1 /* rc-main.c - Remote Controller core module 2 * 3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <media/rc-core.h> 16 #include <linux/spinlock.h> 17 #include <linux/delay.h> 18 #include <linux/input.h> 19 #include <linux/leds.h> 20 #include <linux/slab.h> 21 #include <linux/device.h> 22 #include <linux/module.h> 23 #include "rc-core-priv.h" 24 25 /* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */ 26 #define IRRCV_NUM_DEVICES 256 27 static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES); 28 29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 30 #define IR_TAB_MIN_SIZE 256 31 #define IR_TAB_MAX_SIZE 8192 32 33 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ 34 #define IR_KEYPRESS_TIMEOUT 250 35 36 /* Used to keep track of known keymaps */ 37 static LIST_HEAD(rc_map_list); 38 static DEFINE_SPINLOCK(rc_map_lock); 39 static struct led_trigger *led_feedback; 40 41 static struct rc_map_list *seek_rc_map(const char *name) 42 { 43 struct rc_map_list *map = NULL; 44 45 spin_lock(&rc_map_lock); 46 list_for_each_entry(map, &rc_map_list, list) { 47 if (!strcmp(name, map->map.name)) { 48 spin_unlock(&rc_map_lock); 49 return map; 50 } 51 } 52 spin_unlock(&rc_map_lock); 53 54 return NULL; 55 } 56 57 struct rc_map *rc_map_get(const char *name) 58 { 59 60 struct rc_map_list *map; 61 62 map = seek_rc_map(name); 63 #ifdef MODULE 64 if (!map) { 65 int rc = request_module("%s", name); 66 if (rc < 0) { 67 printk(KERN_ERR "Couldn't load IR keymap %s\n", name); 68 return NULL; 69 } 70 msleep(20); /* Give some time for IR to register */ 71 72 map = seek_rc_map(name); 73 } 74 #endif 75 if (!map) { 76 printk(KERN_ERR "IR keymap %s not found\n", name); 77 return NULL; 78 } 79 80 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 81 82 return &map->map; 83 } 84 EXPORT_SYMBOL_GPL(rc_map_get); 85 86 int rc_map_register(struct rc_map_list *map) 87 { 88 spin_lock(&rc_map_lock); 89 list_add_tail(&map->list, &rc_map_list); 90 spin_unlock(&rc_map_lock); 91 return 0; 92 } 93 EXPORT_SYMBOL_GPL(rc_map_register); 94 95 void rc_map_unregister(struct rc_map_list *map) 96 { 97 spin_lock(&rc_map_lock); 98 list_del(&map->list); 99 spin_unlock(&rc_map_lock); 100 } 101 EXPORT_SYMBOL_GPL(rc_map_unregister); 102 103 104 static struct rc_map_table empty[] = { 105 { 0x2a, KEY_COFFEE }, 106 }; 107 108 static struct rc_map_list empty_map = { 109 .map = { 110 .scan = empty, 111 .size = ARRAY_SIZE(empty), 112 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */ 113 .name = RC_MAP_EMPTY, 114 } 115 }; 116 117 /** 118 * ir_create_table() - initializes a scancode table 119 * @rc_map: the rc_map to initialize 120 * @name: name to assign to the table 121 * @rc_type: ir type to assign to the new table 122 * @size: initial size of the table 123 * @return: zero on success or a negative error code 124 * 125 * This routine will initialize the rc_map and will allocate 126 * memory to hold at least the specified number of elements. 127 */ 128 static int ir_create_table(struct rc_map *rc_map, 129 const char *name, u64 rc_type, size_t size) 130 { 131 rc_map->name = name; 132 rc_map->rc_type = rc_type; 133 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 134 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 135 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 136 if (!rc_map->scan) 137 return -ENOMEM; 138 139 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 140 rc_map->size, rc_map->alloc); 141 return 0; 142 } 143 144 /** 145 * ir_free_table() - frees memory allocated by a scancode table 146 * @rc_map: the table whose mappings need to be freed 147 * 148 * This routine will free memory alloctaed for key mappings used by given 149 * scancode table. 150 */ 151 static void ir_free_table(struct rc_map *rc_map) 152 { 153 rc_map->size = 0; 154 kfree(rc_map->scan); 155 rc_map->scan = NULL; 156 } 157 158 /** 159 * ir_resize_table() - resizes a scancode table if necessary 160 * @rc_map: the rc_map to resize 161 * @gfp_flags: gfp flags to use when allocating memory 162 * @return: zero on success or a negative error code 163 * 164 * This routine will shrink the rc_map if it has lots of 165 * unused entries and grow it if it is full. 166 */ 167 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) 168 { 169 unsigned int oldalloc = rc_map->alloc; 170 unsigned int newalloc = oldalloc; 171 struct rc_map_table *oldscan = rc_map->scan; 172 struct rc_map_table *newscan; 173 174 if (rc_map->size == rc_map->len) { 175 /* All entries in use -> grow keytable */ 176 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 177 return -ENOMEM; 178 179 newalloc *= 2; 180 IR_dprintk(1, "Growing table to %u bytes\n", newalloc); 181 } 182 183 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 184 /* Less than 1/3 of entries in use -> shrink keytable */ 185 newalloc /= 2; 186 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); 187 } 188 189 if (newalloc == oldalloc) 190 return 0; 191 192 newscan = kmalloc(newalloc, gfp_flags); 193 if (!newscan) { 194 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); 195 return -ENOMEM; 196 } 197 198 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 199 rc_map->scan = newscan; 200 rc_map->alloc = newalloc; 201 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 202 kfree(oldscan); 203 return 0; 204 } 205 206 /** 207 * ir_update_mapping() - set a keycode in the scancode->keycode table 208 * @dev: the struct rc_dev device descriptor 209 * @rc_map: scancode table to be adjusted 210 * @index: index of the mapping that needs to be updated 211 * @keycode: the desired keycode 212 * @return: previous keycode assigned to the mapping 213 * 214 * This routine is used to update scancode->keycode mapping at given 215 * position. 