xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
19 
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE	256
22 #define IR_TAB_MAX_SIZE	8192
23 
24 static const struct {
25 	const char *name;
26 	unsigned int repeat_period;
27 	unsigned int scancode_bits;
28 } protocols[] = {
29 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
30 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
31 	[RC_PROTO_RC5] = { .name = "rc-5",
32 		.scancode_bits = 0x1f7f, .repeat_period = 250 },
33 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 		.scancode_bits = 0x1f7f3f, .repeat_period = 250 },
35 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 		.scancode_bits = 0x2fff, .repeat_period = 250 },
37 	[RC_PROTO_JVC] = { .name = "jvc",
38 		.scancode_bits = 0xffff, .repeat_period = 250 },
39 	[RC_PROTO_SONY12] = { .name = "sony-12",
40 		.scancode_bits = 0x1f007f, .repeat_period = 250 },
41 	[RC_PROTO_SONY15] = { .name = "sony-15",
42 		.scancode_bits = 0xff007f, .repeat_period = 250 },
43 	[RC_PROTO_SONY20] = { .name = "sony-20",
44 		.scancode_bits = 0x1fff7f, .repeat_period = 250 },
45 	[RC_PROTO_NEC] = { .name = "nec",
46 		.scancode_bits = 0xffff, .repeat_period = 250 },
47 	[RC_PROTO_NECX] = { .name = "nec-x",
48 		.scancode_bits = 0xffffff, .repeat_period = 250 },
49 	[RC_PROTO_NEC32] = { .name = "nec-32",
50 		.scancode_bits = 0xffffffff, .repeat_period = 250 },
51 	[RC_PROTO_SANYO] = { .name = "sanyo",
52 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
53 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 		.scancode_bits = 0xffff, .repeat_period = 250 },
55 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
57 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 		.scancode_bits = 0xffff, .repeat_period = 250 },
59 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 		.scancode_bits = 0xfffff, .repeat_period = 250 },
61 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 		.scancode_bits = 0xffffff, .repeat_period = 250 },
63 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 		.scancode_bits = 0xffffffff, .repeat_period = 250 },
65 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 		.scancode_bits = 0xffff7fff, .repeat_period = 250 },
67 	[RC_PROTO_SHARP] = { .name = "sharp",
68 		.scancode_bits = 0x1fff, .repeat_period = 250 },
69 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
70 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
71 	[RC_PROTO_IMON] = { .name = "imon",
72 		.scancode_bits = 0x7fffffff, .repeat_period = 250 },
73 };
74 
75 /* Used to keep track of known keymaps */
76 static LIST_HEAD(rc_map_list);
77 static DEFINE_SPINLOCK(rc_map_lock);
78 static struct led_trigger *led_feedback;
79 
80 /* Used to keep track of rc devices */
81 static DEFINE_IDA(rc_ida);
82 
83 static struct rc_map_list *seek_rc_map(const char *name)
84 {
85 	struct rc_map_list *map = NULL;
86 
87 	spin_lock(&rc_map_lock);
88 	list_for_each_entry(map, &rc_map_list, list) {
89 		if (!strcmp(name, map->map.name)) {
90 			spin_unlock(&rc_map_lock);
91 			return map;
92 		}
93 	}
94 	spin_unlock(&rc_map_lock);
95 
96 	return NULL;
97 }
98 
99 struct rc_map *rc_map_get(const char *name)
100 {
101 
102 	struct rc_map_list *map;
103 
104 	map = seek_rc_map(name);
105 #ifdef CONFIG_MODULES
106 	if (!map) {
107 		int rc = request_module("%s", name);
108 		if (rc < 0) {
109 			pr_err("Couldn't load IR keymap %s\n", name);
110 			return NULL;
111 		}
112 		msleep(20);	/* Give some time for IR to register */
113 
114 		map = seek_rc_map(name);
115 	}
116 #endif
117 	if (!map) {
118 		pr_err("IR keymap %s not found\n", name);
119 		return NULL;
120 	}
121 
122 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
123 
124 	return &map->map;
125 }
126 EXPORT_SYMBOL_GPL(rc_map_get);
127 
128 int rc_map_register(struct rc_map_list *map)
129 {
130 	spin_lock(&rc_map_lock);
131 	list_add_tail(&map->list, &rc_map_list);
132 	spin_unlock(&rc_map_lock);
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(rc_map_register);
136 
137 void rc_map_unregister(struct rc_map_list *map)
138 {
139 	spin_lock(&rc_map_lock);
140 	list_del(&map->list);
141 	spin_unlock(&rc_map_lock);
142 }
143 EXPORT_SYMBOL_GPL(rc_map_unregister);
144 
145 
146 static struct rc_map_table empty[] = {
147 	{ 0x2a, KEY_COFFEE },
148 };
149 
150 static struct rc_map_list empty_map = {
151 	.map = {
152 		.scan     = empty,
153 		.size     = ARRAY_SIZE(empty),
154 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
155 		.name     = RC_MAP_EMPTY,
156 	}
157 };
158 
159 /**
160  * ir_create_table() - initializes a scancode table
161  * @dev:	the rc_dev device
162  * @rc_map:	the rc_map to initialize
163  * @name:	name to assign to the table
164  * @rc_proto:	ir type to assign to the new table
165  * @size:	initial size of the table
166  *
167  * This routine will initialize the rc_map and will allocate
168  * memory to hold at least the specified number of elements.
169  *
170  * return:	zero on success or a negative error code
171  */
172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
173 			   const char *name, u64 rc_proto, size_t size)
174 {
175 	rc_map->name = kstrdup(name, GFP_KERNEL);
176 	if (!rc_map->name)
177 		return -ENOMEM;
178 	rc_map->rc_proto = rc_proto;
179 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
180 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
181 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
182 	if (!rc_map->scan) {
183 		kfree(rc_map->name);
184 		rc_map->name = NULL;
185 		return -ENOMEM;
186 	}
187 
188 	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
189 		rc_map->size, rc_map->alloc);
190 	return 0;
191 }
192 
193 /**
194  * ir_free_table() - frees memory allocated by a scancode table
195  * @rc_map:	the table whose mappings need to be freed
196  *
197  * This routine will free memory alloctaed for key mappings used by given
198  * scancode table.
199  */
200 static void ir_free_table(struct rc_map *rc_map)
201 {
202 	rc_map->size = 0;
203 	kfree(rc_map->name);
204 	rc_map->name = NULL;
205 	kfree(rc_map->scan);
206 	rc_map->scan = NULL;
207 }
208 
209 /**
210  * ir_resize_table() - resizes a scancode table if necessary
211  * @dev:	the rc_dev device
212  * @rc_map:	the rc_map to resize
213  * @gfp_flags:	gfp flags to use when allocating memory
214  *
215  * This routine will shrink the rc_map if it has lots of
216  * unused entries and grow it if it is full.
217  *
218  * return:	zero on success or a negative error code
219  */
220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
221 			   gfp_t gfp_flags)
222 {
223 	unsigned int oldalloc = rc_map->alloc;
224 	unsigned int newalloc = oldalloc;
225 	struct rc_map_table *oldscan = rc_map->scan;
226 	struct rc_map_table *newscan;
227 
228 	if (rc_map->size == rc_map->len) {
229 		/* All entries in use -> grow keytable */
230 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
231 			return -ENOMEM;
232 
233 		newalloc *= 2;
234 		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
235 	}
236 
237 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
238 		/* Less than 1/3 of entries in use -> shrink keytable */
239 		newalloc /= 2;
240 		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
241 	}
242 
243 	if (newalloc == oldalloc)
244 		return 0;
245 
246 	newscan = kmalloc(newalloc, gfp_flags);
247 	if (!newscan)
248 		return -ENOMEM;
249 
250 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
251 	rc_map->scan = newscan;
252 	rc_map->alloc = newalloc;
253 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
254 	kfree(oldscan);
255 	return 0;
256 }
257 
258 /**
259  * ir_update_mapping() - set a keycode in the scancode->keycode table
260  * @dev:	the struct rc_dev device descriptor
261  * @rc_map:	scancode table to be adjusted
262  * @index:	index of the mapping that needs to be updated
263  * @new_keycode: the desired keycode
264  *
265  * This routine is used to update scancode->keycode mapping at given
266  * position.
