xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include "rc-core-priv.h"
25 
26 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
27 #define IR_TAB_MIN_SIZE	256
28 #define IR_TAB_MAX_SIZE	8192
29 #define RC_DEV_MAX	256
30 
31 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
32 #define IR_KEYPRESS_TIMEOUT 250
33 
34 /* Used to keep track of known keymaps */
35 static LIST_HEAD(rc_map_list);
36 static DEFINE_SPINLOCK(rc_map_lock);
37 static struct led_trigger *led_feedback;
38 
39 /* Used to keep track of rc devices */
40 static DEFINE_IDA(rc_ida);
41 
42 static struct rc_map_list *seek_rc_map(const char *name)
43 {
44 	struct rc_map_list *map = NULL;
45 
46 	spin_lock(&rc_map_lock);
47 	list_for_each_entry(map, &rc_map_list, list) {
48 		if (!strcmp(name, map->map.name)) {
49 			spin_unlock(&rc_map_lock);
50 			return map;
51 		}
52 	}
53 	spin_unlock(&rc_map_lock);
54 
55 	return NULL;
56 }
57 
58 struct rc_map *rc_map_get(const char *name)
59 {
60 
61 	struct rc_map_list *map;
62 
63 	map = seek_rc_map(name);
64 #ifdef MODULE
65 	if (!map) {
66 		int rc = request_module("%s", name);
67 		if (rc < 0) {
68 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
69 			return NULL;
70 		}
71 		msleep(20);	/* Give some time for IR to register */
72 
73 		map = seek_rc_map(name);
74 	}
75 #endif
76 	if (!map) {
77 		printk(KERN_ERR "IR keymap %s not found\n", name);
78 		return NULL;
79 	}
80 
81 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
82 
83 	return &map->map;
84 }
85 EXPORT_SYMBOL_GPL(rc_map_get);
86 
87 int rc_map_register(struct rc_map_list *map)
88 {
89 	spin_lock(&rc_map_lock);
90 	list_add_tail(&map->list, &rc_map_list);
91 	spin_unlock(&rc_map_lock);
92 	return 0;
93 }
94 EXPORT_SYMBOL_GPL(rc_map_register);
95 
96 void rc_map_unregister(struct rc_map_list *map)
97 {
98 	spin_lock(&rc_map_lock);
99 	list_del(&map->list);
100 	spin_unlock(&rc_map_lock);
101 }
102 EXPORT_SYMBOL_GPL(rc_map_unregister);
103 
104 
105 static struct rc_map_table empty[] = {
106 	{ 0x2a, KEY_COFFEE },
107 };
108 
109 static struct rc_map_list empty_map = {
110 	.map = {
111 		.scan    = empty,
112 		.size    = ARRAY_SIZE(empty),
113 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
114 		.name    = RC_MAP_EMPTY,
115 	}
116 };
117 
118 /**
119  * ir_create_table() - initializes a scancode table
120  * @rc_map:	the rc_map to initialize
121  * @name:	name to assign to the table
122  * @rc_type:	ir type to assign to the new table
123  * @size:	initial size of the table
124  * @return:	zero on success or a negative error code
125  *
126  * This routine will initialize the rc_map and will allocate
127  * memory to hold at least the specified number of elements.
128  */
129 static int ir_create_table(struct rc_map *rc_map,
130 			   const char *name, u64 rc_type, size_t size)
131 {
132 	rc_map->name = name;
133 	rc_map->rc_type = rc_type;
134 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
135 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
136 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
137 	if (!rc_map->scan)
138 		return -ENOMEM;
139 
140 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
141 		   rc_map->size, rc_map->alloc);
142 	return 0;
143 }
144 
145 /**
146  * ir_free_table() - frees memory allocated by a scancode table
147  * @rc_map:	the table whose mappings need to be freed
148  *
149  * This routine will free memory alloctaed for key mappings used by given
150  * scancode table.
151  */
152 static void ir_free_table(struct rc_map *rc_map)
153 {
154 	rc_map->size = 0;
155 	kfree(rc_map->scan);
156 	rc_map->scan = NULL;
157 }
158 
159 /**
160  * ir_resize_table() - resizes a scancode table if necessary
161  * @rc_map:	the rc_map to resize
162  * @gfp_flags:	gfp flags to use when allocating memory
163  * @return:	zero on success or a negative error code
164  *
165  * This routine will shrink the rc_map if it has lots of
166  * unused entries and grow it if it is full.
167  */
168 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
169 {
170 	unsigned int oldalloc = rc_map->alloc;
171 	unsigned int newalloc = oldalloc;
172 	struct rc_map_table *oldscan = rc_map->scan;
173 	struct rc_map_table *newscan;
174 
175 	if (rc_map->size == rc_map->len) {
176 		/* All entries in use -> grow keytable */
177 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
178 			return -ENOMEM;
179 
180 		newalloc *= 2;
181 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
182 	}
183 
184 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
185 		/* Less than 1/3 of entries in use -> shrink keytable */
186 		newalloc /= 2;
187 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
188 	}
189 
190 	if (newalloc == oldalloc)
191 		return 0;
192 
193 	newscan = kmalloc(newalloc, gfp_flags);
194 	if (!newscan) {
195 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
196 		return -ENOMEM;
197 	}
198 
199 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
200 	rc_map->scan = newscan;
201 	rc_map->alloc = newalloc;
202 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
203 	kfree(oldscan);
204 	return 0;
205 }
206 
207 /**
208  * ir_update_mapping() - set a keycode in the scancode->keycode table
209  * @dev:	the struct rc_dev device descriptor
210  * @rc_map:	scancode table to be adjusted
211  * @index:	index of the mapping that needs to be updated
212  * @keycode:	the desired keycode
213  * @return:	previous keycode assigned to the mapping
214  *
215  * This routine is used to update scancode->keycode mapping at given
216  * position.
