1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/spinlock.h> 17 #include <linux/delay.h> 18 #include <linux/input.h> 19 #include <linux/leds.h> 20 #include <linux/slab.h> 21 #include <linux/device.h> 22 #include <linux/module.h> 23 #include "rc-core-priv.h" 24 25 /* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */ 26 #define IRRCV_NUM_DEVICES 256 27 DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES); 28 29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 30 #define IR_TAB_MIN_SIZE 256 31 #define IR_TAB_MAX_SIZE 8192 32 33 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 34 #define IR_KEYPRESS_TIMEOUT 250 35 36 /* Used to keep track of known keymaps */ 37 static LIST_HEAD(rc_map_list); 38 static DEFINE_SPINLOCK(rc_map_lock); 39 static struct led_trigger *led_feedback; 40 41 static struct rc_map_list *seek_rc_map(const char *name) 42 { 43 struct rc_map_list *map = NULL; 44 45 spin_lock(&rc_map_lock); 46 list_for_each_entry(map, &rc_map_list, list) { 47 if (!strcmp(name, map->map.name)) { 48 spin_unlock(&rc_map_lock); 49 return map; 50 } 51 } 52 spin_unlock(&rc_map_lock); 53 54 return NULL; 55 } 56 57 struct rc_map *rc_map_get(const char *name) 58 { 59 60 struct rc_map_list *map; 61 62 map = seek_rc_map(name); 63 #ifdef MODULE 64 if (!map) { 65 int rc = request_module(name); 66 if (rc < 0) { 67 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 68 return NULL; 69 } 70 msleep(20); /* Give some time for IR to register */ 71 72 map = seek_rc_map(name); 73 } 74 #endif 75 if (!map) { 76 printk(KERN_ERR "IR keymap %s not found\n", name); 77 return NULL; 78 } 79 80 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 81 82 return &map->map; 83 } 84 EXPORT_SYMBOL_GPL(rc_map_get); 85 86 int rc_map_register(struct rc_map_list *map) 87 { 88 spin_lock(&rc_map_lock); 89 list_add_tail(&map->list, &rc_map_list); 90 spin_unlock(&rc_map_lock); 91 return 0; 92 } 93 EXPORT_SYMBOL_GPL(rc_map_register); 94 95 void rc_map_unregister(struct rc_map_list *map) 96 { 97 spin_lock(&rc_map_lock); 98 list_del(&map->list); 99 spin_unlock(&rc_map_lock); 100 } 101 EXPORT_SYMBOL_GPL(rc_map_unregister); 102 103 104 static struct rc_map_table empty[] = { 105 { 0x2a, KEY_COFFEE }, 106 }; 107 108 static struct rc_map_list empty_map = { 109 .map = { 110 .scan = empty, 111 .size = ARRAY_SIZE(empty), 112 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 113 .name = RC_MAP_EMPTY, 114 } 115 }; 116 117 /** 118 * ir_create_table() - initializes a scancode table 119 * @rc_map: the rc_map to initialize 120 * @name: name to assign to the table 121 * @rc_type: ir type to assign to the new table 122 * @size: initial size of the table 123 * @return: zero on success or a negative error code 124 * 125 * This routine will initialize the rc_map and will allocate 126 * memory to hold at least the specified number of elements. 127 */ 128 static int ir_create_table(struct rc_map *rc_map, 129 const char *name, u64 rc_type, size_t size) 130 { 131 rc_map->name = name; 132 rc_map->rc_type = rc_type; 133 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 134 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 135 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 136 if (!rc_map->scan) 137 return -ENOMEM; 138 139 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 140 rc_map->size, rc_map->alloc); 141 return 0; 142 } 143 144 /** 145 * ir_free_table() - frees memory allocated by a scancode table 146 * @rc_map: the table whose mappings need to be freed 147 * 148 * This routine will free memory alloctaed for key mappings used by given 149 * scancode table. 150 */ 151 static void ir_free_table(struct rc_map *rc_map) 152 { 153 rc_map->size = 0; 154 kfree(rc_map->scan); 155 rc_map->scan = NULL; 156 } 157 158 /** 159 * ir_resize_table() - resizes a scancode table if necessary 160 * @rc_map: the rc_map to resize 161 * @gfp_flags: gfp flags to use when allocating memory 162 * @return: zero on success or a negative error code 163 * 164 * This routine will shrink the rc_map if it has lots of 165 * unused entries and grow it if it is full. 166 */ 167 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 168 { 169 unsigned int oldalloc = rc_map->alloc; 170 unsigned int newalloc = oldalloc; 171 struct rc_map_table *oldscan = rc_map->scan; 172 struct rc_map_table *newscan; 173 174 if (rc_map->size == rc_map->len) { 175 /* All entries in use -> grow