1 // SPDX-License-Identifier: GPL-2.0 2 // rc-main.c - Remote Controller core module 3 // 4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <media/rc-core.h> 9 #include <linux/bsearch.h> 10 #include <linux/spinlock.h> 11 #include <linux/delay.h> 12 #include <linux/input.h> 13 #include <linux/leds.h> 14 #include <linux/slab.h> 15 #include <linux/idr.h> 16 #include <linux/device.h> 17 #include <linux/module.h> 18 #include "rc-core-priv.h" 19 20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 21 #define IR_TAB_MIN_SIZE 256 22 #define IR_TAB_MAX_SIZE 8192 23 24 static const struct { 25 const char *name; 26 unsigned int repeat_period; 27 unsigned int scancode_bits; 28 } protocols[] = { 29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 }, 30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 }, 31 [RC_PROTO_RC5] = { .name = "rc-5", 32 .scancode_bits = 0x1f7f, .repeat_period = 250 }, 33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", 34 .scancode_bits = 0x1f7f3f, .repeat_period = 250 }, 35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", 36 .scancode_bits = 0x2fff, .repeat_period = 250 }, 37 [RC_PROTO_JVC] = { .name = "jvc", 38 .scancode_bits = 0xffff, .repeat_period = 250 }, 39 [RC_PROTO_SONY12] = { .name = "sony-12", 40 .scancode_bits = 0x1f007f, .repeat_period = 250 }, 41 [RC_PROTO_SONY15] = { .name = "sony-15", 42 .scancode_bits = 0xff007f, .repeat_period = 250 }, 43 [RC_PROTO_SONY20] = { .name = "sony-20", 44 .scancode_bits = 0x1fff7f, .repeat_period = 250 }, 45 [RC_PROTO_NEC] = { .name = "nec", 46 .scancode_bits = 0xffff, .repeat_period = 250 }, 47 [RC_PROTO_NECX] = { .name = "nec-x", 48 .scancode_bits = 0xffffff, .repeat_period = 250 }, 49 [RC_PROTO_NEC32] = { .name = "nec-32", 50 .scancode_bits = 0xffffffff, .repeat_period = 250 }, 51 [RC_PROTO_SANYO] = { .name = "sanyo", 52 .scancode_bits = 0x1fffff, .repeat_period = 250 }, 53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", 54 .scancode_bits = 0xffff, .repeat_period = 250 }, 55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", 56 .scancode_bits = 0x1fffff, .repeat_period = 250 }, 57 [RC_PROTO_RC6_0] = { .name = "rc-6-0", 58 .scancode_bits = 0xffff, .repeat_period = 250 }, 59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", 60 .scancode_bits = 0xfffff, .repeat_period = 250 }, 61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", 62 .scancode_bits = 0xffffff, .repeat_period = 250 }, 63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", 64 .scancode_bits = 0xffffffff, .repeat_period = 250 }, 65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", 66 .scancode_bits = 0xffff7fff, .repeat_period = 250 }, 67 [RC_PROTO_SHARP] = { .name = "sharp", 68 .scancode_bits = 0x1fff, .repeat_period = 250 }, 69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 }, 70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 }, 71 [RC_PROTO_IMON] = { .name = "imon", 72 .scancode_bits = 0x7fffffff, .repeat_period = 250 }, 73 }; 74 75 /* Used to keep track of known keymaps */ 76 static LIST_HEAD(rc_map_list); 77 static DEFINE_SPINLOCK(rc_map_lock); 78 static struct led_trigger *led_feedback; 79 80 /* Used to keep track of rc devices */ 81 static DEFINE_IDA(rc_ida); 82 83 static struct rc_map_list *seek_rc_map(const char *name) 84 { 85 struct rc_map_list *map = NULL; 86 87 spin_lock(&rc_map_lock); 88 list_for_each_entry(map, &rc_map_list, list) { 89 if (!strcmp(name, map->map.name)) { 90 spin_unlock(&rc_map_lock); 91 return map; 92 } 93 } 94 spin_unlock(&rc_map_lock); 95 96 return NULL; 97 } 98 99 struct rc_map *rc_map_get(const char *name) 100 { 101 102 struct rc_map_list *map; 103 104 map = seek_rc_map(name); 105 #ifdef CONFIG_MODULES 106 if (!map) { 107 int rc = request_module("%s", name); 108 if (rc < 0) { 109 pr_err("Couldn't load IR keymap %s\n", name); 110 return NULL; 111 } 112 msleep(20); /* Give some time for IR to register */ 113 114 map = seek_rc_map(name); 115 } 116 #endif 117 if (!map) { 118 pr_err("IR keymap %s not found\n", name); 119 return NULL; 120 } 121 122 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 123 124 return &map->map; 125 } 126 EXPORT_SYMBOL_GPL(rc_map_get); 127 128 int rc_map_register(struct rc_map_list *map) 129 { 130 spin_lock(&rc_map_lock); 131 list_add_tail(&map->list, &rc_map_list); 132 spin_unlock(&rc_map_lock); 133 return 0; 134 } 135 EXPORT_SYMBOL_GPL(rc_map_register); 136 137 void rc_map_unregister(struct rc_map_list *map) 138 { 139 spin_lock(&rc_map_lock); 140 list_del(&map->list); 141 spin_unlock(&rc_map_lock); 142 } 143 EXPORT_SYMBOL_GPL(rc_map_unregister); 144 145 146 static struct rc_map_table empty[] = { 147 { 0x2a, KEY_COFFEE }, 148 }; 149 150 static struct rc_map_list empty_map = { 151 .map = { 152 .scan = empty, 153 .size = ARRAY_SIZE(empty), 154 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ 155 .name = RC_MAP_EMPTY, 156 } 157 }; 158 159 /** 160 * ir_create_table() - initializes a scancode table 161 * @dev: the rc_dev device 162 * @rc_map: the rc_map to initialize 163 * @name: name to assign to the table 164 * @rc_proto: ir type to assign to the new table 165 * @size: initial size of the table 166 * 167 * This routine will initialize the rc_map and will allocate 168 * memory to hold at least the specified number of elements. 169 * 170 * return: zero on success or a negative error code 171 */ 172 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, 173 const char *name, u64 rc_proto, size_t size) 174 { 175 rc_map->name = kstrdup(name, GFP_KERNEL); 176 if (!rc_map->name) 177 return -ENOMEM; 178 rc_map->rc_proto = rc_proto; 179 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 180 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 181 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 182 if (!rc_map->scan) { 183 kfree(rc_map->name); 184 rc_map->name = NULL; 185 return -ENOMEM; 186 } 187 188 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", 189 rc_map->size, rc_map->alloc); 190 return 0; 191 } 192 193 /** 194 * ir_free_table() - frees memory allocated by a scancode table 195 * @rc_map: the table whose mappings need to be freed 196 * 197 * This routine will free memory alloctaed for key mappings used by given 198 * scancode table. 199 */ 200 static void ir_free_table(struct rc_map *rc_map) 201 { 202 rc_map->size = 0; 203 kfree(rc_map->name); 204 rc_map->name = NULL; 205 kfree(rc_map->scan); 206 rc_map->scan = NULL; 207 } 208 209 /** 210 * ir_resize_table() - resizes a scancode table if necessary 211 * @dev: the rc_dev device 212 * @rc_map: the rc_map to resize 213 * @gfp_flags: gfp flags to use when allocating memory 214 * 215 * This routine will shrink the rc_map if it has lots of 216 * unused entries and grow it if it is full. 217 * 218 * return: zero on success or a negative error code 219 */ 220 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, 221 gfp_t gfp_flags) 222 { 223 unsigned int oldalloc = rc_map->alloc; 224 unsigned int newalloc = oldalloc; 225 struct rc_map_table *oldscan = rc_map->scan; 226 struct rc_map_table *newscan; 227 228 if (rc_map->size == rc_map->len) { 229 /* All entries in use -> grow keytable */ 230 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 231 return -ENOMEM; 232 233 newalloc *= 2; 234 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); 235 } 236 237 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 238 /* Less than 1/3 of entries in use -> shrink keytable */ 239 newalloc /= 2; 240 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); 241 } 242 243 if (newalloc == oldalloc) 244 return 0; 245 246 newscan = kmalloc(newalloc, gfp_flags); 247 if (!newscan) 248 return -ENOMEM; 249 250 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 251 rc_map->scan = newscan; 252 rc_map->alloc = newalloc; 253 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 254 kfree(oldscan); 255 return 0; 256 } 257 258 /** 259 * ir_update_mapping() - set a keycode in the scancode->keycode table 260 * @dev: the struct rc_dev device descriptor 261 * @rc_map: scancode table to be adjusted 262 * @index: index of the mapping that needs to be updated 263 * @new_keycode: the desired keycode 264 * 265 * This routine is used to update scancode->keycode mapping at given 266 * position. 