xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 12eb4683)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/device.h>
22 #include <linux/module.h>
23 #include "rc-core-priv.h"
24 
25 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
26 #define IR_TAB_MIN_SIZE	256
27 #define IR_TAB_MAX_SIZE	8192
28 
29 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
30 #define IR_KEYPRESS_TIMEOUT 250
31 
32 /* Used to keep track of known keymaps */
33 static LIST_HEAD(rc_map_list);
34 static DEFINE_SPINLOCK(rc_map_lock);
35 static struct led_trigger *led_feedback;
36 
37 static struct rc_map_list *seek_rc_map(const char *name)
38 {
39 	struct rc_map_list *map = NULL;
40 
41 	spin_lock(&rc_map_lock);
42 	list_for_each_entry(map, &rc_map_list, list) {
43 		if (!strcmp(name, map->map.name)) {
44 			spin_unlock(&rc_map_lock);
45 			return map;
46 		}
47 	}
48 	spin_unlock(&rc_map_lock);
49 
50 	return NULL;
51 }
52 
53 struct rc_map *rc_map_get(const char *name)
54 {
55 
56 	struct rc_map_list *map;
57 
58 	map = seek_rc_map(name);
59 #ifdef MODULE
60 	if (!map) {
61 		int rc = request_module(name);
62 		if (rc < 0) {
63 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
64 			return NULL;
65 		}
66 		msleep(20);	/* Give some time for IR to register */
67 
68 		map = seek_rc_map(name);
69 	}
70 #endif
71 	if (!map) {
72 		printk(KERN_ERR "IR keymap %s not found\n", name);
73 		return NULL;
74 	}
75 
76 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
77 
78 	return &map->map;
79 }
80 EXPORT_SYMBOL_GPL(rc_map_get);
81 
82 int rc_map_register(struct rc_map_list *map)
83 {
84 	spin_lock(&rc_map_lock);
85 	list_add_tail(&map->list, &rc_map_list);
86 	spin_unlock(&rc_map_lock);
87 	return 0;
88 }
89 EXPORT_SYMBOL_GPL(rc_map_register);
90 
91 void rc_map_unregister(struct rc_map_list *map)
92 {
93 	spin_lock(&rc_map_lock);
94 	list_del(&map->list);
95 	spin_unlock(&rc_map_lock);
96 }
97 EXPORT_SYMBOL_GPL(rc_map_unregister);
98 
99 
100 static struct rc_map_table empty[] = {
101 	{ 0x2a, KEY_COFFEE },
102 };
103 
104 static struct rc_map_list empty_map = {
105 	.map = {
106 		.scan    = empty,
107 		.size    = ARRAY_SIZE(empty),
108 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
109 		.name    = RC_MAP_EMPTY,
110 	}
111 };
112 
113 /**
114  * ir_create_table() - initializes a scancode table
115  * @rc_map:	the rc_map to initialize
116  * @name:	name to assign to the table
117  * @rc_type:	ir type to assign to the new table
118  * @size:	initial size of the table
119  * @return:	zero on success or a negative error code
120  *
121  * This routine will initialize the rc_map and will allocate
122  * memory to hold at least the specified number of elements.
123  */
124 static int ir_create_table(struct rc_map *rc_map,
125 			   const char *name, u64 rc_type, size_t size)
126 {
127 	rc_map->name = name;
128 	rc_map->rc_type = rc_type;
129 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
130 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
131 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
132 	if (!rc_map->scan)
133 		return -ENOMEM;
134 
135 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
136 		   rc_map->size, rc_map->alloc);
137 	return 0;
138 }
139 
140 /**
141  * ir_free_table() - frees memory allocated by a scancode table
142  * @rc_map:	the table whose mappings need to be freed
143  *
144  * This routine will free memory alloctaed for key mappings used by given
145  * scancode table.
146  */
147 static void ir_free_table(struct rc_map *rc_map)
148 {
149 	rc_map->size = 0;
150 	kfree(rc_map->scan);
151 	rc_map->scan = NULL;
152 }
153 
154 /**
155  * ir_resize_table() - resizes a scancode table if necessary
156  * @rc_map:	the rc_map to resize
157  * @gfp_flags:	gfp flags to use when allocating memory
158  * @return:	zero on success or a negative error code
159  *
160  * This routine will shrink the rc_map if it has lots of
161  * unused entries and grow it if it is full.
