t show_protocols(struct device *device,
846 			      struct device_attribute *mattr, char *buf)
847 {
848 	struct rc_dev *dev = to_rc_dev(device);
849 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
850 	u64 allowed, enabled;
851 	char *tmp = buf;
852 	int i;
853 
854 	/* Device is being removed */
855 	if (!dev)
856 		return -EINVAL;
857 
858 	mutex_lock(&dev->lock);
859 
860 	if (fattr->type == RC_FILTER_NORMAL) {
861 		enabled = dev->enabled_protocols;
862 		allowed = dev->allowed_protocols;
863 		if (dev->raw && !allowed)
864 			allowed = ir_raw_get_allowed_protocols();
865 	} else {
866 		enabled = dev->enabled_wakeup_protocols;
867 		allowed = dev->allowed_wakeup_protocols;
868 	}
869 
870 	mutex_unlock(&dev->lock);
871 
872 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
873 		   __func__, (long long)allowed, (long long)enabled);
874 
875 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
876 		if (allowed & enabled & proto_names[i].type)
877 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
878 		else if (allowed & proto_names[i].type)
879 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
880 
881 		if (allowed & proto_names[i].type)
882 			allowed &= ~proto_names[i].type;
883 	}
884 
885 	if (tmp != buf)
886 		tmp--;
887 	*tmp = '\n';
888 
889 	return tmp + 1 - buf;
890 }
891 
892 /**
893  * parse_protocol_change() - parses a protocol change request
894  * @protocols:	pointer to the bitmask of current protocols
895  * @buf:	pointer to the buffer with a list of changes
896  *
897  * Writing "+proto" will add a protocol to the protocol mask.
898  * Writing "-proto" will remove a protocol from protocol mask.
899  * Writing "proto" will enable only "proto".
900  * Writing "none" will disable all protocols.
901  * Returns the number of changes performed or a negative error code.
902  */
903 static int parse_protocol_change(u64 *protocols, const char *buf)
904 {
905 	const char *tmp;
906 	unsigned count = 0;
907 	bool enable, disable;
908 	u64 mask;
909 	int i;
910 
911 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
912 		if (!*tmp)
913 			break;
914 
915 		if (*tmp == '+') {
916 			enable = true;
917 			disable = false;
918 			tmp++;
919 		} else if (*tmp == '-') {
920 			enable = false;
921 			disable = true;
922 			tmp++;
923 		} else {
924 			enable = false;
925 			disable = false;
926 		}
927 
928 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
929 			if (!strcasecmp(tmp, proto_names[i].name)) {
930 				mask = proto_names[i].type;
931 				break;
932 			}
933 		}
934 
935 		if (i == ARRAY_SIZE(proto_names)) {
936 			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
937 			return -EINVAL;
938 		}
939 
940 		count++;
941 
942 		if (enable)
943 			*protocols |= mask;
944 		else if (disable)
945 			*protocols &= ~mask;
946 		else
947 			*protocols = mask;
948 	}
949 
950 	if (!count) {
951 		IR_dprintk(1, "Protocol not specified\n");
952 		return -EINVAL;
953 	}
954 
955 	return count;
956 }
957 
958 /**
959  * store_protocols() - changes the current/wakeup IR protocol(s)
960  * @device:	the device descriptor
961  * @mattr:	the device attribute struct
962  * @buf:	a pointer to the input buffer
963  * @len:	length of the input buffer
964  *
965  * This routine is for changing the IR protocol type.
966  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
967  * See parse_protocol_change() for the valid commands.
968  * Returns @len on success or a negative error code.
969  *
970  * dev->lock is taken to guard against races between device
971  * registration, store_protocols and show_protocols.