217  */
218 static unsigned int ir_update_mapping(struct rc_dev *dev,
219 				      struct rc_map *rc_map,
220 				      unsigned int index,
221 				      unsigned int new_keycode)
222 {
223 	int old_keycode = rc_map->scan[index].keycode;
224 	int i;
225 
226 	/* Did the user wish to remove the mapping? */
227 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
228 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
229 			   index, rc_map->scan[index].scancode);
230 		rc_map->len--;
231 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
232 			(rc_map->len - index) * sizeof(struct rc_map_table));
233 	} else {
234 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
235 			   index,
236 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
237 			   rc_map->scan[index].scancode, new_keycode);
238 		rc_map->scan[index].keycode = new_keycode;
239 		__set_bit(new_keycode, dev->input_dev->keybit);
240 	}
241 
242 	if (old_keycode != KEY_RESERVED) {
243 		/* A previous mapping was updated... */
244 		__clear_bit(old_keycode, dev->input_dev->keybit);
245 		/* ... but another scancode might use the same keycode */
246 		for (i = 0; i < rc_map->len; i++) {
247 			if (rc_map->scan[i].keycode == old_keycode) {
248 				__set_bit(old_keycode, dev->input_dev->keybit);
249 				break;
250 			}
251 		}
252 
253 		/* Possibly shrink the keytable, failure is not a problem */
254 		ir_resize_table(rc_map, GFP_ATOMIC);
255 	}
256 
257 	return old_keycode;
258 }
259 
260 /**
261  * ir_establish_scancode() - set a keycode in the scancode->keycode table
262  * @dev:	the struct rc_dev device descriptor
263  * @rc_map:	scancode table to be searched
264  * @scancode:	the desired scancode
265  * @resize:	controls whether we allowed to resize the table to
266  *		accommodate not yet present scancodes
267  * @return:	index of the mapping containing scancode in question
268  *		or -1U in case of failure.
269  *
270  * This routine is used to locate given scancode in rc_map.
271  * If scancode is not yet present the routine will allocate a new slot
272  * for it.
273  */
274 static unsigned int ir_establish_scancode(struct rc_dev *dev,
275 					  struct rc_map *rc_map,
276 					  unsigned int scancode,
277 					  bool resize)
278 {
279 	unsigned int i;
280 
281 	/*
282 	 * Unfortunately, some hardware-based IR decoders don't provide
283 	 * all bits for the complete IR code. In general, they provide only
284 	 * the command part of the IR code. Yet, as it is possible to replace
285 	 * the provided IR with another one, it is needed to allow loading
286 	 * IR tables from other remotes. So, we support specifying a mask to
287 	 * indicate the valid bits of the scancodes.
288 	 */
289 	if (dev->scancode_mask)
290 		scancode &= dev->scancode_mask;
291 
292 	/* First check if we already have a mapping for this ir command */
293 	for (i = 0; i < rc_map->len; i++) {
294 		if (rc_map->scan[i].scancode == scancode)
295 			return i;
296 
297 		/* Keytable is sorted from lowest to highest scancode */
298 		if (rc_map->scan[i].scancode >= scancode)
299 			break;
300 	}
301 
302 	/* No previous mapping found, we might need to grow the table */
303 	if (rc_map->size == rc_map->len) {
304 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
305 			return -1U;
306 	}
307 
308 	/* i is the proper index to insert our new keycode */
309 	if (i < rc_map->len)
310 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
311 			(rc_map->len - i) * sizeof(struct rc_map_table));
312 	rc_map->scan[i].scancode = scancode;
313 	rc_map->scan[i].keycode = KEY_RESERVED;
314 	rc_map->len++;
315 
316 	return i;
317 }
318 
319 /**
320  * ir_setkeycode() - set a keycode in the scancode->keycode table
321  * @idev:	the struct input_dev device descriptor
322  * @scancode:	the desired scancode
323  * @keycode:	result
324  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
325  *
326  * This routine is used to handle evdev EVIOCSKEY ioctl.
327  */
328 static int ir_setkeycode(struct input_dev *idev,
329 			 const struct input_keymap_entry *ke,
330 			 unsigned int *old_keycode)
331 {
332 	struct rc_dev *rdev = input_get_drvdata(idev);
333 	struct rc_map *rc_map = &rdev->rc_map;
334 	unsigned int index;
335 	unsigned int scancode;
336 	int retval = 0;
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(&rc_map->lock, flags);
340 
341 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
342 		index = ke->index;
343 		if (index >= rc_map->len) {
344 			retval = -EINVAL;
345 			goto out;
346 		}
347 	} else {
348 		retval = input_scancode_to_scalar(ke, &scancode);
349 		if (retval)
350 			goto out;
351 
352 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
353 		if (index >= rc_map->len) {
354 			retval = -ENOMEM;
355 			goto out;
356 		}
357 	}
358 
359 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
360 
361 out:
362 	spin_unlock_irqrestore(&rc_map->lock, flags);
363 	return retval;
364 }
365 
366 /**
367  * ir_setkeytable() - sets several entries in the scancode->keycode table
368  * @dev:	the struct rc_dev device descriptor
369  * @to:		the struct rc_map to copy entries to
370  * @from:	the struct rc_map to copy entries from
371  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
372  *
373  * This routine is used to handle table initialization.
374  */
375 static int ir_setkeytable(struct rc_dev *dev,
376 			  const struct rc_map *from)
377 {
378 	struct rc_map *rc_map = &dev->rc_map;
379 	unsigned int i, index;
380 	int rc;
381 
382 	rc = ir_create_table(rc_map, from->name,
383 			     from->rc_type, from->size);
384 	if (rc)
385 		return rc;
386 
387 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
388 		   rc_map->size, rc_map->alloc);
389 
390 	for (i = 0; i < from->size; i++) {
391 		index = ir_establish_scancode(dev, rc_map,
392 					      from->scan[i].scancode, false);
393 		if (index >= rc_map->len) {
394 			rc = -ENOMEM;
395 			break;
396 		}
397 
398 		ir_update_mapping(dev, rc_map, index,
399 				  from->scan[i].keycode);
400 	}
401 
402 	if (rc)
403 		ir_free_table(rc_map);
404 
405 	return rc;
406 }
407 
408 /**
409  * ir_lookup_by_scancode() - locate mapping by scancode
410  * @rc_map:	the struct rc_map to search
411  * @scancode:	scancode to look for in the table
412  * @return:	index in the table, -1U if not found
413  *
414  * This routine performs binary search in RC keykeymap table for
415  * given scancode.