162  */
163 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
164 {
165 	unsigned int oldalloc = rc_map->alloc;
166 	unsigned int newalloc = oldalloc;
167 	struct rc_map_table *oldscan = rc_map->scan;
168 	struct rc_map_table *newscan;
169 
170 	if (rc_map->size == rc_map->len) {
171 		/* All entries in use -> grow keytable */
172 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
173 			return -ENOMEM;
174 
175 		newalloc *= 2;
176 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
177 	}
178 
179 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
180 		/* Less than 1/3 of entries in use -> shrink keytable */
181 		newalloc /= 2;
182 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
183 	}
184 
185 	if (newalloc == oldalloc)
186 		return 0;
187 
188 	newscan = kmalloc(newalloc, gfp_flags);
189 	if (!newscan) {
190 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
191 		return -ENOMEM;
192 	}
193 
194 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
195 	rc_map->scan = newscan;
196 	rc_map->alloc = newalloc;
197 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
198 	kfree(oldscan);
199 	return 0;
200 }
201 
202 /**
203  * ir_update_mapping() - set a keycode in the scancode->keycode table
204  * @dev:	the struct rc_dev device descriptor
205  * @rc_map:	scancode table to be adjusted
206  * @index:	index of the mapping that needs to be updated
207  * @keycode:	the desired keycode
208  * @return:	previous keycode assigned to the mapping
209  *
210  * This routine is used to update scancode->keycode mapping at given
211  * position.
212  */
213 static unsigned int ir_update_mapping(struct rc_dev *dev,
214 				      struct rc_map *rc_map,
215 				      unsigned int index,
216 				      unsigned int new_keycode)
217 {
218 	int old_keycode = rc_map->scan[index].keycode;
219 	int i;
220 
221 	/* Did the user wish to remove the mapping? */
222 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
223 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
224 			   index, rc_map->scan[index].scancode);
225 		rc_map->len--;
226 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
227 			(rc_map->len - index) * sizeof(struct rc_map_table));
228 	} else {
229 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
230 			   index,
231 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
232 			   rc_map->scan[index].scancode, new_keycode);
233 		rc_map->scan[index].keycode = new_keycode;
234 		__set_bit(new_keycode, dev->input_dev->keybit);
235 	}
236 
237 	if (old_keycode != KEY_RESERVED) {
238 		/* A previous mapping was updated... */
239 		__clear_bit(old_keycode, dev->input_dev->keybit);
240 		/* ... but another scancode might use the same keycode */
241 		for (i = 0; i < rc_map->len; i++) {
242 			if (rc_map->scan[i].keycode == old_keycode) {
243 				__set_bit(old_keycode, dev->input_dev->keybit);
244 				break;
245 			}
246 		}
247 
248 		/* Possibly shrink the keytable, failure is not a problem */
249 		ir_resize_table(rc_map, GFP_ATOMIC);
250 	}
251 
252 	return old_keycode;
253 }
254 
255 /**
256  * ir_establish_scancode() - set a keycode in the scancode->keycode table
257  * @dev:	the struct rc_dev device descriptor
258  * @rc_map:	scancode table to be searched
259  * @scancode:	the desired scancode
260  * @resize:	controls whether we allowed to resize the table to
261  *		accommodate not yet present scancodes
262  * @return:	index of the mapping containing scancode in question
263  *		or -1U in case of failure.
264  *
265  * This routine is used to locate given scancode in rc_map.
266  * If scancode is not yet present the routine will allocate a new slot
267  * for it.
268  */
269 static unsigned int ir_establish_scancode(struct rc_dev *dev,
270 					  struct rc_map *rc_map,
271 					  unsigned int scancode,
272 					  bool resize)
273 {
274 	unsigned int i;
275 
276 	/*
277 	 * Unfortunately, some hardware-based IR decoders don't provide
278 	 * all bits for the complete IR code. In general, they provide only
279 	 * the command part of the IR code. Yet, as it is possible to replace
280 	 * the provided IR with another one, it is needed to allow loading
281 	 * IR tables from other remotes. So, we support specifying a mask to
282 	 * indicate the valid bits of the scancodes.