keytable */ 176 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 177 return -ENOMEM; 178 179 newalloc *= 2; 180 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 181 } 182 183 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 184 /* Less than 1/3 of entries in use -> shrink keytable */ 185 newalloc /= 2; 186 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 187 } 188 189 if (newalloc == oldalloc) 190 return 0; 191 192 newscan = kmalloc(newalloc, gfp_flags); 193 if (!newscan) { 194 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 195 return -ENOMEM; 196 } 197 198 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 199 rc_map->scan = newscan; 200 rc_map->alloc = newalloc; 201 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 202 kfree(oldscan); 203 return 0; 204 } 205 206 /** 207 * ir_update_mapping() - set a keycode in the scancode->keycode table 208 * @dev: the struct rc_dev device descriptor 209 * @rc_map: scancode table to be adjusted 210 * @index: index of the mapping that needs to be updated 211 * @keycode: the desired keycode 212 * @return: previous keycode assigned to the mapping 213 * 214 * This routine is used to update scancode->keycode mapping at given 215 * position. 216 */ 217 static unsigned int ir_update_mapping(struct rc_dev *dev, 218 struct rc_map *rc_map, 219 unsigned int index, 220 unsigned int new_keycode) 221 { 222 int old_keycode = rc_map->scan[index].keycode; 223 int i; 224 225 /* Did the user wish to remove the mapping? */ 226 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 227 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 228 index, rc_map->scan[index].scancode); 229 rc_map->len--; 230 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 231 (rc_map->len - index) * sizeof(struct rc_map_table)); 232 } else { 233 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 234 index, 235 old_keycode == KEY_RESERVED ? "New" : "Replacing", 236 rc_map->scan[index].scancode, new_keycode); 237 rc_map->scan[index].keycode = new_keycode; 238 __set_bit(new_keycode, dev->input_dev->keybit); 239 } 240 241 if (old_keycode != KEY_RESERVED) { 242 /* A previous mapping was updated... */ 243 __clear_bit(old_keycode, dev->input_dev->keybit); 244 /* ... but another scancode might use the same keycode */ 245 for (i = 0; i < rc_map->len; i++) { 246 if (rc_map->scan[i].keycode == old_keycode) { 247 __set_bit(old_keycode, dev->input_dev->keybit); 248 break; 249 } 250 } 251 252 /* Possibly shrink the keytable, failure is not a problem */ 253 ir_resize_table(rc_map, GFP_ATOMIC); 254 } 255 256 return old_keycode; 257 } 258 259 /** 260 * ir_establish_scancode() - set a keycode in the scancode->keycode table 261 * @dev: the struct rc_dev device descriptor 262 * @rc_map: scancode table to be searched 263 * @scancode: the desired scancode 264 * @resize: controls whether we allowed to resize the table to 265 * accommodate not yet present scancodes 266 * @return: index of the mapping containing scancode in question 267 * or -1U in case of failure. 268 * 269 * This routine is used to locate given scancode in rc_map. 270 * If scancode is not yet present the routine will allocate a new slot 271 * for it. 272 */ 273 static unsigned int ir_establish_scancode(struct rc_dev *dev, 274 struct rc_map *rc_map, 275 unsigned int scancode, 276 bool resize) 277 { 278 unsigned int i; 279 280 /* 281 * Unfortunately, some hardware-based IR decoders don't provide 282 * all bits for the complete IR code. In general, they provide only 283 * the command part of the IR code. Yet, as it is possible to replace 284 * the provided IR with another one, it is needed to allow loading 285 * IR tables from other remotes. So, we support specifying a mask to 286 * indicate the valid bits of the scancodes. 287 */ 288 if (dev->scanmask) 289 scancode &= dev->scanmask; 290 291 /* First check if we already have a mapping for this ir command */ 292 for (i = 0; i < rc_map->len; i++) { 293 if (rc_map->scan[i].scancode == scancode) 294 return i; 295 296 /* Keytable is sorted from lowest to highest scancode */ 297 if (rc_map->scan[i].scancode >= scancode) 298 break; 299 } 300 301 /* No previous mapping found, we might need to grow the table */ 302 if (rc_map->size == rc_map->len) { 303 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 304 return -1U; 305 } 306 307 /* i is the proper index to insert our new keycode */ 308 if (i < rc_map->len) 309 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 310 (rc_map->len - i) * sizeof(struct rc_map_table)); 311 rc_map->scan[i].scancode = scancode; 312 rc_map->scan[i].keycode = KEY_RESERVED; 313 rc_map->len++; 314 315 return i; 316 } 317 318 /** 319 * ir_setkeycode() - set a keycode in the scancode->keycode table 320 * @idev: the struct input_dev device descriptor 321 * @scancode: the desired scancode 322 * @keycode: result 323 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 324 * 325 * This routine is used to handle evdev EVIOCSKEY ioctl. 