xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 1c2f87c2)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/device.h>
22 #include <linux/module.h>
23 #include "rc-core-priv.h"
24 
25 /* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
26 #define IRRCV_NUM_DEVICES      256
27 static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
28 
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE	256
31 #define IR_TAB_MAX_SIZE	8192
32 
33 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
34 #define IR_KEYPRESS_TIMEOUT 250
35 
36 /* Used to keep track of known keymaps */
37 static LIST_HEAD(rc_map_list);
38 static DEFINE_SPINLOCK(rc_map_lock);
39 static struct led_trigger *led_feedback;
40 
41 static struct rc_map_list *seek_rc_map(const char *name)
42 {
43 	struct rc_map_list *map = NULL;
44 
45 	spin_lock(&rc_map_lock);
46 	list_for_each_entry(map, &rc_map_list, list) {
47 		if (!strcmp(name, map->map.name)) {
48 			spin_unlock(&rc_map_lock);
49 			return map;
50 		}
51 	}
52 	spin_unlock(&rc_map_lock);
53 
54 	return NULL;
55 }
56 
57 struct rc_map *rc_map_get(const char *name)
58 {
59 
60 	struct rc_map_list *map;
61 
62 	map = seek_rc_map(name);
63 #ifdef MODULE
64 	if (!map) {
65 		int rc = request_module("%s", name);
66 		if (rc < 0) {
67 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
68 			return NULL;
69 		}
70 		msleep(20);	/* Give some time for IR to register */
71 
72 		map = seek_rc_map(name);
73 	}
74 #endif
75 	if (!map) {
76 		printk(KERN_ERR "IR keymap %s not found\n", name);
77 		return NULL;
78 	}
79 
80 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
81 
82 	return &map->map;
83 }
84 EXPORT_SYMBOL_GPL(rc_map_get);
85 
86 int rc_map_register(struct rc_map_list *map)
87 {
88 	spin_lock(&rc_map_lock);
89 	list_add_tail(&map->list, &rc_map_list);
90 	spin_unlock(&rc_map_lock);
91 	return 0;
92 }
93 EXPORT_SYMBOL_GPL(rc_map_register);
94 
95 void rc_map_unregister(struct rc_map_list *map)
96 {
97 	spin_lock(&rc_map_lock);
98 	list_del(&map->list);
99 	spin_unlock(&rc_map_lock);
100 }
101 EXPORT_SYMBOL_GPL(rc_map_unregister);
102 
103 
104 static struct rc_map_table empty[] = {
105 	{ 0x2a, KEY_COFFEE },
106 };
107 
108 static struct rc_map_list empty_map = {
109 	.map = {
110 		.scan    = empty,
111 		.size    = ARRAY_SIZE(empty),
112 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
113 		.name    = RC_MAP_EMPTY,
114 	}
115 };
116 
117 /**
118  * ir_create_table() - initializes a scancode table
119  * @rc_map:	the rc_map to initialize
120  * @name:	name to assign to the table
121  * @rc_type:	ir type to assign to the new table
122  * @size:	initial size of the table
123  * @return:	zero on success or a negative error code
124  *
125  * This routine will initialize the rc_map and will allocate
126  * memory to hold at least the specified number of elements.
127  */
128 static int ir_create_table(struct rc_map *rc_map,
129 			   const char *name, u64 rc_type, size_t size)
130 {
131 	rc_map->name = name;
132 	rc_map->rc_type = rc_type;
133 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
134 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
135 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
136 	if (!rc_map->scan)
137 		return -ENOMEM;
138 
139 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140 		   rc_map->size, rc_map->alloc);
141 	return 0;
142 }
143 
144 /**
145  * ir_free_table() - frees memory allocated by a scancode table
146  * @rc_map:	the table whose mappings need to be freed
147  *
148  * This routine will free memory alloctaed for key mappings used by given
149  * scancode table.
150  */
151 static void ir_free_table(struct rc_map *rc_map)
152 {
153 	rc_map->size = 0;
154 	kfree(rc_map->scan);
155 	rc_map->scan = NULL;
156 }
157 
158 /**
159  * ir_resize_table() - resizes a scancode table if necessary
160  * @rc_map:	the rc_map to resize
161  * @gfp_flags:	gfp flags to use when allocating memory
162  * @return:	zero on success or a negative error code
163  *
164  * This routine will shrink the rc_map if it has lots of
165  * unused entries and grow it if it is full.
166  */
167 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
168 {
169 	unsigned int oldalloc = rc_map->alloc;
170 	unsigned int newalloc = oldalloc;
171 	struct rc_map_table *oldscan = rc_map->scan;
172 	struct rc_map_table *newscan;
173 
174 	if (rc_map->size == rc_map->len) {
175 		/* All entries in use -> grow keytable */
176 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
177 			return -ENOMEM;
178 
179 		newalloc *= 2;
180 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
181 	}
182 
183 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
184 		/* Less than 1/3 of entries in use -> shrink keytable */
185 		newalloc /= 2;
186 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
187 	}
188 
189 	if (newalloc == oldalloc)
190 		return 0;
191 
192 	newscan = kmalloc(newalloc, gfp_flags);
193 	if (!newscan) {
194 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
195 		return -ENOMEM;
196 	}
197 
198 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
199 	rc_map->scan = newscan;
200 	rc_map->alloc = newalloc;
201 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
202 	kfree(oldscan);
203 	return 0;
204 }
205 
206 /**
207  * ir_update_mapping() - set a keycode in the scancode->keycode table
208  * @dev:	the struct rc_dev device descriptor
209  * @rc_map:	scancode table to be adjusted
210  * @index:	index of the mapping that needs to be updated
211  * @keycode:	the desired keycode
212  * @return:	previous keycode assigned to the mapping
213  *
214  * This routine is used to update scancode->keycode mapping at given
215  * position.