267 * 268 * return: previous keycode assigned to the mapping 269 * 270 */ 271 static unsigned int ir_update_mapping(struct rc_dev *dev, 272 struct rc_map *rc_map, 273 unsigned int index, 274 unsigned int new_keycode) 275 { 276 int old_keycode = rc_map->scan[index].keycode; 277 int i; 278 279 /* Did the user wish to remove the mapping? */ 280 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 281 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n", 282 index, rc_map->scan[index].scancode); 283 rc_map->len--; 284 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 285 (rc_map->len - index) * sizeof(struct rc_map_table)); 286 } else { 287 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n", 288 index, 289 old_keycode == KEY_RESERVED ? "New" : "Replacing", 290 rc_map->scan[index].scancode, new_keycode); 291 rc_map->scan[index].keycode = new_keycode; 292 __set_bit(new_keycode, dev->input_dev->keybit); 293 } 294 295 if (old_keycode != KEY_RESERVED) { 296 /* A previous mapping was updated... */ 297 __clear_bit(old_keycode, dev->input_dev->keybit); 298 /* ... but another scancode might use the same keycode */ 299 for (i = 0; i < rc_map->len; i++) { 300 if (rc_map->scan[i].keycode == old_keycode) { 301 __set_bit(old_keycode, dev->input_dev->keybit); 302 break; 303 } 304 } 305 306 /* Possibly shrink the keytable, failure is not a problem */ 307 ir_resize_table(dev, rc_map, GFP_ATOMIC); 308 } 309 310 return old_keycode; 311 } 312 313 /** 314 * ir_establish_scancode() - set a keycode in the scancode->keycode table 315 * @dev: the struct rc_dev device descriptor 316 * @rc_map: scancode table to be searched 317 * @scancode: the desired scancode 318 * @resize: controls whether we allowed to resize the table to 319 * accommodate not yet present scancodes 320 * 321 * This routine is used to locate given scancode in rc_map. 322 * If scancode is not yet present the routine will allocate a new slot 323 * for it. 324 * 325 * return: index of the mapping containing scancode in question 326 * or -1U in case of failure. 327 */ 328 static unsigned int ir_establish_scancode(struct rc_dev *dev, 329 struct rc_map *rc_map, 330 unsigned int scancode, 331 bool resize) 332 { 333 unsigned int i; 334 335 /* 336 * Unfortunately, some hardware-based IR decoders don't provide 337 * all bits for the complete IR code. In general, they provide only 338 * the command part of the IR code. Yet, as it is possible to replace 339 * the provided IR with another one, it is needed to allow loading 340 * IR tables from other remotes. So, we support specifying a mask to 341 * indicate the valid bits of the scancodes. 342 */ 343 if (dev->scancode_mask) 344 scancode &= dev->scancode_mask; 345 346 /* First check if we already have a mapping for this ir command */ 347 for (i = 0; i < rc_map->len; i++) { 348 if (rc_map->scan[i].scancode == scancode) 349 return i; 350 351 /* Keytable is sorted from lowest to highest scancode */ 352 if (rc_map->scan[i].scancode >= scancode) 353 break; 354 } 355 356 /* No previous mapping found, we might need to grow the table */ 357 if (rc_map->size == rc_map->len) { 358 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) 359 return -1U; 360 } 361 362 /* i is the proper index to insert our new keycode */ 363 if (i < rc_map->len) 364 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 365 (rc_map->len - i) * sizeof(struct rc_map_table)); 366 rc_map->scan[i].scancode = scancode; 367 rc_map->scan[i].keycode = KEY_RESERVED; 368 rc_map->len++; 369 370 return i; 371 } 372 373 /** 374 * ir_setkeycode() - set a keycode in the scancode->keycode table 375 * @idev: the struct input_dev device descriptor 376 * @ke: Input keymap entry 377 * @old_keycode: result 378 * 379 * This routine is used to handle evdev EVIOCSKEY ioctl. 380 * 381 * return: -EINVAL if the keycode could not be inserted, otherwise zero. 382 */ 383 static int ir_setkeycode(struct input_dev *idev, 384 const struct input_keymap_entry *ke, 385 unsigned int *old_keycode) 386 { 387 struct rc_dev *rdev = input_get_drvdata(idev); 388 struct rc_map *rc_map = &rdev->rc_map; 389 unsigned int index; 390 unsigned int scancode; 391 int retval = 0; 392 unsigned long flags; 393 394 spin_lock_irqsave(&rc_map->lock, flags); 395 396 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 397 index = ke->index; 398 if (index >= rc_map->len) { 399 retval = -EINVAL; 400 goto out; 401 } 402 } else { 403 retval = input_scancode_to_scalar(ke, &scancode); 404 if (retval) 405 goto out; 406 407 index = ir_establish_scancode(rdev, rc_map, scancode, true); 408 if (index >= rc_map->len) { 409 retval = -ENOMEM; 410 goto out; 411 } 412 } 413 414 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 415 416 out: 417 spin_unlock_irqrestore(&rc_map->lock, flags); 418 return retval; 419 } 420 421 /** 422 * ir_setkeytable() - sets several entries in the scancode->keycode table 423 * @dev: the struct rc_dev device descriptor 424 * @from: the struct rc_map to copy entries from 425 * 426 * This routine is used to handle table initialization. 427 * 428 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 429 */ 430 static int ir_setkeytable(struct rc_dev *dev, 431 const struct rc_map *from) 432 { 433 struct rc_map *rc_map = &dev->rc_map; 434 unsigned int i, index; 435 int rc; 436 437 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, 438 from->size); 439 if (rc) 440 return rc; 441 442 for (i = 0; i < from->size; i++) { 443 index = ir_establish_scancode(dev, rc_map, 444 from->scan[i].scancode, false); 445 if (index >= rc_map->len) { 446 rc = -ENOMEM; 447 break; 448 } 449 450 ir_update_mapping(dev, rc_map, index, 451 from->scan[i].keycode); 452 } 453 454 if (rc) 455 ir_free_table(rc_map); 456 457 return rc; 458 } 459 460 static int rc_map_cmp(const void *key, const void *elt) 461 { 462 const unsigned int *scancode = key; 463 const struct rc_map_table *e = elt; 464 465 if (*scancode < e->scancode) 466 return -1; 467 else if (*scancode > e->scancode) 468 return 1; 469 return 0; 470 } 471 472 /** 473 * ir_lookup_by_scancode() - locate mapping by scancode 474 * @rc_map: the struct rc_map to search 475 * @scancode: scancode to look for in the table 476 * 477 * This routine performs binary search in RC keykeymap table for 478 * given scancode. 