972  */
973 static ssize_t store_protocols(struct device *device,
974 			       struct device_attribute *mattr,
975 			       const char *buf, size_t len)
976 {
977 	struct rc_dev *dev = to_rc_dev(device);
978 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
979 	u64 *current_protocols;
980 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
981 	struct rc_scancode_filter *filter;
982 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
983 	u64 old_protocols, new_protocols;
984 	ssize_t rc;
985 
986 	/* Device is being removed */
987 	if (!dev)
988 		return -EINVAL;
989 
990 	if (fattr->type == RC_FILTER_NORMAL) {
991 		IR_dprintk(1, "Normal protocol change requested\n");
992 		current_protocols = &dev->enabled_protocols;
993 		change_protocol = dev->change_protocol;
994 		filter = &dev->scancode_filter;
995 		set_filter = dev->s_filter;
996 	} else {
997 		IR_dprintk(1, "Wakeup protocol change requested\n");
998 		current_protocols = &dev->enabled_wakeup_protocols;
999 		change_protocol = dev->change_wakeup_protocol;
1000 		filter = &dev->scancode_wakeup_filter;
1001 		set_filter = dev->s_wakeup_filter;
1002 	}
1003 
1004 	if (!change_protocol) {
1005 		IR_dprintk(1, "Protocol switching not supported\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	mutex_lock(&dev->lock);
1010 
1011 	old_protocols = *current_protocols;
1012 	new_protocols = old_protocols;
1013 	rc = parse_protocol_change(&new_protocols, buf);
1014 	if (rc < 0)
1015 		goto out;
1016 
1017 	rc = change_protocol(dev, &new_protocols);
1018 	if (rc < 0) {
1019 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1020 			   (long long)new_protocols);
1021 		goto out;
1022 	}
1023 
1024 	if (new_protocols == old_protocols) {
1025 		rc = len;
1026 		goto out;
1027 	}
1028 
1029 	*current_protocols = new_protocols;
1030 	IR_dprintk(1, "Protocols changed to 0x%llx\n", (long long)new_protocols);
1031 
1032 	/*
1033 	 * If the protocol is changed the filter needs updating.
1034 	 * Try setting the same filter with the new protocol (if any).
1035 	 * Fall back to clearing the filter.
1036 	 */
1037 	if (set_filter && filter->mask) {
1038 		if (new_protocols)
1039 			rc = set_filter(dev, filter);
1040 		else
1041 			rc = -1;
1042 
1043 		if (rc < 0) {
1044 			filter->data = 0;
1045 			filter->mask = 0;
1046 			set_filter(dev, filter);
1047 		}
1048 	}
1049 
1050 	rc = len;
1051 
1052 out:
1053 	mutex_unlock(&dev->lock);
1054 	return rc;
1055 }
1056 
1057 /**
1058  * show_filter() - shows the current scancode filter value or mask
1059  * @device:	the device descriptor
1060  * @attr:	the device attribute struct
1061  * @buf:	a pointer to the output buffer
1062  *
1063  * This routine is a callback routine to read a scancode filter value or mask.
1064  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1065  * It prints the current scancode filter value or mask of the appropriate filter
1066  * type in hexadecimal into @buf and returns the size of the buffer.
1067  *
1068  * Bits of the filter value corresponding to set bits in the filter mask are
1069  * compared against input scancodes and non-matching scancodes are discarded.
1070  *
1071  * dev->lock is taken to guard against races between device registration,
1072  * store_filter and show_filter.
1073  */
1074 static ssize_t show_filter(struct device *device,
1075 			   struct device_attribute *attr,
1076 			   char *buf)
1077 {
1078 	struct rc_dev *dev = to_rc_dev(device);
1079 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1080 	struct rc_scancode_filter *filter;
1081 	u32 val;
1082 
1083 	/* Device is being removed */
1084 	if (!dev)
1085 		return -EINVAL;
1086 
1087 	if (fattr->type == RC_FILTER_NORMAL)
1088 		filter = &dev->scancode_filter;
1089 	else
1090 		filter = &dev->scancode_wakeup_filter;
1091 
1092 	mutex_lock(&dev->lock);
1093 	if (fattr->mask)
1094 		val = filter->mask;
1095 	else
1096 		val = filter->data;
1097 	mutex_unlock(&dev->lock);
1098 
1099 	return sprintf(buf, "%#x\n", val);
1100 }
1101 
1102 /**
1103  * store_filter() - changes the scancode filter value
1104  * @device:	the device descriptor
1105  * @attr:	the device attribute struct
1106  * @buf:	a pointer to the input buffer
1107  * @len:	length of the input buffer
1108  *
1109  * This routine is for changing a scancode filter value or mask.
1110  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1111  * Returns -EINVAL if an invalid filter value for the current protocol was
1112  * specified or if scancode filtering is not supported by the driver, otherwise
1113  * returns @len.
1114  *
1115  * Bits of the filter value corresponding to set bits in the filter mask are
1116  * compared against input scancodes and non-matching scancodes are discarded.