283 	 */
284 	if (dev->scanmask)
285 		scancode &= dev->scanmask;
286 
287 	/* First check if we already have a mapping for this ir command */
288 	for (i = 0; i < rc_map->len; i++) {
289 		if (rc_map->scan[i].scancode == scancode)
290 			return i;
291 
292 		/* Keytable is sorted from lowest to highest scancode */
293 		if (rc_map->scan[i].scancode >= scancode)
294 			break;
295 	}
296 
297 	/* No previous mapping found, we might need to grow the table */
298 	if (rc_map->size == rc_map->len) {
299 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
300 			return -1U;
301 	}
302 
303 	/* i is the proper index to insert our new keycode */
304 	if (i < rc_map->len)
305 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
306 			(rc_map->len - i) * sizeof(struct rc_map_table));
307 	rc_map->scan[i].scancode = scancode;
308 	rc_map->scan[i].keycode = KEY_RESERVED;
309 	rc_map->len++;
310 
311 	return i;
312 }
313 
314 /**
315  * ir_setkeycode() - set a keycode in the scancode->keycode table
316  * @idev:	the struct input_dev device descriptor
317  * @scancode:	the desired scancode
318  * @keycode:	result
319  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
320  *
321  * This routine is used to handle evdev EVIOCSKEY ioctl.
322  */
323 static int ir_setkeycode(struct input_dev *idev,
324 			 const struct input_keymap_entry *ke,
325 			 unsigned int *old_keycode)
326 {
327 	struct rc_dev *rdev = input_get_drvdata(idev);
328 	struct rc_map *rc_map = &rdev->rc_map;
329 	unsigned int index;
330 	unsigned int scancode;
331 	int retval = 0;
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&rc_map->lock, flags);
335 
336 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
337 		index = ke->index;
338 		if (index >= rc_map->len) {
339 			retval = -EINVAL;
340 			goto out;
341 		}
342 	} else {
343 		retval = input_scancode_to_scalar(ke, &scancode);
344 		if (retval)
345 			goto out;
346 
347 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
348 		if (index >= rc_map->len) {
349 			retval = -ENOMEM;
350 			goto out;
351 		}
352 	}
353 
354 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
355 
356 out:
357 	spin_unlock_irqrestore(&rc_map->lock, flags);
358 	return retval;
359 }
360 
361 /**
362  * ir_setkeytable() - sets several entries in the scancode->keycode table
363  * @dev:	the struct rc_dev device descriptor
364  * @to:		the struct rc_map to copy entries to
365  * @from:	the struct rc_map to copy entries from
366  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
367  *
368  * This routine is used to handle table initialization.
369  */
370 static int ir_setkeytable(struct rc_dev *dev,
371 			  const struct rc_map *from)
372 {
373 	struct rc_map *rc_map = &dev->rc_map;
374 	unsigned int i, index;
375 	int rc;
376 
377 	rc = ir_create_table(rc_map, from->name,
378 			     from->rc_type, from->size);
379 	if (rc)
380 		return rc;
381 
382 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
383 		   rc_map->size, rc_map->alloc);
384 
385 	for (i = 0; i < from->size; i++) {
386 		index = ir_establish_scancode(dev, rc_map,
387 					      from->scan[i].scancode, false);
388 		if (index >= rc_map->len) {
389 			rc = -ENOMEM;
390 			break;
391 		}
392 
393 		ir_update_mapping(dev, rc_map, index,
394 				  from->scan[i].keycode);
395 	}
396 
397 	if (rc)
398 		ir_free_table(rc_map);
399 
400 	return rc;
401 }
402 
403 /**
404  * ir_lookup_by_scancode() - locate mapping by scancode
405  * @rc_map:	the struct rc_map to search
406  * @scancode:	scancode to look for in the table
407  * @return:	index in the table, -1U if not found
408  *
409  * This routine performs binary search in RC keykeymap table for
410  * given scancode.
411  */
412 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
413 					  unsigned int scancode)
414 {
415 	int start = 0;
416 	int end = rc_map->len - 1;
417 	int mid;
418 
419 	while (start <= end) {
420 		mid = (start + end) / 2;
421 		if (rc_map->scan[mid].scancode < scancode)
422 			start = mid + 1;
423 		else if (rc_map->scan[mid].scancode > scancode)
424 			end = mid - 1;
425 		else
426 			return mid;
427 	}
428 
429 	return -1U;
430 }
431 
432 /**
433  * ir_getkeycode() - get a keycode from the scancode->keycode table
434  * @idev:	the struct input_dev device descriptor
435  * @scancode:	the desired scancode
436  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
437  * @return:	always returns zero.