326 */ 327 static int ir_setkeycode(struct input_dev *idev, 328 const struct input_keymap_entry *ke, 329 unsigned int *old_keycode) 330 { 331 struct rc_dev *rdev = input_get_drvdata(idev); 332 struct rc_map *rc_map = &rdev->rc_map; 333 unsigned int index; 334 unsigned int scancode; 335 int retval = 0; 336 unsigned long flags; 337 338 spin_lock_irqsave(&rc_map->lock, flags); 339 340 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 341 index = ke->index; 342 if (index >= rc_map->len) { 343 retval = -EINVAL; 344 goto out; 345 } 346 } else { 347 retval = input_scancode_to_scalar(ke, &scancode); 348 if (retval) 349 goto out; 350 351 index = ir_establish_scancode(rdev, rc_map, scancode, true); 352 if (index >= rc_map->len) { 353 retval = -ENOMEM; 354 goto out; 355 } 356 } 357 358 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 359 360 out: 361 spin_unlock_irqrestore(&rc_map->lock, flags); 362 return retval; 363 } 364 365 /** 366 * ir_setkeytable() - sets several entries in the scancode->keycode table 367 * @dev: the struct rc_dev device descriptor 368 * @to: the struct rc_map to copy entries to 369 * @from: the struct rc_map to copy entries from 370 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 371 * 372 * This routine is used to handle table initialization. 373 */ 374 static int ir_setkeytable(struct rc_dev *dev, 375 const struct rc_map *from) 376 { 377 struct rc_map *rc_map = &dev->rc_map; 378 unsigned int i, index; 379 int rc; 380 381 rc = ir_create_table(rc_map, from->name, 382 from->rc_type, from->size); 383 if (rc) 384 return rc; 385 386 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 387 rc_map->size, rc_map->alloc); 388 389 for (i = 0; i < from->size; i++) { 390 index = ir_establish_scancode(dev, rc_map, 391 from->scan[i].scancode, false); 392 if (index >= rc_map->len) { 393 rc = -ENOMEM; 394 break; 395 } 396 397 ir_update_mapping(dev, rc_map, index, 398 from->scan[i].keycode); 399 } 400 401 if (rc) 402 ir_free_table(rc_map); 403 404 return rc; 405 } 406 407 /** 408 * ir_lookup_by_scancode() - locate mapping by scancode 409 * @rc_map: the struct rc_map to search 410 * @scancode: scancode to look for in the table 411 * @return: index in the table, -1U if not found 412 * 413 * This routine performs binary search in RC keykeymap table for 414 * given scancode. 415 */ 416 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 417 unsigned int scancode) 418 { 419 int start = 0; 420 int end = rc_map->len - 1; 421 int mid; 422 423 while (start <= end) { 424 mid = (start + end) / 2; 425 if (rc_map->scan[mid].scancode < scancode) 426 start = mid + 1; 427 else if (rc_map->scan[mid].scancode > scancode) 428 end = mid - 1; 429 else 430 return mid; 431 } 432 433 return -1U; 434 } 435 436 /** 437 * ir_getkeycode() - get a keycode from the scancode->keycode table 438 * @idev: the struct input_dev device descriptor 439 * @scancode: the desired scancode 440 * @keycode: used to return the keycode, if found, or KEY_RESERVED 441 * @return: always returns zero. 442 * 443 * This routine is used to handle evdev EVIOCGKEY ioctl. 444 */ 445 static int ir_getkeycode(struct input_dev *idev, 446 struct input_keymap_entry *ke) 447 { 448 struct rc_dev *rdev = input_get_drvdata(idev); 449 struct rc_map *rc_map = &rdev->rc_map; 450 struct rc_map_table *entry; 451 unsigned long flags; 452 unsigned int index; 453 unsigned int scancode; 454 int retval; 455 456 spin_lock_irqsave(&rc_map->lock, flags); 457 458 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 459 index = ke->index; 460 } else { 461 retval = input_scancode_to_scalar(ke, &scancode); 462 if (retval) 463 goto out; 464 465 index = ir_lookup_by_scancode(rc_map, scancode); 466 } 467 468 if (index < rc_map->len) { 469 entry = &rc_map->scan[index]; 470 471 ke->index = index; 472 ke->keycode = entry->keycode; 473 ke->len = sizeof(entry->scancode); 474 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 475 476 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 477 /* 478 * We do not really know the valid range of scancodes 479 * so let's respond with KEY_RESERVED to anything we 480 * do not have mapping for [yet]. 