1117  *
1118  * dev->lock is taken to guard against races between device registration,
1119  * store_filter and show_filter.
1120  */
1121 static ssize_t store_filter(struct device *device,
1122 			    struct device_attribute *attr,
1123 			    const char *buf, size_t len)
1124 {
1125 	struct rc_dev *dev = to_rc_dev(device);
1126 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1127 	struct rc_scancode_filter new_filter, *filter;
1128 	int ret;
1129 	unsigned long val;
1130 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1131 	u64 *enabled_protocols;
1132 
1133 	/* Device is being removed */
1134 	if (!dev)
1135 		return -EINVAL;
1136 
1137 	ret = kstrtoul(buf, 0, &val);
1138 	if (ret < 0)
1139 		return ret;
1140 
1141 	if (fattr->type == RC_FILTER_NORMAL) {
1142 		set_filter = dev->s_filter;
1143 		enabled_protocols = &dev->enabled_protocols;
1144 		filter = &dev->scancode_filter;
1145 	} else {
1146 		set_filter = dev->s_wakeup_filter;
1147 		enabled_protocols = &dev->enabled_wakeup_protocols;
1148 		filter = &dev->scancode_wakeup_filter;
1149 	}
1150 
1151 	if (!set_filter)
1152 		return -EINVAL;
1153 
1154 	mutex_lock(&dev->lock);
1155 
1156 	new_filter = *filter;
1157 	if (fattr->mask)
1158 		new_filter.mask = val;
1159 	else
1160 		new_filter.data = val;
1161 
1162 	if (!*enabled_protocols && val) {
1163 		/* refuse to set a filter unless a protocol is enabled */
1164 		ret = -EINVAL;
1165 		goto unlock;
1166 	}
1167 
1168 	ret = set_filter(dev, &new_filter);
1169 	if (ret < 0)
1170 		goto unlock;
1171 
1172 	*filter = new_filter;
1173 
1174 unlock:
1175 	mutex_unlock(&dev->lock);
1176 	return (ret < 0) ? ret : len;
1177 }
1178 
1179 static void rc_dev_release(struct device *device)
1180 {
1181 }
1182 
1183 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1184 	do {								\
1185 		int err = add_uevent_var(env, fmt, val);		\
1186 		if (err)						\
1187 			return err;					\
1188 	} while (0)
1189 
1190 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1191 {
1192 	struct rc_dev *dev = to_rc_dev(device);
1193 
1194 	if (!dev || !dev->input_dev)
1195 		return -ENODEV;
1196 
1197 	if (dev->rc_map.name)
1198 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1199 	if (dev->driver_name)
1200 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Static device attribute struct with the sysfs attributes for IR's
1207  */
1208 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1209 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1210 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1211 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1212 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1213 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1214 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1215 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1216 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1217 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1218 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1219 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1220 
1221 static struct attribute *rc_dev_protocol_attrs[] = {
1222 	&dev_attr_protocols.attr.attr,
1223 	NULL,
1224 };
1225 
1226 static struct attribute_group rc_dev_protocol_attr_grp = {
1227 	.attrs	= rc_dev_protocol_attrs,
1228 };
1229 
1230 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1231 	&dev_attr_wakeup_protocols.attr.attr,
1232 	NULL,
1233 };
1234 
1235 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1236 	.attrs	= rc_dev_wakeup_protocol_attrs,
1237 };
1238 
1239 static struct attribute *rc_dev_filter_attrs[] = {
1240 	&dev_attr_filter.attr.attr,
1241 	&dev_attr_filter_mask.attr.attr,
1242 	NULL,
1243 };
1244 
1245 static struct attribute_group rc_dev_filter_attr_grp = {
1246 	.attrs	= rc_dev_filter_attrs,
1247 };
1248 
1249 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1250 	&dev_attr_wakeup_filter.attr.attr,
1251 	&dev_attr_wakeup_filter_mask.attr.attr,
1252 	NULL,
1253 };
1254 
1255 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1256 	.attrs	= rc_dev_wakeup_filter_attrs,