216 */ 217 static unsigned int ir_update_mapping(struct rc_dev *dev, 218 struct rc_map *rc_map, 219 unsigned int index, 220 unsigned int new_keycode) 221 { 222 int old_keycode = rc_map->scan[index].keycode; 223 int i; 224 225 /* Did the user wish to remove the mapping? */ 226 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 227 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", 228 index, rc_map->scan[index].scancode); 229 rc_map->len--; 230 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 231 (rc_map->len - index) * sizeof(struct rc_map_table)); 232 } else { 233 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", 234 index, 235 old_keycode == KEY_RESERVED ? "New" : "Replacing", 236 rc_map->scan[index].scancode, new_keycode); 237 rc_map->scan[index].keycode = new_keycode; 238 __set_bit(new_keycode, dev->input_dev->keybit); 239 } 240 241 if (old_keycode != KEY_RESERVED) { 242 /* A previous mapping was updated... */ 243 __clear_bit(old_keycode, dev->input_dev->keybit); 244 /* ... but another scancode might use the same keycode */ 245 for (i = 0; i < rc_map->len; i++) { 246 if (rc_map->scan[i].keycode == old_keycode) { 247 __set_bit(old_keycode, dev->input_dev->keybit); 248 break; 249 } 250 } 251 252 /* Possibly shrink the keytable, failure is not a problem */ 253 ir_resize_table(rc_map, GFP_ATOMIC); 254 } 255 256 return old_keycode; 257 } 258 259 /** 260 * ir_establish_scancode() - set a keycode in the scancode->keycode table 261 * @dev: the struct rc_dev device descriptor 262 * @rc_map: scancode table to be searched 263 * @scancode: the desired scancode 264 * @resize: controls whether we allowed to resize the table to 265 * accommodate not yet present scancodes 266 * @return: index of the mapping containing scancode in question 267 * or -1U in case of failure. 268 * 269 * This routine is used to locate given scancode in rc_map. 270 * If scancode is not yet present the routine will allocate a new slot 271 * for it. 272 */ 273 static unsigned int ir_establish_scancode(struct rc_dev *dev, 274 struct rc_map *rc_map, 275 unsigned int scancode, 276 bool resize) 277 { 278 unsigned int i; 279 280 /* 281 * Unfortunately, some hardware-based IR decoders don't provide 282 * all bits for the complete IR code. In general, they provide only 283 * the command part of the IR code. Yet, as it is possible to replace 284 * the provided IR with another one, it is needed to allow loading 285 * IR tables from other remotes. So, we support specifying a mask to 286 * indicate the valid bits of the scancodes. 287 */ 288 if (dev->scanmask) 289 scancode &= dev->scanmask; 290 291 /* First check if we already have a mapping for this ir command */ 292 for (i = 0; i < rc_map->len; i++) { 293 if (rc_map->scan[i].scancode == scancode) 294 return i; 295 296 /* Keytable is sorted from lowest to highest scancode */ 297 if (rc_map->scan[i].scancode >= scancode) 298 break; 299 } 300 301 /* No previous mapping found, we might need to grow the table */ 302 if (rc_map->size == rc_map->len) { 303 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) 304 return -1U; 305 } 306 307 /* i is the proper index to insert our new keycode */ 308 if (i < rc_map->len) 309 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 310 (rc_map->len - i) * sizeof(struct rc_map_table)); 311 rc_map->scan[i].scancode = scancode; 312 rc_map->scan[i].keycode = KEY_RESERVED; 313 rc_map->len++; 314 315 return i; 316 } 317 318 /** 319 * ir_setkeycode() - set a keycode in the scancode->keycode table 320 * @idev: the struct input_dev device descriptor 321 * @scancode: the desired scancode 322 * @keycode: result 323 * @return: -EINVAL if the keycode could not be inserted, otherwise zero. 324 * 325 * This routine is used to handle evdev EVIOCSKEY ioctl. 326 */ 327 static int ir_setkeycode(struct input_dev *idev, 328 const struct input_keymap_entry *ke, 329 unsigned int *old_keycode) 330 { 331 struct rc_dev *rdev = input_get_drvdata(idev); 332 struct rc_map *rc_map = &rdev->rc_map; 333 unsigned int index; 334 unsigned int scancode; 335 int retval = 0; 336 unsigned long flags; 337 338 spin_lock_irqsave(&rc_map->lock, flags); 339 340 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 341 index = ke->index; 342 if (index >= rc_map->len) { 343 retval = -EINVAL; 344 goto out; 345 } 346 } else { 347 retval = input_scancode_to_scalar(ke, &scancode); 348 if (retval) 349 goto out; 350 351 index = ir_establish_scancode(rdev, rc_map, scancode, true); 352 if (index >= rc_map->len) { 353 retval = -ENOMEM; 354 goto out; 355 } 356 } 357 358 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 359 360 out: 361 spin_unlock_irqrestore(&rc_map->lock, flags); 362 return retval; 363 } 364 365 /** 366 * ir_setkeytable() - sets several entries in the scancode->keycode table 367 * @dev: the struct rc_dev device descriptor 368 * @to: the struct rc_map to copy entries to 369 * @from: the struct rc_map to copy entries from 370 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 371 * 372 * This routine is used to handle table initialization. 