xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 293d5b43)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/atomic.h>
17 #include <linux/spinlock.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include "rc-core-priv.h"
26 
27 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
28 #define IR_TAB_MIN_SIZE	256
29 #define IR_TAB_MAX_SIZE	8192
30 #define RC_DEV_MAX	256
31 
32 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
33 #define IR_KEYPRESS_TIMEOUT 250
34 
35 /* Used to keep track of known keymaps */
36 static LIST_HEAD(rc_map_list);
37 static DEFINE_SPINLOCK(rc_map_lock);
38 static struct led_trigger *led_feedback;
39 
40 /* Used to keep track of rc devices */
41 static DEFINE_IDA(rc_ida);
42 
43 static struct rc_map_list *seek_rc_map(const char *name)
44 {
45 	struct rc_map_list *map = NULL;
46 
47 	spin_lock(&rc_map_lock);
48 	list_for_each_entry(map, &rc_map_list, list) {
49 		if (!strcmp(name, map->map.name)) {
50 			spin_unlock(&rc_map_lock);
51 			return map;
52 		}
53 	}
54 	spin_unlock(&rc_map_lock);
55 
56 	return NULL;
57 }
58 
59 struct rc_map *rc_map_get(const char *name)
60 {
61 
62 	struct rc_map_list *map;
63 
64 	map = seek_rc_map(name);
65 #ifdef CONFIG_MODULES
66 	if (!map) {
67 		int rc = request_module("%s", name);
68 		if (rc < 0) {
69 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
70 			return NULL;
71 		}
72 		msleep(20);	/* Give some time for IR to register */
73 
74 		map = seek_rc_map(name);
75 	}
76 #endif
77 	if (!map) {
78 		printk(KERN_ERR "IR keymap %s not found\n", name);
79 		return NULL;
80 	}
81 
82 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
83 
84 	return &map->map;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_get);
87 
88 int rc_map_register(struct rc_map_list *map)
89 {
90 	spin_lock(&rc_map_lock);
91 	list_add_tail(&map->list, &rc_map_list);
92 	spin_unlock(&rc_map_lock);
93 	return 0;
94 }
95 EXPORT_SYMBOL_GPL(rc_map_register);
96 
97 void rc_map_unregister(struct rc_map_list *map)
98 {
99 	spin_lock(&rc_map_lock);
100 	list_del(&map->list);
101 	spin_unlock(&rc_map_lock);
102 }
103 EXPORT_SYMBOL_GPL(rc_map_unregister);
104 
105 
106 static struct rc_map_table empty[] = {
107 	{ 0x2a, KEY_COFFEE },
108 };
109 
110 static struct rc_map_list empty_map = {
111 	.map = {
112 		.scan    = empty,
113 		.size    = ARRAY_SIZE(empty),
114 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
115 		.name    = RC_MAP_EMPTY,
116 	}
117 };
118 
119 /**
120  * ir_create_table() - initializes a scancode table
121  * @rc_map:	the rc_map to initialize
122  * @name:	name to assign to the table
123  * @rc_type:	ir type to assign to the new table
124  * @size:	initial size of the table
125  * @return:	zero on success or a negative error code
126  *
127  * This routine will initialize the rc_map and will allocate
128  * memory to hold at least the specified number of elements.
129  */
130 static int ir_create_table(struct rc_map *rc_map,
131 			   const char *name, u64 rc_type, size_t size)
132 {
133 	rc_map->name = kstrdup(name, GFP_KERNEL);
134 	if (!rc_map->name)
135 		return -ENOMEM;
136 	rc_map->rc_type = rc_type;
137 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
138 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
139 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
140 	if (!rc_map->scan) {
141 		kfree(rc_map->name);
142 		rc_map->name = NULL;
143 		return -ENOMEM;
144 	}
145 
146 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
147 		   rc_map->size, rc_map->alloc);
148 	return 0;
149 }
150 
151 /**
152  * ir_free_table() - frees memory allocated by a scancode table
153  * @rc_map:	the table whose mappings need to be freed
154  *
155  * This routine will free memory alloctaed for key mappings used by given
156  * scancode table.
157  */
158 static void ir_free_table(struct rc_map *rc_map)
159 {
160 	rc_map->size = 0;
161 	kfree(rc_map->name);
162 	kfree(rc_map->scan);
163 	rc_map->scan = NULL;
164 }
165 
166 /**
167  * ir_resize_table() - resizes a scancode table if necessary
168  * @rc_map:	the rc_map to resize
169  * @gfp_flags:	gfp flags to use when allocating memory
170  * @return:	zero on success or a negative error code
171  *
172  * This routine will shrink the rc_map if it has lots of
173  * unused entries and grow it if it is full.
174  */
175 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
176 {
177 	unsigned int oldalloc = rc_map->alloc;
178 	unsigned int newalloc = oldalloc;
179 	struct rc_map_table *oldscan = rc_map->scan;
180 	struct rc_map_table *newscan;
181 
182 	if (rc_map->size == rc_map->len) {
183 		/* All entries in use -> grow keytable */
184 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
185 			return -ENOMEM;
186 
187 		newalloc *= 2;
188 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
189 	}
190 
191 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
192 		/* Less than 1/3 of entries in use -> shrink keytable */
193 		newalloc /= 2;
194 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
195 	}
196 
197 	if (newalloc == oldalloc)
198 		return 0;
199 
200 	newscan = kmalloc(newalloc, gfp_flags);
201 	if (!newscan) {
202 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
203 		return -ENOMEM;
204 	}
205 
206 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
207 	rc_map->scan = newscan;
208 	rc_map->alloc = newalloc;
209 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
210 	kfree(oldscan);
211 	return 0;
212 }
213 
214 /**
215  * ir_update_mapping() - set a keycode in the scancode->keycode table
216  * @dev:	the struct rc_dev device descriptor
217  * @rc_map:	scancode table to be adjusted
218  * @index:	index of the mapping that needs to be updated
219  * @keycode:	the desired keycode
220  * @return:	previous keycode assigned to the mapping
221  *
222  * This routine is used to update scancode->keycode mapping at given
223  * position.