216  */
217 static unsigned int ir_update_mapping(struct rc_dev *dev,
218 				      struct rc_map *rc_map,
219 				      unsigned int index,
220 				      unsigned int new_keycode)
221 {
222 	int old_keycode = rc_map->scan[index].keycode;
223 	int i;
224 
225 	/* Did the user wish to remove the mapping? */
226 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
227 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228 			   index, rc_map->scan[index].scancode);
229 		rc_map->len--;
230 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
231 			(rc_map->len - index) * sizeof(struct rc_map_table));
232 	} else {
233 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
234 			   index,
235 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
236 			   rc_map->scan[index].scancode, new_keycode);
237 		rc_map->scan[index].keycode = new_keycode;
238 		__set_bit(new_keycode, dev->input_dev->keybit);
239 	}
240 
241 	if (old_keycode != KEY_RESERVED) {
242 		/* A previous mapping was updated... */
243 		__clear_bit(old_keycode, dev->input_dev->keybit);
244 		/* ... but another scancode might use the same keycode */
245 		for (i = 0; i < rc_map->len; i++) {
246 			if (rc_map->scan[i].keycode == old_keycode) {
247 				__set_bit(old_keycode, dev->input_dev->keybit);
248 				break;
249 			}
250 		}
251 
252 		/* Possibly shrink the keytable, failure is not a problem */
253 		ir_resize_table(rc_map, GFP_ATOMIC);
254 	}
255 
256 	return old_keycode;
257 }
258 
259 /**
260  * ir_establish_scancode() - set a keycode in the scancode->keycode table
261  * @dev:	the struct rc_dev device descriptor
262  * @rc_map:	scancode table to be searched
263  * @scancode:	the desired scancode
264  * @resize:	controls whether we allowed to resize the table to
265  *		accommodate not yet present scancodes
266  * @return:	index of the mapping containing scancode in question
267  *		or -1U in case of failure.
268  *
269  * This routine is used to locate given scancode in rc_map.
270  * If scancode is not yet present the routine will allocate a new slot
271  * for it.
272  */
273 static unsigned int ir_establish_scancode(struct rc_dev *dev,
274 					  struct rc_map *rc_map,
275 					  unsigned int scancode,
276 					  bool resize)
277 {
278 	unsigned int i;
279 
280 	/*
281 	 * Unfortunately, some hardware-based IR decoders don't provide
282 	 * all bits for the complete IR code. In general, they provide only
283 	 * the command part of the IR code. Yet, as it is possible to replace
284 	 * the provided IR with another one, it is needed to allow loading
285 	 * IR tables from other remotes. So, we support specifying a mask to
286 	 * indicate the valid bits of the scancodes.
287 	 */
288 	if (dev->scanmask)
289 		scancode &= dev->scanmask;
290 
291 	/* First check if we already have a mapping for this ir command */
292 	for (i = 0; i < rc_map->len; i++) {
293 		if (rc_map->scan[i].scancode == scancode)
294 			return i;
295 
296 		/* Keytable is sorted from lowest to highest scancode */
297 		if (rc_map->scan[i].scancode >= scancode)
298 			break;
299 	}
300 
301 	/* No previous mapping found, we might need to grow the table */
302 	if (rc_map->size == rc_map->len) {
303 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
304 			return -1U;
305 	}
306 
307 	/* i is the proper index to insert our new keycode */
308 	if (i < rc_map->len)
309 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
310 			(rc_map->len - i) * sizeof(struct rc_map_table));
311 	rc_map->scan[i].scancode = scancode;
312 	rc_map->scan[i].keycode = KEY_RESERVED;
313 	rc_map->len++;
314 
315 	return i;
316 }
317 
318 /**
319  * ir_setkeycode() - set a keycode in the scancode->keycode table
320  * @idev:	the struct input_dev device descriptor
321  * @scancode:	the desired scancode
322  * @keycode:	result
323  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
324  *
325  * This routine is used to handle evdev EVIOCSKEY ioctl.
326  */
327 static int ir_setkeycode(struct input_dev *idev,
328 			 const struct input_keymap_entry *ke,
329 			 unsigned int *old_keycode)
330 {
331 	struct rc_dev *rdev = input_get_drvdata(idev);
332 	struct rc_map *rc_map = &rdev->rc_map;
333 	unsigned int index;
334 	unsigned int scancode;
335 	int retval = 0;
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(&rc_map->lock, flags);
339 
340 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
341 		index = ke->index;
342 		if (index >= rc_map->len) {
343 			retval = -EINVAL;
344 			goto out;
345 		}
346 	} else {
347 		retval = input_scancode_to_scalar(ke, &scancode);
348 		if (retval)
349 			goto out;
350 
351 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
352 		if (index >= rc_map->len) {
353 			retval = -ENOMEM;
354 			goto out;
355 		}
356 	}
357 
358 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
359 
360 out:
361 	spin_unlock_irqrestore(&rc_map->lock, flags);
362 	return retval;
363 }
364 
365 /**
366  * ir_setkeytable() - sets several entries in the scancode->keycode table
367  * @dev:	the struct rc_dev device descriptor
368  * @to:		the struct rc_map to copy entries to
369  * @from:	the struct rc_map to copy entries from
370  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
371  *
372  * This routine is used to handle table initialization.
373  */
374 static int ir_setkeytable(struct rc_dev *dev,
375 			  const struct rc_map *from)
376 {
377 	struct rc_map *rc_map = &dev->rc_map;
378 	unsigned int i, index;
379 	int rc;
380 
381 	rc = ir_create_table(rc_map, from->name,
382 			     from->rc_type, from->size);
383 	if (rc)
384 		return rc;
385 
386 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387 		   rc_map->size, rc_map->alloc);
388 
389 	for (i = 0; i < from->size; i++) {
390 		index = ir_establish_scancode(dev, rc_map,
391 					      from->scan[i].scancode, false);
392 		if (index >= rc_map->len) {
393 			rc = -ENOMEM;
394 			break;
395 		}
396 
397 		ir_update_mapping(dev, rc_map, index,
398 				  from->scan[i].keycode);
399 	}
400 
401 	if (rc)
402 		ir_free_table(rc_map);
403 
404 	return rc;
405 }
406 
407 /**
408  * ir_lookup_by_scancode() - locate mapping by scancode
409  * @rc_map:	the struct rc_map to search
410  * @scancode:	scancode to look for in the table
411  * @return:	index in the table, -1U if not found
412  *
413  * This routine performs binary search in RC keykeymap table for
414  * given scancode.