438  *
439  * This routine is used to handle evdev EVIOCGKEY ioctl.
440  */
441 static int ir_getkeycode(struct input_dev *idev,
442 			 struct input_keymap_entry *ke)
443 {
444 	struct rc_dev *rdev = input_get_drvdata(idev);
445 	struct rc_map *rc_map = &rdev->rc_map;
446 	struct rc_map_table *entry;
447 	unsigned long flags;
448 	unsigned int index;
449 	unsigned int scancode;
450 	int retval;
451 
452 	spin_lock_irqsave(&rc_map->lock, flags);
453 
454 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
455 		index = ke->index;
456 	} else {
457 		retval = input_scancode_to_scalar(ke, &scancode);
458 		if (retval)
459 			goto out;
460 
461 		index = ir_lookup_by_scancode(rc_map, scancode);
462 	}
463 
464 	if (index < rc_map->len) {
465 		entry = &rc_map->scan[index];
466 
467 		ke->index = index;
468 		ke->keycode = entry->keycode;
469 		ke->len = sizeof(entry->scancode);
470 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
471 
472 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
473 		/*
474 		 * We do not really know the valid range of scancodes
475 		 * so let's respond with KEY_RESERVED to anything we
476 		 * do not have mapping for [yet].
477 		 */
478 		ke->index = index;
479 		ke->keycode = KEY_RESERVED;
480 	} else {
481 		retval = -EINVAL;
482 		goto out;
483 	}
484 
485 	retval = 0;
486 
487 out:
488 	spin_unlock_irqrestore(&rc_map->lock, flags);
489 	return retval;
490 }
491 
492 /**
493  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
494  * @dev:	the struct rc_dev descriptor of the device
495  * @scancode:	the scancode to look for
496  * @return:	the corresponding keycode, or KEY_RESERVED
497  *
498  * This routine is used by drivers which need to convert a scancode to a
499  * keycode. Normally it should not be used since drivers should have no
500  * interest in keycodes.
501  */
502 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
503 {
504 	struct rc_map *rc_map = &dev->rc_map;
505 	unsigned int keycode;
506 	unsigned int index;
507 	unsigned long flags;
508 
509 	spin_lock_irqsave(&rc_map->lock, flags);
510 
511 	index = ir_lookup_by_scancode(rc_map, scancode);
512 	keycode = index < rc_map->len ?
513 			rc_map->scan[index].keycode : KEY_RESERVED;
514 
515 	spin_unlock_irqrestore(&rc_map->lock, flags);
516 
517 	if (keycode != KEY_RESERVED)
518 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
519 			   dev->input_name, scancode, keycode);
520 
521 	return keycode;
522 }
523 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
524 
525 /**
526  * ir_do_keyup() - internal function to signal the release of a keypress
527  * @dev:	the struct rc_dev descriptor of the device
528  * @sync:	whether or not to call input_sync
529  *
530  * This function is used internally to release a keypress, it must be
531  * called with keylock held.
532  */
533 static void ir_do_keyup(struct rc_dev *dev, bool sync)
534 {
535 	if (!dev->keypressed)
536 		return;
537 
538 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
539 	input_report_key(dev->input_dev, dev->last_keycode, 0);
540 	led_trigger_event(led_feedback, LED_OFF);
541 	if (sync)
542 		input_sync(dev->input_dev);
543 	dev->keypressed = false;
544 }
545 
546 /**
547  * rc_keyup() - signals the release of a keypress
548  * @dev:	the struct rc_dev descriptor of the device
549  *
550  * This routine is used to signal that a key has been released on the
551  * remote control.
552  */
553 void rc_keyup(struct rc_dev *dev)
554 {
555 	unsigned long flags;
556 
557 	spin_lock_irqsave(&dev->keylock, flags);
558 	ir_do_keyup(dev, true);
559 	spin_unlock_irqrestore(&dev->keylock, flags);
560 }
561 EXPORT_SYMBOL_GPL(rc_keyup);
562 
563 /**
564  * ir_timer_keyup() - generates a keyup event after a timeout
565  * @cookie:	a pointer to the struct rc_dev for the device
566  *
567  * This routine will generate a keyup event some time after a keydown event
568  * is generated when no further activity has been detected.