267  *
268  * return:	previous keycode assigned to the mapping
269  *
270  */
271 static unsigned int ir_update_mapping(struct rc_dev *dev,
272 				      struct rc_map *rc_map,
273 				      unsigned int index,
274 				      unsigned int new_keycode)
275 {
276 	int old_keycode = rc_map->scan[index].keycode;
277 	int i;
278 
279 	/* Did the user wish to remove the mapping? */
280 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
281 		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
282 			index, rc_map->scan[index].scancode);
283 		rc_map->len--;
284 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
285 			(rc_map->len - index) * sizeof(struct rc_map_table));
286 	} else {
287 		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
288 			index,
289 			old_keycode == KEY_RESERVED ? "New" : "Replacing",
290 			rc_map->scan[index].scancode, new_keycode);
291 		rc_map->scan[index].keycode = new_keycode;
292 		__set_bit(new_keycode, dev->input_dev->keybit);
293 	}
294 
295 	if (old_keycode != KEY_RESERVED) {
296 		/* A previous mapping was updated... */
297 		__clear_bit(old_keycode, dev->input_dev->keybit);
298 		/* ... but another scancode might use the same keycode */
299 		for (i = 0; i < rc_map->len; i++) {
300 			if (rc_map->scan[i].keycode == old_keycode) {
301 				__set_bit(old_keycode, dev->input_dev->keybit);
302 				break;
303 			}
304 		}
305 
306 		/* Possibly shrink the keytable, failure is not a problem */
307 		ir_resize_table(dev, rc_map, GFP_ATOMIC);
308 	}
309 
310 	return old_keycode;
311 }
312 
313 /**
314  * ir_establish_scancode() - set a keycode in the scancode->keycode table
315  * @dev:	the struct rc_dev device descriptor
316  * @rc_map:	scancode table to be searched
317  * @scancode:	the desired scancode
318  * @resize:	controls whether we allowed to resize the table to
319  *		accommodate not yet present scancodes
320  *
321  * This routine is used to locate given scancode in rc_map.
322  * If scancode is not yet present the routine will allocate a new slot
323  * for it.
324  *
325  * return:	index of the mapping containing scancode in question
326  *		or -1U in case of failure.
327  */
328 static unsigned int ir_establish_scancode(struct rc_dev *dev,
329 					  struct rc_map *rc_map,
330 					  unsigned int scancode,
331 					  bool resize)
332 {
333 	unsigned int i;
334 
335 	/*
336 	 * Unfortunately, some hardware-based IR decoders don't provide
337 	 * all bits for the complete IR code. In general, they provide only
338 	 * the command part of the IR code. Yet, as it is possible to replace
339 	 * the provided IR with another one, it is needed to allow loading
340 	 * IR tables from other remotes. So, we support specifying a mask to
341 	 * indicate the valid bits of the scancodes.
342 	 */
343 	if (dev->scancode_mask)
344 		scancode &= dev->scancode_mask;
345 
346 	/* First check if we already have a mapping for this ir command */
347 	for (i = 0; i < rc_map->len; i++) {
348 		if (rc_map->scan[i].scancode == scancode)
349 			return i;
350 
351 		/* Keytable is sorted from lowest to highest scancode */
352 		if (rc_map->scan[i].scancode >= scancode)
353 			break;
354 	}
355 
356 	/* No previous mapping found, we might need to grow the table */
357 	if (rc_map->size == rc_map->len) {
358 		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
359 			return -1U;
360 	}
361 
362 	/* i is the proper index to insert our new keycode */
363 	if (i < rc_map->len)
364 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
365 			(rc_map->len - i) * sizeof(struct rc_map_table));
366 	rc_map->scan[i].scancode = scancode;
367 	rc_map->scan[i].keycode = KEY_RESERVED;
368 	rc_map->len++;
369 
370 	return i;
371 }
372 
373 /**
374  * ir_setkeycode() - set a keycode in the scancode->keycode table
375  * @idev:	the struct input_dev device descriptor
376  * @ke:		Input keymap entry
377  * @old_keycode: result
378  *
379  * This routine is used to handle evdev EVIOCSKEY ioctl.
380  *
381  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
382  */
383 static int ir_setkeycode(struct input_dev *idev,
384 			 const struct input_keymap_entry *ke,
385 			 unsigned int *old_keycode)
386 {
387 	struct rc_dev *rdev = input_get_drvdata(idev);
388 	struct rc_map *rc_map = &rdev->rc_map;
389 	unsigned int index;
390 	unsigned int scancode;
391 	int retval = 0;
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&rc_map->lock, flags);
395 
396 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
397 		index = ke->index;
398 		if (index >= rc_map->len) {
399 			retval = -EINVAL;
400 			goto out;
401 		}
402 	} else {
403 		retval = input_scancode_to_scalar(ke, &scancode);
404 		if (retval)
405 			goto out;
406 
407 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
408 		if (index >= rc_map->len) {
409 			retval = -ENOMEM;
410 			goto out;
411 		}
412 	}
413 
414 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
415 
416 out:
417 	spin_unlock_irqrestore(&rc_map->lock, flags);
418 	return retval;
419 }
420 
421 /**
422  * ir_setkeytable() - sets several entries in the scancode->keycode table
423  * @dev:	the struct rc_dev device descriptor
424  * @from:	the struct rc_map to copy entries from
425  *
426  * This routine is used to handle table initialization.
427  *
428  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
429  */
430 static int ir_setkeytable(struct rc_dev *dev,
431 			  const struct rc_map *from)
432 {
433 	struct rc_map *rc_map = &dev->rc_map;
434 	unsigned int i, index;
435 	int rc;
436 
437 	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
438 			     from->size);
439 	if (rc)
440 		return rc;
441 
442 	for (i = 0; i < from->size; i++) {
443 		index = ir_establish_scancode(dev, rc_map,
444 					      from->scan[i].scancode, false);
445 		if (index >= rc_map->len) {
446 			rc = -ENOMEM;
447 			break;
448 		}
449 
450 		ir_update_mapping(dev, rc_map, index,
451 				  from->scan[i].keycode);
452 	}
453 
454 	if (rc)
455 		ir_free_table(rc_map);
456 
457 	return rc;
458 }
459 
460 static int rc_map_cmp(const void *key, const void *elt)
461 {
462 	const unsigned int *scancode = key;
463 	const struct rc_map_table *e = elt;
464 
465 	if (*scancode < e->scancode)
466 		return -1;
467 	else if (*scancode > e->scancode)
468 		return 1;
469 	return 0;
470 }
471 
472 /**
473  * ir_lookup_by_scancode() - locate mapping by scancode
474  * @rc_map:	the struct rc_map to search
475  * @scancode:	scancode to look for in the table
476  *
477  * This routine performs binary search in RC keykeymap table for
478  * given scancode.