415  */
416 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
417 					  unsigned int scancode)
418 {
419 	int start = 0;
420 	int end = rc_map->len - 1;
421 	int mid;
422 
423 	while (start <= end) {
424 		mid = (start + end) / 2;
425 		if (rc_map->scan[mid].scancode < scancode)
426 			start = mid + 1;
427 		else if (rc_map->scan[mid].scancode > scancode)
428 			end = mid - 1;
429 		else
430 			return mid;
431 	}
432 
433 	return -1U;
434 }
435 
436 /**
437  * ir_getkeycode() - get a keycode from the scancode->keycode table
438  * @idev:	the struct input_dev device descriptor
439  * @scancode:	the desired scancode
440  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
441  * @return:	always returns zero.
442  *
443  * This routine is used to handle evdev EVIOCGKEY ioctl.
444  */
445 static int ir_getkeycode(struct input_dev *idev,
446 			 struct input_keymap_entry *ke)
447 {
448 	struct rc_dev *rdev = input_get_drvdata(idev);
449 	struct rc_map *rc_map = &rdev->rc_map;
450 	struct rc_map_table *entry;
451 	unsigned long flags;
452 	unsigned int index;
453 	unsigned int scancode;
454 	int retval;
455 
456 	spin_lock_irqsave(&rc_map->lock, flags);
457 
458 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
459 		index = ke->index;
460 	} else {
461 		retval = input_scancode_to_scalar(ke, &scancode);
462 		if (retval)
463 			goto out;
464 
465 		index = ir_lookup_by_scancode(rc_map, scancode);
466 	}
467 
468 	if (index < rc_map->len) {
469 		entry = &rc_map->scan[index];
470 
471 		ke->index = index;
472 		ke->keycode = entry->keycode;
473 		ke->len = sizeof(entry->scancode);
474 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
475 
476 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
477 		/*
478 		 * We do not really know the valid range of scancodes
479 		 * so let's respond with KEY_RESERVED to anything we
480 		 * do not have mapping for [yet].
481 		 */
482 		ke->index = index;
483 		ke->keycode = KEY_RESERVED;
484 	} else {
485 		retval = -EINVAL;
486 		goto out;
487 	}
488 
489 	retval = 0;
490 
491 out:
492 	spin_unlock_irqrestore(&rc_map->lock, flags);
493 	return retval;
494 }
495 
496 /**
497  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498  * @dev:	the struct rc_dev descriptor of the device
499  * @scancode:	the scancode to look for
500  * @return:	the corresponding keycode, or KEY_RESERVED
501  *
502  * This routine is used by drivers which need to convert a scancode to a
503  * keycode. Normally it should not be used since drivers should have no
504  * interest in keycodes.
505  */
506 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
507 {
508 	struct rc_map *rc_map = &dev->rc_map;
509 	unsigned int keycode;
510 	unsigned int index;
511 	unsigned long flags;
512 
513 	spin_lock_irqsave(&rc_map->lock, flags);
514 
515 	index = ir_lookup_by_scancode(rc_map, scancode);
516 	keycode = index < rc_map->len ?
517 			rc_map->scan[index].keycode : KEY_RESERVED;
518 
519 	spin_unlock_irqrestore(&rc_map->lock, flags);
520 
521 	if (keycode != KEY_RESERVED)
522 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523 			   dev->input_name, scancode, keycode);
524 
525 	return keycode;
526 }
527 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
528 
529 /**
530  * ir_do_keyup() - internal function to signal the release of a keypress
531  * @dev:	the struct rc_dev descriptor of the device
532  * @sync:	whether or not to call input_sync
533  *
534  * This function is used internally to release a keypress, it must be
535  * called with keylock held.
536  */
537 static void ir_do_keyup(struct rc_dev *dev, bool sync)
538 {
539 	if (!dev->keypressed)
540 		return;
541 
542 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
543 	input_report_key(dev->input_dev, dev->last_keycode, 0);
544 	led_trigger_event(led_feedback, LED_OFF);
545 	if (sync)
546 		input_sync(dev->input_dev);
547 	dev->keypressed = false;
548 }
549 
550 /**
551  * rc_keyup() - signals the release of a keypress
552  * @dev:	the struct rc_dev descriptor of the device
553  *
554  * This routine is used to signal that a key has been released on the
555  * remote control.
556  */
557 void rc_keyup(struct rc_dev *dev)
558 {
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&dev->keylock, flags);
562 	ir_do_keyup(dev, true);
563 	spin_unlock_irqrestore(&dev->keylock, flags);
564 }
565 EXPORT_SYMBOL_GPL(rc_keyup);
566 
567 /**
568  * ir_timer_keyup() - generates a keyup event after a timeout
569  * @cookie:	a pointer to the struct rc_dev for the device
570  *
571  * This routine will generate a keyup event some time after a keydown event
572  * is generated when no further activity has been detected.
573  */
574 static void ir_timer_keyup(unsigned long cookie)
575 {
576 	struct rc_dev *dev = (struct rc_dev *)cookie;
577 	unsigned long flags;
578 
579 	/*
580 	 * ir->keyup_jiffies is used to prevent a race condition if a
581 	 * hardware interrupt occurs at this point and the keyup timer
582 	 * event is moved further into the future as a result.