1257 };
1258 
1259 static struct device_type rc_dev_type = {
1260 	.release	= rc_dev_release,
1261 	.uevent		= rc_dev_uevent,
1262 };
1263 
1264 struct rc_dev *rc_allocate_device(void)
1265 {
1266 	struct rc_dev *dev;
1267 
1268 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1269 	if (!dev)
1270 		return NULL;
1271 
1272 	dev->input_dev = input_allocate_device();
1273 	if (!dev->input_dev) {
1274 		kfree(dev);
1275 		return NULL;
1276 	}
1277 
1278 	dev->input_dev->getkeycode = ir_getkeycode;
1279 	dev->input_dev->setkeycode = ir_setkeycode;
1280 	input_set_drvdata(dev->input_dev, dev);
1281 
1282 	spin_lock_init(&dev->rc_map.lock);
1283 	spin_lock_init(&dev->keylock);
1284 	mutex_init(&dev->lock);
1285 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1286 
1287 	dev->dev.type = &rc_dev_type;
1288 	dev->dev.class = &rc_class;
1289 	device_initialize(&dev->dev);
1290 
1291 	__module_get(THIS_MODULE);
1292 	return dev;
1293 }
1294 EXPORT_SYMBOL_GPL(rc_allocate_device);
1295 
1296 void rc_free_device(struct rc_dev *dev)
1297 {
1298 	if (!dev)
1299 		return;
1300 
1301 	if (dev->input_dev)
1302 		input_free_device(dev->input_dev);
1303 
1304 	put_device(&dev->dev);
1305 
1306 	kfree(dev);
1307 	module_put(THIS_MODULE);
1308 }
1309 EXPORT_SYMBOL_GPL(rc_free_device);
1310 
1311 int rc_register_device(struct rc_dev *dev)
1312 {
1313 	static bool raw_init = false; /* raw decoders loaded? */
1314 	struct rc_map *rc_map;
1315 	const char *path;
1316 	int rc, devno, attr = 0;
1317 
1318 	if (!dev || !dev->map_name)
1319 		return -EINVAL;
1320 
1321 	rc_map = rc_map_get(dev->map_name);
1322 	if (!rc_map)
1323 		rc_map = rc_map_get(RC_MAP_EMPTY);
1324 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1325 		return -EINVAL;
1326 
1327 	set_bit(EV_KEY, dev->input_dev->evbit);
1328 	set_bit(EV_REP, dev->input_dev->evbit);
1329 	set_bit(EV_MSC, dev->input_dev->evbit);
1330 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1331 	if (dev->open)
1332 		dev->input_dev->open = ir_open;
1333 	if (dev->close)
1334 		dev->input_dev->close = ir_close;
1335 
1336 	do {
1337 		devno = find_first_zero_bit(ir_core_dev_number,
1338 					    IRRCV_NUM_DEVICES);
1339 		/* No free device slots */
1340 		if (devno >= IRRCV_NUM_DEVICES)
1341 			return -ENOMEM;
1342 	} while (test_and_set_bit(devno, ir_core_dev_number));
1343 
1344 	dev->dev.groups = dev->sysfs_groups;
1345 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1346 	if (dev->s_filter)
1347 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1348 	if (dev->s_wakeup_filter)
1349 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1350 	if (dev->change_wakeup_protocol)
1351 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1352 	dev->sysfs_groups[attr++] = NULL;
1353 
1354 	/*
1355 	 * Take the lock here, as the device sysfs node will appear
1356 	 * when device_add() is called, which may trigger an ir-keytable udev
1357 	 * rule, which will in turn call show_protocols and access
1358 	 * dev->enabled_protocols before it has been initialized.
1359 	 */
1360 	mutex_lock(&dev->lock);
1361 
1362 	dev->devno = devno;
1363 	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1364 	dev_set_drvdata(&dev->dev, dev);
1365 	rc = device_add(&dev->dev);
1366 	if (rc)
1367 		goto out_unlock;
1368 
1369 	rc = ir_setkeytable(dev, rc_map);
1370 	if (rc)
1371 		goto out_dev;
1372 
1373 	dev->input_dev->dev.parent = &dev->dev;
1374 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1375 	dev->input_dev->phys = dev->input_phys;
1376 	dev->input_dev->name = dev->input_name;
1377 
1378 	/* input_register_device can call ir_open, so unlock mutex here */
1379 	mutex_unlock(&dev->lock);
1380 
1381 	rc = input_register_device(dev->input_dev);
1382 
1383 	mutex_lock(&dev->lock);
1384 
1385 	if (rc)
1386 		goto out_table;
1387 
1388 	/*
1389 	 * Default delay of 250ms is too short for some protocols, especially
1390 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1391 	 * to avoid wrong repetition of the keycodes. Note that this must be
1392 	 * set after the call to input_register_device().