569  */
570 static void ir_timer_keyup(unsigned long cookie)
571 {
572 	struct rc_dev *dev = (struct rc_dev *)cookie;
573 	unsigned long flags;
574 
575 	/*
576 	 * ir->keyup_jiffies is used to prevent a race condition if a
577 	 * hardware interrupt occurs at this point and the keyup timer
578 	 * event is moved further into the future as a result.
579 	 *
580 	 * The timer will then be reactivated and this function called
581 	 * again in the future. We need to exit gracefully in that case
582 	 * to allow the input subsystem to do its auto-repeat magic or
583 	 * a keyup event might follow immediately after the keydown.
584 	 */
585 	spin_lock_irqsave(&dev->keylock, flags);
586 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
587 		ir_do_keyup(dev, true);
588 	spin_unlock_irqrestore(&dev->keylock, flags);
589 }
590 
591 /**
592  * rc_repeat() - signals that a key is still pressed
593  * @dev:	the struct rc_dev descriptor of the device
594  *
595  * This routine is used by IR decoders when a repeat message which does
596  * not include the necessary bits to reproduce the scancode has been
597  * received.
598  */
599 void rc_repeat(struct rc_dev *dev)
600 {
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&dev->keylock, flags);
604 
605 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
606 	input_sync(dev->input_dev);
607 
608 	if (!dev->keypressed)
609 		goto out;
610 
611 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
612 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
613 
614 out:
615 	spin_unlock_irqrestore(&dev->keylock, flags);
616 }
617 EXPORT_SYMBOL_GPL(rc_repeat);
618 
619 /**
620  * ir_do_keydown() - internal function to process a keypress
621  * @dev:	the struct rc_dev descriptor of the device
622  * @scancode:   the scancode of the keypress
623  * @keycode:    the keycode of the keypress
624  * @toggle:     the toggle value of the keypress
625  *
626  * This function is used internally to register a keypress, it must be
627  * called with keylock held.
628  */
629 static void ir_do_keydown(struct rc_dev *dev, int scancode,
630 			  u32 keycode, u8 toggle)
631 {
632 	bool new_event = !dev->keypressed ||
633 			 dev->last_scancode != scancode ||
634 			 dev->last_toggle != toggle;
635 
636 	if (new_event && dev->keypressed)
637 		ir_do_keyup(dev, false);
638 
639 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
640 
641 	if (new_event && keycode != KEY_RESERVED) {
642 		/* Register a keypress */
643 		dev->keypressed = true;
644 		dev->last_scancode = scancode;
645 		dev->last_toggle = toggle;
646 		dev->last_keycode = keycode;
647 
648 		IR_dprintk(1, "%s: key down event, "
649 			   "key 0x%04x, scancode 0x%04x\n",
650 			   dev->input_name, keycode, scancode);
651 		input_report_key(dev->input_dev, keycode, 1);
652 	}
653 
654 	led_trigger_event(led_feedback, LED_FULL);
655 	input_sync(dev->input_dev);
656 }
657 
658 /**
659  * rc_keydown() - generates input event for a key press
660  * @dev:	the struct rc_dev descriptor of the device
661  * @scancode:   the scancode that we're seeking
662  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
663  *              support toggle values, this should be set to zero)
664  *
665  * This routine is used to signal that a key has been pressed on the
666  * remote control.
667  */
668 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
669 {
670 	unsigned long flags;
671 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
672 
673 	spin_lock_irqsave(&dev->keylock, flags);
674 	ir_do_keydown(dev, scancode, keycode, toggle);
675 
676 	if (dev->keypressed) {
677 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
678 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
679 	}
680 	spin_unlock_irqrestore(&dev->keylock, flags);
681 }
682 EXPORT_SYMBOL_GPL(rc_keydown);
683 
684 /**
685  * rc_keydown_notimeout() - generates input event for a key press without
686  *                          an automatic keyup event at a later time
687  * @dev:	the struct rc_dev descriptor of the device
688  * @scancode:   the scancode that we're seeking
689  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
690  *              support toggle values, this should be set to zero)
691  *
692  * This routine is used to signal that a key has been pressed on the
693  * remote control. The driver must manually call rc_keyup() at a later stage.