481 */ 482 ke->index = index; 483 ke->keycode = KEY_RESERVED; 484 } else { 485 retval = -EINVAL; 486 goto out; 487 } 488 489 retval = 0; 490 491 out: 492 spin_unlock_irqrestore(&rc_map->lock, flags); 493 return retval; 494 } 495 496 /** 497 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 498 * @dev: the struct rc_dev descriptor of the device 499 * @scancode: the scancode to look for 500 * @return: the corresponding keycode, or KEY_RESERVED 501 * 502 * This routine is used by drivers which need to convert a scancode to a 503 * keycode. Normally it should not be used since drivers should have no 504 * interest in keycodes. 505 */ 506 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 507 { 508 struct rc_map *rc_map = &dev->rc_map; 509 unsigned int keycode; 510 unsigned int index; 511 unsigned long flags; 512 513 spin_lock_irqsave(&rc_map->lock, flags); 514 515 index = ir_lookup_by_scancode(rc_map, scancode); 516 keycode = index < rc_map->len ? 517 rc_map->scan[index].keycode : KEY_RESERVED; 518 519 spin_unlock_irqrestore(&rc_map->lock, flags); 520 521 if (keycode != KEY_RESERVED) 522 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 523 dev->input_name, scancode, keycode); 524 525 return keycode; 526 } 527 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 528 529 /** 530 * ir_do_keyup() - internal function to signal the release of a keypress 531 * @dev: the struct rc_dev descriptor of the device 532 * @sync: whether or not to call input_sync 533 * 534 * This function is used internally to release a keypress, it must be 535 * called with keylock held. 536 */ 537 static void ir_do_keyup(struct rc_dev *dev, bool sync) 538 { 539 if (!dev->keypressed) 540 return; 541 542 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 543 input_report_key(dev->input_dev, dev->last_keycode, 0); 544 led_trigger_event(led_feedback, LED_OFF); 545 if (sync) 546 input_sync(dev->input_dev); 547 dev->keypressed = false; 548 } 549 550 /** 551 * rc_keyup() - signals the release of a keypress 552 * @dev: the struct rc_dev descriptor of the device 553 * 554 * This routine is used to signal that a key has been released on the 555 * remote control. 556 */ 557 void rc_keyup(struct rc_dev *dev) 558 { 559 unsigned long flags; 560 561 spin_lock_irqsave(&dev->keylock, flags); 562 ir_do_keyup(dev, true); 563 spin_unlock_irqrestore(&dev->keylock, flags); 564 } 565 EXPORT_SYMBOL_GPL(rc_keyup); 566 567 /** 568 * ir_timer_keyup() - generates a keyup event after a timeout 569 * @cookie: a pointer to the struct rc_dev for the device 570 * 571 * This routine will generate a keyup event some time after a keydown event 572 * is generated when no further activity has been detected. 573 */ 574 static void ir_timer_keyup(unsigned long cookie) 575 { 576 struct rc_dev *dev = (struct rc_dev *)cookie; 577 unsigned long flags; 578 579 /* 580 * ir->keyup_jiffies is used to prevent a race condition if a 581 * hardware interrupt occurs at this point and the keyup timer 582 * event is moved further into the future as a result. 583 * 584 * The timer will then be reactivated and this function called 585 * again in the future. We need to exit gracefully in that case 586 * to allow the input subsystem to do its auto-repeat magic or 587 * a keyup event might follow immediately after the keydown. 588 */ 589 spin_lock_irqsave(&dev->keylock, flags); 590 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 591 ir_do_keyup(dev, true); 592 spin_unlock_irqrestore(&dev->keylock, flags); 593 } 594 595 /** 596 * rc_repeat() - signals that a key is still pressed 597 * @dev: the struct rc_dev descriptor of the device 598 * 599 * This routine is used by IR decoders when a repeat message which does 600 * not include the necessary bits to reproduce the scancode has been 601 * received. 