224  */
225 static unsigned int ir_update_mapping(struct rc_dev *dev,
226 				      struct rc_map *rc_map,
227 				      unsigned int index,
228 				      unsigned int new_keycode)
229 {
230 	int old_keycode = rc_map->scan[index].keycode;
231 	int i;
232 
233 	/* Did the user wish to remove the mapping? */
234 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
235 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
236 			   index, rc_map->scan[index].scancode);
237 		rc_map->len--;
238 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
239 			(rc_map->len - index) * sizeof(struct rc_map_table));
240 	} else {
241 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
242 			   index,
243 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
244 			   rc_map->scan[index].scancode, new_keycode);
245 		rc_map->scan[index].keycode = new_keycode;
246 		__set_bit(new_keycode, dev->input_dev->keybit);
247 	}
248 
249 	if (old_keycode != KEY_RESERVED) {
250 		/* A previous mapping was updated... */
251 		__clear_bit(old_keycode, dev->input_dev->keybit);
252 		/* ... but another scancode might use the same keycode */
253 		for (i = 0; i < rc_map->len; i++) {
254 			if (rc_map->scan[i].keycode == old_keycode) {
255 				__set_bit(old_keycode, dev->input_dev->keybit);
256 				break;
257 			}
258 		}
259 
260 		/* Possibly shrink the keytable, failure is not a problem */
261 		ir_resize_table(rc_map, GFP_ATOMIC);
262 	}
263 
264 	return old_keycode;
265 }
266 
267 /**
268  * ir_establish_scancode() - set a keycode in the scancode->keycode table
269  * @dev:	the struct rc_dev device descriptor
270  * @rc_map:	scancode table to be searched
271  * @scancode:	the desired scancode
272  * @resize:	controls whether we allowed to resize the table to
273  *		accommodate not yet present scancodes
274  * @return:	index of the mapping containing scancode in question
275  *		or -1U in case of failure.
276  *
277  * This routine is used to locate given scancode in rc_map.
278  * If scancode is not yet present the routine will allocate a new slot
279  * for it.
280  */
281 static unsigned int ir_establish_scancode(struct rc_dev *dev,
282 					  struct rc_map *rc_map,
283 					  unsigned int scancode,
284 					  bool resize)
285 {
286 	unsigned int i;
287 
288 	/*
289 	 * Unfortunately, some hardware-based IR decoders don't provide
290 	 * all bits for the complete IR code. In general, they provide only
291 	 * the command part of the IR code. Yet, as it is possible to replace
292 	 * the provided IR with another one, it is needed to allow loading
293 	 * IR tables from other remotes. So, we support specifying a mask to
294 	 * indicate the valid bits of the scancodes.
295 	 */
296 	if (dev->scancode_mask)
297 		scancode &= dev->scancode_mask;
298 
299 	/* First check if we already have a mapping for this ir command */
300 	for (i = 0; i < rc_map->len; i++) {
301 		if (rc_map->scan[i].scancode == scancode)
302 			return i;
303 
304 		/* Keytable is sorted from lowest to highest scancode */
305 		if (rc_map->scan[i].scancode >= scancode)
306 			break;
307 	}
308 
309 	/* No previous mapping found, we might need to grow the table */
310 	if (rc_map->size == rc_map->len) {
311 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
312 			return -1U;
313 	}
314 
315 	/* i is the proper index to insert our new keycode */
316 	if (i < rc_map->len)
317 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
318 			(rc_map->len - i) * sizeof(struct rc_map_table));
319 	rc_map->scan[i].scancode = scancode;
320 	rc_map->scan[i].keycode = KEY_RESERVED;
321 	rc_map->len++;
322 
323 	return i;
324 }
325 
326 /**
327  * ir_setkeycode() - set a keycode in the scancode->keycode table
328  * @idev:	the struct input_dev device descriptor
329  * @scancode:	the desired scancode
330  * @keycode:	result
331  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
332  *
333  * This routine is used to handle evdev EVIOCSKEY ioctl.
334  */
335 static int ir_setkeycode(struct input_dev *idev,
336 			 const struct input_keymap_entry *ke,
337 			 unsigned int *old_keycode)
338 {
339 	struct rc_dev *rdev = input_get_drvdata(idev);
340 	struct rc_map *rc_map = &rdev->rc_map;
341 	unsigned int index;
342 	unsigned int scancode;
343 	int retval = 0;
344 	unsigned long flags;
345 
346 	spin_lock_irqsave(&rc_map->lock, flags);
347 
348 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
349 		index = ke->index;
350 		if (index >= rc_map->len) {
351 			retval = -EINVAL;
352 			goto out;
353 		}
354 	} else {
355 		retval = input_scancode_to_scalar(ke, &scancode);
356 		if (retval)
357 			goto out;
358 
359 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
360 		if (index >= rc_map->len) {
361 			retval = -ENOMEM;
362 			goto out;
363 		}
364 	}
365 
366 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
367 
368 out:
369 	spin_unlock_irqrestore(&rc_map->lock, flags);
370 	return retval;
371 }
372 
373 /**
374  * ir_setkeytable() - sets several entries in the scancode->keycode table
375  * @dev:	the struct rc_dev device descriptor
376  * @to:		the struct rc_map to copy entries to
377  * @from:	the struct rc_map to copy entries from
378  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
379  *
380  * This routine is used to handle table initialization.
381  */
382 static int ir_setkeytable(struct rc_dev *dev,
383 			  const struct rc_map *from)
384 {
385 	struct rc_map *rc_map = &dev->rc_map;
386 	unsigned int i, index;
387 	int rc;
388 
389 	rc = ir_create_table(rc_map, from->name,
390 			     from->rc_type, from->size);
391 	if (rc)
392 		return rc;
393 
394 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
395 		   rc_map->size, rc_map->alloc);
396 
397 	for (i = 0; i < from->size; i++) {
398 		index = ir_establish_scancode(dev, rc_map,
399 					      from->scan[i].scancode, false);
400 		if (index >= rc_map->len) {
401 			rc = -ENOMEM;
402 			break;
403 		}
404 
405 		ir_update_mapping(dev, rc_map, index,
406 				  from->scan[i].keycode);
407 	}
408 
409 	if (rc)
410 		ir_free_table(rc_map);
411 
412 	return rc;
413 }
414 
415 /**
416  * ir_lookup_by_scancode() - locate mapping by scancode
417  * @rc_map:	the struct rc_map to search
418  * @scancode:	scancode to look for in the table
419  * @return:	index in the table, -1U if not found
420  *
421  * This routine performs binary search in RC keykeymap table for
422  * given scancode.