479  *
480  * return:	index in the table, -1U if not found
481  */
482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 					  unsigned int scancode)
484 {
485 	struct rc_map_table *res;
486 
487 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 		      sizeof(struct rc_map_table), rc_map_cmp);
489 	if (!res)
490 		return -1U;
491 	else
492 		return res - rc_map->scan;
493 }
494 
495 /**
496  * ir_getkeycode() - get a keycode from the scancode->keycode table
497  * @idev:	the struct input_dev device descriptor
498  * @ke:		Input keymap entry
499  *
500  * This routine is used to handle evdev EVIOCGKEY ioctl.
501  *
502  * return:	always returns zero.
503  */
504 static int ir_getkeycode(struct input_dev *idev,
505 			 struct input_keymap_entry *ke)
506 {
507 	struct rc_dev *rdev = input_get_drvdata(idev);
508 	struct rc_map *rc_map = &rdev->rc_map;
509 	struct rc_map_table *entry;
510 	unsigned long flags;
511 	unsigned int index;
512 	unsigned int scancode;
513 	int retval;
514 
515 	spin_lock_irqsave(&rc_map->lock, flags);
516 
517 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 		index = ke->index;
519 	} else {
520 		retval = input_scancode_to_scalar(ke, &scancode);
521 		if (retval)
522 			goto out;
523 
524 		index = ir_lookup_by_scancode(rc_map, scancode);
525 	}
526 
527 	if (index < rc_map->len) {
528 		entry = &rc_map->scan[index];
529 
530 		ke->index = index;
531 		ke->keycode = entry->keycode;
532 		ke->len = sizeof(entry->scancode);
533 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
534 
535 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
536 		/*
537 		 * We do not really know the valid range of scancodes
538 		 * so let's respond with KEY_RESERVED to anything we
539 		 * do not have mapping for [yet].
540 		 */
541 		ke->index = index;
542 		ke->keycode = KEY_RESERVED;
543 	} else {
544 		retval = -EINVAL;
545 		goto out;
546 	}
547 
548 	retval = 0;
549 
550 out:
551 	spin_unlock_irqrestore(&rc_map->lock, flags);
552 	return retval;
553 }
554 
555 /**
556  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557  * @dev:	the struct rc_dev descriptor of the device
558  * @scancode:	the scancode to look for
559  *
560  * This routine is used by drivers which need to convert a scancode to a
561  * keycode. Normally it should not be used since drivers should have no
562  * interest in keycodes.
563  *
564  * return:	the corresponding keycode, or KEY_RESERVED
565  */
566 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
567 {
568 	struct rc_map *rc_map = &dev->rc_map;
569 	unsigned int keycode;
570 	unsigned int index;
571 	unsigned long flags;
572 
573 	spin_lock_irqsave(&rc_map->lock, flags);
574 
575 	index = ir_lookup_by_scancode(rc_map, scancode);
576 	keycode = index < rc_map->len ?
577 			rc_map->scan[index].keycode : KEY_RESERVED;
578 
579 	spin_unlock_irqrestore(&rc_map->lock, flags);
580 
581 	if (keycode != KEY_RESERVED)
582 		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
583 			dev->device_name, scancode, keycode);
584 
585 	return keycode;
586 }
587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
588 
589 /**
590  * ir_do_keyup() - internal function to signal the release of a keypress
591  * @dev:	the struct rc_dev descriptor of the device
592  * @sync:	whether or not to call input_sync
593  *
594  * This function is used internally to release a keypress, it must be
595  * called with keylock held.
596  */
597 static void ir_do_keyup(struct rc_dev *dev, bool sync)
598 {
599 	if (!dev->keypressed)
600 		return;
601 
602 	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
603 	del_timer(&dev->timer_repeat);
604 	input_report_key(dev->input_dev, dev->last_keycode, 0);
605 	led_trigger_event(led_feedback, LED_OFF);
606 	if (sync)
607 		input_sync(dev->input_dev);
608 	dev->keypressed = false;
609 }
610 
611 /**
612  * rc_keyup() - signals the release of a keypress
613  * @dev:	the struct rc_dev descriptor of the device
614  *
615  * This routine is used to signal that a key has been released on the
616  * remote control.
617  */
618 void rc_keyup(struct rc_dev *dev)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&dev->keylock, flags);
623 	ir_do_keyup(dev, true);
624 	spin_unlock_irqrestore(&dev->keylock, flags);
625 }
626 EXPORT_SYMBOL_GPL(rc_keyup);
627 
628 /**
629  * ir_timer_keyup() - generates a keyup event after a timeout
630  *
631  * @t:		a pointer to the struct timer_list
632  *
633  * This routine will generate a keyup event some time after a keydown event
634  * is generated when no further activity has been detected.
635  */
636 static void ir_timer_keyup(struct timer_list *t)
637 {
638 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
639 	unsigned long flags;
640 
641 	/*
642 	 * ir->keyup_jiffies is used to prevent a race condition if a
643 	 * hardware interrupt occurs at this point and the keyup timer
644 	 * event is moved further into the future as a result.
645 	 *
646 	 * The timer will then be reactivated and this function called
647 	 * again in the future. We need to exit gracefully in that case
648 	 * to allow the input subsystem to do its auto-repeat magic or
649 	 * a keyup event might follow immediately after the keydown.
650 	 */
651 	spin_lock_irqsave(&dev->keylock, flags);
652 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
653 		ir_do_keyup(dev, true);
654 	spin_unlock_irqrestore(&dev->keylock, flags);
655 }
656 
657 /**
658  * ir_timer_repeat() - generates a repeat event after a timeout
659  *
660  * @t:		a pointer to the struct timer_list
661  *
662  * This routine will generate a soft repeat event every REP_PERIOD
663  * milliseconds.
664  */
665 static void ir_timer_repeat(struct timer_list *t)
666 {
667 	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
668 	struct input_dev *input = dev->input_dev;
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&dev->keylock, flags);
672 	if (dev->keypressed) {
673 		input_event(input, EV_KEY, dev->last_keycode, 2);
674 		input_sync(input);
675 		if (input->rep[REP_PERIOD])
676 			mod_timer(&dev->timer_repeat, jiffies +
677 				  msecs_to_jiffies(input->rep[REP_PERIOD]));
678 	}
679 	spin_unlock_irqrestore(&dev->keylock, flags);
680 }
681 
682 /**
683  * rc_repeat() - signals that a key is still pressed
684  * @dev:	the struct rc_dev descriptor of the device
685  *
686  * This routine is used by IR decoders when a repeat message which does
687  * not include the necessary bits to reproduce the scancode has been
688  * received.
689  */
690 void rc_repeat(struct rc_dev *dev)
691 {
692 	unsigned long flags;
693 	unsigned int timeout = protocols[dev->last_protocol].repeat_period;
694 	struct lirc_scancode sc = {
695 		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
696 		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
697 		.flags = LIRC_SCANCODE_FLAG_REPEAT |
698 			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
699 	};
700 
701 	ir_lirc_scancode_event(dev, &sc);
702 
703 	spin_lock_irqsave(&dev->keylock, flags);
704 
705 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
706 	input_sync(dev->input_dev);
707 
708 	if (dev->keypressed) {
709 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
710 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
711 	}
712 
713 	spin_unlock_irqrestore(&dev->keylock, flags);
714 }
715 EXPORT_SYMBOL_GPL(rc_repeat);
716 
717 /**
718  * ir_do_keydown() - internal function to process a keypress
719  * @dev:	the struct rc_dev descriptor of the device
720  * @protocol:	the protocol of the keypress
721  * @scancode:   the scancode of the keypress
722  * @keycode:    the keycode of the keypress
723  * @toggle:     the toggle value of the keypress
724  *
725  * This function is used internally to register a keypress, it must be
726  * called with keylock held.