416  */
417 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
418 					  unsigned int scancode)
419 {
420 	int start = 0;
421 	int end = rc_map->len - 1;
422 	int mid;
423 
424 	while (start <= end) {
425 		mid = (start + end) / 2;
426 		if (rc_map->scan[mid].scancode < scancode)
427 			start = mid + 1;
428 		else if (rc_map->scan[mid].scancode > scancode)
429 			end = mid - 1;
430 		else
431 			return mid;
432 	}
433 
434 	return -1U;
435 }
436 
437 /**
438  * ir_getkeycode() - get a keycode from the scancode->keycode table
439  * @idev:	the struct input_dev device descriptor
440  * @scancode:	the desired scancode
441  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
442  * @return:	always returns zero.
443  *
444  * This routine is used to handle evdev EVIOCGKEY ioctl.
445  */
446 static int ir_getkeycode(struct input_dev *idev,
447 			 struct input_keymap_entry *ke)
448 {
449 	struct rc_dev *rdev = input_get_drvdata(idev);
450 	struct rc_map *rc_map = &rdev->rc_map;
451 	struct rc_map_table *entry;
452 	unsigned long flags;
453 	unsigned int index;
454 	unsigned int scancode;
455 	int retval;
456 
457 	spin_lock_irqsave(&rc_map->lock, flags);
458 
459 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
460 		index = ke->index;
461 	} else {
462 		retval = input_scancode_to_scalar(ke, &scancode);
463 		if (retval)
464 			goto out;
465 
466 		index = ir_lookup_by_scancode(rc_map, scancode);
467 	}
468 
469 	if (index < rc_map->len) {
470 		entry = &rc_map->scan[index];
471 
472 		ke->index = index;
473 		ke->keycode = entry->keycode;
474 		ke->len = sizeof(entry->scancode);
475 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
476 
477 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
478 		/*
479 		 * We do not really know the valid range of scancodes
480 		 * so let's respond with KEY_RESERVED to anything we
481 		 * do not have mapping for [yet].
482 		 */
483 		ke->index = index;
484 		ke->keycode = KEY_RESERVED;
485 	} else {
486 		retval = -EINVAL;
487 		goto out;
488 	}
489 
490 	retval = 0;
491 
492 out:
493 	spin_unlock_irqrestore(&rc_map->lock, flags);
494 	return retval;
495 }
496 
497 /**
498  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
499  * @dev:	the struct rc_dev descriptor of the device
500  * @scancode:	the scancode to look for
501  * @return:	the corresponding keycode, or KEY_RESERVED
502  *
503  * This routine is used by drivers which need to convert a scancode to a
504  * keycode. Normally it should not be used since drivers should have no
505  * interest in keycodes.
506  */
507 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
508 {
509 	struct rc_map *rc_map = &dev->rc_map;
510 	unsigned int keycode;
511 	unsigned int index;
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&rc_map->lock, flags);
515 
516 	index = ir_lookup_by_scancode(rc_map, scancode);
517 	keycode = index < rc_map->len ?
518 			rc_map->scan[index].keycode : KEY_RESERVED;
519 
520 	spin_unlock_irqrestore(&rc_map->lock, flags);
521 
522 	if (keycode != KEY_RESERVED)
523 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
524 			   dev->input_name, scancode, keycode);
525 
526 	return keycode;
527 }
528 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
529 
530 /**
531  * ir_do_keyup() - internal function to signal the release of a keypress
532  * @dev:	the struct rc_dev descriptor of the device
533  * @sync:	whether or not to call input_sync
534  *
535  * This function is used internally to release a keypress, it must be
536  * called with keylock held.
537  */
538 static void ir_do_keyup(struct rc_dev *dev, bool sync)
539 {
540 	if (!dev->keypressed)
541 		return;
542 
543 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
544 	input_report_key(dev->input_dev, dev->last_keycode, 0);
545 	led_trigger_event(led_feedback, LED_OFF);
546 	if (sync)
547 		input_sync(dev->input_dev);
548 	dev->keypressed = false;
549 }
550 
551 /**
552  * rc_keyup() - signals the release of a keypress
553  * @dev:	the struct rc_dev descriptor of the device
554  *
555  * This routine is used to signal that a key has been released on the
556  * remote control.
557  */
558 void rc_keyup(struct rc_dev *dev)
559 {
560 	unsigned long flags;
561 
562 	spin_lock_irqsave(&dev->keylock, flags);
563 	ir_do_keyup(dev, true);
564 	spin_unlock_irqrestore(&dev->keylock, flags);
565 }
566 EXPORT_SYMBOL_GPL(rc_keyup);
567 
568 /**
569  * ir_timer_keyup() - generates a keyup event after a timeout
570  * @cookie:	a pointer to the struct rc_dev for the device
571  *
572  * This routine will generate a keyup event some time after a keydown event
573  * is generated when no further activity has been detected.
574  */
575 static void ir_timer_keyup(unsigned long cookie)
576 {
577 	struct rc_dev *dev = (struct rc_dev *)cookie;
578 	unsigned long flags;
579 
580 	/*
581 	 * ir->keyup_jiffies is used to prevent a race condition if a
582 	 * hardware interrupt occurs at this point and the keyup timer
583 	 * event is moved further into the future as a result.
584 	 *
585 	 * The timer will then be reactivated and this function called
586 	 * again in the future. We need to exit gracefully in that case
587 	 * to allow the input subsystem to do its auto-repeat magic or
588 	 * a keyup event might follow immediately after the keydown.
589 	 */
590 	spin_lock_irqsave(&dev->keylock, flags);
591 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
592 		ir_do_keyup(dev, true);
593 	spin_unlock_irqrestore(&dev->keylock, flags);
594 }
595 
596 /**
597  * rc_repeat() - signals that a key is still pressed
598  * @dev:	the struct rc_dev descriptor of the device
599  *
600  * This routine is used by IR decoders when a repeat message which does
601  * not include the necessary bits to reproduce the scancode has been
602  * received.