423  */
424 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
425 					  unsigned int scancode)
426 {
427 	int start = 0;
428 	int end = rc_map->len - 1;
429 	int mid;
430 
431 	while (start <= end) {
432 		mid = (start + end) / 2;
433 		if (rc_map->scan[mid].scancode < scancode)
434 			start = mid + 1;
435 		else if (rc_map->scan[mid].scancode > scancode)
436 			end = mid - 1;
437 		else
438 			return mid;
439 	}
440 
441 	return -1U;
442 }
443 
444 /**
445  * ir_getkeycode() - get a keycode from the scancode->keycode table
446  * @idev:	the struct input_dev device descriptor
447  * @scancode:	the desired scancode
448  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
449  * @return:	always returns zero.
450  *
451  * This routine is used to handle evdev EVIOCGKEY ioctl.
452  */
453 static int ir_getkeycode(struct input_dev *idev,
454 			 struct input_keymap_entry *ke)
455 {
456 	struct rc_dev *rdev = input_get_drvdata(idev);
457 	struct rc_map *rc_map = &rdev->rc_map;
458 	struct rc_map_table *entry;
459 	unsigned long flags;
460 	unsigned int index;
461 	unsigned int scancode;
462 	int retval;
463 
464 	spin_lock_irqsave(&rc_map->lock, flags);
465 
466 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
467 		index = ke->index;
468 	} else {
469 		retval = input_scancode_to_scalar(ke, &scancode);
470 		if (retval)
471 			goto out;
472 
473 		index = ir_lookup_by_scancode(rc_map, scancode);
474 	}
475 
476 	if (index < rc_map->len) {
477 		entry = &rc_map->scan[index];
478 
479 		ke->index = index;
480 		ke->keycode = entry->keycode;
481 		ke->len = sizeof(entry->scancode);
482 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
483 
484 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
485 		/*
486 		 * We do not really know the valid range of scancodes
487 		 * so let's respond with KEY_RESERVED to anything we
488 		 * do not have mapping for [yet].
489 		 */
490 		ke->index = index;
491 		ke->keycode = KEY_RESERVED;
492 	} else {
493 		retval = -EINVAL;
494 		goto out;
495 	}
496 
497 	retval = 0;
498 
499 out:
500 	spin_unlock_irqrestore(&rc_map->lock, flags);
501 	return retval;
502 }
503 
504 /**
505  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
506  * @dev:	the struct rc_dev descriptor of the device
507  * @scancode:	the scancode to look for
508  * @return:	the corresponding keycode, or KEY_RESERVED
509  *
510  * This routine is used by drivers which need to convert a scancode to a
511  * keycode. Normally it should not be used since drivers should have no
512  * interest in keycodes.
513  */
514 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
515 {
516 	struct rc_map *rc_map = &dev->rc_map;
517 	unsigned int keycode;
518 	unsigned int index;
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&rc_map->lock, flags);
522 
523 	index = ir_lookup_by_scancode(rc_map, scancode);
524 	keycode = index < rc_map->len ?
525 			rc_map->scan[index].keycode : KEY_RESERVED;
526 
527 	spin_unlock_irqrestore(&rc_map->lock, flags);
528 
529 	if (keycode != KEY_RESERVED)
530 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
531 			   dev->input_name, scancode, keycode);
532 
533 	return keycode;
534 }
535 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
536 
537 /**
538  * ir_do_keyup() - internal function to signal the release of a keypress
539  * @dev:	the struct rc_dev descriptor of the device
540  * @sync:	whether or not to call input_sync
541  *
542  * This function is used internally to release a keypress, it must be
543  * called with keylock held.
544  */
545 static void ir_do_keyup(struct rc_dev *dev, bool sync)
546 {
547 	if (!dev->keypressed)
548 		return;
549 
550 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
551 	input_report_key(dev->input_dev, dev->last_keycode, 0);
552 	led_trigger_event(led_feedback, LED_OFF);
553 	if (sync)
554 		input_sync(dev->input_dev);
555 	dev->keypressed = false;
556 }
557 
558 /**
559  * rc_keyup() - signals the release of a keypress
560  * @dev:	the struct rc_dev descriptor of the device
561  *
562  * This routine is used to signal that a key has been released on the
563  * remote control.
564  */
565 void rc_keyup(struct rc_dev *dev)
566 {
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&dev->keylock, flags);
570 	ir_do_keyup(dev, true);
571 	spin_unlock_irqrestore(&dev->keylock, flags);
572 }
573 EXPORT_SYMBOL_GPL(rc_keyup);
574 
575 /**
576  * ir_timer_keyup() - generates a keyup event after a timeout
577  * @cookie:	a pointer to the struct rc_dev for the device
578  *
579  * This routine will generate a keyup event some time after a keydown event
580  * is generated when no further activity has been detected.
581  */
582 static void ir_timer_keyup(unsigned long cookie)
583 {
584 	struct rc_dev *dev = (struct rc_dev *)cookie;
585 	unsigned long flags;
586 
587 	/*
588 	 * ir->keyup_jiffies is used to prevent a race condition if a
589 	 * hardware interrupt occurs at this point and the keyup timer
590 	 * event is moved further into the future as a result.
591 	 *
592 	 * The timer will then be reactivated and this function called
593 	 * again in the future. We need to exit gracefully in that case
594 	 * to allow the input subsystem to do its auto-repeat magic or
595 	 * a keyup event might follow immediately after the keydown.
596 	 */
597 	spin_lock_irqsave(&dev->keylock, flags);
598 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
599 		ir_do_keyup(dev, true);
600 	spin_unlock_irqrestore(&dev->keylock, flags);
601 }
602 
603 /**
604  * rc_repeat() - signals that a key is still pressed
605  * @dev:	the struct rc_dev descriptor of the device
606  *
607  * This routine is used by IR decoders when a repeat message which does
608  * not include the necessary bits to reproduce the scancode has been
609  * received.