727  */
728 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
729 			  u32 scancode, u32 keycode, u8 toggle)
730 {
731 	bool new_event = (!dev->keypressed		 ||
732 			  dev->last_protocol != protocol ||
733 			  dev->last_scancode != scancode ||
734 			  dev->last_toggle   != toggle);
735 	struct lirc_scancode sc = {
736 		.scancode = scancode, .rc_proto = protocol,
737 		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
738 		.keycode = keycode
739 	};
740 
741 	ir_lirc_scancode_event(dev, &sc);
742 
743 	if (new_event && dev->keypressed)
744 		ir_do_keyup(dev, false);
745 
746 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
747 
748 	dev->last_protocol = protocol;
749 	dev->last_scancode = scancode;
750 	dev->last_toggle = toggle;
751 	dev->last_keycode = keycode;
752 
753 	if (new_event && keycode != KEY_RESERVED) {
754 		/* Register a keypress */
755 		dev->keypressed = true;
756 
757 		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
758 			dev->device_name, keycode, protocol, scancode);
759 		input_report_key(dev->input_dev, keycode, 1);
760 
761 		led_trigger_event(led_feedback, LED_FULL);
762 	}
763 
764 	/*
765 	 * For CEC, start sending repeat messages as soon as the first
766 	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
767 	 * is non-zero. Otherwise, the input layer will generate repeat
768 	 * messages.
769 	 */
770 	if (!new_event && keycode != KEY_RESERVED &&
771 	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
772 	    !timer_pending(&dev->timer_repeat) &&
773 	    dev->input_dev->rep[REP_PERIOD] &&
774 	    !dev->input_dev->rep[REP_DELAY]) {
775 		input_event(dev->input_dev, EV_KEY, keycode, 2);
776 		mod_timer(&dev->timer_repeat, jiffies +
777 			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
778 	}
779 
780 	input_sync(dev->input_dev);
781 }
782 
783 /**
784  * rc_keydown() - generates input event for a key press
785  * @dev:	the struct rc_dev descriptor of the device
786  * @protocol:	the protocol for the keypress
787  * @scancode:	the scancode for the keypress
788  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
789  *              support toggle values, this should be set to zero)
790  *
791  * This routine is used to signal that a key has been pressed on the
792  * remote control.
793  */
794 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
795 		u8 toggle)
796 {
797 	unsigned long flags;
798 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
799 
800 	spin_lock_irqsave(&dev->keylock, flags);
801 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
802 
803 	if (dev->keypressed) {
804 		dev->keyup_jiffies = jiffies +
805 			msecs_to_jiffies(protocols[protocol].repeat_period);
806 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
807 	}
808 	spin_unlock_irqrestore(&dev->keylock, flags);
809 }
810 EXPORT_SYMBOL_GPL(rc_keydown);
811 
812 /**
813  * rc_keydown_notimeout() - generates input event for a key press without
814  *                          an automatic keyup event at a later time
815  * @dev:	the struct rc_dev descriptor of the device
816  * @protocol:	the protocol for the keypress
817  * @scancode:	the scancode for the keypress
818  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
819  *              support toggle values, this should be set to zero)
820  *
821  * This routine is used to signal that a key has been pressed on the
822  * remote control. The driver must manually call rc_keyup() at a later stage.
823  */
824 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
825 			  u32 scancode, u8 toggle)
826 {
827 	unsigned long flags;
828 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
829 
830 	spin_lock_irqsave(&dev->keylock, flags);
831 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
832 	spin_unlock_irqrestore(&dev->keylock, flags);
833 }
834 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
835 
836 /**
837  * rc_validate_scancode() - checks that a scancode is valid for a protocol.
838  *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
839  * @proto:	protocol
840  * @scancode:	scancode
841  */
842 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
843 {
844 	switch (proto) {
845 	/*
846 	 * NECX has a 16-bit address; if the lower 8 bits match the upper
847 	 * 8 bits inverted, then the address would match regular nec.
848 	 */
849 	case RC_PROTO_NECX:
850 		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
851 			return false;
852 		break;
853 	/*
854 	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
855 	 * of the command match the upper 8 bits inverted, then it would
856 	 * be either NEC or NECX.
857 	 */
858 	case RC_PROTO_NEC32:
859 		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
860 			return false;
861 		break;
862 	/*
863 	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
864 	 * is regular mode-6a 32 bit
865 	 */
866 	case RC_PROTO_RC6_MCE:
867 		if ((scancode & 0xffff0000) != 0x800f0000)
868 			return false;
869 		break;
870 	case RC_PROTO_RC6_6A_32:
871 		if ((scancode & 0xffff0000) == 0x800f0000)
872 			return false;
873 		break;
874 	default:
875 		break;
876 	}
877 
878 	return true;
879 }
880 
881 /**
882  * rc_validate_filter() - checks that the scancode and mask are valid and
883  *			  provides sensible defaults
884  * @dev:	the struct rc_dev descriptor of the device
885  * @filter:	the scancode and mask
886  *
887  * return:	0 or -EINVAL if the filter is not valid
888  */
889 static int rc_validate_filter(struct rc_dev *dev,
890 			      struct rc_scancode_filter *filter)
891 {
892 	u32 mask, s = filter->data;
893 	enum rc_proto protocol = dev->wakeup_protocol;
894 
895 	if (protocol >= ARRAY_SIZE(protocols))
896 		return -EINVAL;
897 
898 	mask = protocols[protocol].scancode_bits;
899 
900 	if (!rc_validate_scancode(protocol, s))
901 		return -EINVAL;
902 
903 	filter->data &= mask;
904 	filter->mask &= mask;
905 
906 	/*
907 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
908 	 */
909 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
910 		return -EINVAL;
911 
912 	return 0;
913 }
914 
915 int rc_open(struct rc_dev *rdev)
916 {
917 	int rval = 0;
918 
919 	if (!rdev)
920 		return -EINVAL;
921 
922 	mutex_lock(&rdev->lock);
923 
924 	if (!rdev->registered) {
925 		rval = -ENODEV;
926 	} else {
927 		if (!rdev->users++ && rdev->open)
928 			rval = rdev->open(rdev);
929 
930 		if (rval)
931 			rdev->users--;
932 	}
933 
934 	mutex_unlock(&rdev->lock);
935 
936 	return rval;
937 }
938 
939 static int ir_open(struct input_dev *idev)
940 {
941 	struct rc_dev *rdev = input_get_drvdata(idev);
942 
943 	return rc_open(rdev);
944 }
945 
946 void rc_close(struct rc_dev *rdev)
947 {
948 	if (rdev) {
949 		mutex_lock(&rdev->lock);
950 
951 		if (!--rdev->users && rdev->close && rdev->registered)
952 			rdev->close(rdev);
953 
954 		mutex_unlock(&rdev->lock);
955 	}
956 }
957 
958 static void ir_close(struct input_dev *idev)
959 {
960 	struct rc_dev *rdev = input_get_drvdata(idev);
961 	rc_close(rdev);
962 }
963 
964 /* class for /sys/class/rc */
965 static char *rc_devnode(struct device *dev, umode_t *mode)
966 {
967 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
968 }
969 
970 static struct class rc_class = {
971 	.name		= "rc",
972 	.devnode	= rc_devnode,
973 };
974 
975 /*
976  * These are the protocol textual descriptions that are
977  * used by the sysfs protocols file. Note that the order
978  * of the entries is relevant.