603  */
604 void rc_repeat(struct rc_dev *dev)
605 {
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&dev->keylock, flags);
609 
610 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
611 	input_sync(dev->input_dev);
612 
613 	if (!dev->keypressed)
614 		goto out;
615 
616 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
617 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
618 
619 out:
620 	spin_unlock_irqrestore(&dev->keylock, flags);
621 }
622 EXPORT_SYMBOL_GPL(rc_repeat);
623 
624 /**
625  * ir_do_keydown() - internal function to process a keypress
626  * @dev:	the struct rc_dev descriptor of the device
627  * @protocol:	the protocol of the keypress
628  * @scancode:   the scancode of the keypress
629  * @keycode:    the keycode of the keypress
630  * @toggle:     the toggle value of the keypress
631  *
632  * This function is used internally to register a keypress, it must be
633  * called with keylock held.
634  */
635 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
636 			  u32 scancode, u32 keycode, u8 toggle)
637 {
638 	bool new_event = (!dev->keypressed		 ||
639 			  dev->last_protocol != protocol ||
640 			  dev->last_scancode != scancode ||
641 			  dev->last_toggle   != toggle);
642 
643 	if (new_event && dev->keypressed)
644 		ir_do_keyup(dev, false);
645 
646 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
647 
648 	if (new_event && keycode != KEY_RESERVED) {
649 		/* Register a keypress */
650 		dev->keypressed = true;
651 		dev->last_protocol = protocol;
652 		dev->last_scancode = scancode;
653 		dev->last_toggle = toggle;
654 		dev->last_keycode = keycode;
655 
656 		IR_dprintk(1, "%s: key down event, "
657 			   "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
658 			   dev->input_name, keycode, protocol, scancode);
659 		input_report_key(dev->input_dev, keycode, 1);
660 
661 		led_trigger_event(led_feedback, LED_FULL);
662 	}
663 
664 	input_sync(dev->input_dev);
665 }
666 
667 /**
668  * rc_keydown() - generates input event for a key press
669  * @dev:	the struct rc_dev descriptor of the device
670  * @protocol:	the protocol for the keypress
671  * @scancode:	the scancode for the keypress
672  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
673  *              support toggle values, this should be set to zero)
674  *
675  * This routine is used to signal that a key has been pressed on the
676  * remote control.
677  */
678 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
679 {
680 	unsigned long flags;
681 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
682 
683 	spin_lock_irqsave(&dev->keylock, flags);
684 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
685 
686 	if (dev->keypressed) {
687 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
688 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
689 	}
690 	spin_unlock_irqrestore(&dev->keylock, flags);
691 }
692 EXPORT_SYMBOL_GPL(rc_keydown);
693 
694 /**
695  * rc_keydown_notimeout() - generates input event for a key press without
696  *                          an automatic keyup event at a later time
697  * @dev:	the struct rc_dev descriptor of the device
698  * @protocol:	the protocol for the keypress
699  * @scancode:	the scancode for the keypress
700  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
701  *              support toggle values, this should be set to zero)
702  *
703  * This routine is used to signal that a key has been pressed on the
704  * remote control. The driver must manually call rc_keyup() at a later stage.
705  */
706 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
707 			  u32 scancode, u8 toggle)
708 {
709 	unsigned long flags;
710 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
711 
712 	spin_lock_irqsave(&dev->keylock, flags);
713 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
714 	spin_unlock_irqrestore(&dev->keylock, flags);
715 }
716 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
717 
718 int rc_open(struct rc_dev *rdev)
719 {
720 	int rval = 0;
721 
722 	if (!rdev)
723 		return -EINVAL;
724 
725 	mutex_lock(&rdev->lock);
726 	if (!rdev->users++ && rdev->open != NULL)
727 		rval = rdev->open(rdev);
728 
729 	if (rval)
730 		rdev->users--;
731 
732 	mutex_unlock(&rdev->lock);
733 
734 	return rval;
735 }
736 EXPORT_SYMBOL_GPL(rc_open);
737 
738 static int ir_open(struct input_dev *idev)
739 {
740 	struct rc_dev *rdev = input_get_drvdata(idev);
741 
742 	return rc_open(rdev);
743 }
744 
745 void rc_close(struct rc_dev *rdev)
746 {
747 	if (rdev) {
748 		mutex_lock(&rdev->lock);
749 
750 		if (!--rdev->users && rdev->close != NULL)
751 			rdev->close(rdev);
752 
753 		mutex_unlock(&rdev->lock);
754 	}
755 }
756 EXPORT_SYMBOL_GPL(rc_close);
757 
758 static void ir_close(struct input_dev *idev)
759 {
760 	struct rc_dev *rdev = input_get_drvdata(idev);
761 	rc_close(rdev);
762 }
763 
764 /* class for /sys/class/rc */
765 static char *rc_devnode(struct device *dev, umode_t *mode)
766 {
767 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
768 }
769 
770 static struct class rc_class = {
771 	.name		= "rc",
772 	.devnode	= rc_devnode,
773 };
774 
775 /*
776  * These are the protocol textual descriptions that are
777  * used by the sysfs protocols file. Note that the order
778  * of the entries is relevant.
779  */
780 static struct {
781 	u64	type;
782 	char	*name;
783 } proto_names[] = {
784 	{ RC_BIT_NONE,		"none"		},
785 	{ RC_BIT_OTHER,		"other"		},
786 	{ RC_BIT_UNKNOWN,	"unknown"	},
787 	{ RC_BIT_RC5 |
788 	  RC_BIT_RC5X,		"rc-5"		},
789 	{ RC_BIT_NEC,		"nec"		},
790 	{ RC_BIT_RC6_0 |
791 	  RC_BIT_RC6_6A_20 |
792 	  RC_BIT_RC6_6A_24 |
793 	  RC_BIT_RC6_6A_32 |
794 	  RC_BIT_RC6_MCE,	"rc-6"		},
795 	{ RC_BIT_JVC,		"jvc"		},
796 	{ RC_BIT_SONY12 |
797 	  RC_BIT_SONY15 |
798 	  RC_BIT_SONY20,	"sony"		},
799 	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
800 	{ RC_BIT_SANYO,		"sanyo"		},
801 	{ RC_BIT_SHARP,		"sharp"		},
802 	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
803 	{ RC_BIT_XMP,		"xmp"		},
804 };
805 
806 /**
807  * struct rc_filter_attribute - Device attribute relating to a filter type.