610  */
611 void rc_repeat(struct rc_dev *dev)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&dev->keylock, flags);
616 
617 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
618 	input_sync(dev->input_dev);
619 
620 	if (!dev->keypressed)
621 		goto out;
622 
623 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
624 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
625 
626 out:
627 	spin_unlock_irqrestore(&dev->keylock, flags);
628 }
629 EXPORT_SYMBOL_GPL(rc_repeat);
630 
631 /**
632  * ir_do_keydown() - internal function to process a keypress
633  * @dev:	the struct rc_dev descriptor of the device
634  * @protocol:	the protocol of the keypress
635  * @scancode:   the scancode of the keypress
636  * @keycode:    the keycode of the keypress
637  * @toggle:     the toggle value of the keypress
638  *
639  * This function is used internally to register a keypress, it must be
640  * called with keylock held.
641  */
642 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
643 			  u32 scancode, u32 keycode, u8 toggle)
644 {
645 	bool new_event = (!dev->keypressed		 ||
646 			  dev->last_protocol != protocol ||
647 			  dev->last_scancode != scancode ||
648 			  dev->last_toggle   != toggle);
649 
650 	if (new_event && dev->keypressed)
651 		ir_do_keyup(dev, false);
652 
653 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
654 
655 	if (new_event && keycode != KEY_RESERVED) {
656 		/* Register a keypress */
657 		dev->keypressed = true;
658 		dev->last_protocol = protocol;
659 		dev->last_scancode = scancode;
660 		dev->last_toggle = toggle;
661 		dev->last_keycode = keycode;
662 
663 		IR_dprintk(1, "%s: key down event, "
664 			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
665 			   dev->input_name, keycode, protocol, scancode);
666 		input_report_key(dev->input_dev, keycode, 1);
667 
668 		led_trigger_event(led_feedback, LED_FULL);
669 	}
670 
671 	input_sync(dev->input_dev);
672 }
673 
674 /**
675  * rc_keydown() - generates input event for a key press
676  * @dev:	the struct rc_dev descriptor of the device
677  * @protocol:	the protocol for the keypress
678  * @scancode:	the scancode for the keypress
679  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
680  *              support toggle values, this should be set to zero)
681  *
682  * This routine is used to signal that a key has been pressed on the
683  * remote control.
684  */
685 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
686 {
687 	unsigned long flags;
688 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
689 
690 	spin_lock_irqsave(&dev->keylock, flags);
691 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
692 
693 	if (dev->keypressed) {
694 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
695 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
696 	}
697 	spin_unlock_irqrestore(&dev->keylock, flags);
698 }
699 EXPORT_SYMBOL_GPL(rc_keydown);
700 
701 /**
702  * rc_keydown_notimeout() - generates input event for a key press without
703  *                          an automatic keyup event at a later time
704  * @dev:	the struct rc_dev descriptor of the device
705  * @protocol:	the protocol for the keypress
706  * @scancode:	the scancode for the keypress
707  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
708  *              support toggle values, this should be set to zero)
709  *
710  * This routine is used to signal that a key has been pressed on the
711  * remote control. The driver must manually call rc_keyup() at a later stage.
712  */
713 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
714 			  u32 scancode, u8 toggle)
715 {
716 	unsigned long flags;
717 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
718 
719 	spin_lock_irqsave(&dev->keylock, flags);
720 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
721 	spin_unlock_irqrestore(&dev->keylock, flags);
722 }
723 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
724 
725 int rc_open(struct rc_dev *rdev)
726 {
727 	int rval = 0;
728 
729 	if (!rdev)
730 		return -EINVAL;
731 
732 	mutex_lock(&rdev->lock);
733 
734 	if (!rdev->users++ && rdev->open != NULL)
735 		rval = rdev->open(rdev);
736 
737 	if (rval)
738 		rdev->users--;
739 
740 	mutex_unlock(&rdev->lock);
741 
742 	return rval;
743 }
744 EXPORT_SYMBOL_GPL(rc_open);
745 
746 static int ir_open(struct input_dev *idev)
747 {
748 	struct rc_dev *rdev = input_get_drvdata(idev);
749 
750 	return rc_open(rdev);
751 }
752 
753 void rc_close(struct rc_dev *rdev)
754 {
755 	if (rdev) {
756 		mutex_lock(&rdev->lock);
757 
758 		if (!--rdev->users && rdev->close != NULL)
759 			rdev->close(rdev);
760 
761 		mutex_unlock(&rdev->lock);
762 	}
763 }
764 EXPORT_SYMBOL_GPL(rc_close);
765 
766 static void ir_close(struct input_dev *idev)
767 {
768 	struct rc_dev *rdev = input_get_drvdata(idev);
769 	rc_close(rdev);
770 }
771 
772 /* class for /sys/class/rc */
773 static char *rc_devnode(struct device *dev, umode_t *mode)
774 {
775 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
776 }
777 
778 static struct class rc_class = {
779 	.name		= "rc",
780 	.devnode	= rc_devnode,
781 };
782 
783 /*
784  * These are the protocol textual descriptions that are
785  * used by the sysfs protocols file. Note that the order
786  * of the entries is relevant.
787  */
788 static const struct {
789 	u64	type;
790 	const char	*name;
791 	const char	*module_name;
792 } proto_names[] = {
793 	{ RC_BIT_NONE,		"none",		NULL			},
794 	{ RC_BIT_OTHER,		"other",	NULL			},
795 	{ RC_BIT_UNKNOWN,	"unknown",	NULL			},
796 	{ RC_BIT_RC5 |
797 	  RC_BIT_RC5X,		"rc-5",		"ir-rc5-decoder"	},
798 	{ RC_BIT_NEC,		"nec",		"ir-nec-decoder"	},
799 	{ RC_BIT_RC6_0 |
800 	  RC_BIT_RC6_6A_20 |
801 	  RC_BIT_RC6_6A_24 |
802 	  RC_BIT_RC6_6A_32 |
803 	  RC_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
804 	{ RC_BIT_JVC,		"jvc",		"ir-jvc-decoder"	},
805 	{ RC_BIT_SONY12 |
806 	  RC_BIT_SONY15 |
807 	  RC_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
808 	{ RC_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
809 	{ RC_BIT_SANYO,		"sanyo",	"ir-sanyo-decoder"	},
810 	{ RC_BIT_SHARP,		"sharp",	"ir-sharp-decoder"	},
811 	{ RC_BIT_MCE_KBD,	"mce_kbd",	"ir-mce_kbd-decoder"	},
812 	{ RC_BIT_XMP,		"xmp",		"ir-xmp-decoder"	},
813 	{ RC_BIT_CEC,		"cec",		NULL			},
814 };
815 
816 /**
817  * struct rc_filter_attribute - Device attribute relating to a filter type.