583 	 *
584 	 * The timer will then be reactivated and this function called
585 	 * again in the future. We need to exit gracefully in that case
586 	 * to allow the input subsystem to do its auto-repeat magic or
587 	 * a keyup event might follow immediately after the keydown.
588 	 */
589 	spin_lock_irqsave(&dev->keylock, flags);
590 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
591 		ir_do_keyup(dev, true);
592 	spin_unlock_irqrestore(&dev->keylock, flags);
593 }
594 
595 /**
596  * rc_repeat() - signals that a key is still pressed
597  * @dev:	the struct rc_dev descriptor of the device
598  *
599  * This routine is used by IR decoders when a repeat message which does
600  * not include the necessary bits to reproduce the scancode has been
601  * received.
602  */
603 void rc_repeat(struct rc_dev *dev)
604 {
605 	unsigned long flags;
606 
607 	spin_lock_irqsave(&dev->keylock, flags);
608 
609 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
610 	input_sync(dev->input_dev);
611 
612 	if (!dev->keypressed)
613 		goto out;
614 
615 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
616 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
617 
618 out:
619 	spin_unlock_irqrestore(&dev->keylock, flags);
620 }
621 EXPORT_SYMBOL_GPL(rc_repeat);
622 
623 /**
624  * ir_do_keydown() - internal function to process a keypress
625  * @dev:	the struct rc_dev descriptor of the device
626  * @scancode:   the scancode of the keypress
627  * @keycode:    the keycode of the keypress
628  * @toggle:     the toggle value of the keypress
629  *
630  * This function is used internally to register a keypress, it must be
631  * called with keylock held.
632  */
633 static void ir_do_keydown(struct rc_dev *dev, int scancode,
634 			  u32 keycode, u8 toggle)
635 {
636 	bool new_event = (!dev->keypressed		 ||
637 			  dev->last_scancode != scancode ||
638 			  dev->last_toggle != toggle);
639 
640 	if (new_event && dev->keypressed)
641 		ir_do_keyup(dev, false);
642 
643 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
644 
645 	if (new_event && keycode != KEY_RESERVED) {
646 		/* Register a keypress */
647 		dev->keypressed = true;
648 		dev->last_scancode = scancode;
649 		dev->last_toggle = toggle;
650 		dev->last_keycode = keycode;
651 
652 		IR_dprintk(1, "%s: key down event, "
653 			   "key 0x%04x, scancode 0x%04x\n",
654 			   dev->input_name, keycode, scancode);
655 		input_report_key(dev->input_dev, keycode, 1);
656 
657 		led_trigger_event(led_feedback, LED_FULL);
658 	}
659 
660 	input_sync(dev->input_dev);
661 }
662 
663 /**
664  * rc_keydown() - generates input event for a key press
665  * @dev:	the struct rc_dev descriptor of the device
666  * @scancode:   the scancode that we're seeking
667  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
668  *              support toggle values, this should be set to zero)
669  *
670  * This routine is used to signal that a key has been pressed on the
671  * remote control.
672  */
673 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
674 {
675 	unsigned long flags;
676 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
677 
678 	spin_lock_irqsave(&dev->keylock, flags);
679 	ir_do_keydown(dev, scancode, keycode, toggle);
680 
681 	if (dev->keypressed) {
682 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
683 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
684 	}
685 	spin_unlock_irqrestore(&dev->keylock, flags);
686 }
687 EXPORT_SYMBOL_GPL(rc_keydown);
688 
689 /**
690  * rc_keydown_notimeout() - generates input event for a key press without
691  *                          an automatic keyup event at a later time
692  * @dev:	the struct rc_dev descriptor of the device
693  * @scancode:   the scancode that we're seeking
694  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
695  *              support toggle values, this should be set to zero)
696  *
697  * This routine is used to signal that a key has been pressed on the
698  * remote control. The driver must manually call rc_keyup() at a later stage.
699  */
700 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
701 {
702 	unsigned long flags;
703 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
704 
705 	spin_lock_irqsave(&dev->keylock, flags);
706 	ir_do_keydown(dev, scancode, keycode, toggle);
707 	spin_unlock_irqrestore(&dev->keylock, flags);
708 }
709 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
710 
711 int rc_open(struct rc_dev *rdev)
712 {
713 	int rval = 0;
714 
715 	if (!rdev)
716 		return -EINVAL;
717 
718 	mutex_lock(&rdev->lock);
719 	if (!rdev->users++ && rdev->open != NULL)
720 		rval = rdev->open(rdev);
721 
722 	if (rval)
723 		rdev->users--;
724 
725 	mutex_unlock(&rdev->lock);
726 
727 	return rval;
728 }
729 EXPORT_SYMBOL_GPL(rc_open);
730 
731 static int ir_open(struct input_dev *idev)
732 {
733 	struct rc_dev *rdev = input_get_drvdata(idev);
734 
735 	return rc_open(rdev);
736 }
737 
738 void rc_close(struct rc_dev *rdev)
739 {
740 	if (rdev) {
741 		mutex_lock(&rdev->lock);
742 
743 		 if (!--rdev->users && rdev->close != NULL)
744 			rdev->close(rdev);
745 
746 		mutex_unlock(&rdev->lock);
747 	}
748 }
749 EXPORT_SYMBOL_GPL(rc_close);
750 
751 static void ir_close(struct input_dev *idev)
752 {
753 	struct rc_dev *rdev = input_get_drvdata(idev);
754 	rc_close(rdev);
755 }
756 
757 /* class for /sys/class/rc */
758 static char *rc_devnode(struct device *dev, umode_t *mode)
759 {
760 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
761 }
762 
763 static struct class rc_class = {
764 	.name		= "rc",
765 	.devnode	= rc_devnode,
766 };
767 
768 /*
769  * These are the protocol textual descriptions that are
770  * used by the sysfs protocols file. Note that the order
771  * of the entries is relevant.