808  * @attr:	Device attribute.
809  * @type:	Filter type.
810  * @mask:	false for filter value, true for filter mask.
811  */
812 struct rc_filter_attribute {
813 	struct device_attribute		attr;
814 	enum rc_filter_type		type;
815 	bool				mask;
816 };
817 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
818 
819 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
820 	struct rc_filter_attribute dev_attr_##_name = {			\
821 		.attr = __ATTR(_name, _mode, _show, _store),		\
822 		.type = (_type),					\
823 	}
824 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
825 	struct rc_filter_attribute dev_attr_##_name = {			\
826 		.attr = __ATTR(_name, _mode, _show, _store),		\
827 		.type = (_type),					\
828 		.mask = (_mask),					\
829 	}
830 
831 static bool lirc_is_present(void)
832 {
833 #if defined(CONFIG_LIRC_MODULE)
834 	struct module *lirc;
835 
836 	mutex_lock(&module_mutex);
837 	lirc = find_module("lirc_dev");
838 	mutex_unlock(&module_mutex);
839 
840 	return lirc ? true : false;
841 #elif defined(CONFIG_LIRC)
842 	return true;
843 #else
844 	return false;
845 #endif
846 }
847 
848 /**
849  * show_protocols() - shows the current/wakeup IR protocol(s)
850  * @device:	the device descriptor
851  * @mattr:	the device attribute struct
852  * @buf:	a pointer to the output buffer
853  *
854  * This routine is a callback routine for input read the IR protocol type(s).
855  * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
856  * It returns the protocol names of supported protocols.
857  * Enabled protocols are printed in brackets.
858  *
859  * dev->lock is taken to guard against races between device
860  * registration, store_protocols and show_protocols.
861  */
862 static ssize_t show_protocols(struct device *device,
863 			      struct device_attribute *mattr, char *buf)
864 {
865 	struct rc_dev *dev = to_rc_dev(device);
866 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
867 	u64 allowed, enabled;
868 	char *tmp = buf;
869 	int i;
870 
871 	/* Device is being removed */
872 	if (!dev)
873 		return -EINVAL;
874 
875 	mutex_lock(&dev->lock);
876 
877 	if (fattr->type == RC_FILTER_NORMAL) {
878 		enabled = dev->enabled_protocols;
879 		allowed = dev->allowed_protocols;
880 		if (dev->raw && !allowed)
881 			allowed = ir_raw_get_allowed_protocols();
882 	} else {
883 		enabled = dev->enabled_wakeup_protocols;
884 		allowed = dev->allowed_wakeup_protocols;
885 		if (dev->encode_wakeup && !allowed)
886 			allowed = ir_raw_get_encode_protocols();
887 	}
888 
889 	mutex_unlock(&dev->lock);
890 
891 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
892 		   __func__, (long long)allowed, (long long)enabled);
893 
894 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
895 		if (allowed & enabled & proto_names[i].type)
896 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
897 		else if (allowed & proto_names[i].type)
898 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
899 
900 		if (allowed & proto_names[i].type)
901 			allowed &= ~proto_names[i].type;
902 	}
903 
904 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
905 		tmp += sprintf(tmp, "[lirc] ");
906 
907 	if (tmp != buf)
908 		tmp--;
909 	*tmp = '\n';
910 
911 	return tmp + 1 - buf;
912 }
913 
914 /**
915  * parse_protocol_change() - parses a protocol change request
916  * @protocols:	pointer to the bitmask of current protocols
917  * @buf:	pointer to the buffer with a list of changes
918  *
919  * Writing "+proto" will add a protocol to the protocol mask.
920  * Writing "-proto" will remove a protocol from protocol mask.
921  * Writing "proto" will enable only "proto".
922  * Writing "none" will disable all protocols.
923  * Returns the number of changes performed or a negative error code.
924  */
925 static int parse_protocol_change(u64 *protocols, const char *buf)
926 {
927 	const char *tmp;
928 	unsigned count = 0;
929 	bool enable, disable;
930 	u64 mask;
931 	int i;
932 
933 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
934 		if (!*tmp)
935 			break;
936 
937 		if (*tmp == '+') {
938 			enable = true;
939 			disable = false;
940 			tmp++;
941 		} else if (*tmp == '-') {
942 			enable = false;
943 			disable = true;
944 			tmp++;
945 		} else {
946 			enable = false;
947 			disable = false;
948 		}
949 
950 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
951 			if (!strcasecmp(tmp, proto_names[i].name)) {
952 				mask = proto_names[i].type;
953 				break;
954 			}
955 		}
956 
957 		if (i == ARRAY_SIZE(proto_names)) {
958 			if (!strcasecmp(tmp, "lirc"))
959 				mask = 0;
960 			else {
961 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
962 				return -EINVAL;
963 			}
964 		}
965 
966 		count++;
967 
968 		if (enable)
969 			*protocols |= mask;
970 		else if (disable)
971 			*protocols &= ~mask;
972 		else
973 			*protocols = mask;
974 	}
975 
976 	if (!count) {
977 		IR_dprintk(1, "Protocol not specified\n");
978 		return -EINVAL;
979 	}
980 
981 	return count;
982 }
983 
984 /**
985  * store_protocols() - changes the current/wakeup IR protocol(s)
986  * @device:	the device descriptor
987  * @mattr:	the device attribute struct
988  * @buf:	a pointer to the input buffer
989  * @len:	length of the input buffer
990  *
991  * This routine is for changing the IR protocol type.