818  * @attr:	Device attribute.
819  * @type:	Filter type.
820  * @mask:	false for filter value, true for filter mask.
821  */
822 struct rc_filter_attribute {
823 	struct device_attribute		attr;
824 	enum rc_filter_type		type;
825 	bool				mask;
826 };
827 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
828 
829 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
830 	struct rc_filter_attribute dev_attr_##_name = {			\
831 		.attr = __ATTR(_name, _mode, _show, _store),		\
832 		.type = (_type),					\
833 	}
834 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
835 	struct rc_filter_attribute dev_attr_##_name = {			\
836 		.attr = __ATTR(_name, _mode, _show, _store),		\
837 		.type = (_type),					\
838 		.mask = (_mask),					\
839 	}
840 
841 static bool lirc_is_present(void)
842 {
843 #if defined(CONFIG_LIRC_MODULE)
844 	struct module *lirc;
845 
846 	mutex_lock(&module_mutex);
847 	lirc = find_module("lirc_dev");
848 	mutex_unlock(&module_mutex);
849 
850 	return lirc ? true : false;
851 #elif defined(CONFIG_LIRC)
852 	return true;
853 #else
854 	return false;
855 #endif
856 }
857 
858 /**
859  * show_protocols() - shows the current/wakeup IR protocol(s)
860  * @device:	the device descriptor
861  * @mattr:	the device attribute struct
862  * @buf:	a pointer to the output buffer
863  *
864  * This routine is a callback routine for input read the IR protocol type(s).
865  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
866  * It returns the protocol names of supported protocols.
867  * Enabled protocols are printed in brackets.
868  *
869  * dev->lock is taken to guard against races between device
870  * registration, store_protocols and show_protocols.
871  */
872 static ssize_t show_protocols(struct device *device,
873 			      struct device_attribute *mattr, char *buf)
874 {
875 	struct rc_dev *dev = to_rc_dev(device);
876 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
877 	u64 allowed, enabled;
878 	char *tmp = buf;
879 	int i;
880 
881 	/* Device is being removed */
882 	if (!dev)
883 		return -EINVAL;
884 
885 	if (!atomic_read(&dev->initialized))
886 		return -ERESTARTSYS;
887 
888 	mutex_lock(&dev->lock);
889 
890 	if (fattr->type == RC_FILTER_NORMAL) {
891 		enabled = dev->enabled_protocols;
892 		allowed = dev->allowed_protocols;
893 		if (dev->raw && !allowed)
894 			allowed = ir_raw_get_allowed_protocols();
895 	} else {
896 		enabled = dev->enabled_wakeup_protocols;
897 		allowed = dev->allowed_wakeup_protocols;
898 	}
899 
900 	mutex_unlock(&dev->lock);
901 
902 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
903 		   __func__, (long long)allowed, (long long)enabled);
904 
905 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
906 		if (allowed & enabled & proto_names[i].type)
907 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
908 		else if (allowed & proto_names[i].type)
909 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
910 
911 		if (allowed & proto_names[i].type)
912 			allowed &= ~proto_names[i].type;
913 	}
914 
915 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
916 		tmp += sprintf(tmp, "[lirc] ");
917 
918 	if (tmp != buf)
919 		tmp--;
920 	*tmp = '\n';
921 
922 	return tmp + 1 - buf;
923 }
924 
925 /**
926  * parse_protocol_change() - parses a protocol change request
927  * @protocols:	pointer to the bitmask of current protocols
928  * @buf:	pointer to the buffer with a list of changes
929  *
930  * Writing "+proto" will add a protocol to the protocol mask.
931  * Writing "-proto" will remove a protocol from protocol mask.
932  * Writing "proto" will enable only "proto".
933  * Writing "none" will disable all protocols.
934  * Returns the number of changes performed or a negative error code.
935  */
936 static int parse_protocol_change(u64 *protocols, const char *buf)
937 {
938 	const char *tmp;
939 	unsigned count = 0;
940 	bool enable, disable;
941 	u64 mask;
942 	int i;
943 
944 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
945 		if (!*tmp)
946 			break;
947 
948 		if (*tmp == '+') {
949 			enable = true;
950 			disable = false;
951 			tmp++;
952 		} else if (*tmp == '-') {
953 			enable = false;
954 			disable = true;
955 			tmp++;
956 		} else {
957 			enable = false;
958 			disable = false;
959 		}
960 
961 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
962 			if (!strcasecmp(tmp, proto_names[i].name)) {
963 				mask = proto_names[i].type;
964 				break;
965 			}
966 		}
967 
968 		if (i == ARRAY_SIZE(proto_names)) {
969 			if (!strcasecmp(tmp, "lirc"))
970 				mask = 0;
971 			else {
972 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
973 				return -EINVAL;
974 			}
975 		}
976 
977 		count++;
978 
979 		if (enable)
980 			*protocols |= mask;
981 		else if (disable)
982 			*protocols &= ~mask;
983 		else
984 			*protocols = mask;
985 	}
986 
987 	if (!count) {
988 		IR_dprintk(1, "Protocol not specified\n");
989 		return -EINVAL;
990 	}
991 
992 	return count;
993 }
994 
995 static void ir_raw_load_modules(u64 *protocols)
996 
997 {
998 	u64 available;
999 	int i, ret;
1000 
1001 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1002 		if (proto_names[i].type == RC_BIT_NONE ||
1003 		    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1004 			continue;
1005 
1006 		available = ir_raw_get_allowed_protocols();
1007 		if (!(*protocols & proto_names[i].type & ~available))
1008 			continue;
1009 
1010 		if (!proto_names[i].module_name) {
1011 			pr_err("Can't enable IR protocol %s\n",
1012 			       proto_names[i].name);
1013 			*protocols &= ~proto_names[i].type;
1014 			continue;
1015 		}
1016 
1017 		ret = request_module("%s", proto_names[i].module_name);
1018 		if (ret < 0) {
1019 			pr_err("Couldn't load IR protocol module %s\n",
1020 			       proto_names[i].module_name);
1021 			*protocols &= ~proto_names[i].type;
1022 			continue;
1023 		}
1024 		msleep(20);
1025 		available = ir_raw_get_allowed_protocols();
1026 		if (!(*protocols & proto_names[i].type & ~available))
1027 			continue;
1028 
1029 		pr_err("Loaded IR protocol module %s, \
1030 		       but protocol %s still not available\n",
1031 		       proto_names[i].module_name,
1032 		       proto_names[i].name);
1033 		*protocols &= ~proto_names[i].type;
1034 	}
1035 }
1036 
1037 /**
1038  * store_protocols() - changes the current/wakeup IR protocol(s)
1039  * @device:	the device descriptor
1040  * @mattr:	the device attribute struct
1041  * @buf:	a pointer to the input buffer
1042  * @len:	length of the input buffer
1043  *
1044  * This routine is for changing the IR protocol type.