979  */
980 static const struct {
981 	u64	type;
982 	const char	*name;
983 	const char	*module_name;
984 } proto_names[] = {
985 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
986 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
987 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
988 	{ RC_PROTO_BIT_RC5 |
989 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
990 	{ RC_PROTO_BIT_NEC |
991 	  RC_PROTO_BIT_NECX |
992 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
993 	{ RC_PROTO_BIT_RC6_0 |
994 	  RC_PROTO_BIT_RC6_6A_20 |
995 	  RC_PROTO_BIT_RC6_6A_24 |
996 	  RC_PROTO_BIT_RC6_6A_32 |
997 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
998 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
999 	{ RC_PROTO_BIT_SONY12 |
1000 	  RC_PROTO_BIT_SONY15 |
1001 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1002 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1003 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1004 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1005 	{ RC_PROTO_BIT_MCIR2_KBD |
1006 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1007 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1008 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1009 	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1010 };
1011 
1012 /**
1013  * struct rc_filter_attribute - Device attribute relating to a filter type.
1014  * @attr:	Device attribute.
1015  * @type:	Filter type.
1016  * @mask:	false for filter value, true for filter mask.
1017  */
1018 struct rc_filter_attribute {
1019 	struct device_attribute		attr;
1020 	enum rc_filter_type		type;
1021 	bool				mask;
1022 };
1023 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1024 
1025 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1026 	struct rc_filter_attribute dev_attr_##_name = {			\
1027 		.attr = __ATTR(_name, _mode, _show, _store),		\
1028 		.type = (_type),					\
1029 		.mask = (_mask),					\
1030 	}
1031 
1032 /**
1033  * show_protocols() - shows the current IR protocol(s)
1034  * @device:	the device descriptor
1035  * @mattr:	the device attribute struct
1036  * @buf:	a pointer to the output buffer
1037  *
1038  * This routine is a callback routine for input read the IR protocol type(s).
1039  * it is trigged by reading /sys/class/rc/rc?/protocols.
1040  * It returns the protocol names of supported protocols.
1041  * Enabled protocols are printed in brackets.
1042  *
1043  * dev->lock is taken to guard against races between
1044  * store_protocols and show_protocols.
1045  */
1046 static ssize_t show_protocols(struct device *device,
1047 			      struct device_attribute *mattr, char *buf)
1048 {
1049 	struct rc_dev *dev = to_rc_dev(device);
1050 	u64 allowed, enabled;
1051 	char *tmp = buf;
1052 	int i;
1053 
1054 	mutex_lock(&dev->lock);
1055 
1056 	enabled = dev->enabled_protocols;
1057 	allowed = dev->allowed_protocols;
1058 	if (dev->raw && !allowed)
1059 		allowed = ir_raw_get_allowed_protocols();
1060 
1061 	mutex_unlock(&dev->lock);
1062 
1063 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1064 		__func__, (long long)allowed, (long long)enabled);
1065 
1066 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1067 		if (allowed & enabled & proto_names[i].type)
1068 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1069 		else if (allowed & proto_names[i].type)
1070 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1071 
1072 		if (allowed & proto_names[i].type)
1073 			allowed &= ~proto_names[i].type;
1074 	}
1075 
1076 #ifdef CONFIG_LIRC
1077 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1078 		tmp += sprintf(tmp, "[lirc] ");
1079 #endif
1080 
1081 	if (tmp != buf)
1082 		tmp--;
1083 	*tmp = '\n';
1084 
1085 	return tmp + 1 - buf;
1086 }
1087 
1088 /**
1089  * parse_protocol_change() - parses a protocol change request
1090  * @dev:	rc_dev device
1091  * @protocols:	pointer to the bitmask of current protocols
1092  * @buf:	pointer to the buffer with a list of changes
1093  *
1094  * Writing "+proto" will add a protocol to the protocol mask.
1095  * Writing "-proto" will remove a protocol from protocol mask.
1096  * Writing "proto" will enable only "proto".
1097  * Writing "none" will disable all protocols.
1098  * Returns the number of changes performed or a negative error code.
1099  */
1100 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1101 				 const char *buf)
1102 {
1103 	const char *tmp;
1104 	unsigned count = 0;
1105 	bool enable, disable;
1106 	u64 mask;
1107 	int i;
1108 
1109 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1110 		if (!*tmp)
1111 			break;
1112 
1113 		if (*tmp == '+') {
1114 			enable = true;
1115 			disable = false;
1116 			tmp++;
1117 		} else if (*tmp == '-') {
1118 			enable = false;
1119 			disable = true;
1120 			tmp++;
1121 		} else {
1122 			enable = false;
1123 			disable = false;
1124 		}
1125 
1126 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1127 			if (!strcasecmp(tmp, proto_names[i].name)) {
1128 				mask = proto_names[i].type;
1129 				break;
1130 			}
1131 		}
1132 
1133 		if (i == ARRAY_SIZE(proto_names)) {
1134 			if (!strcasecmp(tmp, "lirc"))
1135 				mask = 0;
1136 			else {
1137 				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1138 					tmp);
1139 				return -EINVAL;
1140 			}
1141 		}
1142 
1143 		count++;
1144 
1145 		if (enable)
1146 			*protocols |= mask;
1147 		else if (disable)
1148 			*protocols &= ~mask;
1149 		else
1150 			*protocols = mask;
1151 	}
1152 
1153 	if (!count) {
1154 		dev_dbg(&dev->dev, "Protocol not specified\n");
1155 		return -EINVAL;
1156 	}
1157 
1158 	return count;
1159 }
1160 
1161 void ir_raw_load_modules(u64 *protocols)
1162 {
1163 	u64 available;
1164 	int i, ret;
1165 
1166 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1167 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1168 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1169 					   RC_PROTO_BIT_UNKNOWN))
1170 			continue;
1171 
1172 		available = ir_raw_get_allowed_protocols();
1173 		if (!(*protocols & proto_names[i].type & ~available))
1174 			continue;
1175 
1176 		if (!proto_names[i].module_name) {
1177 			pr_err("Can't enable IR protocol %s\n",
1178 			       proto_names[i].name);
1179 			*protocols &= ~proto_names[i].type;
1180 			continue;
1181 		}
1182 
1183 		ret = request_module("%s", proto_names[i].module_name);
1184 		if (ret < 0) {
1185 			pr_err("Couldn't load IR protocol module %s\n",
1186 			       proto_names[i].module_name);
1187 			*protocols &= ~proto_names[i].type;
1188 			continue;
1189 		}
1190 		msleep(20);
1191 		available = ir_raw_get_allowed_protocols();
1192 		if (!(*protocols & proto_names[i].type & ~available))
1193 			continue;
1194 
1195 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1196 		       proto_names[i].module_name,
1197 		       proto_names[i].name);
1198 		*protocols &= ~proto_names[i].type;
1199 	}
1200 }
1201 
1202 /**
1203  * store_protocols() - changes the current/wakeup IR protocol(s)
1204  * @device:	the device descriptor
1205  * @mattr:	the device attribute struct
1206  * @buf:	a pointer to the input buffer
1207  * @len:	length of the input buffer
1208  *
1209  * This routine is for changing the IR protocol type.
1210  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1211  * See parse_protocol_change() for the valid commands.
1212  * Returns @len on success or a negative error code.
1213  *
1214  * dev->lock is taken to guard against races between
1215  * store_protocols and show_protocols.