772  */
773 static struct {
774 	u64	type;
775 	char	*name;
776 } proto_names[] = {
777 	{ RC_BIT_NONE,		"none"		},
778 	{ RC_BIT_OTHER,		"other"		},
779 	{ RC_BIT_UNKNOWN,	"unknown"	},
780 	{ RC_BIT_RC5 |
781 	  RC_BIT_RC5X,		"rc-5"		},
782 	{ RC_BIT_NEC,		"nec"		},
783 	{ RC_BIT_RC6_0 |
784 	  RC_BIT_RC6_6A_20 |
785 	  RC_BIT_RC6_6A_24 |
786 	  RC_BIT_RC6_6A_32 |
787 	  RC_BIT_RC6_MCE,	"rc-6"		},
788 	{ RC_BIT_JVC,		"jvc"		},
789 	{ RC_BIT_SONY12 |
790 	  RC_BIT_SONY15 |
791 	  RC_BIT_SONY20,	"sony"		},
792 	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
793 	{ RC_BIT_SANYO,		"sanyo"		},
794 	{ RC_BIT_SHARP,		"sharp"		},
795 	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
796 	{ RC_BIT_LIRC,		"lirc"		},
797 };
798 
799 /**
800  * struct rc_filter_attribute - Device attribute relating to a filter type.
801  * @attr:	Device attribute.
802  * @type:	Filter type.
803  * @mask:	false for filter value, true for filter mask.
804  */
805 struct rc_filter_attribute {
806 	struct device_attribute		attr;
807 	enum rc_filter_type		type;
808 	bool				mask;
809 };
810 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
811 
812 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
813 	struct rc_filter_attribute dev_attr_##_name = {			\
814 		.attr = __ATTR(_name, _mode, _show, _store),		\
815 		.type = (_type),					\
816 	}
817 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
818 	struct rc_filter_attribute dev_attr_##_name = {			\
819 		.attr = __ATTR(_name, _mode, _show, _store),		\
820 		.type = (_type),					\
821 		.mask = (_mask),					\
822 	}
823 
824 /**
825  * show_protocols() - shows the current/wakeup IR protocol(s)
826  * @device:	the device descriptor
827  * @mattr:	the device attribute struct (unused)
828  * @buf:	a pointer to the output buffer
829  *
830  * This routine is a callback routine for input read the IR protocol type(s).
831  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
832  * It returns the protocol names of supported protocols.
833  * Enabled protocols are printed in brackets.
834  *
835  * dev->lock is taken to guard against races between device
836  * registration, store_protocols and show_protocols.
837  */
838 static ssize_t show_protocols(struct device *device,
839 			      struct device_attribute *mattr, char *buf)
840 {
841 	struct rc_dev *dev = to_rc_dev(device);
842 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
843 	u64 allowed, enabled;
844 	char *tmp = buf;
845 	int i;
846 
847 	/* Device is being removed */
848 	if (!dev)
849 		return -EINVAL;
850 
851 	mutex_lock(&dev->lock);
852 
853 	enabled = dev->enabled_protocols[fattr->type];
854 	if (dev->driver_type == RC_DRIVER_SCANCODE ||
855 	    fattr->type == RC_FILTER_WAKEUP)
856 		allowed = dev->allowed_protocols[fattr->type];
857 	else if (dev->raw)
858 		allowed = ir_raw_get_allowed_protocols();
859 	else {
860 		mutex_unlock(&dev->lock);
861 		return -ENODEV;
862 	}
863 
864 	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
865 		   (long long)allowed,
866 		   (long long)enabled);
867 
868 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
869 		if (allowed & enabled & proto_names[i].type)
870 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
871 		else if (allowed & proto_names[i].type)
872 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
873 
874 		if (allowed & proto_names[i].type)
875 			allowed &= ~proto_names[i].type;
876 	}
877 
878 	if (tmp != buf)
879 		tmp--;
880 	*tmp = '\n';
881 
882 	mutex_unlock(&dev->lock);
883 
884 	return tmp + 1 - buf;
885 }
886 
887 /**
888  * store_protocols() - changes the current/wakeup IR protocol(s)
889  * @device:	the device descriptor
890  * @mattr:	the device attribute struct (unused)
891  * @buf:	a pointer to the input buffer
892  * @len:	length of the input buffer
893  *
894  * This routine is for changing the IR protocol type.
895  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
896  * Writing "+proto" will add a protocol to the list of enabled protocols.
897  * Writing "-proto" will remove a protocol from the list of enabled protocols.
898  * Writing "proto" will enable only "proto".
899  * Writing "none" will disable all protocols.
900  * Returns -EINVAL if an invalid protocol combination or unknown protocol name
901  * is used, otherwise @len.
902  *
903  * dev->lock is taken to guard against races between device
904  * registration, store_protocols and show_protocols.