1045  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1046  * See parse_protocol_change() for the valid commands.
1047  * Returns @len on success or a negative error code.
1048  *
1049  * dev->lock is taken to guard against races between device
1050  * registration, store_protocols and show_protocols.
1051  */
1052 static ssize_t store_protocols(struct device *device,
1053 			       struct device_attribute *mattr,
1054 			       const char *buf, size_t len)
1055 {
1056 	struct rc_dev *dev = to_rc_dev(device);
1057 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1058 	u64 *current_protocols;
1059 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1060 	struct rc_scancode_filter *filter;
1061 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1062 	u64 old_protocols, new_protocols;
1063 	ssize_t rc;
1064 
1065 	/* Device is being removed */
1066 	if (!dev)
1067 		return -EINVAL;
1068 
1069 	if (!atomic_read(&dev->initialized))
1070 		return -ERESTARTSYS;
1071 
1072 	if (fattr->type == RC_FILTER_NORMAL) {
1073 		IR_dprintk(1, "Normal protocol change requested\n");
1074 		current_protocols = &dev->enabled_protocols;
1075 		change_protocol = dev->change_protocol;
1076 		filter = &dev->scancode_filter;
1077 		set_filter = dev->s_filter;
1078 	} else {
1079 		IR_dprintk(1, "Wakeup protocol change requested\n");
1080 		current_protocols = &dev->enabled_wakeup_protocols;
1081 		change_protocol = dev->change_wakeup_protocol;
1082 		filter = &dev->scancode_wakeup_filter;
1083 		set_filter = dev->s_wakeup_filter;
1084 	}
1085 
1086 	if (!change_protocol) {
1087 		IR_dprintk(1, "Protocol switching not supported\n");
1088 		return -EINVAL;
1089 	}
1090 
1091 	mutex_lock(&dev->lock);
1092 
1093 	old_protocols = *current_protocols;
1094 	new_protocols = old_protocols;
1095 	rc = parse_protocol_change(&new_protocols, buf);
1096 	if (rc < 0)
1097 		goto out;
1098 
1099 	rc = change_protocol(dev, &new_protocols);
1100 	if (rc < 0) {
1101 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1102 			   (long long)new_protocols);
1103 		goto out;
1104 	}
1105 
1106 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1107 		ir_raw_load_modules(&new_protocols);
1108 
1109 	if (new_protocols != old_protocols) {
1110 		*current_protocols = new_protocols;
1111 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1112 			   (long long)new_protocols);
1113 	}
1114 
1115 	/*
1116 	 * If a protocol change was attempted the filter may need updating, even
1117 	 * if the actual protocol mask hasn't changed (since the driver may have
1118 	 * cleared the filter).
1119 	 * Try setting the same filter with the new protocol (if any).
1120 	 * Fall back to clearing the filter.
1121 	 */
1122 	if (set_filter && filter->mask) {
1123 		if (new_protocols)
1124 			rc = set_filter(dev, filter);
1125 		else
1126 			rc = -1;
1127 
1128 		if (rc < 0) {
1129 			filter->data = 0;
1130 			filter->mask = 0;
1131 			set_filter(dev, filter);
1132 		}
1133 	}
1134 
1135 	rc = len;
1136 
1137 out:
1138 	mutex_unlock(&dev->lock);
1139 	return rc;
1140 }
1141 
1142 /**
1143  * show_filter() - shows the current scancode filter value or mask
1144  * @device:	the device descriptor
1145  * @attr:	the device attribute struct
1146  * @buf:	a pointer to the output buffer
1147  *
1148  * This routine is a callback routine to read a scancode filter value or mask.
1149  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1150  * It prints the current scancode filter value or mask of the appropriate filter
1151  * type in hexadecimal into @buf and returns the size of the buffer.
1152  *
1153  * Bits of the filter value corresponding to set bits in the filter mask are
1154  * compared against input scancodes and non-matching scancodes are discarded.
1155  *
1156  * dev->lock is taken to guard against races between device registration,
1157  * store_filter and show_filter.
1158  */
1159 static ssize_t show_filter(struct device *device,
1160 			   struct device_attribute *attr,
1161 			   char *buf)
1162 {
1163 	struct rc_dev *dev = to_rc_dev(device);
1164 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1165 	struct rc_scancode_filter *filter;
1166 	u32 val;
1167 
1168 	/* Device is being removed */
1169 	if (!dev)
1170 		return -EINVAL;
1171 
1172 	if (!atomic_read(&dev->initialized))
1173 		return -ERESTARTSYS;
1174 
1175 	mutex_lock(&dev->lock);
1176 
1177 	if (fattr->type == RC_FILTER_NORMAL)
1178 		filter = &dev->scancode_filter;
1179 	else
1180 		filter = &dev->scancode_wakeup_filter;
1181 
1182 	if (fattr->mask)
1183 		val = filter->mask;
1184 	else
1185 		val = filter->data;
1186 	mutex_unlock(&dev->lock);
1187 
1188 	return sprintf(buf, "%#x\n", val);
1189 }
1190 
1191 /**
1192  * store_filter() - changes the scancode filter value
1193  * @device:	the device descriptor
1194  * @attr:	the device attribute struct
1195  * @buf:	a pointer to the input buffer
1196  * @len:	length of the input buffer
1197  *
1198  * This routine is for changing a scancode filter value or mask.