602 */ 603 void rc_repeat(struct rc_dev *dev) 604 { 605 unsigned long flags; 606 607 spin_lock_irqsave(&dev->keylock, flags); 608 609 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 610 input_sync(dev->input_dev); 611 612 if (!dev->keypressed) 613 goto out; 614 615 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 616 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 617 618 out: 619 spin_unlock_irqrestore(&dev->keylock, flags); 620 } 621 EXPORT_SYMBOL_GPL(rc_repeat); 622 623 /** 624 * ir_do_keydown() - internal function to process a keypress 625 * @dev: the struct rc_dev descriptor of the device 626 * @scancode: the scancode of the keypress 627 * @keycode: the keycode of the keypress 628 * @toggle: the toggle value of the keypress 629 * 630 * This function is used internally to register a keypress, it must be 631 * called with keylock held. 632 */ 633 static void ir_do_keydown(struct rc_dev *dev, int scancode, 634 u32 keycode, u8 toggle) 635 { 636 bool new_event = !dev->keypressed || 637 dev->last_scancode != scancode || 638 dev->last_toggle != toggle; 639 640 if (new_event && dev->keypressed) 641 ir_do_keyup(dev, false); 642 643 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 644 645 if (new_event && keycode != KEY_RESERVED) { 646 /* Register a keypress */ 647 dev->keypressed = true; 648 dev->last_scancode = scancode; 649 dev->last_toggle = toggle; 650 dev->last_keycode = keycode; 651 652 IR_dprintk(1, "%s: key down event, " 653 "key 0x%04x, scancode 0x%04x\n", 654 dev->input_name, keycode, scancode); 655 input_report_key(dev->input_dev, keycode, 1); 656 } 657 658 led_trigger_event(led_feedback, LED_FULL); 659 input_sync(dev->input_dev); 660 } 661 662 /** 663 * rc_keydown() - generates input event for a key press 664 * @dev: the struct rc_dev descriptor of the device 665 * @scancode: the scancode that we're seeking 666 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 667 * support toggle values, this should be set to zero) 668 * 669 * This routine is used to signal that a key has been pressed on the 670 * remote control. 671 */ 672 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle) 673 { 674 unsigned long flags; 675 u32 keycode = rc_g_keycode_from_table(dev, scancode); 676 677 spin_lock_irqsave(&dev->keylock, flags); 678 ir_do_keydown(dev, scancode, keycode, toggle); 679 680 if (dev->keypressed) { 681 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 682 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 683 } 684 spin_unlock_irqrestore(&dev->keylock, flags); 685 } 686 EXPORT_SYMBOL_GPL(rc_keydown); 687 688 /** 689 * rc_keydown_notimeout() - generates input event for a key press without 690 * an automatic keyup event at a later time 691 * @dev: the struct rc_dev descriptor of the device 692 * @scancode: the scancode that we're seeking 693 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 694 * support toggle values, this should be set to zero) 695 * 696 * This routine is used to signal that a key has been pressed on the 697 * remote control. The driver must manually call rc_keyup() at a later stage. 698 */ 699 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle) 700 { 701 unsigned long flags; 702 u32 keycode = rc_g_keycode_from_table(dev, scancode); 703 704 spin_lock_irqsave(&dev->keylock, flags); 705 ir_do_keydown(dev, scancode, keycode, toggle); 706 spin_unlock_irqrestore(&dev->keylock, flags); 707 } 708 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 709 710 int rc_open(struct rc_dev *rdev) 711 { 712 int rval = 0; 713 714 if (!rdev) 715 return -EINVAL; 716 717 mutex_lock(&rdev->lock); 718 if (!rdev->users++ && rdev->open != NULL) 719 rval = rdev->open(rdev); 720 721 if (rval) 722 rdev->users--; 723 724 mutex_unlock(&rdev->lock); 725 726 return rval; 727 } 728 EXPORT_SYMBOL_GPL(rc_open); 729 730 static int ir_open(struct input_dev *idev) 731 { 732 struct rc_dev *rdev = input_get_drvdata(idev); 733 734 return rc_open(rdev); 735 } 736 737 void rc_close(struct rc_dev *rdev) 738 { 739 if (rdev) { 740 mutex_lock(&rdev->lock); 741 742 if (!--rdev->users && rdev->close != NULL) 743 rdev->close(rdev); 744 745 mutex_unlock(&rdev->lock); 746 } 747 } 748 EXPORT_SYMBOL_GPL(rc_close); 749 750 static void ir_close(struct input_dev *idev) 751 { 752 struct rc_dev *rdev = input_get_drvdata(idev); 753 rc_close(rdev); 754 } 755 756 /* class for /sys/class/rc */ 757 static char *rc_devnode(struct device *dev, umode_t *mode) 758 { 759 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 760 } 761 762 static struct class rc_class = { 763 .name = "rc", 764 .devnode = rc_devnode, 765 }; 766 767 /* 768 * These are the protocol textual descriptions that are 769 * used by the sysfs protocols file. Note that the order 770 * of the entries is relevant. 