992  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
993  * See parse_protocol_change() for the valid commands.
994  * Returns @len on success or a negative error code.
995  *
996  * dev->lock is taken to guard against races between device
997  * registration, store_protocols and show_protocols.
998  */
999 static ssize_t store_protocols(struct device *device,
1000 			       struct device_attribute *mattr,
1001 			       const char *buf, size_t len)
1002 {
1003 	struct rc_dev *dev = to_rc_dev(device);
1004 	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1005 	u64 *current_protocols;
1006 	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1007 	struct rc_scancode_filter *filter;
1008 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1009 	u64 old_protocols, new_protocols;
1010 	ssize_t rc;
1011 
1012 	/* Device is being removed */
1013 	if (!dev)
1014 		return -EINVAL;
1015 
1016 	if (fattr->type == RC_FILTER_NORMAL) {
1017 		IR_dprintk(1, "Normal protocol change requested\n");
1018 		current_protocols = &dev->enabled_protocols;
1019 		change_protocol = dev->change_protocol;
1020 		filter = &dev->scancode_filter;
1021 		set_filter = dev->s_filter;
1022 	} else {
1023 		IR_dprintk(1, "Wakeup protocol change requested\n");
1024 		current_protocols = &dev->enabled_wakeup_protocols;
1025 		change_protocol = dev->change_wakeup_protocol;
1026 		filter = &dev->scancode_wakeup_filter;
1027 		set_filter = dev->s_wakeup_filter;
1028 	}
1029 
1030 	if (!change_protocol) {
1031 		IR_dprintk(1, "Protocol switching not supported\n");
1032 		return -EINVAL;
1033 	}
1034 
1035 	mutex_lock(&dev->lock);
1036 
1037 	old_protocols = *current_protocols;
1038 	new_protocols = old_protocols;
1039 	rc = parse_protocol_change(&new_protocols, buf);
1040 	if (rc < 0)
1041 		goto out;
1042 
1043 	rc = change_protocol(dev, &new_protocols);
1044 	if (rc < 0) {
1045 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1046 			   (long long)new_protocols);
1047 		goto out;
1048 	}
1049 
1050 	if (new_protocols != old_protocols) {
1051 		*current_protocols = new_protocols;
1052 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1053 			   (long long)new_protocols);
1054 	}
1055 
1056 	/*
1057 	 * If a protocol change was attempted the filter may need updating, even
1058 	 * if the actual protocol mask hasn't changed (since the driver may have
1059 	 * cleared the filter).
1060 	 * Try setting the same filter with the new protocol (if any).
1061 	 * Fall back to clearing the filter.
1062 	 */
1063 	if (set_filter && filter->mask) {
1064 		if (new_protocols)
1065 			rc = set_filter(dev, filter);
1066 		else
1067 			rc = -1;
1068 
1069 		if (rc < 0) {
1070 			filter->data = 0;
1071 			filter->mask = 0;
1072 			set_filter(dev, filter);
1073 		}
1074 	}
1075 
1076 	rc = len;
1077 
1078 out:
1079 	mutex_unlock(&dev->lock);
1080 	return rc;
1081 }
1082 
1083 /**
1084  * show_filter() - shows the current scancode filter value or mask
1085  * @device:	the device descriptor
1086  * @attr:	the device attribute struct
1087  * @buf:	a pointer to the output buffer
1088  *
1089  * This routine is a callback routine to read a scancode filter value or mask.
1090  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1091  * It prints the current scancode filter value or mask of the appropriate filter
1092  * type in hexadecimal into @buf and returns the size of the buffer.
1093  *
1094  * Bits of the filter value corresponding to set bits in the filter mask are
1095  * compared against input scancodes and non-matching scancodes are discarded.
1096  *
1097  * dev->lock is taken to guard against races between device registration,
1098  * store_filter and show_filter.
1099  */
1100 static ssize_t show_filter(struct device *device,
1101 			   struct device_attribute *attr,
1102 			   char *buf)
1103 {
1104 	struct rc_dev *dev = to_rc_dev(device);
1105 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1106 	struct rc_scancode_filter *filter;
1107 	u32 val;
1108 
1109 	/* Device is being removed */
1110 	if (!dev)
1111 		return -EINVAL;
1112 
1113 	if (fattr->type == RC_FILTER_NORMAL)
1114 		filter = &dev->scancode_filter;
1115 	else
1116 		filter = &dev->scancode_wakeup_filter;
1117 
1118 	mutex_lock(&dev->lock);
1119 	if (fattr->mask)
1120 		val = filter->mask;
1121 	else
1122 		val = filter->data;
1123 	mutex_unlock(&dev->lock);
1124 
1125 	return sprintf(buf, "%#x\n", val);
1126 }
1127 
1128 /**
1129  * store_filter() - changes the scancode filter value
1130  * @device:	the device descriptor
1131  * @attr:	the device attribute struct
1132  * @buf:	a pointer to the input buffer
1133  * @len:	length of the input buffer
1134  *
1135  * This routine is for changing a scancode filter value or mask.
1136  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1137  * Returns -EINVAL if an invalid filter value for the current protocol was
1138  * specified or if scancode filtering is not supported by the driver, otherwise
1139  * returns @len.
1140  *
1141  * Bits of the filter value corresponding to set bits in the filter mask are
1142  * compared against input scancodes and non-matching scancodes are discarded.
1143  *
1144  * dev->lock is taken to guard against races between device registration,
1145  * store_filter and show_filter.