1199  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1200  * Returns -EINVAL if an invalid filter value for the current protocol was
1201  * specified or if scancode filtering is not supported by the driver, otherwise
1202  * returns @len.
1203  *
1204  * Bits of the filter value corresponding to set bits in the filter mask are
1205  * compared against input scancodes and non-matching scancodes are discarded.
1206  *
1207  * dev->lock is taken to guard against races between device registration,
1208  * store_filter and show_filter.
1209  */
1210 static ssize_t store_filter(struct device *device,
1211 			    struct device_attribute *attr,
1212 			    const char *buf, size_t len)
1213 {
1214 	struct rc_dev *dev = to_rc_dev(device);
1215 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1216 	struct rc_scancode_filter new_filter, *filter;
1217 	int ret;
1218 	unsigned long val;
1219 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1220 	u64 *enabled_protocols;
1221 
1222 	/* Device is being removed */
1223 	if (!dev)
1224 		return -EINVAL;
1225 
1226 	if (!atomic_read(&dev->initialized))
1227 		return -ERESTARTSYS;
1228 
1229 	ret = kstrtoul(buf, 0, &val);
1230 	if (ret < 0)
1231 		return ret;
1232 
1233 	if (fattr->type == RC_FILTER_NORMAL) {
1234 		set_filter = dev->s_filter;
1235 		enabled_protocols = &dev->enabled_protocols;
1236 		filter = &dev->scancode_filter;
1237 	} else {
1238 		set_filter = dev->s_wakeup_filter;
1239 		enabled_protocols = &dev->enabled_wakeup_protocols;
1240 		filter = &dev->scancode_wakeup_filter;
1241 	}
1242 
1243 	if (!set_filter)
1244 		return -EINVAL;
1245 
1246 	mutex_lock(&dev->lock);
1247 
1248 	new_filter = *filter;
1249 	if (fattr->mask)
1250 		new_filter.mask = val;
1251 	else
1252 		new_filter.data = val;
1253 
1254 	if (!*enabled_protocols && val) {
1255 		/* refuse to set a filter unless a protocol is enabled */
1256 		ret = -EINVAL;
1257 		goto unlock;
1258 	}
1259 
1260 	ret = set_filter(dev, &new_filter);
1261 	if (ret < 0)
1262 		goto unlock;
1263 
1264 	*filter = new_filter;
1265 
1266 unlock:
1267 	mutex_unlock(&dev->lock);
1268 	return (ret < 0) ? ret : len;
1269 }
1270 
1271 static void rc_dev_release(struct device *device)
1272 {
1273 	struct rc_dev *dev = to_rc_dev(device);
1274 
1275 	kfree(dev);
1276 }
1277 
1278 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1279 	do {								\
1280 		int err = add_uevent_var(env, fmt, val);		\
1281 		if (err)						\
1282 			return err;					\
1283 	} while (0)
1284 
1285 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1286 {
1287 	struct rc_dev *dev = to_rc_dev(device);
1288 
1289 	if (dev->rc_map.name)
1290 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1291 	if (dev->driver_name)
1292 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Static device attribute struct with the sysfs attributes for IR's
1299  */
1300 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1301 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1302 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1303 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1304 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1305 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1306 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1307 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1308 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1309 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1310 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1311 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1312 
1313 static struct attribute *rc_dev_protocol_attrs[] = {
1314 	&dev_attr_protocols.attr.attr,
1315 	NULL,
1316 };
1317 
1318 static struct attribute_group rc_dev_protocol_attr_grp = {
1319 	.attrs	= rc_dev_protocol_attrs,
1320 };
1321 
1322 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1323 	&dev_attr_wakeup_protocols.attr.attr,
1324 	NULL,
1325 };
1326 
1327 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1328 	.attrs	= rc_dev_wakeup_protocol_attrs,
1329 };
1330 
1331 static struct attribute *rc_dev_filter_attrs[] = {
1332 	&dev_attr_filter.attr.attr,
1333 	&dev_attr_filter_mask.attr.attr,
1334 	NULL,
1335 };
1336 
1337 static struct attribute_group rc_dev_filter_attr_grp = {
1338 	.attrs	= rc_dev_filter_attrs,
1339 };
1340 
1341 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1342 	&dev_attr_wakeup_filter.attr.attr,
1343 	&dev_attr_wakeup_filter_mask.attr.attr,
1344 	NULL,
1345 };
1346 
1347 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1348 	.attrs	= rc_dev_wakeup_filter_attrs,
1349 };
1350 
1351 static struct device_type rc_dev_type = {
1352 	.release	= rc_dev_release,
1353 	.uevent		= rc_dev_uevent,
1354 };
1355 
1356 struct rc_dev *rc_allocate_device(void)
1357 {
1358 	struct rc_dev *dev;
1359 
1360 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1361 	if (!dev)
1362 		return NULL;
1363 
1364 	dev->input_dev = input_allocate_device();
1365 	if (!dev->input_dev) {
1366 		kfree(dev);
1367 		return NULL;
1368 	}
1369 
1370 	dev->input_dev->getkeycode = ir_getkeycode;
1371 	dev->input_dev->setkeycode = ir_setkeycode;
1372 	input_set_drvdata(dev->input_dev, dev);
1373 
1374 	spin_lock_init(&dev->rc_map.lock);
1375 	spin_lock_init(&dev->keylock);
1376 	mutex_init(&dev->lock);
1377 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1378 
1379 	dev->dev.type = &rc_dev_type;
1380 	dev->dev.class = &rc_class;
1381 	device_initialize(&dev->dev);
1382 
1383 	__module_get(THIS_MODULE);
1384 	return dev;
1385 }
1386 EXPORT_SYMBOL_GPL(rc_allocate_device);
1387 
1388 void rc_free_device(struct rc_dev *dev)
1389 {
1390 	if (!dev)
1391 		return;
1392 
1393 	input_free_device(dev->input_dev);
1394 
1395 	put_device(&dev->dev);