1216  */
1217 static ssize_t store_protocols(struct device *device,
1218 			       struct device_attribute *mattr,
1219 			       const char *buf, size_t len)
1220 {
1221 	struct rc_dev *dev = to_rc_dev(device);
1222 	u64 *current_protocols;
1223 	struct rc_scancode_filter *filter;
1224 	u64 old_protocols, new_protocols;
1225 	ssize_t rc;
1226 
1227 	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1228 	current_protocols = &dev->enabled_protocols;
1229 	filter = &dev->scancode_filter;
1230 
1231 	if (!dev->change_protocol) {
1232 		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1233 		return -EINVAL;
1234 	}
1235 
1236 	mutex_lock(&dev->lock);
1237 
1238 	old_protocols = *current_protocols;
1239 	new_protocols = old_protocols;
1240 	rc = parse_protocol_change(dev, &new_protocols, buf);
1241 	if (rc < 0)
1242 		goto out;
1243 
1244 	rc = dev->change_protocol(dev, &new_protocols);
1245 	if (rc < 0) {
1246 		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1247 			(long long)new_protocols);
1248 		goto out;
1249 	}
1250 
1251 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1252 		ir_raw_load_modules(&new_protocols);
1253 
1254 	if (new_protocols != old_protocols) {
1255 		*current_protocols = new_protocols;
1256 		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1257 			(long long)new_protocols);
1258 	}
1259 
1260 	/*
1261 	 * If a protocol change was attempted the filter may need updating, even
1262 	 * if the actual protocol mask hasn't changed (since the driver may have
1263 	 * cleared the filter).
1264 	 * Try setting the same filter with the new protocol (if any).
1265 	 * Fall back to clearing the filter.
1266 	 */
1267 	if (dev->s_filter && filter->mask) {
1268 		if (new_protocols)
1269 			rc = dev->s_filter(dev, filter);
1270 		else
1271 			rc = -1;
1272 
1273 		if (rc < 0) {
1274 			filter->data = 0;
1275 			filter->mask = 0;
1276 			dev->s_filter(dev, filter);
1277 		}
1278 	}
1279 
1280 	rc = len;
1281 
1282 out:
1283 	mutex_unlock(&dev->lock);
1284 	return rc;
1285 }
1286 
1287 /**
1288  * show_filter() - shows the current scancode filter value or mask
1289  * @device:	the device descriptor
1290  * @attr:	the device attribute struct
1291  * @buf:	a pointer to the output buffer
1292  *
1293  * This routine is a callback routine to read a scancode filter value or mask.
1294  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1295  * It prints the current scancode filter value or mask of the appropriate filter
1296  * type in hexadecimal into @buf and returns the size of the buffer.
1297  *
1298  * Bits of the filter value corresponding to set bits in the filter mask are
1299  * compared against input scancodes and non-matching scancodes are discarded.
1300  *
1301  * dev->lock is taken to guard against races between
1302  * store_filter and show_filter.
1303  */
1304 static ssize_t show_filter(struct device *device,
1305 			   struct device_attribute *attr,
1306 			   char *buf)
1307 {
1308 	struct rc_dev *dev = to_rc_dev(device);
1309 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1310 	struct rc_scancode_filter *filter;
1311 	u32 val;
1312 
1313 	mutex_lock(&dev->lock);
1314 
1315 	if (fattr->type == RC_FILTER_NORMAL)
1316 		filter = &dev->scancode_filter;
1317 	else
1318 		filter = &dev->scancode_wakeup_filter;
1319 
1320 	if (fattr->mask)
1321 		val = filter->mask;
1322 	else
1323 		val = filter->data;
1324 	mutex_unlock(&dev->lock);
1325 
1326 	return sprintf(buf, "%#x\n", val);
1327 }
1328 
1329 /**
1330  * store_filter() - changes the scancode filter value
1331  * @device:	the device descriptor
1332  * @attr:	the device attribute struct
1333  * @buf:	a pointer to the input buffer
1334  * @len:	length of the input buffer
1335  *
1336  * This routine is for changing a scancode filter value or mask.
1337  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1338  * Returns -EINVAL if an invalid filter value for the current protocol was
1339  * specified or if scancode filtering is not supported by the driver, otherwise
1340  * returns @len.
1341  *
1342  * Bits of the filter value corresponding to set bits in the filter mask are
1343  * compared against input scancodes and non-matching scancodes are discarded.
1344  *
1345  * dev->lock is taken to guard against races between
1346  * store_filter and show_filter.
1347  */
1348 static ssize_t store_filter(struct device *device,
1349 			    struct device_attribute *attr,
1350 			    const char *buf, size_t len)
1351 {
1352 	struct rc_dev *dev = to_rc_dev(device);
1353 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1354 	struct rc_scancode_filter new_filter, *filter;
1355 	int ret;
1356 	unsigned long val;
1357 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1358 
1359 	ret = kstrtoul(buf, 0, &val);
1360 	if (ret < 0)
1361 		return ret;
1362 
1363 	if (fattr->type == RC_FILTER_NORMAL) {
1364 		set_filter = dev->s_filter;
1365 		filter = &dev->scancode_filter;
1366 	} else {
1367 		set_filter = dev->s_wakeup_filter;
1368 		filter = &dev->scancode_wakeup_filter;
1369 	}
1370 
1371 	if (!set_filter)
1372 		return -EINVAL;
1373 
1374 	mutex_lock(&dev->lock);
1375 
1376 	new_filter = *filter;
1377 	if (fattr->mask)
1378 		new_filter.mask = val;
1379 	else
1380 		new_filter.data = val;
1381 
1382 	if (fattr->type == RC_FILTER_WAKEUP) {
1383 		/*
1384 		 * Refuse to set a filter unless a protocol is enabled
1385 		 * and the filter is valid for that protocol
1386 		 */
1387 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1388 			ret = rc_validate_filter(dev, &new_filter);
1389 		else
1390 			ret = -EINVAL;
1391 
1392 		if (ret != 0)
1393 			goto unlock;
1394 	}
1395 
1396 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1397 	    val) {
1398 		/* refuse to set a filter unless a protocol is enabled */
1399 		ret = -EINVAL;
1400 		goto unlock;
1401 	}
1402 
1403 	ret = set_filter(dev, &new_filter);
1404 	if (ret < 0)
1405 		goto unlock;
1406 
1407 	*filter = new_filter;
1408 
1409 unlock:
1410 	mutex_unlock(&dev->lock);
1411 	return (ret < 0) ? ret : len;
1412 }
1413 
1414 /**
1415  * show_wakeup_protocols() - shows the wakeup IR protocol
1416  * @device:	the device descriptor
1417  * @mattr:	the device attribute struct
1418  * @buf:	a pointer to the output buffer
1419  *
1420  * This routine is a callback routine for input read the IR protocol type(s).
1421  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1422  * It returns the protocol names of supported protocols.
1423  * The enabled protocols are printed in brackets.
1424  *
1425  * dev->lock is taken to guard against races between
1426  * store_wakeup_protocols and show_wakeup_protocols.
1427  */
1428 static ssize_t show_wakeup_protocols(struct device *device,
1429 				     struct device_attribute *mattr,
1430 				     char *buf)
1431 {
1432 	struct rc_dev *dev = to_rc_dev(device);
1433 	u64 allowed;
1434 	enum rc_proto enabled;
1435 	char *tmp = buf;
1436 	int i;
1437 
1438 	mutex_lock(&dev->lock);
1439 
1440 	allowed = dev->allowed_wakeup_protocols;
1441 	enabled = dev->wakeup_protocol;
1442 
1443 	mutex_unlock(&dev->lock);
1444 
1445 	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1446 		__func__, (long long)allowed, enabled);
1447 
1448 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1449 		if (allowed & (1ULL << i)) {
1450 			if (i == enabled)
1451 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1452 			else
1453 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1454 		}
1455 	}
1456 
1457 	if (tmp != buf)
1458 		tmp--;
1459 	*tmp = '\n';
1460 
1461 	return tmp + 1 - buf;
1462 }
1463 
1464 /**
1465  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1466  * @device:	the device descriptor
1467  * @mattr:	the device attribute struct
1468  * @buf:	a pointer to the input buffer
1469  * @len:	length of the input buffer
1470  *
1471  * This routine is for changing the IR protocol type.
1472  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1473  * Returns @len on success or a negative error code.