373 */ 374 static int ir_setkeytable(struct rc_dev *dev, 375 const struct rc_map *from) 376 { 377 struct rc_map *rc_map = &dev->rc_map; 378 unsigned int i, index; 379 int rc; 380 381 rc = ir_create_table(rc_map, from->name, 382 from->rc_type, from->size); 383 if (rc) 384 return rc; 385 386 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", 387 rc_map->size, rc_map->alloc); 388 389 for (i = 0; i < from->size; i++) { 390 index = ir_establish_scancode(dev, rc_map, 391 from->scan[i].scancode, false); 392 if (index >= rc_map->len) { 393 rc = -ENOMEM; 394 break; 395 } 396 397 ir_update_mapping(dev, rc_map, index, 398 from->scan[i].keycode); 399 } 400 401 if (rc) 402 ir_free_table(rc_map); 403 404 return rc; 405 } 406 407 /** 408 * ir_lookup_by_scancode() - locate mapping by scancode 409 * @rc_map: the struct rc_map to search 410 * @scancode: scancode to look for in the table 411 * @return: index in the table, -1U if not found 412 * 413 * This routine performs binary search in RC keykeymap table for 414 * given scancode. 415 */ 416 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 417 unsigned int scancode) 418 { 419 int start = 0; 420 int end = rc_map->len - 1; 421 int mid; 422 423 while (start <= end) { 424 mid = (start + end) / 2; 425 if (rc_map->scan[mid].scancode < scancode) 426 start = mid + 1; 427 else if (rc_map->scan[mid].scancode > scancode) 428 end = mid - 1; 429 else 430 return mid; 431 } 432 433 return -1U; 434 } 435 436 /** 437 * ir_getkeycode() - get a keycode from the scancode->keycode table 438 * @idev: the struct input_dev device descriptor 439 * @scancode: the desired scancode 440 * @keycode: used to return the keycode, if found, or KEY_RESERVED 441 * @return: always returns zero. 442 * 443 * This routine is used to handle evdev EVIOCGKEY ioctl. 444 */ 445 static int ir_getkeycode(struct input_dev *idev, 446 struct input_keymap_entry *ke) 447 { 448 struct rc_dev *rdev = input_get_drvdata(idev); 449 struct rc_map *rc_map = &rdev->rc_map; 450 struct rc_map_table *entry; 451 unsigned long flags; 452 unsigned int index; 453 unsigned int scancode; 454 int retval; 455 456 spin_lock_irqsave(&rc_map->lock, flags); 457 458 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 459 index = ke->index; 460 } else { 461 retval = input_scancode_to_scalar(ke, &scancode); 462 if (retval) 463 goto out; 464 465 index = ir_lookup_by_scancode(rc_map, scancode); 466 } 467 468 if (index < rc_map->len) { 469 entry = &rc_map->scan[index]; 470 471 ke->index = index; 472 ke->keycode = entry->keycode; 473 ke->len = sizeof(entry->scancode); 474 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 475 476 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 477 /* 478 * We do not really know the valid range of scancodes 479 * so let's respond with KEY_RESERVED to anything we 480 * do not have mapping for [yet]. 481 */ 482 ke->index = index; 483 ke->keycode = KEY_RESERVED; 484 } else { 485 retval = -EINVAL; 486 goto out; 487 } 488 489 retval = 0; 490 491 out: 492 spin_unlock_irqrestore(&rc_map->lock, flags); 493 return retval; 494 } 495 496 /** 497 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 498 * @dev: the struct rc_dev descriptor of the device 499 * @scancode: the scancode to look for 500 * @return: the corresponding keycode, or KEY_RESERVED 501 * 502 * This routine is used by drivers which need to convert a scancode to a 503 * keycode. Normally it should not be used since drivers should have no 504 * interest in keycodes. 505 */ 506 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 507 { 508 struct rc_map *rc_map = &dev->rc_map; 509 unsigned int keycode; 510 unsigned int index; 511 unsigned long flags; 512 513 spin_lock_irqsave(&rc_map->lock, flags); 514 515 index = ir_lookup_by_scancode(rc_map, scancode); 516 keycode = index < rc_map->len ? 517 rc_map->scan[index].keycode : KEY_RESERVED; 518 519 spin_unlock_irqrestore(&rc_map->lock, flags); 520 521 if (keycode != KEY_RESERVED) 522 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", 523 dev->input_name, scancode, keycode); 524 525 return keycode; 526 } 527 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 528 529 /** 530 * ir_do_keyup() - internal function to signal the release of a keypress 531 * @dev: the struct rc_dev descriptor of the device 532 * @sync: whether or not to call input_sync 533 * 534 * This function is used internally to release a keypress, it must be 535 * called with keylock held. 536 */ 537 static void ir_do_keyup(struct rc_dev *dev, bool sync) 538 { 539 if (!dev->keypressed) 540 return; 541 542 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); 543 input_report_key(dev->input_dev, dev->last_keycode, 0); 544 led_trigger_event(led_feedback, LED_OFF); 545 if (sync) 546 input_sync(dev->input_dev); 547 dev->keypressed = false; 548 } 549 550 /** 551 * rc_keyup() - signals the release of a keypress 552 * @dev: the struct rc_dev descriptor of the device 553 * 554 * This routine is used to signal that a key has been released on the 555 * remote control. 556 */ 557 void rc_keyup(struct rc_dev *dev) 558 { 559 unsigned long flags; 560 561 spin_lock_irqsave(&dev->keylock, flags); 562 ir_do_keyup(dev, true); 563 spin_unlock_irqrestore(&dev->keylock, flags); 564 } 565 EXPORT_SYMBOL_GPL(rc_keyup); 566 567 /** 568 * ir_timer_keyup() - generates a keyup event after a timeout 569 * @cookie: a pointer to the struct rc_dev for the device 570 * 571 * This routine will generate a keyup event some time after a keydown event 572 * is generated when no further activity has been detected. 