1396 
1397 	/* kfree(dev) will be called by the callback function
1398 	   rc_dev_release() */
1399 
1400 	module_put(THIS_MODULE);
1401 }
1402 EXPORT_SYMBOL_GPL(rc_free_device);
1403 
1404 int rc_register_device(struct rc_dev *dev)
1405 {
1406 	static bool raw_init = false; /* raw decoders loaded? */
1407 	struct rc_map *rc_map;
1408 	const char *path;
1409 	int attr = 0;
1410 	int minor;
1411 	int rc;
1412 
1413 	if (!dev || !dev->map_name)
1414 		return -EINVAL;
1415 
1416 	rc_map = rc_map_get(dev->map_name);
1417 	if (!rc_map)
1418 		rc_map = rc_map_get(RC_MAP_EMPTY);
1419 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1420 		return -EINVAL;
1421 
1422 	set_bit(EV_KEY, dev->input_dev->evbit);
1423 	set_bit(EV_REP, dev->input_dev->evbit);
1424 	set_bit(EV_MSC, dev->input_dev->evbit);
1425 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1426 	if (dev->open)
1427 		dev->input_dev->open = ir_open;
1428 	if (dev->close)
1429 		dev->input_dev->close = ir_close;
1430 
1431 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1432 	if (minor < 0)
1433 		return minor;
1434 
1435 	dev->minor = minor;
1436 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1437 	dev_set_drvdata(&dev->dev, dev);
1438 	atomic_set(&dev->initialized, 0);
1439 
1440 	dev->dev.groups = dev->sysfs_groups;
1441 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1442 	if (dev->s_filter)
1443 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1444 	if (dev->s_wakeup_filter)
1445 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1446 	if (dev->change_wakeup_protocol)
1447 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1448 	dev->sysfs_groups[attr++] = NULL;
1449 
1450 	rc = device_add(&dev->dev);
1451 	if (rc)
1452 		goto out_unlock;
1453 
1454 	rc = ir_setkeytable(dev, rc_map);
1455 	if (rc)
1456 		goto out_dev;
1457 
1458 	dev->input_dev->dev.parent = &dev->dev;
1459 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1460 	dev->input_dev->phys = dev->input_phys;
1461 	dev->input_dev->name = dev->input_name;
1462 
1463 	/*
1464 	 * Default delay of 250ms is too short for some protocols, especially
1465 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1466 	 * to avoid wrong repetition of the keycodes. Note that this must be
1467 	 * set after the call to input_register_device().
1468 	 */
1469 	dev->input_dev->rep[REP_DELAY] = 500;
1470 
1471 	/*
1472 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1473 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1474 	 * to do.
1475 	 */
1476 	dev->input_dev->rep[REP_PERIOD] = 125;
1477 
1478 	/* rc_open will be called here */
1479 	rc = input_register_device(dev->input_dev);
1480 	if (rc)
1481 		goto out_table;
1482 
1483 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1484 	dev_info(&dev->dev, "%s as %s\n",
1485 		dev->input_name ?: "Unspecified device", path ?: "N/A");
1486 	kfree(path);
1487 
1488 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1489 		if (!raw_init) {
1490 			request_module_nowait("ir-lirc-codec");
1491 			raw_init = true;
1492 		}
1493 		rc = ir_raw_event_register(dev);
1494 		if (rc < 0)
1495 			goto out_input;
1496 	}
1497 
1498 	if (dev->change_protocol) {
1499 		u64 rc_type = (1ll << rc_map->rc_type);
1500 		rc = dev->change_protocol(dev, &rc_type);
1501 		if (rc < 0)
1502 			goto out_raw;
1503 		dev->enabled_protocols = rc_type;
1504 	}
1505 
1506 	/* Allow the RC sysfs nodes to be accessible */
1507 	atomic_set(&dev->initialized, 1);
1508 
1509 	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1510 		   dev->minor,
1511 		   dev->driver_name ? dev->driver_name : "unknown",
1512 		   rc_map->name ? rc_map->name : "unknown",
1513 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1514 
1515 	return 0;
1516 
1517 out_raw:
1518 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1519 		ir_raw_event_unregister(dev);
1520 out_input:
1521 	input_unregister_device(dev->input_dev);
1522 	dev->input_dev = NULL;
1523 out_table:
1524 	ir_free_table(&dev->rc_map);
1525 out_dev:
1526 	device_del(&dev->dev);
1527 out_unlock:
1528 	ida_simple_remove(&rc_ida, minor);
1529 	return rc;
1530 }
1531 EXPORT_SYMBOL_GPL(rc_register_device);
1532 
1533 void rc_unregister_device(struct rc_dev *dev)
1534 {
1535 	if (!dev)
1536 		return;
1537 
1538 	del_timer_sync(&dev->timer_keyup);
1539 
1540 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1541 		ir_raw_event_unregister(dev);
1542 
1543 	/* Freeing the table should also call the stop callback */
1544 	ir_free_table(&dev->rc_map);
1545 	IR_dprintk(1, "Freed keycode table\n");
1546 
1547 	input_unregister_device(dev->input_dev);
1548 	dev->input_dev = NULL;
1549 
1550 	device_del(&dev->dev);
1551 
1552 	ida_simple_remove(&rc_ida, dev->minor);
1553 
1554 	rc_free_device(dev);
1555 }
1556 
1557 EXPORT_SYMBOL_GPL(rc_unregister_device);
1558 
1559 /*
1560  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1561  */
1562 
1563 static int __init rc_core_init(void)
1564 {
1565 	int rc = class_register(&rc_class);
1566 	if (rc) {
1567 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1568 		return rc;
1569 	}
1570 
1571 	led_trigger_register_simple("rc-feedback", &led_feedback);
1572 	rc_map_register(&empty_map);
1573 
1574 	return 0;
1575 }
1576 
1577 static void __exit rc_core_exit(void)
1578 {
1579 	class_unregister(&rc_class);
1580 	led_trigger_unregister_simple(led_feedback);
1581 	rc_map_unregister(&empty_map);
1582 }
1583 
1584 subsys_initcall(rc_core_init);
1585 module_exit(rc_core_exit);
1586 
1587 int rc_core_debug;    /* ir_debug level (0,1,2) */
1588 EXPORT_SYMBOL_GPL(rc_core_debug);
1589 module_param_named(debug, rc_core_debug, int, 0644);
1590 
1591 MODULE_AUTHOR("Mauro Carvalho Chehab");
1592 MODULE_LICENSE("GPL");
1593