479 * 480 * return: index in the table, -1U if not found 481 */ 482 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 483 unsigned int scancode) 484 { 485 struct rc_map_table *res; 486 487 res = bsearch(&scancode, rc_map->scan, rc_map->len, 488 sizeof(struct rc_map_table), rc_map_cmp); 489 if (!res) 490 return -1U; 491 else 492 return res - rc_map->scan; 493 } 494 495 /** 496 * ir_getkeycode() - get a keycode from the scancode->keycode table 497 * @idev: the struct input_dev device descriptor 498 * @ke: Input keymap entry 499 * 500 * This routine is used to handle evdev EVIOCGKEY ioctl. 501 * 502 * return: always returns zero. 503 */ 504 static int ir_getkeycode(struct input_dev *idev, 505 struct input_keymap_entry *ke) 506 { 507 struct rc_dev *rdev = input_get_drvdata(idev); 508 struct rc_map *rc_map = &rdev->rc_map; 509 struct rc_map_table *entry; 510 unsigned long flags; 511 unsigned int index; 512 unsigned int scancode; 513 int retval; 514 515 spin_lock_irqsave(&rc_map->lock, flags); 516 517 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 518 index = ke->index; 519 } else { 520 retval = input_scancode_to_scalar(ke, &scancode); 521 if (retval) 522 goto out; 523 524 index = ir_lookup_by_scancode(rc_map, scancode); 525 } 526 527 if (index < rc_map->len) { 528 entry = &rc_map->scan[index]; 529 530 ke->index = index; 531 ke->keycode = entry->keycode; 532 ke->len = sizeof(entry->scancode); 533 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 534 535 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 536 /* 537 * We do not really know the valid range of scancodes 538 * so let's respond with KEY_RESERVED to anything we 539 * do not have mapping for [yet]. 540 */ 541 ke->index = index; 542 ke->keycode = KEY_RESERVED; 543 } else { 544 retval = -EINVAL; 545 goto out; 546 } 547 548 retval = 0; 549 550 out: 551 spin_unlock_irqrestore(&rc_map->lock, flags); 552 return retval; 553 } 554 555 /** 556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 557 * @dev: the struct rc_dev descriptor of the device 558 * @scancode: the scancode to look for 559 * 560 * This routine is used by drivers which need to convert a scancode to a 561 * keycode. Normally it should not be used since drivers should have no 562 * interest in keycodes. 563 * 564 * return: the corresponding keycode, or KEY_RESERVED 565 */ 566 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 567 { 568 struct rc_map *rc_map = &dev->rc_map; 569 unsigned int keycode; 570 unsigned int index; 571 unsigned long flags; 572 573 spin_lock_irqsave(&rc_map->lock, flags); 574 575 index = ir_lookup_by_scancode(rc_map, scancode); 576 keycode = index < rc_map->len ? 577 rc_map->scan[index].keycode : KEY_RESERVED; 578 579 spin_unlock_irqrestore(&rc_map->lock, flags); 580 581 if (keycode != KEY_RESERVED) 582 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n", 583 dev->device_name, scancode, keycode); 584 585 return keycode; 586 } 587 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 588 589 /** 590 * ir_do_keyup() - internal function to signal the release of a keypress 591 * @dev: the struct rc_dev descriptor of the device 592 * @sync: whether or not to call input_sync 593 * 594 * This function is used internally to release a keypress, it must be 595 * called with keylock held. 596 */ 597 static void ir_do_keyup(struct rc_dev *dev, bool sync) 598 { 599 if (!dev->keypressed) 600 return; 601 602 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); 603 del_timer(&dev->timer_repeat); 604 input_report_key(dev->input_dev, dev->last_keycode, 0); 605 led_trigger_event(led_feedback, LED_OFF); 606 if (sync) 607 input_sync(dev->input_dev); 608 dev->keypressed = false; 609 } 610 611 /** 612 * rc_keyup() - signals the release of a keypress 613 * @dev: the struct rc_dev descriptor of the device 614 * 615 * This routine is used to signal that a key has been released on the 616 * remote control. 617 */ 618 void rc_keyup(struct rc_dev *dev) 619 { 620 unsigned long flags; 621 622 spin_lock_irqsave(&dev->keylock, flags); 623 ir_do_keyup(dev, true); 624 spin_unlock_irqrestore(&dev->keylock, flags); 625 } 626 EXPORT_SYMBOL_GPL(rc_keyup); 627 628 /** 629 * ir_timer_keyup() - generates a keyup event after a timeout 630 * 631 * @t: a pointer to the struct timer_list 632 * 633 * This routine will generate a keyup event some time after a keydown event 634 * is generated when no further activity has been detected. 635 */ 636 static void ir_timer_keyup(struct timer_list *t) 637 { 638 struct rc_dev *dev = from_timer(dev, t, timer_keyup); 639 unsigned long flags; 640 641 /* 642 * ir->keyup_jiffies is used to prevent a race condition if a 643 * hardware interrupt occurs at this point and the keyup timer 644 * event is moved further into the future as a result. 645 * 646 * The timer will then be reactivated and this function called 647 * again in the future. We need to exit gracefully in that case 648 * to allow the input subsystem to do its auto-repeat magic or 649 * a keyup event might follow immediately after the keydown. 650 */ 651 spin_lock_irqsave(&dev->keylock, flags); 652 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 653 ir_do_keyup(dev, true); 654 spin_unlock_irqrestore(&dev->keylock, flags); 655 } 656 657 /** 658 * ir_timer_repeat() - generates a repeat event after a timeout 659 * 660 * @t: a pointer to the struct timer_list 661 * 662 * This routine will generate a soft repeat event every REP_PERIOD 663 * milliseconds. 664 */ 665 static void ir_timer_repeat(struct timer_list *t) 666 { 667 struct rc_dev *dev = from_timer(dev, t, timer_repeat); 668 struct input_dev *input = dev->input_dev; 669 unsigned long flags; 670 671 spin_lock_irqsave(&dev->keylock, flags); 672 if (dev->keypressed) { 673 input_event(input, EV_KEY, dev->last_keycode, 2); 674 input_sync(input); 675 if (input->rep[REP_PERIOD]) 676 mod_timer(&dev->timer_repeat, jiffies + 677 msecs_to_jiffies(input->rep[REP_PERIOD])); 678 } 679 spin_unlock_irqrestore(&dev->keylock, flags); 680 } 681 682 /** 683 * rc_repeat() - signals that a key is still pressed 684 * @dev: the struct rc_dev descriptor of the device 685 * 686 * This routine is used by IR decoders when a repeat message which does 687 * not include the necessary bits to reproduce the scancode has been 688 * received. 