1393 	 */
1394 	dev->input_dev->rep[REP_DELAY] = 500;
1395 
1396 	/*
1397 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1398 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1399 	 * to do.
1400 	 */
1401 	dev->input_dev->rep[REP_PERIOD] = 125;
1402 
1403 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1404 	printk(KERN_INFO "%s: %s as %s\n",
1405 		dev_name(&dev->dev),
1406 		dev->input_name ? dev->input_name : "Unspecified device",
1407 		path ? path : "N/A");
1408 	kfree(path);
1409 
1410 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1411 		/* Load raw decoders, if they aren't already */
1412 		if (!raw_init) {
1413 			IR_dprintk(1, "Loading raw decoders\n");
1414 			ir_raw_init();
1415 			raw_init = true;
1416 		}
1417 		rc = ir_raw_event_register(dev);
1418 		if (rc < 0)
1419 			goto out_input;
1420 	}
1421 
1422 	if (dev->change_protocol) {
1423 		u64 rc_type = (1 << rc_map->rc_type);
1424 		rc = dev->change_protocol(dev, &rc_type);
1425 		if (rc < 0)
1426 			goto out_raw;
1427 		dev->enabled_protocols = rc_type;
1428 	}
1429 
1430 	mutex_unlock(&dev->lock);
1431 
1432 	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1433 		   dev->devno,
1434 		   dev->driver_name ? dev->driver_name : "unknown",
1435 		   rc_map->name ? rc_map->name : "unknown",
1436 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1437 
1438 	return 0;
1439 
1440 out_raw:
1441 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1442 		ir_raw_event_unregister(dev);
1443 out_input:
1444 	input_unregister_device(dev->input_dev);
1445 	dev->input_dev = NULL;
1446 out_table:
1447 	ir_free_table(&dev->rc_map);
1448 out_dev:
1449 	device_del(&dev->dev);
1450 out_unlock:
1451 	mutex_unlock(&dev->lock);
1452 	clear_bit(dev->devno, ir_core_dev_number);
1453 	return rc;
1454 }
1455 EXPORT_SYMBOL_GPL(rc_register_device);
1456 
1457 void rc_unregister_device(struct rc_dev *dev)
1458 {
1459 	if (!dev)
1460 		return;
1461 
1462 	del_timer_sync(&dev->timer_keyup);
1463 
1464 	clear_bit(dev->devno, ir_core_dev_number);
1465 
1466 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1467 		ir_raw_event_unregister(dev);
1468 
1469 	/* Freeing the table should also call the stop callback */
1470 	ir_free_table(&dev->rc_map);
1471 	IR_dprintk(1, "Freed keycode table\n");
1472 
1473 	input_unregister_device(dev->input_dev);
1474 	dev->input_dev = NULL;
1475 
1476 	device_del(&dev->dev);
1477 
1478 	rc_free_device(dev);
1479 }
1480 
1481 EXPORT_SYMBOL_GPL(rc_unregister_device);
1482 
1483 /*
1484  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1485  */
1486 
1487 static int __init rc_core_init(void)
1488 {
1489 	int rc = class_register(&rc_class);
1490 	if (rc) {
1491 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1492 		return rc;
1493 	}
1494 
1495 	led_trigger_register_simple("rc-feedback", &led_feedback);
1496 	rc_map_register(&empty_map);
1497 
1498 	return 0;
1499 }
1500 
1501 static void __exit rc_core_exit(void)
1502 {
1503 	class_unregister(&rc_class);
1504 	led_trigger_unregister_simple(led_feedback);
1505 	rc_map_unregister(&empty_map);
1506 }
1507 
1508 subsys_initcall(rc_core_init);
1509 module_exit(rc_core_exit);
1510 
1511 int rc_core_debug;    /* ir_debug level (0,1,2) */
1512 EXPORT_SYMBOL_GPL(rc_core_debug);
1513 module_param_named(debug, rc_core_debug, int, 0644);
1514 
1515 MODULE_AUTHOR("Mauro Carvalho Chehab");
1516 MODULE_LICENSE("GPL");
1517