771 */ 772 static struct { 773 u64 type; 774 char *name; 775 } proto_names[] = { 776 { RC_BIT_NONE, "none" }, 777 { RC_BIT_OTHER, "other" }, 778 { RC_BIT_UNKNOWN, "unknown" }, 779 { RC_BIT_RC5 | 780 RC_BIT_RC5X, "rc-5" }, 781 { RC_BIT_NEC, "nec" }, 782 { RC_BIT_RC6_0 | 783 RC_BIT_RC6_6A_20 | 784 RC_BIT_RC6_6A_24 | 785 RC_BIT_RC6_6A_32 | 786 RC_BIT_RC6_MCE, "rc-6" }, 787 { RC_BIT_JVC, "jvc" }, 788 { RC_BIT_SONY12 | 789 RC_BIT_SONY15 | 790 RC_BIT_SONY20, "sony" }, 791 { RC_BIT_RC5_SZ, "rc-5-sz" }, 792 { RC_BIT_SANYO, "sanyo" }, 793 { RC_BIT_MCE_KBD, "mce_kbd" }, 794 { RC_BIT_LIRC, "lirc" }, 795 }; 796 797 /** 798 * show_protocols() - shows the current IR protocol(s) 799 * @device: the device descriptor 800 * @mattr: the device attribute struct (unused) 801 * @buf: a pointer to the output buffer 802 * 803 * This routine is a callback routine for input read the IR protocol type(s). 804 * it is trigged by reading /sys/class/rc/rc?/protocols. 805 * It returns the protocol names of supported protocols. 806 * Enabled protocols are printed in brackets. 807 * 808 * dev->lock is taken to guard against races between device 809 * registration, store_protocols and show_protocols. 810 */ 811 static ssize_t show_protocols(struct device *device, 812 struct device_attribute *mattr, char *buf) 813 { 814 struct rc_dev *dev = to_rc_dev(device); 815 u64 allowed, enabled; 816 char *tmp = buf; 817 int i; 818 819 /* Device is being removed */ 820 if (!dev) 821 return -EINVAL; 822 823 mutex_lock(&dev->lock); 824 825 enabled = dev->enabled_protocols; 826 if (dev->driver_type == RC_DRIVER_SCANCODE) 827 allowed = dev->allowed_protos; 828 else if (dev->raw) 829 allowed = ir_raw_get_allowed_protocols(); 830 else { 831 mutex_unlock(&dev->lock); 832 return -ENODEV; 833 } 834 835 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n", 836 (long long)allowed, 837 (long long)enabled); 838 839 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 840 if (allowed & enabled & proto_names[i].type) 841 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 842 else if (allowed & proto_names[i].type) 843 tmp += sprintf(tmp, "%s ", proto_names[i].name); 844 845 if (allowed & proto_names[i].type) 846 allowed &= ~proto_names[i].type; 847 } 848 849 if (tmp != buf) 850 tmp--; 851 *tmp = '\n'; 852 853 mutex_unlock(&dev->lock); 854 855 return tmp + 1 - buf; 856 } 857 858 /** 859 * store_protocols() - changes the current IR protocol(s) 860 * @device: the device descriptor 861 * @mattr: the device attribute struct (unused) 862 * @buf: a pointer to the input buffer 863 * @len: length of the input buffer 864 * 865 * This routine is for changing the IR protocol type. 866 * It is trigged by writing to /sys/class/rc/rc?/protocols. 867 * Writing "+proto" will add a protocol to the list of enabled protocols. 868 * Writing "-proto" will remove a protocol from the list of enabled protocols. 869 * Writing "proto" will enable only "proto". 870 * Writing "none" will disable all protocols. 871 * Returns -EINVAL if an invalid protocol combination or unknown protocol name 872 * is used, otherwise @len. 873 * 874 * dev->lock is taken to guard against races between device 875 * registration, store_protocols and show_protocols. 876 */ 877 static ssize_t store_protocols(struct device *device, 878 struct device_attribute *mattr, 879 const char *data, 880 size_t len) 881 { 882 struct rc_dev *dev = to_rc_dev(device); 883 bool enable, disable; 884 const char *tmp; 885 u64 type; 886 u64 mask; 887 int rc, i, count = 0; 888 ssize_t ret; 889 890 /* Device is being removed */ 891 if (!dev) 892 return -EINVAL; 893 894 mutex_lock(&dev->lock); 895 896 if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) { 897 IR_dprintk(1, "Protocol switching not supported\n"); 898 ret = -EINVAL; 899 goto out; 900 } 901 type = dev->enabled_protocols; 902 903 while ((tmp = strsep((char **) &data, " \n")) != NULL) { 904 if (!