689 */ 690 void rc_repeat(struct rc_dev *dev) 691 { 692 unsigned long flags; 693 unsigned int timeout = protocols[dev->last_protocol].repeat_period; 694 struct lirc_scancode sc = { 695 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, 696 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, 697 .flags = LIRC_SCANCODE_FLAG_REPEAT | 698 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) 699 }; 700 701 ir_lirc_scancode_event(dev, &sc); 702 703 spin_lock_irqsave(&dev->keylock, flags); 704 705 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 706 input_sync(dev->input_dev); 707 708 if (dev->keypressed) { 709 dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout); 710 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 711 } 712 713 spin_unlock_irqrestore(&dev->keylock, flags); 714 } 715 EXPORT_SYMBOL_GPL(rc_repeat); 716 717 /** 718 * ir_do_keydown() - internal function to process a keypress 719 * @dev: the struct rc_dev descriptor of the device 720 * @protocol: the protocol of the keypress 721 * @scancode: the scancode of the keypress 722 * @keycode: the keycode of the keypress 723 * @toggle: the toggle value of the keypress 724 * 725 * This function is used internally to register a keypress, it must be 726 * called with keylock held. 727 */ 728 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, 729 u32 scancode, u32 keycode, u8 toggle) 730 { 731 bool new_event = (!dev->keypressed || 732 dev->last_protocol != protocol || 733 dev->last_scancode != scancode || 734 dev->last_toggle != toggle); 735 struct lirc_scancode sc = { 736 .scancode = scancode, .rc_proto = protocol, 737 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, 738 .keycode = keycode 739 }; 740 741 ir_lirc_scancode_event(dev, &sc); 742 743 if (new_event && dev->keypressed) 744 ir_do_keyup(dev, false); 745 746 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 747 748 dev->last_protocol = protocol; 749 dev->last_scancode = scancode; 750 dev->last_toggle = toggle; 751 dev->last_keycode = keycode; 752 753 if (new_event && keycode != KEY_RESERVED) { 754 /* Register a keypress */ 755 dev->keypressed = true; 756 757 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 758 dev->device_name, keycode, protocol, scancode); 759 input_report_key(dev->input_dev, keycode, 1); 760 761 led_trigger_event(led_feedback, LED_FULL); 762 } 763 764 /* 765 * For CEC, start sending repeat messages as soon as the first 766 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD 767 * is non-zero. Otherwise, the input layer will generate repeat 768 * messages. 769 */ 770 if (!new_event && keycode != KEY_RESERVED && 771 dev->allowed_protocols == RC_PROTO_BIT_CEC && 772 !timer_pending(&dev->timer_repeat) && 773 dev->input_dev->rep[REP_PERIOD] && 774 !dev->input_dev->rep[REP_DELAY]) { 775 input_event(dev->input_dev, EV_KEY, keycode, 2); 776 mod_timer(&dev->timer_repeat, jiffies + 777 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); 778 } 779 780 input_sync(dev->input_dev); 781 } 782 783 /** 784 * rc_keydown() - generates input event for a key press 785 * @dev: the struct rc_dev descriptor of the device 786 * @protocol: the protocol for the keypress 787 * @scancode: the scancode for the keypress 788 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 789 * support toggle values, this should be set to zero) 790 * 791 * This routine is used to signal that a key has been pressed on the 792 * remote control. 793 */ 794 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, 795 u8 toggle) 796 { 797 unsigned long flags; 798 u32 keycode = rc_g_keycode_from_table(dev, scancode); 799 800 spin_lock_irqsave(&dev->keylock, flags); 801 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 802 803 if (dev->keypressed) { 804 dev->keyup_jiffies = jiffies + 805 msecs_to_jiffies(protocols[protocol].repeat_period); 806 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 807 } 808 spin_unlock_irqrestore(&dev->keylock, flags); 809 } 810 EXPORT_SYMBOL_GPL(rc_keydown); 811 812 /** 813 * rc_keydown_notimeout() - generates input event for a key press without 814 * an automatic keyup event at a later time 815 * @dev: the struct rc_dev descriptor of the device 816 * @protocol: the protocol for the keypress 817 * @scancode: the scancode for the keypress 818 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 819 * support toggle values, this should be set to zero) 820 * 821 * This routine is used to signal that a key has been pressed on the 822 * remote control. The driver must manually call rc_keyup() at a later stage. 823 */ 824 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, 825 u32 scancode, u8 toggle) 826 { 827 unsigned long flags; 828 u32 keycode = rc_g_keycode_from_table(dev, scancode); 829 830 spin_lock_irqsave(&dev->keylock, flags); 831 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 832 spin_unlock_irqrestore(&dev->keylock, flags); 833 } 834 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 835 836 /** 837 * rc_validate_scancode() - checks that a scancode is valid for a protocol. 838 * For nec, it should do the opposite of ir_nec_bytes_to_scancode() 839 * @proto: protocol 840 * @scancode: scancode 841 */ 842 bool rc_validate_scancode(enum rc_proto proto, u32 scancode) 843 { 844 switch (proto) { 845 /* 846 * NECX has a 16-bit address; if the lower 8 bits match the upper 847 * 8 bits inverted, then the address would match regular nec. 848 */ 849 case RC_PROTO_NECX: 850 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) 851 return false; 852 break; 853 /* 854 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits 855 * of the command match the upper 8 bits inverted, then it would 856 * be either NEC or NECX. 857 */ 858 case RC_PROTO_NEC32: 859 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) 860 return false; 861 break; 862 /* 863 * If the customer code (top 32-bit) is 0x800f, it is MCE else it 864 * is regular mode-6a 32 bit 865 */ 866 case RC_PROTO_RC6_MCE: 867 if ((scancode & 0xffff0000) != 0x800f0000) 868 return false; 869 break; 870 case RC_PROTO_RC6_6A_32: 871 if ((scancode & 0xffff0000) == 0x800f0000) 872 return false; 873 break; 874 default: 875 break; 876 } 877 878 return true; 879 } 880 881 /** 882 * rc_validate_filter() - checks that the scancode and mask are valid and 883 * provides sensible defaults 884 * @dev: the struct rc_dev descriptor of the device 885 * @filter: the scancode and mask 886 * 887 * return: 0 or -EINVAL if the filter is not valid 888 */ 889 static int rc_validate_filter(struct rc_dev *dev, 890 struct rc_scancode_filter *filter) 891 { 892 u32 mask, s = filter->data; 893 enum rc_proto protocol = dev->wakeup_protocol; 894 895 if (protocol >= ARRAY_SIZE(protocols)) 896 return -EINVAL; 897 898 mask = protocols[protocol].scancode_bits; 899 900 if (!rc_validate_scancode(protocol, s)) 901 return -EINVAL; 902 903 filter->data &= mask; 904 filter->mask &= mask; 905 906 /* 907 * If we have to raw encode the IR for wakeup, we cannot have a mask 908 */ 909 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) 910 return -EINVAL; 911 912 return 0; 913 } 914 915 int rc_open(struct rc_dev *rdev) 916 { 917 int rval = 0; 918 919 if (!rdev) 920 return -EINVAL; 921 922 mutex_lock(&rdev->lock); 923 924 if (!rdev->registered) { 925 rval = -ENODEV; 926 } else { 927 if (!rdev->users++ && rdev->open) 928 rval = rdev->open(rdev); 929 930 if (rval) 931 rdev->users--; 932 } 933 934 mutex_unlock(&rdev->lock); 935 936 return rval; 937 } 938 939 static int ir_open(struct input_dev *idev) 940 { 941 struct rc_dev *rdev = input_get_drvdata(idev); 942 943 return rc_open(rdev); 944 } 945 946 void rc_close(struct rc_dev *rdev) 947 { 948 if (rdev) { 949 mutex_lock(&rdev->lock); 950 951 if (!--rdev->users && rdev->close && rdev->registered) 952 rdev->close(rdev); 953 954 mutex_unlock(&rdev->lock); 955 } 956 } 957 958 static void ir_close(struct input_dev *idev) 959 { 960 struct rc_dev *rdev = input_get_drvdata(idev); 961 rc_close(rdev); 962 } 963 964 /* class for /sys/class/rc */ 965 static char *rc_devnode(struct device *dev, umode_t *mode) 966 { 967 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 968 } 969 970 static struct class rc_class = { 971 .name = "rc", 972 .devnode = rc_devnode, 973 }; 974 975 /* 976 * These are the protocol textual descriptions that are 977 * used by the sysfs protocols file. Note that the order 978 * of the entries is relevant. 