1146  */
1147 static ssize_t store_filter(struct device *device,
1148 			    struct device_attribute *attr,
1149 			    const char *buf, size_t len)
1150 {
1151 	struct rc_dev *dev = to_rc_dev(device);
1152 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1153 	struct rc_scancode_filter new_filter, *filter;
1154 	int ret;
1155 	unsigned long val;
1156 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1157 	u64 *enabled_protocols;
1158 
1159 	/* Device is being removed */
1160 	if (!dev)
1161 		return -EINVAL;
1162 
1163 	ret = kstrtoul(buf, 0, &val);
1164 	if (ret < 0)
1165 		return ret;
1166 
1167 	if (fattr->type == RC_FILTER_NORMAL) {
1168 		set_filter = dev->s_filter;
1169 		enabled_protocols = &dev->enabled_protocols;
1170 		filter = &dev->scancode_filter;
1171 	} else {
1172 		set_filter = dev->s_wakeup_filter;
1173 		enabled_protocols = &dev->enabled_wakeup_protocols;
1174 		filter = &dev->scancode_wakeup_filter;
1175 	}
1176 
1177 	if (!set_filter)
1178 		return -EINVAL;
1179 
1180 	mutex_lock(&dev->lock);
1181 
1182 	new_filter = *filter;
1183 	if (fattr->mask)
1184 		new_filter.mask = val;
1185 	else
1186 		new_filter.data = val;
1187 
1188 	if (!*enabled_protocols && val) {
1189 		/* refuse to set a filter unless a protocol is enabled */
1190 		ret = -EINVAL;
1191 		goto unlock;
1192 	}
1193 
1194 	ret = set_filter(dev, &new_filter);
1195 	if (ret < 0)
1196 		goto unlock;
1197 
1198 	*filter = new_filter;
1199 
1200 unlock:
1201 	mutex_unlock(&dev->lock);
1202 	return (ret < 0) ? ret : len;
1203 }
1204 
1205 static void rc_dev_release(struct device *device)
1206 {
1207 }
1208 
1209 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1210 	do {								\
1211 		int err = add_uevent_var(env, fmt, val);		\
1212 		if (err)						\
1213 			return err;					\
1214 	} while (0)
1215 
1216 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1217 {
1218 	struct rc_dev *dev = to_rc_dev(device);
1219 
1220 	if (dev->rc_map.name)
1221 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1222 	if (dev->driver_name)
1223 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Static device attribute struct with the sysfs attributes for IR's
1230  */
1231 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1232 		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1233 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1234 		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1235 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1236 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1237 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1238 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1239 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1240 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1241 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1242 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1243 
1244 static struct attribute *rc_dev_protocol_attrs[] = {
1245 	&dev_attr_protocols.attr.attr,
1246 	NULL,
1247 };
1248 
1249 static struct attribute_group rc_dev_protocol_attr_grp = {
1250 	.attrs	= rc_dev_protocol_attrs,
1251 };
1252 
1253 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1254 	&dev_attr_wakeup_protocols.attr.attr,
1255 	NULL,
1256 };
1257 
1258 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1259 	.attrs	= rc_dev_wakeup_protocol_attrs,
1260 };
1261 
1262 static struct attribute *rc_dev_filter_attrs[] = {
1263 	&dev_attr_filter.attr.attr,
1264 	&dev_attr_filter_mask.attr.attr,
1265 	NULL,
1266 };
1267 
1268 static struct attribute_group rc_dev_filter_attr_grp = {
1269 	.attrs	= rc_dev_filter_attrs,
1270 };
1271 
1272 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1273 	&dev_attr_wakeup_filter.attr.attr,
1274 	&dev_attr_wakeup_filter_mask.attr.attr,
1275 	NULL,
1276 };
1277 
1278 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1279 	.attrs	= rc_dev_wakeup_filter_attrs,
1280 };
1281 
1282 static struct device_type rc_dev_type = {
1283 	.release	= rc_dev_release,
1284 	.uevent		= rc_dev_uevent,
1285 };
1286 
1287 struct rc_dev *rc_allocate_device(void)
1288 {
1289 	struct rc_dev *dev;
1290 
1291 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1292 	if (!dev)
1293 		return NULL;
1294 
1295 	dev->input_dev = input_allocate_device();
1296 	if (!dev->input_dev) {
1297 		kfree(dev);
1298 		return NULL;
1299 	}
1300 
1301 	dev->input_dev->getkeycode = ir_getkeycode;
1302 	dev->input_dev->setkeycode = ir_setkeycode;
1303 	input_set_drvdata(dev->input_dev, dev);
1304 
1305 	spin_lock_init(&dev->rc_map.lock);
1306 	spin_lock_init(&dev->keylock);
1307 	mutex_init(&dev->lock);
1308 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1309 
1310 	dev->dev.type = &rc_dev_type;
1311 	dev->dev.class = &rc_class;
1312 	device_initialize(&dev->dev);
1313 
1314 	__module_get(THIS_MODULE);
1315 	return dev;
1316 }
1317 EXPORT_SYMBOL_GPL(rc_allocate_device);
1318 
1319 void rc_free_device(struct rc_dev *dev)
1320 {
1321 	if (!dev)
1322 		return;
1323 
1324 	input_free_device(dev->input_dev);
1325 
1326 	put_device(&dev->dev);
1327 
1328 	kfree(dev);
1329 	module_put(THIS_MODULE);
1330 }
1331 EXPORT_SYMBOL_GPL(rc_free_device);
1332 
1333 int rc_register_device(struct rc_dev *dev)
1334 {
1335 	static bool raw_init = false; /* raw decoders loaded? */
1336 	struct rc_map *rc_map;
1337 	const char *path;
1338 	int attr = 0;
1339 	int minor;
1340 	int rc;
1341 
1342 	if (!dev || !dev->map_name)
1343 		return -EINVAL;
1344 
1345 	rc_map = rc_map_get(dev->map_name);
1346 	if (!rc_map)
1347 		rc_map = rc_map_get(RC_MAP_EMPTY);
1348 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1349 		return -EINVAL;
1350 
1351 	set_bit(EV_KEY, dev->input_dev->evbit);
1352 	set_bit(EV_REP, dev->input_dev->evbit);
1353 	set_bit(EV_MSC, dev->input_dev->evbit);
1354 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1355 	if (dev->open)
1356 		dev->input_dev->open = ir_open;
1357 	if (dev->close)
1358 		dev->input_dev->close = ir_close;
1359 
1360 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1361 	if (minor < 0)
1362 		return minor;
1363 
1364 	dev->minor = minor;
1365 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1366 	dev_set_drvdata(&dev->dev, dev);
1367 
1368 	dev->dev.groups = dev->sysfs_groups;
1369 	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1370 	if (dev->s_filter)
1371 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1372 	if (dev->s_wakeup_filter)
1373 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1374 	if (dev->change_wakeup_protocol)
1375 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1376 	dev->sysfs_groups[attr++] = NULL;
1377 
1378 	/*
1379 	 * Take the lock here, as the device sysfs node will appear
1380 	 * when device_add() is called, which may trigger an ir-keytable udev
1381 	 * rule, which will in turn call show_protocols and access
1382 	 * dev->enabled_protocols before it has been initialized.