905  */
906 static ssize_t store_protocols(struct device *device,
907 			       struct device_attribute *mattr,
908 			       const char *data,
909 			       size_t len)
910 {
911 	struct rc_dev *dev = to_rc_dev(device);
912 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
913 	bool enable, disable;
914 	const char *tmp;
915 	u64 old_type, type;
916 	u64 mask;
917 	int rc, i, count = 0;
918 	ssize_t ret;
919 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
920 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
921 	struct rc_scancode_filter local_filter, *filter;
922 
923 	/* Device is being removed */
924 	if (!dev)
925 		return -EINVAL;
926 
927 	mutex_lock(&dev->lock);
928 
929 	if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
930 		IR_dprintk(1, "Protocol switching not supported\n");
931 		ret = -EINVAL;
932 		goto out;
933 	}
934 	old_type = dev->enabled_protocols[fattr->type];
935 	type = old_type;
936 
937 	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
938 		if (!*tmp)
939 			break;
940 
941 		if (*tmp == '+') {
942 			enable = true;
943 			disable = false;
944 			tmp++;
945 		} else if (*tmp == '-') {
946 			enable = false;
947 			disable = true;
948 			tmp++;
949 		} else {
950 			enable = false;
951 			disable = false;
952 		}
953 
954 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
955 			if (!strcasecmp(tmp, proto_names[i].name)) {
956 				mask = proto_names[i].type;
957 				break;
958 			}
959 		}
960 
961 		if (i == ARRAY_SIZE(proto_names)) {
962 			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
963 			ret = -EINVAL;
964 			goto out;
965 		}
966 
967 		count++;
968 
969 		if (enable)
970 			type |= mask;
971 		else if (disable)
972 			type &= ~mask;
973 		else
974 			type = mask;
975 	}
976 
977 	if (!count) {
978 		IR_dprintk(1, "Protocol not specified\n");
979 		ret = -EINVAL;
980 		goto out;
981 	}
982 
983 	change_protocol = (fattr->type == RC_FILTER_NORMAL)
984 		? dev->change_protocol : dev->change_wakeup_protocol;
985 	if (change_protocol) {
986 		rc = change_protocol(dev, &type);
987 		if (rc < 0) {
988 			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
989 				   (long long)type);
990 			ret = -EINVAL;
991 			goto out;
992 		}
993 	}
994 
995 	dev->enabled_protocols[fattr->type] = type;
996 	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
997 		   (long long)type);
998 
999 	/*
1000 	 * If the protocol is changed the filter needs updating.
1001 	 * Try setting the same filter with the new protocol (if any).
1002 	 * Fall back to clearing the filter.
1003 	 */
1004 	filter = &dev->scancode_filters[fattr->type];
1005 	set_filter = (fattr->type == RC_FILTER_NORMAL)
1006 		? dev->s_filter : dev->s_wakeup_filter;
1007 
1008 	if (set_filter && old_type != type && filter->mask) {
1009 		local_filter = *filter;
1010 		if (!type) {
1011 			/* no protocol => clear filter */
1012 			ret = -1;
1013 		} else {
1014 			/* hardware filtering => try setting, otherwise clear */
1015 			ret = set_filter(dev, &local_filter);
1016 		}
1017 		if (ret < 0) {
1018 			/* clear the filter */
1019 			local_filter.data = 0;
1020 			local_filter.mask = 0;
1021 			set_filter(dev, &local_filter);
1022 		}
1023 
1024 		/* commit the new filter */
1025 		*filter = local_filter;
1026 	}
1027 
1028 	ret = len;
1029 
1030 out:
1031 	mutex_unlock(&dev->lock);
1032 	return ret;
1033 }
1034 
1035 /**
1036  * show_filter() - shows the current scancode filter value or mask
1037  * @device:	the device descriptor
1038  * @attr:	the device attribute struct
1039  * @buf:	a pointer to the output buffer
1040  *
1041  * This routine is a callback routine to read a scancode filter value or mask.
1042  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1043  * It prints the current scancode filter value or mask of the appropriate filter
1044  * type in hexadecimal into @buf and returns the size of the buffer.
1045  *
1046  * Bits of the filter value corresponding to set bits in the filter mask are
1047  * compared against input scancodes and non-matching scancodes are discarded.
1048  *
1049  * dev->lock is taken to guard against races between device registration,
1050  * store_filter and show_filter.
1051  */
1052 static ssize_t show_filter(struct device *device,
1053 			   struct device_attribute *attr,
1054 			   char *buf)
1055 {
1056 	struct rc_dev *dev = to_rc_dev(device);
1057 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1058 	u32 val;
1059 
1060 	/* Device is being removed */
1061 	if (!dev)
1062 		return -EINVAL;
1063 
1064 	mutex_lock(&dev->lock);
1065 	if ((fattr->type == RC_FILTER_NORMAL && !dev->s_filter) ||
1066 	    (fattr->type == RC_FILTER_WAKEUP && !dev->s_wakeup_filter))
1067 		val = 0;
1068 	else if (fattr->mask)
1069 		val = dev->scancode_filters[fattr->type].mask;
1070 	else
1071 		val = dev->scancode_filters[fattr->type].data;
1072 	mutex_unlock(&dev->lock);
1073 
1074 	return sprintf(buf, "%#x\n", val);
1075 }
1076 
1077 /**
1078  * store_filter() - changes the scancode filter value
1079  * @device:	the device descriptor
1080  * @attr:	the device attribute struct
1081  * @buf:	a pointer to the input buffer
1082  * @len:	length of the input buffer
1083  *
1084  * This routine is for changing a scancode filter value or mask.
1085  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1086  * Returns -EINVAL if an invalid filter value for the current protocol was
1087  * specified or if scancode filtering is not supported by the driver, otherwise
1088  * returns @len.
1089  *
1090  * Bits of the filter value corresponding to set bits in the filter mask are
1091  * compared against input scancodes and non-matching scancodes are discarded.
1092  *
1093  * dev->lock is taken to guard against races between device registration,
1094  * store_filter and show_filter.