979 */ 980 static const struct { 981 u64 type; 982 const char *name; 983 const char *module_name; 984 } proto_names[] = { 985 { RC_PROTO_BIT_NONE, "none", NULL }, 986 { RC_PROTO_BIT_OTHER, "other", NULL }, 987 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, 988 { RC_PROTO_BIT_RC5 | 989 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, 990 { RC_PROTO_BIT_NEC | 991 RC_PROTO_BIT_NECX | 992 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, 993 { RC_PROTO_BIT_RC6_0 | 994 RC_PROTO_BIT_RC6_6A_20 | 995 RC_PROTO_BIT_RC6_6A_24 | 996 RC_PROTO_BIT_RC6_6A_32 | 997 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 998 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, 999 { RC_PROTO_BIT_SONY12 | 1000 RC_PROTO_BIT_SONY15 | 1001 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, 1002 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 1003 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 1004 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 1005 { RC_PROTO_BIT_MCIR2_KBD | 1006 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, 1007 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, 1008 { RC_PROTO_BIT_CEC, "cec", NULL }, 1009 { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" }, 1010 }; 1011 1012 /** 1013 * struct rc_filter_attribute - Device attribute relating to a filter type. 1014 * @attr: Device attribute. 1015 * @type: Filter type. 1016 * @mask: false for filter value, true for filter mask. 1017 */ 1018 struct rc_filter_attribute { 1019 struct device_attribute attr; 1020 enum rc_filter_type type; 1021 bool mask; 1022 }; 1023 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 1024 1025 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 1026 struct rc_filter_attribute dev_attr_##_name = { \ 1027 .attr = __ATTR(_name, _mode, _show, _store), \ 1028 .type = (_type), \ 1029 .mask = (_mask), \ 1030 } 1031 1032 /** 1033 * show_protocols() - shows the current IR protocol(s) 1034 * @device: the device descriptor 1035 * @mattr: the device attribute struct 1036 * @buf: a pointer to the output buffer 1037 * 1038 * This routine is a callback routine for input read the IR protocol type(s). 1039 * it is trigged by reading /sys/class/rc/rc?/protocols. 1040 * It returns the protocol names of supported protocols. 1041 * Enabled protocols are printed in brackets. 1042 * 1043 * dev->lock is taken to guard against races between 1044 * store_protocols and show_protocols. 1045 */ 1046 static ssize_t show_protocols(struct device *device, 1047 struct device_attribute *mattr, char *buf) 1048 { 1049 struct rc_dev *dev = to_rc_dev(device); 1050 u64 allowed, enabled; 1051 char *tmp = buf; 1052 int i; 1053 1054 mutex_lock(&dev->lock); 1055 1056 enabled = dev->enabled_protocols; 1057 allowed = dev->allowed_protocols; 1058 if (dev->raw && !allowed) 1059 allowed = ir_raw_get_allowed_protocols(); 1060 1061 mutex_unlock(&dev->lock); 1062 1063 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 1064 __func__, (long long)allowed, (long long)enabled); 1065 1066 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1067 if (allowed & enabled & proto_names[i].type) 1068 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 1069 else if (allowed & proto_names[i].type) 1070 tmp += sprintf(tmp, "%s ", proto_names[i].name); 1071 1072 if (allowed & proto_names[i].type) 1073 allowed &= ~proto_names[i].type; 1074 } 1075 1076 #ifdef CONFIG_LIRC 1077 if (dev->driver_type == RC_DRIVER_IR_RAW) 1078 tmp += sprintf(tmp, "[lirc] "); 1079 #endif 1080 1081 if (tmp != buf) 1082 tmp--; 1083 *tmp = '\n'; 1084 1085 return tmp + 1 - buf; 1086 } 1087 1088 /** 1089 * parse_protocol_change() - parses a protocol change request 1090 * @dev: rc_dev device 1091 * @protocols: pointer to the bitmask of current protocols 1092 * @buf: pointer to the buffer with a list of changes 1093 * 1094 * Writing "+proto" will add a protocol to the protocol mask. 1095 * Writing "-proto" will remove a protocol from protocol mask. 1096 * Writing "proto" will enable only "proto". 1097 * Writing "none" will disable all protocols. 1098 * Returns the number of changes performed or a negative error code. 1099 */ 1100 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, 1101 const char *buf) 1102 { 1103 const char *tmp; 1104 unsigned count = 0; 1105 bool enable, disable; 1106 u64 mask; 1107 int i; 1108 1109 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 1110 if (!*tmp) 1111 break; 1112 1113 if (*tmp == '+') { 1114 enable = true; 1115 disable = false; 1116 tmp++; 1117 } else if (*tmp == '-') { 1118 enable = false; 1119 disable = true; 1120 tmp++; 1121 } else { 1122 enable = false; 1123 disable = false; 1124 } 1125 1126 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1127 if (!strcasecmp(tmp, proto_names[i].name)) { 1128 mask = proto_names[i].type; 1129 break; 1130 } 1131 } 1132 1133 if (i == ARRAY_SIZE(proto_names)) { 1134 if (!strcasecmp(tmp, "lirc")) 1135 mask = 0; 1136 else { 1137 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", 1138 tmp); 1139 return -EINVAL; 1140 } 1141 } 1142 1143 count++; 1144 1145 if (enable) 1146 *protocols |= mask; 1147 else if (disable) 1148 *protocols &= ~mask; 1149 else 1150 *protocols = mask; 1151 } 1152 1153 if (!count) { 1154 dev_dbg(&dev->dev, "Protocol not specified\n"); 1155 return -EINVAL; 1156 } 1157 1158 return count; 1159 } 1160 1161 void ir_raw_load_modules(u64 *protocols) 1162 { 1163 u64 available; 1164 int i, ret; 1165 1166 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1167 if (proto_names[i].type == RC_PROTO_BIT_NONE || 1168 proto_names[i].type & (RC_PROTO_BIT_OTHER | 1169 RC_PROTO_BIT_UNKNOWN)) 1170 continue; 1171 1172 available = ir_raw_get_allowed_protocols(); 1173 if (!(*protocols & proto_names[i].type & ~available)) 1174 continue; 1175 1176 if (!proto_names[i].module_name) { 1177 pr_err("Can't enable IR protocol %s\n", 1178 proto_names[i].name); 1179 *protocols &= ~proto_names[i].type; 1180 continue; 1181 } 1182 1183 ret = request_module("%s", proto_names[i].module_name); 1184 if (ret < 0) { 1185 pr_err("Couldn't load IR protocol module %s\n", 1186 proto_names[i].module_name); 1187 *protocols &= ~proto_names[i].type; 1188 continue; 1189 } 1190 msleep(20); 1191 available = ir_raw_get_allowed_protocols(); 1192 if (!(*protocols & proto_names[i].type & ~available)) 1193 continue; 1194 1195 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", 1196 proto_names[i].module_name, 1197 proto_names[i].name); 1198 *protocols &= ~proto_names[i].type; 1199 } 1200 } 1201 1202 /** 1203 * store_protocols() - changes the current/wakeup IR protocol(s) 1204 * @device: the device descriptor 1205 * @mattr: the device attribute struct 1206 * @buf: a pointer to the input buffer 1207 * @len: length of the input buffer 1208 * 1209 * This routine is for changing the IR protocol type. 1210 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1211 * See parse_protocol_change() for the valid commands. 