*tmp) 905 break; 906 907 if (*tmp == '+') { 908 enable = true; 909 disable = false; 910 tmp++; 911 } else if (*tmp == '-') { 912 enable = false; 913 disable = true; 914 tmp++; 915 } else { 916 enable = false; 917 disable = false; 918 } 919 920 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 921 if (!strcasecmp(tmp, proto_names[i].name)) { 922 mask = proto_names[i].type; 923 break; 924 } 925 } 926 927 if (i == ARRAY_SIZE(proto_names)) { 928 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 929 ret = -EINVAL; 930 goto out; 931 } 932 933 count++; 934 935 if (enable) 936 type |= mask; 937 else if (disable) 938 type &= ~mask; 939 else 940 type = mask; 941 } 942 943 if (!count) { 944 IR_dprintk(1, "Protocol not specified\n"); 945 ret = -EINVAL; 946 goto out; 947 } 948 949 if (dev->change_protocol) { 950 rc = dev->change_protocol(dev, &type); 951 if (rc < 0) { 952 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 953 (long long)type); 954 ret = -EINVAL; 955 goto out; 956 } 957 } 958 959 dev->enabled_protocols = type; 960 IR_dprintk(1, "Current protocol(s): 0x%llx\n", 961 (long long)type); 962 963 ret = len; 964 965 out: 966 mutex_unlock(&dev->lock); 967 return ret; 968 } 969 970 static void rc_dev_release(struct device *device) 971 { 972 } 973 974 #define ADD_HOTPLUG_VAR(fmt, val...) \ 975 do { \ 976 int err = add_uevent_var(env, fmt, val); \ 977 if (err) \ 978 return err; \ 979 } while (0) 980 981 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 982 { 983 struct rc_dev *dev = to_rc_dev(device); 984 985 if (!dev || !dev->input_dev) 986 return -ENODEV; 987 988 if (dev->rc_map.name) 989 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 990 if (dev->driver_name) 991 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 992 993 return 0; 994 } 995 996 /* 997 * Static device attribute struct with the sysfs attributes for IR's 998 */ 999 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR, 1000 show_protocols, store_protocols); 1001 1002 static struct attribute *rc_dev_attrs[] = { 1003 &dev_attr_protocols.attr, 1004 NULL, 1005 }; 1006 1007 static struct attribute_group rc_dev_attr_grp = { 1008 .attrs = rc_dev_attrs, 1009 }; 1010 1011 static const struct attribute_group *rc_dev_attr_groups[] = { 1012 &rc_dev_attr_grp, 1013 NULL 1014 }; 1015 1016 static struct device_type rc_dev_type = { 1017 .groups = rc_dev_attr_groups, 1018 .release = rc_dev_release, 1019 .uevent = rc_dev_uevent, 1020 }; 1021 1022 struct rc_dev *rc_allocate_device(void) 1023 { 1024 struct rc_dev *dev; 1025 1026 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1027 if (!dev) 1028 return NULL; 1029 1030 dev->input_dev = input_allocate_device(); 1031 if (!dev->input_dev) { 1032 kfree(dev); 1033 return NULL; 1034 } 1035 1036 dev->input_dev->getkeycode = ir_getkeycode; 1037 dev->input_dev->setkeycode = ir_setkeycode; 1038 input_set_drvdata(dev->input_dev, dev); 1039 1040 spin_lock_init(&dev->rc_map.lock); 1041 spin_lock_init(&dev->keylock); 1042 mutex_init(&dev->lock); 1043 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1044 1045 dev->dev.type = &rc_dev_type; 1046 dev->dev.class = &rc_class; 1047 device_initialize(&dev->dev); 1048 1049 __module_get(THIS_MODULE); 1050 return dev; 1051 } 1052 EXPORT_SYMBOL_GPL(rc_allocate_device); 1053 1054 void rc_free_device(struct rc_dev *dev) 1055 { 1056 if (!dev) 1057 return; 1058 1059 if (dev->input_dev) 1060 input_free_device(dev->input_dev); 1061 1062 put_device(&dev->dev); 1063 1064 kfree(dev); 1065 module_put(THIS_MODULE); 1066 } 1067 EXPORT_SYMBOL_GPL(rc_free_device); 1068 1069 int rc_register_device(struct rc_dev *dev) 1070 { 1071 static bool raw_init = false; /* raw decoders loaded? */ 1072 struct rc_map *rc_map; 1073 const char *path; 1074 int rc, devno; 1075 1076 if (!dev || !dev->map_name) 1077 return -EINVAL; 1078 1079 rc_map = rc_map_get(dev->map_name); 1080 if (!rc_map) 1081 rc_map = rc_map_get(RC_MAP_EMPTY); 1082 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1083 return -EINVAL; 1084 1085 set_bit(EV_KEY, dev->input_dev->evbit); 1086 set_bit(EV_REP, dev->input_dev->evbit); 1087 set_bit(EV_MSC, dev->input_dev->evbit); 1088 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1089 if (dev->open) 1090 dev->input_dev->open = ir_open; 1091 if (dev->close) 1092 dev->input_dev->close = ir_close; 1093 1094 /* 1095 * Take the lock here, as the device sysfs node will appear 1096 * when device_add() is called, which may trigger an ir-keytable udev 1097 * rule, which will in turn call show_protocols and access 1098 * dev->enabled_protocols before it has been initialized. 