573 */ 574 static void ir_timer_keyup(unsigned long cookie) 575 { 576 struct rc_dev *dev = (struct rc_dev *)cookie; 577 unsigned long flags; 578 579 /* 580 * ir->keyup_jiffies is used to prevent a race condition if a 581 * hardware interrupt occurs at this point and the keyup timer 582 * event is moved further into the future as a result. 583 * 584 * The timer will then be reactivated and this function called 585 * again in the future. We need to exit gracefully in that case 586 * to allow the input subsystem to do its auto-repeat magic or 587 * a keyup event might follow immediately after the keydown. 588 */ 589 spin_lock_irqsave(&dev->keylock, flags); 590 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 591 ir_do_keyup(dev, true); 592 spin_unlock_irqrestore(&dev->keylock, flags); 593 } 594 595 /** 596 * rc_repeat() - signals that a key is still pressed 597 * @dev: the struct rc_dev descriptor of the device 598 * 599 * This routine is used by IR decoders when a repeat message which does 600 * not include the necessary bits to reproduce the scancode has been 601 * received. 602 */ 603 void rc_repeat(struct rc_dev *dev) 604 { 605 unsigned long flags; 606 607 spin_lock_irqsave(&dev->keylock, flags); 608 609 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 610 input_sync(dev->input_dev); 611 612 if (!dev->keypressed) 613 goto out; 614 615 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 616 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 617 618 out: 619 spin_unlock_irqrestore(&dev->keylock, flags); 620 } 621 EXPORT_SYMBOL_GPL(rc_repeat); 622 623 /** 624 * ir_do_keydown() - internal function to process a keypress 625 * @dev: the struct rc_dev descriptor of the device 626 * @scancode: the scancode of the keypress 627 * @keycode: the keycode of the keypress 628 * @toggle: the toggle value of the keypress 629 * 630 * This function is used internally to register a keypress, it must be 631 * called with keylock held. 632 */ 633 static void ir_do_keydown(struct rc_dev *dev, int scancode, 634 u32 keycode, u8 toggle) 635 { 636 bool new_event = (!dev->keypressed || 637 dev->last_scancode != scancode || 638 dev->last_toggle != toggle); 639 640 if (new_event && dev->keypressed) 641 ir_do_keyup(dev, false); 642 643 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 644 645 if (new_event && keycode != KEY_RESERVED) { 646 /* Register a keypress */ 647 dev->keypressed = true; 648 dev->last_scancode = scancode; 649 dev->last_toggle = toggle; 650 dev->last_keycode = keycode; 651 652 IR_dprintk(1, "%s: key down event, " 653 "key 0x%04x, scancode 0x%04x\n", 654 dev->input_name, keycode, scancode); 655 input_report_key(dev->input_dev, keycode, 1); 656 657 led_trigger_event(led_feedback, LED_FULL); 658 } 659 660 input_sync(dev->input_dev); 661 } 662 663 /** 664 * rc_keydown() - generates input event for a key press 665 * @dev: the struct rc_dev descriptor of the device 666 * @scancode: the scancode that we're seeking 667 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 668 * support toggle values, this should be set to zero) 669 * 670 * This routine is used to signal that a key has been pressed on the 671 * remote control. 672 */ 673 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle) 674 { 675 unsigned long flags; 676 u32 keycode = rc_g_keycode_from_table(dev, scancode); 677 678 spin_lock_irqsave(&dev->keylock, flags); 679 ir_do_keydown(dev, scancode, keycode, toggle); 680 681 if (dev->keypressed) { 682 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); 683 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 684 } 685 spin_unlock_irqrestore(&dev->keylock, flags); 686 } 687 EXPORT_SYMBOL_GPL(rc_keydown); 688 689 /** 690 * rc_keydown_notimeout() - generates input event for a key press without 691 * an automatic keyup event at a later time 692 * @dev: the struct rc_dev descriptor of the device 693 * @scancode: the scancode that we're seeking 694 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 695 * support toggle values, this should be set to zero) 696 * 697 * This routine is used to signal that a key has been pressed on the 698 * remote control. The driver must manually call rc_keyup() at a later stage. 699 */ 700 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle) 701 { 702 unsigned long flags; 703 u32 keycode = rc_g_keycode_from_table(dev, scancode); 704 705 spin_lock_irqsave(&dev->keylock, flags); 706 ir_do_keydown(dev, scancode, keycode, toggle); 707 spin_unlock_irqrestore(&dev->keylock, flags); 708 } 709 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 710 711 int rc_open(struct rc_dev *rdev) 712 { 713 int rval = 0; 714 715 if (!rdev) 716 return -EINVAL; 717 718 mutex_lock(&rdev->lock); 719 if (!rdev->users++ && rdev->open != NULL) 720 rval = rdev->open(rdev); 721 722 if (rval) 723 rdev->users--; 724 725 mutex_unlock(&rdev->lock); 726 727 return rval; 728 } 729 EXPORT_SYMBOL_GPL(rc_open); 730 731 static int ir_open(struct input_dev *idev) 732 { 733 struct rc_dev *rdev = input_get_drvdata(idev); 734 735 return rc_open(rdev); 736 } 737 738 void rc_close(struct rc_dev *rdev) 739 { 740 if (rdev) { 741 mutex_lock(&rdev->lock); 742 743 if (!