1212 * Returns @len on success or a negative error code. 1213 * 1214 * dev->lock is taken to guard against races between 1215 * store_protocols and show_protocols. 1216 */ 1217 static ssize_t store_protocols(struct device *device, 1218 struct device_attribute *mattr, 1219 const char *buf, size_t len) 1220 { 1221 struct rc_dev *dev = to_rc_dev(device); 1222 u64 *current_protocols; 1223 struct rc_scancode_filter *filter; 1224 u64 old_protocols, new_protocols; 1225 ssize_t rc; 1226 1227 dev_dbg(&dev->dev, "Normal protocol change requested\n"); 1228 current_protocols = &dev->enabled_protocols; 1229 filter = &dev->scancode_filter; 1230 1231 if (!dev->change_protocol) { 1232 dev_dbg(&dev->dev, "Protocol switching not supported\n"); 1233 return -EINVAL; 1234 } 1235 1236 mutex_lock(&dev->lock); 1237 1238 old_protocols = *current_protocols; 1239 new_protocols = old_protocols; 1240 rc = parse_protocol_change(dev, &new_protocols, buf); 1241 if (rc < 0) 1242 goto out; 1243 1244 rc = dev->change_protocol(dev, &new_protocols); 1245 if (rc < 0) { 1246 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", 1247 (long long)new_protocols); 1248 goto out; 1249 } 1250 1251 if (dev->driver_type == RC_DRIVER_IR_RAW) 1252 ir_raw_load_modules(&new_protocols); 1253 1254 if (new_protocols != old_protocols) { 1255 *current_protocols = new_protocols; 1256 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", 1257 (long long)new_protocols); 1258 } 1259 1260 /* 1261 * If a protocol change was attempted the filter may need updating, even 1262 * if the actual protocol mask hasn't changed (since the driver may have 1263 * cleared the filter). 1264 * Try setting the same filter with the new protocol (if any). 1265 * Fall back to clearing the filter. 1266 */ 1267 if (dev->s_filter && filter->mask) { 1268 if (new_protocols) 1269 rc = dev->s_filter(dev, filter); 1270 else 1271 rc = -1; 1272 1273 if (rc < 0) { 1274 filter->data = 0; 1275 filter->mask = 0; 1276 dev->s_filter(dev, filter); 1277 } 1278 } 1279 1280 rc = len; 1281 1282 out: 1283 mutex_unlock(&dev->lock); 1284 return rc; 1285 } 1286 1287 /** 1288 * show_filter() - shows the current scancode filter value or mask 1289 * @device: the device descriptor 1290 * @attr: the device attribute struct 1291 * @buf: a pointer to the output buffer 1292 * 1293 * This routine is a callback routine to read a scancode filter value or mask. 1294 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1295 * It prints the current scancode filter value or mask of the appropriate filter 1296 * type in hexadecimal into @buf and returns the size of the buffer. 1297 * 1298 * Bits of the filter value corresponding to set bits in the filter mask are 1299 * compared against input scancodes and non-matching scancodes are discarded. 1300 * 1301 * dev->lock is taken to guard against races between 1302 * store_filter and show_filter. 1303 */ 1304 static ssize_t show_filter(struct device *device, 1305 struct device_attribute *attr, 1306 char *buf) 1307 { 1308 struct rc_dev *dev = to_rc_dev(device); 1309 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1310 struct rc_scancode_filter *filter; 1311 u32 val; 1312 1313 mutex_lock(&dev->lock); 1314 1315 if (fattr->type == RC_FILTER_NORMAL) 1316 filter = &dev->scancode_filter; 1317 else 1318 filter = &dev->scancode_wakeup_filter; 1319 1320 if (fattr->mask) 1321 val = filter->mask; 1322 else 1323 val = filter->data; 1324 mutex_unlock(&dev->lock); 1325 1326 return sprintf(buf, "%#x\n", val); 1327 } 1328 1329 /** 1330 * store_filter() - changes the scancode filter value 1331 * @device: the device descriptor 1332 * @attr: the device attribute struct 1333 * @buf: a pointer to the input buffer 1334 * @len: length of the input buffer 1335 * 1336 * This routine is for changing a scancode filter value or mask. 1337 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1338 * Returns -EINVAL if an invalid filter value for the current protocol was 1339 * specified or if scancode filtering is not supported by the driver, otherwise 1340 * returns @len. 1341 * 1342 * Bits of the filter value corresponding to set bits in the filter mask are 1343 * compared against input scancodes and non-matching scancodes are discarded. 1344 * 1345 * dev->lock is taken to guard against races between 1346 * store_filter and show_filter. 1347 */ 1348 static ssize_t store_filter(struct device *device, 1349 struct device_attribute *attr, 1350 const char *buf, size_t len) 1351 { 1352 struct rc_dev *dev = to_rc_dev(device); 1353 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1354 struct rc_scancode_filter new_filter, *filter; 1355 int ret; 1356 unsigned long val; 1357 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1358 1359 ret = kstrtoul(buf, 0, &val); 1360 if (ret < 0) 1361 return ret; 1362 1363 if (fattr->type == RC_FILTER_NORMAL) { 1364 set_filter = dev->s_filter; 1365 filter = &dev->scancode_filter; 1366 } else { 1367 set_filter = dev->s_wakeup_filter; 1368 filter = &dev->scancode_wakeup_filter; 1369 } 1370 1371 if (!set_filter) 1372 return -EINVAL; 1373 1374 mutex_lock(&dev->lock); 1375 1376 new_filter = *filter; 1377 if (fattr->mask) 1378 new_filter.mask = val; 1379 else 1380 new_filter.data = val; 1381 1382 if (fattr->type == RC_FILTER_WAKEUP) { 1383 /* 1384 * Refuse to set a filter unless a protocol is enabled 1385 * and the filter is valid for that protocol 1386 */ 1387 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) 1388 ret = rc_validate_filter(dev, &new_filter); 1389 else 1390 ret = -EINVAL; 1391 1392 if (ret != 0) 1393 goto unlock; 1394 } 1395 1396 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && 1397 val) { 1398 /* refuse to set a filter unless a protocol is enabled */ 1399 ret = -EINVAL; 1400 goto unlock; 1401 } 1402 1403 ret = set_filter(dev, &new_filter); 1404 if (ret < 0) 1405 goto unlock; 1406 1407 *filter = new_filter; 1408 1409 unlock: 1410 mutex_unlock(&dev->lock); 1411 return (ret < 0) ? ret : len; 1412 } 1413 1414 /** 1415 * show_wakeup_protocols() - shows the wakeup IR protocol 1416 * @device: the device descriptor 1417 * @mattr: the device attribute struct 1418 * @buf: a pointer to the output buffer 1419 * 1420 * This routine is a callback routine for input read the IR protocol type(s). 1421 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols. 1422 * It returns the protocol names of supported protocols. 1423 * The enabled protocols are printed in brackets. 1424 * 1425 * dev->lock is taken to guard against races between 1426 * store_wakeup_protocols and show_wakeup_protocols. 