1095  */
1096 static ssize_t store_filter(struct device *device,
1097 			    struct device_attribute *attr,
1098 			    const char *buf,
1099 			    size_t count)
1100 {
1101 	struct rc_dev *dev = to_rc_dev(device);
1102 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1103 	struct rc_scancode_filter local_filter, *filter;
1104 	int ret;
1105 	unsigned long val;
1106 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1107 
1108 	/* Device is being removed */
1109 	if (!dev)
1110 		return -EINVAL;
1111 
1112 	ret = kstrtoul(buf, 0, &val);
1113 	if (ret < 0)
1114 		return ret;
1115 
1116 	/* Can the scancode filter be set? */
1117 	set_filter = (fattr->type == RC_FILTER_NORMAL) ? dev->s_filter :
1118 							 dev->s_wakeup_filter;
1119 	if (!set_filter)
1120 		return -EINVAL;
1121 
1122 	mutex_lock(&dev->lock);
1123 
1124 	/* Tell the driver about the new filter */
1125 	filter = &dev->scancode_filters[fattr->type];
1126 	local_filter = *filter;
1127 	if (fattr->mask)
1128 		local_filter.mask = val;
1129 	else
1130 		local_filter.data = val;
1131 
1132 	if (!dev->enabled_protocols[fattr->type] && local_filter.mask) {
1133 		/* refuse to set a filter unless a protocol is enabled */
1134 		ret = -EINVAL;
1135 		goto unlock;
1136 	}
1137 
1138 	ret = set_filter(dev, &local_filter);
1139 	if (ret < 0)
1140 		goto unlock;
1141 
1142 	/* Success, commit the new filter */
1143 	*filter = local_filter;
1144 
1145 unlock:
1146 	mutex_unlock(&dev->lock);
1147 	return (ret < 0) ? ret : count;
1148 }
1149 
1150 static void rc_dev_release(struct device *device)
1151 {
1152 }
1153 
1154 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1155 	do {								\
1156 		int err = add_uevent_var(env, fmt, val);		\
1157 		if (err)						\
1158 			return err;					\
1159 	} while (0)
1160 
1161 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1162 {
1163 	struct rc_dev *dev = to_rc_dev(device);
1164 
1165 	if (!dev || !dev->input_dev)
1166 		return -ENODEV;
1167 
1168 	if (dev->rc_map.name)
1169 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1170 	if (dev->driver_name)
1171 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1172 
1173 	return 0;
1174 }
1175 
1176 /*
1177  * Static device attribute struct with the sysfs attributes for IR's
1178  */
1179 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1180 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1181 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1182 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1183 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1184 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1185 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1186 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1187 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1188 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1189 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1190 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1191 
1192 static struct attribute *rc_dev_protocol_attrs[] = {
1193 	&dev_attr_protocols.attr.attr,
1194 	NULL,
1195 };
1196 
1197 static struct attribute_group rc_dev_protocol_attr_grp = {
1198 	.attrs	= rc_dev_protocol_attrs,
1199 };
1200 
1201 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1202 	&dev_attr_wakeup_protocols.attr.attr,
1203 	NULL,
1204 };
1205 
1206 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1207 	.attrs	= rc_dev_wakeup_protocol_attrs,
1208 };
1209 
1210 static struct attribute *rc_dev_filter_attrs[] = {
1211 	&dev_attr_filter.attr.attr,
1212 	&dev_attr_filter_mask.attr.attr,
1213 	NULL,
1214 };
1215 
1216 static struct attribute_group rc_dev_filter_attr_grp = {
1217 	.attrs	= rc_dev_filter_attrs,
1218 };
1219 
1220 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1221 	&dev_attr_wakeup_filter.attr.attr,
1222 	&dev_attr_wakeup_filter_mask.attr.attr,
1223 	NULL,
1224 };
1225 
1226 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1227 	.attrs	= rc_dev_wakeup_filter_attrs,
1228 };
1229 
1230 static struct device_type rc_dev_type = {
1231 	.release	= rc_dev_release,
1232 	.uevent		= rc_dev_uevent,
1233 };
1234 
1235 struct rc_dev *rc_allocate_device(void)
1236 {
1237 	struct rc_dev *dev;
1238 
1239 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1240 	if (!dev)
1241 		return NULL;
1242 
1243 	dev->input_dev = input_allocate_device();
1244 	if (!dev->input_dev) {
1245 		kfree(dev);
1246 		return NULL;
1247 	}
1248 
1249 	dev->input_dev->getkeycode = ir_getkeycode;
1250 	dev->input_dev->setkeycode = ir_setkeycode;
1251 	input_set_drvdata(dev->input_dev, dev);
1252 
1253 	spin_lock_init(&dev->rc_map.lock);
1254 	spin_lock_init(&dev->keylock);
1255 	mutex_init(&dev->lock);
1256 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1257 
1258 	dev->dev.type = &rc_dev_type;
1259 	dev->dev.class = &rc_class;
1260 	device_initialize(&dev->dev);
1261 
1262 	__module_get(THIS_MODULE);
1263 	return dev;
1264 }
1265 EXPORT_SYMBOL_GPL(rc_allocate_device);
1266 
1267 void rc_free_device(struct rc_dev *dev)
1268 {
1269 	if (!dev)
1270 		return;
1271 
1272 	if (dev->input_dev)
1273 		input_free_device(dev->input_dev);
1274 
1275 	put_device(&dev->dev);
1276 
1277 	kfree(dev);
1278 	module_put(THIS_MODULE);
1279 }
1280 EXPORT_SYMBOL_GPL(rc_free_device);
1281 
1282 int rc_register_device(struct rc_dev *dev)
1283 {
1284 	static bool raw_init = false; /* raw decoders loaded? */
1285 	struct rc_map *rc_map;
1286 	const char *path;
1287 	int rc, devno, attr = 0;
1288 
1289 	if (!dev || !dev->map_name)
1290 		return -EINVAL;
1291 
1292 	rc_map = rc_map_get(dev->map_name);
1293 	if (!rc_map)
1294 		rc_map = rc_map_get(RC_MAP_EMPTY);
1295 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1296 		return -EINVAL;
1297 
1298 	set_bit(EV_KEY, dev->input_dev->evbit);
1299 	set_bit(EV_REP, dev->input_dev->evbit);
1300 	set_bit(EV_MSC, dev->input_dev->evbit);
1301 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1302 	if (dev->open)
1303 		dev->input_dev->open = ir_open;
1304 	if (dev->close)
1305 		dev->input_dev->close = ir_close;
1306 
1307 	do {
1308 		devno = find_first_zero_bit(ir_core_dev_number,
1309 					    IRRCV_NUM_DEVICES);
1310 		/* No free device slots */
1311 		if (devno >= IRRCV_NUM_DEVICES)
1312 			return -ENOMEM;
1313 	} while (test_and_set_bit(devno, ir_core_dev_number));
1314 
1315 	dev->dev.groups = dev->sysfs_groups;
1316 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1317 	if (dev->s_filter)
1318 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1319 	if (dev->s_wakeup_filter)
1320 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1321 	if (dev->change_wakeup_protocol)
1322 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1323 	dev->sysfs_groups[attr++] = NULL;
1324 
1325 	/*
1326 	 * Take the lock here, as the device sysfs node will appear
1327 	 * when device_add() is called, which may trigger an ir-keytable udev
1328 	 * rule, which will in turn call show_protocols and access
1329 	 * dev->enabled_protocols before it has been initialized.