1383 	 */
1384 	mutex_lock(&dev->lock);
1385 
1386 	rc = device_add(&dev->dev);
1387 	if (rc)
1388 		goto out_unlock;
1389 
1390 	rc = ir_setkeytable(dev, rc_map);
1391 	if (rc)
1392 		goto out_dev;
1393 
1394 	dev->input_dev->dev.parent = &dev->dev;
1395 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1396 	dev->input_dev->phys = dev->input_phys;
1397 	dev->input_dev->name = dev->input_name;
1398 
1399 	/* input_register_device can call ir_open, so unlock mutex here */
1400 	mutex_unlock(&dev->lock);
1401 
1402 	rc = input_register_device(dev->input_dev);
1403 
1404 	mutex_lock(&dev->lock);
1405 
1406 	if (rc)
1407 		goto out_table;
1408 
1409 	/*
1410 	 * Default delay of 250ms is too short for some protocols, especially
1411 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1412 	 * to avoid wrong repetition of the keycodes. Note that this must be
1413 	 * set after the call to input_register_device().
1414 	 */
1415 	dev->input_dev->rep[REP_DELAY] = 500;
1416 
1417 	/*
1418 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1419 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1420 	 * to do.
1421 	 */
1422 	dev->input_dev->rep[REP_PERIOD] = 125;
1423 
1424 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1425 	printk(KERN_INFO "%s: %s as %s\n",
1426 		dev_name(&dev->dev),
1427 		dev->input_name ? dev->input_name : "Unspecified device",
1428 		path ? path : "N/A");
1429 	kfree(path);
1430 
1431 	if (dev->driver_type == RC_DRIVER_IR_RAW || dev->encode_wakeup) {
1432 		/* Load raw decoders, if they aren't already */
1433 		if (!raw_init) {
1434 			IR_dprintk(1, "Loading raw decoders\n");
1435 			ir_raw_init();
1436 			raw_init = true;
1437 		}
1438 	}
1439 
1440 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1441 		/* calls ir_register_device so unlock mutex here*/
1442 		mutex_unlock(&dev->lock);
1443 		rc = ir_raw_event_register(dev);
1444 		mutex_lock(&dev->lock);
1445 		if (rc < 0)
1446 			goto out_input;
1447 	}
1448 
1449 	if (dev->change_protocol) {
1450 		u64 rc_type = (1ll << rc_map->rc_type);
1451 		rc = dev->change_protocol(dev, &rc_type);
1452 		if (rc < 0)
1453 			goto out_raw;
1454 		dev->enabled_protocols = rc_type;
1455 	}
1456 
1457 	mutex_unlock(&dev->lock);
1458 
1459 	IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1460 		   dev->minor,
1461 		   dev->driver_name ? dev->driver_name : "unknown",
1462 		   rc_map->name ? rc_map->name : "unknown",
1463 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1464 
1465 	return 0;
1466 
1467 out_raw:
1468 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1469 		ir_raw_event_unregister(dev);
1470 out_input:
1471 	input_unregister_device(dev->input_dev);
1472 	dev->input_dev = NULL;
1473 out_table:
1474 	ir_free_table(&dev->rc_map);
1475 out_dev:
1476 	device_del(&dev->dev);
1477 out_unlock:
1478 	mutex_unlock(&dev->lock);
1479 	ida_simple_remove(&rc_ida, minor);
1480 	return rc;
1481 }
1482 EXPORT_SYMBOL_GPL(rc_register_device);
1483 
1484 void rc_unregister_device(struct rc_dev *dev)
1485 {
1486 	if (!dev)
1487 		return;
1488 
1489 	del_timer_sync(&dev->timer_keyup);
1490 
1491 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1492 		ir_raw_event_unregister(dev);
1493 
1494 	/* Freeing the table should also call the stop callback */
1495 	ir_free_table(&dev->rc_map);
1496 	IR_dprintk(1, "Freed keycode table\n");
1497 
1498 	input_unregister_device(dev->input_dev);
1499 	dev->input_dev = NULL;
1500 
1501 	device_del(&dev->dev);
1502 
1503 	ida_simple_remove(&rc_ida, dev->minor);
1504 
1505 	rc_free_device(dev);
1506 }
1507 
1508 EXPORT_SYMBOL_GPL(rc_unregister_device);
1509 
1510 /*
1511  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1512  */
1513 
1514 static int __init rc_core_init(void)
1515 {
1516 	int rc = class_register(&rc_class);
1517 	if (rc) {
1518 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1519 		return rc;
1520 	}
1521 
1522 	led_trigger_register_simple("rc-feedback", &led_feedback);
1523 	rc_map_register(&empty_map);
1524 
1525 	return 0;
1526 }
1527 
1528 static void __exit rc_core_exit(void)
1529 {
1530 	class_unregister(&rc_class);
1531 	led_trigger_unregister_simple(led_feedback);
1532 	rc_map_unregister(&empty_map);
1533 }
1534 
1535 subsys_initcall(rc_core_init);
1536 module_exit(rc_core_exit);
1537 
1538 int rc_core_debug;    /* ir_debug level (0,1,2) */
1539 EXPORT_SYMBOL_GPL(rc_core_debug);
1540 module_param_named(debug, rc_core_debug, int, 0644);
1541 
1542 MODULE_AUTHOR("Mauro Carvalho Chehab");
1543 MODULE_LICENSE("GPL");
1544