1427 */ 1428 static ssize_t show_wakeup_protocols(struct device *device, 1429 struct device_attribute *mattr, 1430 char *buf) 1431 { 1432 struct rc_dev *dev = to_rc_dev(device); 1433 u64 allowed; 1434 enum rc_proto enabled; 1435 char *tmp = buf; 1436 int i; 1437 1438 mutex_lock(&dev->lock); 1439 1440 allowed = dev->allowed_wakeup_protocols; 1441 enabled = dev->wakeup_protocol; 1442 1443 mutex_unlock(&dev->lock); 1444 1445 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", 1446 __func__, (long long)allowed, enabled); 1447 1448 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1449 if (allowed & (1ULL << i)) { 1450 if (i == enabled) 1451 tmp += sprintf(tmp, "[%s] ", protocols[i].name); 1452 else 1453 tmp += sprintf(tmp, "%s ", protocols[i].name); 1454 } 1455 } 1456 1457 if (tmp != buf) 1458 tmp--; 1459 *tmp = '\n'; 1460 1461 return tmp + 1 - buf; 1462 } 1463 1464 /** 1465 * store_wakeup_protocols() - changes the wakeup IR protocol(s) 1466 * @device: the device descriptor 1467 * @mattr: the device attribute struct 1468 * @buf: a pointer to the input buffer 1469 * @len: length of the input buffer 1470 * 1471 * This routine is for changing the IR protocol type. 1472 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols. 1473 * Returns @len on success or a negative error code. 1474 * 1475 * dev->lock is taken to guard against races between 1476 * store_wakeup_protocols and show_wakeup_protocols. 1477 */ 1478 static ssize_t store_wakeup_protocols(struct device *device, 1479 struct device_attribute *mattr, 1480 const char *buf, size_t len) 1481 { 1482 struct rc_dev *dev = to_rc_dev(device); 1483 enum rc_proto protocol; 1484 ssize_t rc; 1485 u64 allowed; 1486 int i; 1487 1488 mutex_lock(&dev->lock); 1489 1490 allowed = dev->allowed_wakeup_protocols; 1491 1492 if (sysfs_streq(buf, "none")) { 1493 protocol = RC_PROTO_UNKNOWN; 1494 } else { 1495 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1496 if ((allowed & (1ULL << i)) && 1497 sysfs_streq(buf, protocols[i].name)) { 1498 protocol = i; 1499 break; 1500 } 1501 } 1502 1503 if (i == ARRAY_SIZE(protocols)) { 1504 rc = -EINVAL; 1505 goto out; 1506 } 1507 1508 if (dev->encode_wakeup) { 1509 u64 mask = 1ULL << protocol; 1510 1511 ir_raw_load_modules(&mask); 1512 if (!mask) { 1513 rc = -EINVAL; 1514 goto out; 1515 } 1516 } 1517 } 1518 1519 if (dev->wakeup_protocol != protocol) { 1520 dev->wakeup_protocol = protocol; 1521 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); 1522 1523 if (protocol == RC_PROTO_RC6_MCE) 1524 dev->scancode_wakeup_filter.data = 0x800f0000; 1525 else 1526 dev->scancode_wakeup_filter.data = 0; 1527 dev->scancode_wakeup_filter.mask = 0; 1528 1529 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); 1530 if (rc == 0) 1531 rc = len; 1532 } else { 1533 rc = len; 1534 } 1535 1536 out: 1537 mutex_unlock(&dev->lock); 1538 return rc; 1539 } 1540 1541 static void rc_dev_release(struct device *device) 1542 { 1543 struct rc_dev *dev = to_rc_dev(device); 1544 1545 kfree(dev); 1546 } 1547 1548 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1549 do { \ 1550 int err = add_uevent_var(env, fmt, val); \ 1551 if (err) \ 1552 return err; \ 1553 } while (0) 1554 1555 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1556 { 1557 struct rc_dev *dev = to_rc_dev(device); 1558 1559 if (dev->rc_map.name) 1560 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1561 if (dev->driver_name) 1562 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1563 if (dev->device_name) 1564 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); 1565 1566 return 0; 1567 } 1568 1569 /* 1570 * Static device attribute struct with the sysfs attributes for IR's 1571 */ 1572 static struct device_attribute dev_attr_ro_protocols = 1573 __ATTR(protocols, 0444, show_protocols, NULL); 1574 static struct device_attribute dev_attr_rw_protocols = 1575 __ATTR(protocols, 0644, show_protocols, store_protocols); 1576 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, 1577 store_wakeup_protocols); 1578 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1579 show_filter, store_filter, RC_FILTER_NORMAL, false); 1580 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1581 show_filter, store_filter, RC_FILTER_NORMAL, true); 1582 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1583 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1584 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1585 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1586 1587 static struct attribute *rc_dev_rw_protocol_attrs[] = { 1588 &dev_attr_rw_protocols.attr, 1589 NULL, 1590 }; 1591 1592 static const struct attribute_group rc_dev_rw_protocol_attr_grp = { 1593 .attrs = rc_dev_rw_protocol_attrs, 1594 }; 1595 1596 static struct attribute *rc_dev_ro_protocol_attrs[] = { 1597 &dev_attr_ro_protocols.attr, 1598 NULL, 1599 }; 1600 1601 static const struct attribute_group rc_dev_ro_protocol_attr_grp = { 1602 .attrs = rc_dev_ro_protocol_attrs, 1603 }; 1604 1605 static struct attribute *rc_dev_filter_attrs[] = { 1606 &dev_attr_filter.attr.attr, 1607 &dev_attr_filter_mask.attr.attr, 1608 NULL, 1609 }; 1610 1611 static const struct attribute_group rc_dev_filter_attr_grp = { 1612 .attrs = rc_dev_filter_attrs, 1613 }; 1614 1615 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1616 &dev_attr_wakeup_filter.attr.attr, 1617 &dev_attr_wakeup_filter_mask.attr.attr, 1618 &dev_attr_wakeup_protocols.attr, 1619 NULL, 1620 }; 1621 1622 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1623 .attrs = rc_dev_wakeup_filter_attrs, 1624 }; 1625 1626 static const struct device_type rc_dev_type = { 1627 .release = rc_dev_release, 1628 .uevent = rc_dev_uevent, 1629 }; 1630 1631 struct rc_dev *rc_allocate_device(enum rc_driver_type type) 1632 { 1633 struct rc_dev *dev; 1634 1635 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1636 if (!dev) 1637 return NULL; 1638 1639 if (type != RC_DRIVER_IR_RAW_TX) { 1640 dev->input_dev = input_allocate_device(); 1641 if (!dev->input_dev) { 1642 kfree(dev); 1643 return NULL; 1644 } 1645 1646 dev->input_dev->getkeycode = ir_getkeycode; 1647 dev->input_dev->setkeycode = ir_setkeycode; 1648 input_set_drvdata(dev->input_dev, dev); 1649 1650 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); 1651 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); 1652 1653 spin_lock_init(&dev->rc_map.lock); 1654 spin_lock_init(&dev->keylock); 1655 } 1656 mutex_init(&dev->lock); 1657 1658 dev->dev.type = &rc_dev_type; 1659 dev->dev.class = &rc_class; 1660 device_initialize(&dev->dev); 1661 1662 dev->driver_type = type; 1663 1664 __module_get(THIS_MODULE); 1665 return dev; 1666 } 1667 EXPORT_SYMBOL_GPL(rc_allocate_device); 1668 1669 void rc_free_device(struct rc_dev *dev) 1670 { 1671 if (!dev) 1672 return; 1673 1674 input_free_device(dev->input_dev); 1675 1676 put_device(&dev->dev); 1677 1678 /* kfree(dev) will be called by the callback function 1679 rc_dev_release() */ 1680 1681 module_put(THIS_MODULE); 1682 } 1683 EXPORT_SYMBOL_GPL(rc_free_device); 1684 1685 static void devm_rc_alloc_release(struct device *dev, void *res) 1686 { 1687 rc_free_device(*(struct rc_dev **)res); 1688 } 1689 1690 struct rc_dev *devm_rc_allocate_device(struct device *dev, 1691 enum rc_driver_type type) 1692 { 1693 struct rc_dev **dr, *rc; 1694 1695 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1696 if (!dr) 1697 return NULL; 1698 1699 rc = rc_allocate_device(type); 1700 if (!rc) { 1701 devres_free(dr); 1702 return NULL; 1703 } 1704 1705 rc->dev.parent = dev; 1706 rc->managed_alloc = true; 1707 *dr = rc; 1708 devres_add(dev, dr); 1709 1710 return rc; 1711 } 1712 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1713 1714 static int rc_prepare_rx_device(struct rc_dev *dev) 1715 { 1716 int rc; 1717 struct rc_map *rc_map; 1718 u64 rc_proto; 1719 1720 if (!dev->map_name) 1721 return -EINVAL; 1722 1723 rc_map = rc_map_get(dev->map_name); 1724 