1330 	 */
1331 	mutex_lock(&dev->lock);
1332 
1333 	dev->devno = devno;
1334 	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1335 	dev_set_drvdata(&dev->dev, dev);
1336 	rc = device_add(&dev->dev);
1337 	if (rc)
1338 		goto out_unlock;
1339 
1340 	rc = ir_setkeytable(dev, rc_map);
1341 	if (rc)
1342 		goto out_dev;
1343 
1344 	dev->input_dev->dev.parent = &dev->dev;
1345 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1346 	dev->input_dev->phys = dev->input_phys;
1347 	dev->input_dev->name = dev->input_name;
1348 
1349 	/* input_register_device can call ir_open, so unlock mutex here */
1350 	mutex_unlock(&dev->lock);
1351 
1352 	rc = input_register_device(dev->input_dev);
1353 
1354 	mutex_lock(&dev->lock);
1355 
1356 	if (rc)
1357 		goto out_table;
1358 
1359 	/*
1360 	 * Default delay of 250ms is too short for some protocols, especially
1361 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1362 	 * to avoid wrong repetition of the keycodes. Note that this must be
1363 	 * set after the call to input_register_device().
1364 	 */
1365 	dev->input_dev->rep[REP_DELAY] = 500;
1366 
1367 	/*
1368 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1369 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1370 	 * to do.
1371 	 */
1372 	dev->input_dev->rep[REP_PERIOD] = 125;
1373 
1374 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1375 	printk(KERN_INFO "%s: %s as %s\n",
1376 		dev_name(&dev->dev),
1377 		dev->input_name ? dev->input_name : "Unspecified device",
1378 		path ? path : "N/A");
1379 	kfree(path);
1380 
1381 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1382 		/* Load raw decoders, if they aren't already */
1383 		if (!raw_init) {
1384 			IR_dprintk(1, "Loading raw decoders\n");
1385 			ir_raw_init();
1386 			raw_init = true;
1387 		}
1388 		rc = ir_raw_event_register(dev);
1389 		if (rc < 0)
1390 			goto out_input;
1391 	}
1392 
1393 	if (dev->change_protocol) {
1394 		u64 rc_type = (1 << rc_map->rc_type);
1395 		rc = dev->change_protocol(dev, &rc_type);
1396 		if (rc < 0)
1397 			goto out_raw;
1398 		dev->enabled_protocols[RC_FILTER_NORMAL] = rc_type;
1399 	}
1400 
1401 	mutex_unlock(&dev->lock);
1402 
1403 	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1404 		   dev->devno,
1405 		   dev->driver_name ? dev->driver_name : "unknown",
1406 		   rc_map->name ? rc_map->name : "unknown",
1407 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1408 
1409 	return 0;
1410 
1411 out_raw:
1412 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1413 		ir_raw_event_unregister(dev);
1414 out_input:
1415 	input_unregister_device(dev->input_dev);
1416 	dev->input_dev = NULL;
1417 out_table:
1418 	ir_free_table(&dev->rc_map);
1419 out_dev:
1420 	device_del(&dev->dev);
1421 out_unlock:
1422 	mutex_unlock(&dev->lock);
1423 	clear_bit(dev->devno, ir_core_dev_number);
1424 	return rc;
1425 }
1426 EXPORT_SYMBOL_GPL(rc_register_device);
1427 
1428 void rc_unregister_device(struct rc_dev *dev)
1429 {
1430 	if (!dev)
1431 		return;
1432 
1433 	del_timer_sync(&dev->timer_keyup);
1434 
1435 	clear_bit(dev->devno, ir_core_dev_number);
1436 
1437 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1438 		ir_raw_event_unregister(dev);
1439 
1440 	/* Freeing the table should also call the stop callback */
1441 	ir_free_table(&dev->rc_map);
1442 	IR_dprintk(1, "Freed keycode table\n");
1443 
1444 	input_unregister_device(dev->input_dev);
1445 	dev->input_dev = NULL;
1446 
1447 	device_del(&dev->dev);
1448 
1449 	rc_free_device(dev);
1450 }
1451 
1452 EXPORT_SYMBOL_GPL(rc_unregister_device);
1453 
1454 /*
1455  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1456  */
1457 
1458 static int __init rc_core_init(void)
1459 {
1460 	int rc = class_register(&rc_class);
1461 	if (rc) {
1462 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1463 		return rc;
1464 	}
1465 
1466 	led_trigger_register_simple("rc-feedback", &led_feedback);
1467 	rc_map_register(&empty_map);
1468 
1469 	return 0;
1470 }
1471 
1472 static void __exit rc_core_exit(void)
1473 {
1474 	class_unregister(&rc_class);
1475 	led_trigger_unregister_simple(led_feedback);
1476 	rc_map_unregister(&empty_map);
1477 }
1478 
1479 subsys_initcall(rc_core_init);
1480 module_exit(rc_core_exit);
1481 
1482 int rc_core_debug;    /* ir_debug level (0,1,2) */
1483 EXPORT_SYMBOL_GPL(rc_core_debug);
1484 module_param_named(debug, rc_core_debug, int, 0644);
1485 
1486 MODULE_AUTHOR("Mauro Carvalho Chehab");
1487 MODULE_LICENSE("GPL");
1488