--rdev->users && rdev->close != NULL) 744 rdev->close(rdev); 745 746 mutex_unlock(&rdev->lock); 747 } 748 } 749 EXPORT_SYMBOL_GPL(rc_close); 750 751 static void ir_close(struct input_dev *idev) 752 { 753 struct rc_dev *rdev = input_get_drvdata(idev); 754 rc_close(rdev); 755 } 756 757 /* class for /sys/class/rc */ 758 static char *rc_devnode(struct device *dev, umode_t *mode) 759 { 760 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 761 } 762 763 static struct class rc_class = { 764 .name = "rc", 765 .devnode = rc_devnode, 766 }; 767 768 /* 769 * These are the protocol textual descriptions that are 770 * used by the sysfs protocols file. Note that the order 771 * of the entries is relevant. 772 */ 773 static struct { 774 u64 type; 775 char *name; 776 } proto_names[] = { 777 { RC_BIT_NONE, "none" }, 778 { RC_BIT_OTHER, "other" }, 779 { RC_BIT_UNKNOWN, "unknown" }, 780 { RC_BIT_RC5 | 781 RC_BIT_RC5X, "rc-5" }, 782 { RC_BIT_NEC, "nec" }, 783 { RC_BIT_RC6_0 | 784 RC_BIT_RC6_6A_20 | 785 RC_BIT_RC6_6A_24 | 786 RC_BIT_RC6_6A_32 | 787 RC_BIT_RC6_MCE, "rc-6" }, 788 { RC_BIT_JVC, "jvc" }, 789 { RC_BIT_SONY12 | 790 RC_BIT_SONY15 | 791 RC_BIT_SONY20, "sony" }, 792 { RC_BIT_RC5_SZ, "rc-5-sz" }, 793 { RC_BIT_SANYO, "sanyo" }, 794 { RC_BIT_SHARP, "sharp" }, 795 { RC_BIT_MCE_KBD, "mce_kbd" }, 796 { RC_BIT_LIRC, "lirc" }, 797 }; 798 799 /** 800 * struct rc_filter_attribute - Device attribute relating to a filter type. 801 * @attr: Device attribute. 802 * @type: Filter type. 803 * @mask: false for filter value, true for filter mask. 804 */ 805 struct rc_filter_attribute { 806 struct device_attribute attr; 807 enum rc_filter_type type; 808 bool mask; 809 }; 810 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 811 812 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \ 813 struct rc_filter_attribute dev_attr_##_name = { \ 814 .attr = __ATTR(_name, _mode, _show, _store), \ 815 .type = (_type), \ 816 } 817 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 818 struct rc_filter_attribute dev_attr_##_name = { \ 819 .attr = __ATTR(_name, _mode, _show, _store), \ 820 .type = (_type), \ 821 .mask = (_mask), \ 822 } 823 824 /** 825 * show_protocols() - shows the current/wakeup IR protocol(s) 826 * @device: the device descriptor 827 * @mattr: the device attribute struct (unused) 828 * @buf: a pointer to the output buffer 829 * 830 * This routine is a callback routine for input read the IR protocol type(s). 831 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols. 832 * It returns the protocol names of supported protocols. 833 * Enabled protocols are printed in brackets. 834 * 835 * dev->lock is taken to guard against races between device 836 * registration, store_protocols and show_protocols. 837 */ 838 static ssize_t show_protocols(struct device *device, 839 struct device_attribute *mattr, char *buf) 840 { 841 struct rc_dev *dev = to_rc_dev(device); 842 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 843 u64 allowed, enabled; 844 char *tmp = buf; 845 int i; 846 847 /* Device is being removed */ 848 if (!dev) 849 return -EINVAL; 850 851 mutex_lock(&dev->lock); 852 853 enabled = dev->enabled_protocols[fattr->type]; 854 if (dev->driver_type == RC_DRIVER_SCANCODE || 855 fattr->type == RC_FILTER_WAKEUP) 856 allowed = dev->allowed_protocols[fattr->type]; 857 else if (dev->raw) 858 allowed = ir_raw_get_allowed_protocols(); 859 else { 860 mutex_unlock(&dev->lock); 861 return -ENODEV; 862 } 863 864 IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n", 865 (long long)allowed, 866 (long long)enabled); 867 868 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 869 if (allowed & enabled & proto_names[i].type) 870 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 871 else if (allowed & proto_names[i].type) 872 tmp += sprintf(tmp, "%s ", proto_names[i].name); 873 874 if (allowed & proto_names[i].type) 875 allowed &= ~proto_names[i].type; 876 } 877 878 if (tmp != buf) 879 tmp--; 880 *tmp = '\n'; 881 882 mutex_unlock(&dev->lock); 883 884 return tmp + 1 - buf; 885 } 886 887 /** 888 * store_protocols() - changes the current/wakeup IR protocol(s) 889 * @device: the device descriptor 890 * @mattr: the device attribute struct (unused) 891 * @buf: a pointer to the input buffer 892 * @len: length of the input buffer 893 * 894 * This routine is for changing the IR protocol type. 895 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 896 * Writing "+proto" will add a protocol to the list of enabled protocols. 897 * Writing "-proto" will remove a protocol from the list of enabled protocols. 898 * Writing "proto" will enable only "proto". 899 * Writing "none" will disable all protocols. 900 * Returns -EINVAL if an invalid protocol combination or unknown protocol name 901 * is used, otherwise @len. 902 * 903 * dev->lock is taken to guard against races between device 904 * registration, store_protocols and show_protocols. 905 */ 906 static ssize_t store_protocols(struct device *device, 907 struct device_attribute *mattr, 908 const char *data, 909 size_t len) 910 { 911 struct rc_dev *dev = to_rc_dev(device); 912 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr); 913 bool enable, disable; 914 const char *tmp; 915 u64 old_type, type; 916 u64 mask; 917 int rc, i, count = 0; 918 ssize_t ret; 919 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type); 920 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 921 struct rc_scancode_filter local_filter, *filter; 922 923 /* Device is being removed */ 924 if (!dev) 925 return -EINVAL; 926 927 mutex_lock(&dev->lock); 928 929 if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) { 930 IR_dprintk(1, "Protocol switching not supported\n"); 931 ret = -EINVAL; 932 goto out; 933 } 934 old_type = dev->enabled_protocols[fattr->type]; 935 type = old_type; 936 937 while ((tmp = strsep((char **) &data, " \n")) != NULL) { 938 if (!