1099 */ 1100 mutex_lock(&dev->lock); 1101 1102 do { 1103 devno = find_first_zero_bit(ir_core_dev_number, 1104 IRRCV_NUM_DEVICES); 1105 /* No free device slots */ 1106 if (devno >= IRRCV_NUM_DEVICES) 1107 return -ENOMEM; 1108 } while (test_and_set_bit(devno, ir_core_dev_number)); 1109 1110 dev->devno = devno; 1111 dev_set_name(&dev->dev, "rc%ld", dev->devno); 1112 dev_set_drvdata(&dev->dev, dev); 1113 rc = device_add(&dev->dev); 1114 if (rc) 1115 goto out_unlock; 1116 1117 rc = ir_setkeytable(dev, rc_map); 1118 if (rc) 1119 goto out_dev; 1120 1121 dev->input_dev->dev.parent = &dev->dev; 1122 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1123 dev->input_dev->phys = dev->input_phys; 1124 dev->input_dev->name = dev->input_name; 1125 1126 /* input_register_device can call ir_open, so unlock mutex here */ 1127 mutex_unlock(&dev->lock); 1128 1129 rc = input_register_device(dev->input_dev); 1130 1131 mutex_lock(&dev->lock); 1132 1133 if (rc) 1134 goto out_table; 1135 1136 /* 1137 * Default delay of 250ms is too short for some protocols, especially 1138 * since the timeout is currently set to 250ms. Increase it to 500ms, 1139 * to avoid wrong repetition of the keycodes. Note that this must be 1140 * set after the call to input_register_device(). 1141 */ 1142 dev->input_dev->rep[REP_DELAY] = 500; 1143 1144 /* 1145 * As a repeat event on protocols like RC-5 and NEC take as long as 1146 * 110/114ms, using 33ms as a repeat period is not the right thing 1147 * to do. 1148 */ 1149 dev->input_dev->rep[REP_PERIOD] = 125; 1150 1151 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1152 printk(KERN_INFO "%s: %s as %s\n", 1153 dev_name(&dev->dev), 1154 dev->input_name ? dev->input_name : "Unspecified device", 1155 path ? path : "N/A"); 1156 kfree(path); 1157 1158 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1159 /* Load raw decoders, if they aren't already */ 1160 if (!raw_init) { 1161 IR_dprintk(1, "Loading raw decoders\n"); 1162 ir_raw_init(); 1163 raw_init = true; 1164 } 1165 rc = ir_raw_event_register(dev); 1166 if (rc < 0) 1167 goto out_input; 1168 } 1169 1170 if (dev->change_protocol) { 1171 u64 rc_type = (1 << rc_map->rc_type); 1172 rc = dev->change_protocol(dev, &rc_type); 1173 if (rc < 0) 1174 goto out_raw; 1175 dev->enabled_protocols = rc_type; 1176 } 1177 1178 mutex_unlock(&dev->lock); 1179 1180 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n", 1181 dev->devno, 1182 dev->driver_name ? dev->driver_name : "unknown", 1183 rc_map->name ? rc_map->name : "unknown", 1184 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1185 1186 return 0; 1187 1188 out_raw: 1189 if (dev->driver_type == RC_DRIVER_IR_RAW) 1190 ir_raw_event_unregister(dev); 1191 out_input: 1192 input_unregister_device(dev->input_dev); 1193 dev->input_dev = NULL; 1194 out_table: 1195 ir_free_table(&dev->rc_map); 1196 out_dev: 1197 device_del(&dev->dev); 1198 out_unlock: 1199 mutex_unlock(&dev->lock); 1200 clear_bit(dev->devno, ir_core_dev_number); 1201 return rc; 1202 } 1203 EXPORT_SYMBOL_GPL(rc_register_device); 1204 1205 void rc_unregister_device(struct rc_dev *dev) 1206 { 1207 if (!dev) 1208 return; 1209 1210 del_timer_sync(&dev->timer_keyup); 1211 1212 clear_bit(dev->devno, ir_core_dev_number); 1213 1214 if (dev->driver_type == RC_DRIVER_IR_RAW) 1215 ir_raw_event_unregister(dev); 1216 1217 /* Freeing the table should also call the stop callback */ 1218 ir_free_table(&dev->rc_map); 1219 IR_dprintk(1, "Freed keycode table\n"); 1220 1221 input_unregister_device(dev->input_dev); 1222 dev->input_dev = NULL; 1223 1224 device_del(&dev->dev); 1225 1226 rc_free_device(dev); 1227 } 1228 1229 EXPORT_SYMBOL_GPL(rc_unregister_device); 1230 1231 /* 1232 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1233 */ 1234 1235 static int __init rc_core_init(void) 1236 { 1237 int rc = class_register(&rc_class); 1238 if (rc) { 1239 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1240 return rc; 1241 } 1242 1243 led_trigger_register_simple("rc-feedback", &led_feedback); 1244 rc_map_register(&empty_map); 1245 1246 return 0; 1247 } 1248 1249 static void __exit rc_core_exit(void) 1250 { 1251 class_unregister(&rc_class); 1252 led_trigger_unregister_simple(led_feedback); 1253 rc_map_unregister(&empty_map); 1254 } 1255 1256 subsys_initcall(rc_core_init); 1257 module_exit(rc_core_exit); 1258 1259 int rc_core_debug; /* ir_debug level (0,1,2) */ 1260 EXPORT_SYMBOL_GPL(rc_core_debug); 1261 module_param_named(debug, rc_core_debug, int, 0644); 1262 1263 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); 1264 MODULE_LICENSE("GPL"); 1265