if (!rc_map) 1725 rc_map = rc_map_get(RC_MAP_EMPTY); 1726 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1727 return -EINVAL; 1728 1729 rc = ir_setkeytable(dev, rc_map); 1730 if (rc) 1731 return rc; 1732 1733 rc_proto = BIT_ULL(rc_map->rc_proto); 1734 1735 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1736 dev->enabled_protocols = dev->allowed_protocols; 1737 1738 if (dev->change_protocol) { 1739 rc = dev->change_protocol(dev, &rc_proto); 1740 if (rc < 0) 1741 goto out_table; 1742 dev->enabled_protocols = rc_proto; 1743 } 1744 1745 if (dev->driver_type == RC_DRIVER_IR_RAW) 1746 ir_raw_load_modules(&rc_proto); 1747 1748 set_bit(EV_KEY, dev->input_dev->evbit); 1749 set_bit(EV_REP, dev->input_dev->evbit); 1750 set_bit(EV_MSC, dev->input_dev->evbit); 1751 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1752 if (dev->open) 1753 dev->input_dev->open = ir_open; 1754 if (dev->close) 1755 dev->input_dev->close = ir_close; 1756 1757 dev->input_dev->dev.parent = &dev->dev; 1758 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1759 dev->input_dev->phys = dev->input_phys; 1760 dev->input_dev->name = dev->device_name; 1761 1762 return 0; 1763 1764 out_table: 1765 ir_free_table(&dev->rc_map); 1766 1767 return rc; 1768 } 1769 1770 static int rc_setup_rx_device(struct rc_dev *dev) 1771 { 1772 int rc; 1773 1774 /* rc_open will be called here */ 1775 rc = input_register_device(dev->input_dev); 1776 if (rc) 1777 return rc; 1778 1779 /* 1780 * Default delay of 250ms is too short for some protocols, especially 1781 * since the timeout is currently set to 250ms. Increase it to 500ms, 1782 * to avoid wrong repetition of the keycodes. Note that this must be 1783 * set after the call to input_register_device(). 1784 */ 1785 if (dev->allowed_protocols == RC_PROTO_BIT_CEC) 1786 dev->input_dev->rep[REP_DELAY] = 0; 1787 else 1788 dev->input_dev->rep[REP_DELAY] = 500; 1789 1790 /* 1791 * As a repeat event on protocols like RC-5 and NEC take as long as 1792 * 110/114ms, using 33ms as a repeat period is not the right thing 1793 * to do. 1794 */ 1795 dev->input_dev->rep[REP_PERIOD] = 125; 1796 1797 return 0; 1798 } 1799 1800 static void rc_free_rx_device(struct rc_dev *dev) 1801 { 1802 if (!dev) 1803 return; 1804 1805 if (dev->input_dev) { 1806 input_unregister_device(dev->input_dev); 1807 dev->input_dev = NULL; 1808 } 1809 1810 ir_free_table(&dev->rc_map); 1811 } 1812 1813 int rc_register_device(struct rc_dev *dev) 1814 { 1815 const char *path; 1816 int attr = 0; 1817 int minor; 1818 int rc; 1819 1820 if (!dev) 1821 return -EINVAL; 1822 1823 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1824 if (minor < 0) 1825 return minor; 1826 1827 dev->minor = minor; 1828 dev_set_name(&dev->dev, "rc%u", dev->minor); 1829 dev_set_drvdata(&dev->dev, dev); 1830 1831 dev->dev.groups = dev->sysfs_groups; 1832 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1833 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; 1834 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) 1835 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; 1836 if (dev->s_filter) 1837 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1838 if (dev->s_wakeup_filter) 1839 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1840 dev->sysfs_groups[attr++] = NULL; 1841 1842 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1843 rc = ir_raw_event_prepare(dev); 1844 if (rc < 0) 1845 goto out_minor; 1846 } 1847 1848 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1849 rc = rc_prepare_rx_device(dev); 1850 if (rc) 1851 goto out_raw; 1852 } 1853 1854 rc = device_add(&dev->dev); 1855 if (rc) 1856 goto out_rx_free; 1857 1858 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1859 dev_info(&dev->dev, "%s as %s\n", 1860 dev->device_name ?: "Unspecified device", path ?: "N/A"); 1861 kfree(path); 1862 1863 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1864 rc = rc_setup_rx_device(dev); 1865 if (rc) 1866 goto out_dev; 1867 } 1868 1869 /* Ensure that the lirc kfifo is setup before we start the thread */ 1870 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { 1871 rc = ir_lirc_register(dev); 1872 if (rc < 0) 1873 goto out_rx; 1874 } 1875 1876 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1877 rc = ir_raw_event_register(dev); 1878 if (rc < 0) 1879 goto out_lirc; 1880 } 1881 1882 dev->registered = true; 1883 1884 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, 1885 dev->driver_name ? dev->driver_name : "unknown"); 1886 1887 return 0; 1888 1889 out_lirc: 1890 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1891 ir_lirc_unregister(dev); 1892 out_rx: 1893 rc_free_rx_device(dev); 1894 out_dev: 1895 device_del(&dev->dev); 1896 out_rx_free: 1897 ir_free_table(&dev->rc_map); 1898 out_raw: 1899 ir_raw_event_free(dev); 1900 out_minor: 1901 ida_simple_remove(&rc_ida, minor); 1902 return rc; 1903 } 1904 EXPORT_SYMBOL_GPL(rc_register_device); 1905 1906 static void devm_rc_release(struct device *dev, void *res) 1907 { 1908 rc_unregister_device(*(struct rc_dev **)res); 1909 } 1910 1911 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1912 { 1913 struct rc_dev **dr; 1914 int ret; 1915 1916 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1917 if (!dr) 1918 return -ENOMEM; 1919 1920 ret = rc_register_device(dev); 1921 if (ret) { 1922 devres_free(dr); 1923 return ret; 1924 } 1925 1926 *dr = dev; 1927 devres_add(parent, dr); 1928 1929 return 0; 1930 } 1931 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1932 1933 void rc_unregister_device(struct rc_dev *dev) 1934 { 1935 if (!dev) 1936 return; 1937 1938 if (dev->driver_type == RC_DRIVER_IR_RAW) 1939 ir_raw_event_unregister(dev); 1940 1941 del_timer_sync(&dev->timer_keyup); 1942 del_timer_sync(&dev->timer_repeat); 1943 1944 rc_free_rx_device(dev); 1945 1946 mutex_lock(&dev->lock); 1947 dev->registered = false; 1948 mutex_unlock(&dev->lock); 1949 1950 /* 1951 * lirc device should be freed with dev->registered = false, so 1952 * that userspace polling will get notified. 1953 */ 1954 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1955 ir_lirc_unregister(dev); 1956 1957 device_del(&dev->dev); 1958 1959 ida_simple_remove(&rc_ida, dev->minor); 1960 1961 if (!dev->managed_alloc) 1962 rc_free_device(dev); 1963 } 1964 1965 EXPORT_SYMBOL_GPL(rc_unregister_device); 1966 1967 /* 1968 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1969 */ 1970 1971 static int __init rc_core_init(void) 1972 { 1973 int rc = class_register(&rc_class); 1974 if (rc) { 1975 pr_err("rc_core: unable to register rc class\n"); 1976 return rc; 1977 } 1978 1979 rc = lirc_dev_init(); 1980 if (rc) { 1981 pr_err("rc_core: unable to init lirc\n"); 1982 class_unregister(&rc_class); 1983 return 0; 1984 } 1985 1986 led_trigger_register_simple("rc-feedback", &led_feedback); 1987 rc_map_register(&empty_map); 1988 1989 return 0; 1990 } 1991 1992 static void __exit rc_core_exit(void) 1993 { 1994 lirc_dev_exit(); 1995 class_unregister(&rc_class); 1996 led_trigger_unregister_simple(led_feedback); 1997 rc_map_unregister(&empty_map); 1998 } 1999 2000 subsys_initcall(rc_core_init); 2001 module_exit(rc_core_exit); 2002 2003 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2004 MODULE_LICENSE("GPL v2"); 2005