*tmp) 939 break; 940 941 if (*tmp == '+') { 942 enable = true; 943 disable = false; 944 tmp++; 945 } else if (*tmp == '-') { 946 enable = false; 947 disable = true; 948 tmp++; 949 } else { 950 enable = false; 951 disable = false; 952 } 953 954 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 955 if (!strcasecmp(tmp, proto_names[i].name)) { 956 mask = proto_names[i].type; 957 break; 958 } 959 } 960 961 if (i == ARRAY_SIZE(proto_names)) { 962 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); 963 ret = -EINVAL; 964 goto out; 965 } 966 967 count++; 968 969 if (enable) 970 type |= mask; 971 else if (disable) 972 type &= ~mask; 973 else 974 type = mask; 975 } 976 977 if (!count) { 978 IR_dprintk(1, "Protocol not specified\n"); 979 ret = -EINVAL; 980 goto out; 981 } 982 983 change_protocol = (fattr->type == RC_FILTER_NORMAL) 984 ? dev->change_protocol : dev->change_wakeup_protocol; 985 if (change_protocol) { 986 rc = change_protocol(dev, &type); 987 if (rc < 0) { 988 IR_dprintk(1, "Error setting protocols to 0x%llx\n", 989 (long long)type); 990 ret = -EINVAL; 991 goto out; 992 } 993 } 994 995 dev->enabled_protocols[fattr->type] = type; 996 IR_dprintk(1, "Current protocol(s): 0x%llx\n", 997 (long long)type); 998 999 /* 1000 * If the protocol is changed the filter needs updating. 1001 * Try setting the same filter with the new protocol (if any). 1002 * Fall back to clearing the filter. 1003 */ 1004 filter = &dev->scancode_filters[fattr->type]; 1005 set_filter = (fattr->type == RC_FILTER_NORMAL) 1006 ? dev->s_filter : dev->s_wakeup_filter; 1007 1008 if (set_filter && old_type != type && filter->mask) { 1009 local_filter = *filter; 1010 if (!type) { 1011 /* no protocol => clear filter */ 1012 ret = -1; 1013 } else { 1014 /* hardware filtering => try setting, otherwise clear */ 1015 ret = set_filter(dev, &local_filter); 1016 } 1017 if (ret < 0) { 1018 /* clear the filter */ 1019 local_filter.data = 0; 1020 local_filter.mask = 0; 1021 set_filter(dev, &local_filter); 1022 } 1023 1024 /* commit the new filter */ 1025 *filter = local_filter; 1026 } 1027 1028 ret = len; 1029 1030 out: 1031 mutex_unlock(&dev->lock); 1032 return ret; 1033 } 1034 1035 /** 1036 * show_filter() - shows the current scancode filter value or mask 1037 * @device: the device descriptor 1038 * @attr: the device attribute struct 1039 * @buf: a pointer to the output buffer 1040 * 1041 * This routine is a callback routine to read a scancode filter value or mask. 1042 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1043 * It prints the current scancode filter value or mask of the appropriate filter 1044 * type in hexadecimal into @buf and returns the size of the buffer. 1045 * 1046 * Bits of the filter value corresponding to set bits in the filter mask are 1047 * compared against input scancodes and non-matching scancodes are discarded. 1048 * 1049 * dev->lock is taken to guard against races between device registration, 1050 * store_filter and show_filter. 1051 */ 1052 static ssize_t show_filter(struct device *device, 1053 struct device_attribute *attr, 1054 char *buf) 1055 { 1056 struct rc_dev *dev = to_rc_dev(device); 1057 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1058 u32 val; 1059 1060 /* Device is being removed */ 1061 if (!dev) 1062 return -EINVAL; 1063 1064 mutex_lock(&dev->lock); 1065 if ((fattr->type == RC_FILTER_NORMAL && !dev->s_filter) || 1066 (fattr->type == RC_FILTER_WAKEUP && !dev->s_wakeup_filter)) 1067 val = 0; 1068 else if (fattr->mask) 1069 val = dev->scancode_filters[fattr->type].mask; 1070 else 1071 val = dev->scancode_filters[fattr->type].data; 1072 mutex_unlock(&dev->lock); 1073 1074 return sprintf(buf, "%#x\n", val); 1075 } 1076 1077 /** 1078 * store_filter() - changes the scancode filter value 1079 * @device: the device descriptor 1080 * @attr: the device attribute struct 1081 * @buf: a pointer to the input buffer 1082 * @len: length of the input buffer 1083 * 1084 * This routine is for changing a scancode filter value or mask. 1085 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1086 * Returns -EINVAL if an invalid filter value for the current protocol was 1087 * specified or if scancode filtering is not supported by the driver, otherwise 1088 * returns @len. 1089 * 1090 * Bits of the filter value corresponding to set bits in the filter mask are 1091 * compared against input scancodes and non-matching scancodes are discarded. 1092 * 1093 * dev->lock is taken to guard against races between device registration, 1094 * store_filter and show_filter. 