1474  *
1475  * dev->lock is taken to guard against races between
1476  * store_wakeup_protocols and show_wakeup_protocols.
1477  */
1478 static ssize_t store_wakeup_protocols(struct device *device,
1479 				      struct device_attribute *mattr,
1480 				      const char *buf, size_t len)
1481 {
1482 	struct rc_dev *dev = to_rc_dev(device);
1483 	enum rc_proto protocol;
1484 	ssize_t rc;
1485 	u64 allowed;
1486 	int i;
1487 
1488 	mutex_lock(&dev->lock);
1489 
1490 	allowed = dev->allowed_wakeup_protocols;
1491 
1492 	if (sysfs_streq(buf, "none")) {
1493 		protocol = RC_PROTO_UNKNOWN;
1494 	} else {
1495 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1496 			if ((allowed & (1ULL << i)) &&
1497 			    sysfs_streq(buf, protocols[i].name)) {
1498 				protocol = i;
1499 				break;
1500 			}
1501 		}
1502 
1503 		if (i == ARRAY_SIZE(protocols)) {
1504 			rc = -EINVAL;
1505 			goto out;
1506 		}
1507 
1508 		if (dev->encode_wakeup) {
1509 			u64 mask = 1ULL << protocol;
1510 
1511 			ir_raw_load_modules(&mask);
1512 			if (!mask) {
1513 				rc = -EINVAL;
1514 				goto out;
1515 			}
1516 		}
1517 	}
1518 
1519 	if (dev->wakeup_protocol != protocol) {
1520 		dev->wakeup_protocol = protocol;
1521 		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1522 
1523 		if (protocol == RC_PROTO_RC6_MCE)
1524 			dev->scancode_wakeup_filter.data = 0x800f0000;
1525 		else
1526 			dev->scancode_wakeup_filter.data = 0;
1527 		dev->scancode_wakeup_filter.mask = 0;
1528 
1529 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1530 		if (rc == 0)
1531 			rc = len;
1532 	} else {
1533 		rc = len;
1534 	}
1535 
1536 out:
1537 	mutex_unlock(&dev->lock);
1538 	return rc;
1539 }
1540 
1541 static void rc_dev_release(struct device *device)
1542 {
1543 	struct rc_dev *dev = to_rc_dev(device);
1544 
1545 	kfree(dev);
1546 }
1547 
1548 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1549 	do {								\
1550 		int err = add_uevent_var(env, fmt, val);		\
1551 		if (err)						\
1552 			return err;					\
1553 	} while (0)
1554 
1555 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1556 {
1557 	struct rc_dev *dev = to_rc_dev(device);
1558 
1559 	if (dev->rc_map.name)
1560 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1561 	if (dev->driver_name)
1562 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1563 	if (dev->device_name)
1564 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Static device attribute struct with the sysfs attributes for IR's
1571  */
1572 static struct device_attribute dev_attr_ro_protocols =
1573 __ATTR(protocols, 0444, show_protocols, NULL);
1574 static struct device_attribute dev_attr_rw_protocols =
1575 __ATTR(protocols, 0644, show_protocols, store_protocols);
1576 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1577 		   store_wakeup_protocols);
1578 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1579 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1580 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1581 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1582 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1583 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1584 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1585 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1586 
1587 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1588 	&dev_attr_rw_protocols.attr,
1589 	NULL,
1590 };
1591 
1592 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1593 	.attrs	= rc_dev_rw_protocol_attrs,
1594 };
1595 
1596 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1597 	&dev_attr_ro_protocols.attr,
1598 	NULL,
1599 };
1600 
1601 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1602 	.attrs	= rc_dev_ro_protocol_attrs,
1603 };
1604 
1605 static struct attribute *rc_dev_filter_attrs[] = {
1606 	&dev_attr_filter.attr.attr,
1607 	&dev_attr_filter_mask.attr.attr,
1608 	NULL,
1609 };
1610 
1611 static const struct attribute_group rc_dev_filter_attr_grp = {
1612 	.attrs	= rc_dev_filter_attrs,
1613 };
1614 
1615 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1616 	&dev_attr_wakeup_filter.attr.attr,
1617 	&dev_attr_wakeup_filter_mask.attr.attr,
1618 	&dev_attr_wakeup_protocols.attr,
1619 	NULL,
1620 };
1621 
1622 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1623 	.attrs	= rc_dev_wakeup_filter_attrs,
1624 };
1625 
1626 static const struct device_type rc_dev_type = {
1627 	.release	= rc_dev_release,
1628 	.uevent		= rc_dev_uevent,
1629 };
1630 
1631 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1632 {
1633 	struct rc_dev *dev;
1634 
1635 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1636 	if (!dev)
1637 		return NULL;
1638 
1639 	if (type != RC_DRIVER_IR_RAW_TX) {
1640 		dev->input_dev = input_allocate_device();
1641 		if (!dev->input_dev) {
1642 			kfree(dev);
1643 			return NULL;
1644 		}
1645 
1646 		dev->input_dev->getkeycode = ir_getkeycode;
1647 		dev->input_dev->setkeycode = ir_setkeycode;
1648 		input_set_drvdata(dev->input_dev, dev);
1649 
1650 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1651 		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1652 
1653 		spin_lock_init(&dev->rc_map.lock);
1654 		spin_lock_init(&dev->keylock);
1655 	}
1656 	mutex_init(&dev->lock);
1657 
1658 	dev->dev.type = &rc_dev_type;
1659 	dev->dev.class = &rc_class;
1660 	device_initialize(&dev->dev);
1661 
1662 	dev->driver_type = type;
1663 
1664 	__module_get(THIS_MODULE);
1665 	return dev;
1666 }
1667 EXPORT_SYMBOL_GPL(rc_allocate_device);
1668 
1669 void rc_free_device(struct rc_dev *dev)
1670 {
1671 	if (!dev)
1672 		return;
1673 
1674 	input_free_device(dev->input_dev);
1675 
1676 	put_device(&dev->dev);
1677 
1678 	/* kfree(dev) will be called by the callback function
1679 	   rc_dev_release() */
1680 
1681 	module_put(THIS_MODULE);
1682 }
1683 EXPORT_SYMBOL_GPL(rc_free_device);
1684 
1685 static void devm_rc_alloc_release(struct device *dev, void *res)
1686 {
1687 	rc_free_device(*(struct rc_dev **)res);
1688 }
1689 
1690 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1691 				       enum rc_driver_type type)
1692 {
1693 	struct rc_dev **dr, *rc;
1694 
1695 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1696 	if (!dr)
1697 		return NULL;
1698 
1699 	rc = rc_allocate_device(type);
1700 	if (!rc) {
1701 		devres_free(dr);
1702 		return NULL;
1703 	}
1704 
1705 	rc->dev.parent = dev;
1706 	rc->managed_alloc = true;
1707 	*dr = rc;
1708 	devres_add(dev, dr);
1709 
1710 	return rc;
1711 }
1712 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1713 
1714 static int rc_prepare_rx_device(struct rc_dev *dev)
1715 {
1716 	int rc;
1717 	struct rc_map *rc_map;
1718 	u64 rc_proto;
1719 
1720 	if (!dev->map_name)
1721 		return -EINVAL;
1722 
1723 	rc_map = rc_map_get(dev->map_name);
1724 	if (!rc_map)
1725 		rc_map = rc_map_get(RC_MAP_EMPTY);
1726 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1727 		return -EINVAL;
1728 
1729 	rc = ir_setkeytable(dev, rc_map);
1730 	if (rc)
1731 		return rc;
1732 
1733 	rc_proto = BIT_ULL(rc_map->rc_proto);
1734 
1735 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1736 		dev->enabled_protocols = dev->allowed_protocols;
1737 
1738 	if (dev->change_protocol) {
1739 		rc = dev->change_protocol(dev, &rc_proto);
1740 		if (rc < 0)
1741 			goto out_table;
1742 		dev->enabled_protocols = rc_proto;
1743 	}
1744 
1745 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1746 		ir_raw_load_modules(&rc_proto);
1747 
1748 	set_bit(EV_KEY, dev->input_dev->evbit);
1749 	set_bit(EV_REP, dev->input_dev->evbit);
1750 	set_bit(EV_MSC, dev->input_dev->evbit);
1751 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1752 	if (dev->open)
1753 		dev->input_dev->open = ir_open;
1754 	if (dev->close)
1755 		dev->input_dev->close = ir_close;
1756 
1757 	dev->input_dev->dev.parent = &dev->dev;
1758 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1759 	dev->input_dev->phys = dev->input_phys;
1760 	dev->input_dev->name = dev->device_name;
1761 
1762 	return 0;
1763 
1764 out_table:
1765 	ir_free_table(&dev->rc_map);
1766 
1767 	return rc;
1768 }
1769 
1770 static int rc_setup_rx_device(struct rc_dev *dev)
1771 {
1772 	int rc;
1773 
1774 	/* rc_open will be called here */
1775 	rc = input_register_device(dev->input_dev);
1776 	if (rc)
1777 		return rc;
1778 
1779 	/*
1780 	 * Default delay of 250ms is too short for some protocols, especially
1781 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1782 	 * to avoid wrong repetition of the keycodes. Note that this must be
1783 	 * set after the call to input_register_device().