1095 */ 1096 static ssize_t store_filter(struct device *device, 1097 struct device_attribute *attr, 1098 const char *buf, 1099 size_t count) 1100 { 1101 struct rc_dev *dev = to_rc_dev(device); 1102 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1103 struct rc_scancode_filter local_filter, *filter; 1104 int ret; 1105 unsigned long val; 1106 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1107 1108 /* Device is being removed */ 1109 if (!dev) 1110 return -EINVAL; 1111 1112 ret = kstrtoul(buf, 0, &val); 1113 if (ret < 0) 1114 return ret; 1115 1116 /* Can the scancode filter be set? */ 1117 set_filter = (fattr->type == RC_FILTER_NORMAL) ? dev->s_filter : 1118 dev->s_wakeup_filter; 1119 if (!set_filter) 1120 return -EINVAL; 1121 1122 mutex_lock(&dev->lock); 1123 1124 /* Tell the driver about the new filter */ 1125 filter = &dev->scancode_filters[fattr->type]; 1126 local_filter = *filter; 1127 if (fattr->mask) 1128 local_filter.mask = val; 1129 else 1130 local_filter.data = val; 1131 1132 if (!dev->enabled_protocols[fattr->type] && local_filter.mask) { 1133 /* refuse to set a filter unless a protocol is enabled */ 1134 ret = -EINVAL; 1135 goto unlock; 1136 } 1137 1138 ret = set_filter(dev, &local_filter); 1139 if (ret < 0) 1140 goto unlock; 1141 1142 /* Success, commit the new filter */ 1143 *filter = local_filter; 1144 1145 unlock: 1146 mutex_unlock(&dev->lock); 1147 return (ret < 0) ? ret : count; 1148 } 1149 1150 static void rc_dev_release(struct device *device) 1151 { 1152 } 1153 1154 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1155 do { \ 1156 int err = add_uevent_var(env, fmt, val); \ 1157 if (err) \ 1158 return err; \ 1159 } while (0) 1160 1161 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1162 { 1163 struct rc_dev *dev = to_rc_dev(device); 1164 1165 if (!dev || !dev->input_dev) 1166 return -ENODEV; 1167 1168 if (dev->rc_map.name) 1169 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1170 if (dev->driver_name) 1171 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1172 1173 return 0; 1174 } 1175 1176 /* 1177 * Static device attribute struct with the sysfs attributes for IR's 1178 */ 1179 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR, 1180 show_protocols, store_protocols, RC_FILTER_NORMAL); 1181 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR, 1182 show_protocols, store_protocols, RC_FILTER_WAKEUP); 1183 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1184 show_filter, store_filter, RC_FILTER_NORMAL, false); 1185 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1186 show_filter, store_filter, RC_FILTER_NORMAL, true); 1187 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1188 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1189 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1190 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1191 1192 static struct attribute *rc_dev_protocol_attrs[] = { 1193 &dev_attr_protocols.attr.attr, 1194 NULL, 1195 }; 1196 1197 static struct attribute_group rc_dev_protocol_attr_grp = { 1198 .attrs = rc_dev_protocol_attrs, 1199 }; 1200 1201 static struct attribute *rc_dev_wakeup_protocol_attrs[] = { 1202 &dev_attr_wakeup_protocols.attr.attr, 1203 NULL, 1204 }; 1205 1206 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = { 1207 .attrs = rc_dev_wakeup_protocol_attrs, 1208 }; 1209 1210 static struct attribute *rc_dev_filter_attrs[] = { 1211 &dev_attr_filter.attr.attr, 1212 &dev_attr_filter_mask.attr.attr, 1213 NULL, 1214 }; 1215 1216 static struct attribute_group rc_dev_filter_attr_grp = { 1217 .attrs = rc_dev_filter_attrs, 1218 }; 1219 1220 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1221 &dev_attr_wakeup_filter.attr.attr, 1222 &dev_attr_wakeup_filter_mask.attr.attr, 1223 NULL, 1224 }; 1225 1226 static struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1227 .attrs = rc_dev_wakeup_filter_attrs, 1228 }; 1229 1230 static struct device_type rc_dev_type = { 1231 .release = rc_dev_release, 1232 .uevent = rc_dev_uevent, 1233 }; 1234 1235 struct rc_dev *rc_allocate_device(void) 1236 { 1237 struct rc_dev *dev; 1238 1239 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1240 if (!dev) 1241 return NULL; 1242 1243 dev->input_dev = input_allocate_device(); 1244 if (!dev->input_dev) { 1245 kfree(dev); 1246 return NULL; 1247 } 1248 1249 dev->input_dev->getkeycode = ir_getkeycode; 1250 dev->input_dev->setkeycode = ir_setkeycode; 1251 input_set_drvdata(dev->input_dev, dev); 1252 1253 spin_lock_init(&dev->rc_map.lock); 1254 spin_lock_init(&dev->keylock); 1255 mutex_init(&dev->lock); 1256 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev); 1257 1258 dev->dev.type = &rc_dev_type; 1259 dev->dev.class = &rc_class; 1260 device_initialize(&dev->dev); 1261 1262 __module_get(THIS_MODULE); 1263 return dev; 1264 } 1265 EXPORT_SYMBOL_GPL(rc_allocate_device); 1266 1267 void rc_free_device(struct rc_dev *dev) 1268 { 1269 if (!dev) 1270 return; 1271 1272 if (dev->input_dev) 1273 input_free_device(dev->input_dev); 1274 1275 put_device(&dev->dev); 1276 1277 kfree(dev); 1278 module_put(THIS_MODULE); 1279 } 1280 EXPORT_SYMBOL_GPL(rc_free_device); 1281 1282 int rc_register_device(struct rc_dev *dev) 1283 { 1284 static bool raw_init = false; /* raw decoders loaded? */ 1285 struct rc_map *rc_map; 1286 const char *path; 1287 int rc, devno, attr = 0; 1288 1289 if (!dev || !dev->map_name) 1290 return -EINVAL; 1291 1292 rc_map = rc_map_get(dev->map_name); 1293 if (!rc_map) 1294 rc_map = rc_map_get(RC_MAP_EMPTY); 1295 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1296 return -EINVAL; 1297 1298 set_bit(EV_KEY, dev->input_dev->evbit); 1299 set_bit(EV_REP, dev->input_dev->evbit); 1300 set_bit(EV_MSC, dev->input_dev->evbit); 1301 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1302 if (dev->open) 