1784 	 */
1785 	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1786 		dev->input_dev->rep[REP_DELAY] = 0;
1787 	else
1788 		dev->input_dev->rep[REP_DELAY] = 500;
1789 
1790 	/*
1791 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1792 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1793 	 * to do.
1794 	 */
1795 	dev->input_dev->rep[REP_PERIOD] = 125;
1796 
1797 	return 0;
1798 }
1799 
1800 static void rc_free_rx_device(struct rc_dev *dev)
1801 {
1802 	if (!dev)
1803 		return;
1804 
1805 	if (dev->input_dev) {
1806 		input_unregister_device(dev->input_dev);
1807 		dev->input_dev = NULL;
1808 	}
1809 
1810 	ir_free_table(&dev->rc_map);
1811 }
1812 
1813 int rc_register_device(struct rc_dev *dev)
1814 {
1815 	const char *path;
1816 	int attr = 0;
1817 	int minor;
1818 	int rc;
1819 
1820 	if (!dev)
1821 		return -EINVAL;
1822 
1823 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1824 	if (minor < 0)
1825 		return minor;
1826 
1827 	dev->minor = minor;
1828 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1829 	dev_set_drvdata(&dev->dev, dev);
1830 
1831 	dev->dev.groups = dev->sysfs_groups;
1832 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1833 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1834 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1835 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1836 	if (dev->s_filter)
1837 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1838 	if (dev->s_wakeup_filter)
1839 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1840 	dev->sysfs_groups[attr++] = NULL;
1841 
1842 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1843 		rc = ir_raw_event_prepare(dev);
1844 		if (rc < 0)
1845 			goto out_minor;
1846 	}
1847 
1848 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1849 		rc = rc_prepare_rx_device(dev);
1850 		if (rc)
1851 			goto out_raw;
1852 	}
1853 
1854 	rc = device_add(&dev->dev);
1855 	if (rc)
1856 		goto out_rx_free;
1857 
1858 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1859 	dev_info(&dev->dev, "%s as %s\n",
1860 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1861 	kfree(path);
1862 
1863 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1864 		rc = rc_setup_rx_device(dev);
1865 		if (rc)
1866 			goto out_dev;
1867 	}
1868 
1869 	/* Ensure that the lirc kfifo is setup before we start the thread */
1870 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1871 		rc = ir_lirc_register(dev);
1872 		if (rc < 0)
1873 			goto out_rx;
1874 	}
1875 
1876 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1877 		rc = ir_raw_event_register(dev);
1878 		if (rc < 0)
1879 			goto out_lirc;
1880 	}
1881 
1882 	dev->registered = true;
1883 
1884 	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1885 		dev->driver_name ? dev->driver_name : "unknown");
1886 
1887 	return 0;
1888 
1889 out_lirc:
1890 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1891 		ir_lirc_unregister(dev);
1892 out_rx:
1893 	rc_free_rx_device(dev);
1894 out_dev:
1895 	device_del(&dev->dev);
1896 out_rx_free:
1897 	ir_free_table(&dev->rc_map);
1898 out_raw:
1899 	ir_raw_event_free(dev);
1900 out_minor:
1901 	ida_simple_remove(&rc_ida, minor);
1902 	return rc;
1903 }
1904 EXPORT_SYMBOL_GPL(rc_register_device);
1905 
1906 static void devm_rc_release(struct device *dev, void *res)
1907 {
1908 	rc_unregister_device(*(struct rc_dev **)res);
1909 }
1910 
1911 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1912 {
1913 	struct rc_dev **dr;
1914 	int ret;
1915 
1916 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1917 	if (!dr)
1918 		return -ENOMEM;
1919 
1920 	ret = rc_register_device(dev);
1921 	if (ret) {
1922 		devres_free(dr);
1923 		return ret;
1924 	}
1925 
1926 	*dr = dev;
1927 	devres_add(parent, dr);
1928 
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1932 
1933 void rc_unregister_device(struct rc_dev *dev)
1934 {
1935 	if (!dev)
1936 		return;
1937 
1938 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1939 		ir_raw_event_unregister(dev);
1940 
1941 	del_timer_sync(&dev->timer_keyup);
1942 	del_timer_sync(&dev->timer_repeat);
1943 
1944 	rc_free_rx_device(dev);
1945 
1946 	mutex_lock(&dev->lock);
1947 	dev->registered = false;
1948 	mutex_unlock(&dev->lock);
1949 
1950 	/*
1951 	 * lirc device should be freed with dev->registered = false, so
1952 	 * that userspace polling will get notified.
1953 	 */
1954 	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1955 		ir_lirc_unregister(dev);
1956 
1957 	device_del(&dev->dev);
1958 
1959 	ida_simple_remove(&rc_ida, dev->minor);
1960 
1961 	if (!dev->managed_alloc)
1962 		rc_free_device(dev);
1963 }
1964 
1965 EXPORT_SYMBOL_GPL(rc_unregister_device);
1966 
1967 /*
1968  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1969  */
1970 
1971 static int __init rc_core_init(void)
1972 {
1973 	int rc = class_register(&rc_class);
1974 	if (rc) {
1975 		pr_err("rc_core: unable to register rc class\n");
1976 		return rc;
1977 	}
1978 
1979 	rc = lirc_dev_init();
1980 	if (rc) {
1981 		pr_err("rc_core: unable to init lirc\n");
1982 		class_unregister(&rc_class);
1983 		return 0;
1984 	}
1985 
1986 	led_trigger_register_simple("rc-feedback", &led_feedback);
1987 	rc_map_register(&empty_map);
1988 
1989 	return 0;
1990 }
1991 
1992 static void __exit rc_core_exit(void)
1993 {
1994 	lirc_dev_exit();
1995 	class_unregister(&rc_class);
1996 	led_trigger_unregister_simple(led_feedback);
1997 	rc_map_unregister(&empty_map);
1998 }
1999 
2000 subsys_initcall(rc_core_init);
2001 module_exit(rc_core_exit);
2002 
2003 MODULE_AUTHOR("Mauro Carvalho Chehab");
2004 MODULE_LICENSE("GPL v2");
2005