1303 dev->input_dev->open = ir_open; 1304 if (dev->close) 1305 dev->input_dev->close = ir_close; 1306 1307 do { 1308 devno = find_first_zero_bit(ir_core_dev_number, 1309 IRRCV_NUM_DEVICES); 1310 /* No free device slots */ 1311 if (devno >= IRRCV_NUM_DEVICES) 1312 return -ENOMEM; 1313 } while (test_and_set_bit(devno, ir_core_dev_number)); 1314 1315 dev->dev.groups = dev->sysfs_groups; 1316 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp; 1317 if (dev->s_filter) 1318 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1319 if (dev->s_wakeup_filter) 1320 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1321 if (dev->change_wakeup_protocol) 1322 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp; 1323 dev->sysfs_groups[attr++] = NULL; 1324 1325 /* 1326 * Take the lock here, as the device sysfs node will appear 1327 * when device_add() is called, which may trigger an ir-keytable udev 1328 * rule, which will in turn call show_protocols and access 1329 * dev->enabled_protocols before it has been initialized. 1330 */ 1331 mutex_lock(&dev->lock); 1332 1333 dev->devno = devno; 1334 dev_set_name(&dev->dev, "rc%ld", dev->devno); 1335 dev_set_drvdata(&dev->dev, dev); 1336 rc = device_add(&dev->dev); 1337 if (rc) 1338 goto out_unlock; 1339 1340 rc = ir_setkeytable(dev, rc_map); 1341 if (rc) 1342 goto out_dev; 1343 1344 dev->input_dev->dev.parent = &dev->dev; 1345 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1346 dev->input_dev->phys = dev->input_phys; 1347 dev->input_dev->name = dev->input_name; 1348 1349 /* input_register_device can call ir_open, so unlock mutex here */ 1350 mutex_unlock(&dev->lock); 1351 1352 rc = input_register_device(dev->input_dev); 1353 1354 mutex_lock(&dev->lock); 1355 1356 if (rc) 1357 goto out_table; 1358 1359 /* 1360 * Default delay of 250ms is too short for some protocols, especially 1361 * since the timeout is currently set to 250ms. Increase it to 500ms, 1362 * to avoid wrong repetition of the keycodes. Note that this must be 1363 * set after the call to input_register_device(). 1364 */ 1365 dev->input_dev->rep[REP_DELAY] = 500; 1366 1367 /* 1368 * As a repeat event on protocols like RC-5 and NEC take as long as 1369 * 110/114ms, using 33ms as a repeat period is not the right thing 1370 * to do. 1371 */ 1372 dev->input_dev->rep[REP_PERIOD] = 125; 1373 1374 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1375 printk(KERN_INFO "%s: %s as %s\n", 1376 dev_name(&dev->dev), 1377 dev->input_name ? dev->input_name : "Unspecified device", 1378 path ? path : "N/A"); 1379 kfree(path); 1380 1381 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1382 /* Load raw decoders, if they aren't already */ 1383 if (!raw_init) { 1384 IR_dprintk(1, "Loading raw decoders\n"); 1385 ir_raw_init(); 1386 raw_init = true; 1387 } 1388 rc = ir_raw_event_register(dev); 1389 if (rc < 0) 1390 goto out_input; 1391 } 1392 1393 if (dev->change_protocol) { 1394 u64 rc_type = (1 << rc_map->rc_type); 1395 rc = dev->change_protocol(dev, &rc_type); 1396 if (rc < 0) 1397 goto out_raw; 1398 dev->enabled_protocols[RC_FILTER_NORMAL] = rc_type; 1399 } 1400 1401 mutex_unlock(&dev->lock); 1402 1403 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n", 1404 dev->devno, 1405 dev->driver_name ? dev->driver_name : "unknown", 1406 rc_map->name ? rc_map->name : "unknown", 1407 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked"); 1408 1409 return 0; 1410 1411 out_raw: 1412 if (dev->driver_type == RC_DRIVER_IR_RAW) 1413 ir_raw_event_unregister(dev); 1414 out_input: 1415 input_unregister_device(dev->input_dev); 1416 dev->input_dev = NULL; 1417 out_table: 1418 ir_free_table(&dev->rc_map); 1419 out_dev: 1420 device_del(&dev->dev); 1421 out_unlock: 1422 mutex_unlock(&dev->lock); 1423 clear_bit(dev->devno, ir_core_dev_number); 1424 return rc; 1425 } 1426 EXPORT_SYMBOL_GPL(rc_register_device); 1427 1428 void rc_unregister_device(struct rc_dev *dev) 1429 { 1430 if (!dev) 1431 return; 1432 1433 del_timer_sync(&dev->timer_keyup); 1434 1435 clear_bit(dev->devno, ir_core_dev_number); 1436 1437 if (dev->driver_type == RC_DRIVER_IR_RAW) 1438 ir_raw_event_unregister(dev); 1439 1440 /* Freeing the table should also call the stop callback */ 1441 ir_free_table(&dev->rc_map); 1442 IR_dprintk(1, "Freed keycode table\n"); 1443 1444 input_unregister_device(dev->input_dev); 1445 dev->input_dev = NULL; 1446 1447 device_del(&dev->dev); 1448 1449 rc_free_device(dev); 1450 } 1451 1452 EXPORT_SYMBOL_GPL(rc_unregister_device); 1453 1454 /* 1455 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1456 */ 1457 1458 static int __init rc_core_init(void) 1459 { 1460 int rc = class_register(&rc_class); 1461 if (rc) { 1462 printk(KERN_ERR "rc_core: unable to register rc class\n"); 1463 return rc; 1464 } 1465 1466 led_trigger_register_simple("rc-feedback", &led_feedback); 1467 rc_map_register(&empty_map); 1468 1469 return 0; 1470 } 1471 1472 static void __exit rc_core_exit(void) 1473 { 1474 class_unregister(&rc_class); 1475 led_trigger_unregister_simple(led_feedback); 1476 rc_map_unregister(&empty_map); 1477 } 1478 1479 subsys_initcall(rc_core_init); 1480 module_exit(rc_core_exit); 1481 1482 int rc_core_debug; /* ir_debug level (0,1,2) */ 1483 EXPORT_SYMBOL_GPL(rc_core_debug); 1484 module_param_named(debug, rc_core_debug, int, 0644); 1485 1486 MODULE_AUTHOR("Mauro Carvalho Chehab"); 1487 MODULE_LICENSE("GPL"); 1488