694  */
695 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
696 {
697 	unsigned long flags;
698 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
699 
700 	spin_lock_irqsave(&dev->keylock, flags);
701 	ir_do_keydown(dev, scancode, keycode, toggle);
702 	spin_unlock_irqrestore(&dev->keylock, flags);
703 }
704 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
705 
706 int rc_open(struct rc_dev *rdev)
707 {
708 	int rval = 0;
709 
710 	if (!rdev)
711 		return -EINVAL;
712 
713 	mutex_lock(&rdev->lock);
714 	if (!rdev->users++ && rdev->open != NULL)
715 		rval = rdev->open(rdev);
716 
717 	if (rval)
718 		rdev->users--;
719 
720 	mutex_unlock(&rdev->lock);
721 
722 	return rval;
723 }
724 EXPORT_SYMBOL_GPL(rc_open);
725 
726 static int ir_open(struct input_dev *idev)
727 {
728 	struct rc_dev *rdev = input_get_drvdata(idev);
729 
730 	return rc_open(rdev);
731 }
732 
733 void rc_close(struct rc_dev *rdev)
734 {
735 	if (rdev) {
736 		mutex_lock(&rdev->lock);
737 
738 		 if (!--rdev->users && rdev->close != NULL)
739 			rdev->close(rdev);
740 
741 		mutex_unlock(&rdev->lock);
742 	}
743 }
744 EXPORT_SYMBOL_GPL(rc_close);
745 
746 static void ir_close(struct input_dev *idev)
747 {
748 	struct rc_dev *rdev = input_get_drvdata(idev);
749 	rc_close(rdev);
750 }
751 
752 /* class for /sys/class/rc */
753 static char *rc_devnode(struct device *dev, umode_t *mode)
754 {
755 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
756 }
757 
758 static struct class rc_class = {
759 	.name		= "rc",
760 	.devnode	= rc_devnode,
761 };
762 
763 /*
764  * These are the protocol textual descriptions that are
765  * used by the sysfs protocols file. Note that the order
766  * of the entries is relevant.
767  */
768 static struct {
769 	u64	type;
770 	char	*name;
771 } proto_names[] = {
772 	{ RC_BIT_NONE,		"none"		},
773 	{ RC_BIT_OTHER,		"other"		},
774 	{ RC_BIT_UNKNOWN,	"unknown"	},
775 	{ RC_BIT_RC5 |
776 	  RC_BIT_RC5X,		"rc-5"		},
777 	{ RC_BIT_NEC,		"nec"		},
778 	{ RC_BIT_RC6_0 |
779 	  RC_BIT_RC6_6A_20 |
780 	  RC_BIT_RC6_6A_24 |
781 	  RC_BIT_RC6_6A_32 |
782 	  RC_BIT_RC6_MCE,	"rc-6"		},
783 	{ RC_BIT_JVC,		"jvc"		},
784 	{ RC_BIT_SONY12 |
785 	  RC_BIT_SONY15 |
786 	  RC_BIT_SONY20,	"sony"		},
787 	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
788 	{ RC_BIT_SANYO,		"sanyo"		},
789 	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
790 	{ RC_BIT_LIRC,		"lirc"		},
791 };
792 
793 /**
794  * show_protocols() - shows the current IR protocol(s)
795  * @device:	the device descriptor
796  * @mattr:	the device attribute struct (unused)
797  * @buf:	a pointer to the output buffer
798  *
799  * This routine is a callback routine for input read the IR protocol type(s).
800  * it is trigged by reading /sys/class/rc/rc?/protocols.
801  * It returns the protocol names of supported protocols.
802  * Enabled protocols are printed in brackets.
803  *
804  * dev->lock is taken to guard against races between device
805  * registration, store_protocols and show_protocols.
806  */
807 static ssize_t show_protocols(struct device *device,
808 			      struct device_attribute *mattr, char *buf)
809 {
810 	struct rc_dev *dev = to_rc_dev(device);
811 	u64 allowed, enabled;
812 	char *tmp = buf;
813 	int i;
814 
815 	/* Device is being removed */
816 	if (!dev)
817 		return -EINVAL;
818 
819 	mutex_lock(&dev->lock);
820 
821 	enabled = dev->enabled_protocols;
822 	if (dev->driver_type == RC_DRIVER_SCANCODE)
823 		allowed = dev->allowed_protos;
824 	else if (dev->raw)
825 		allowed = ir_raw_get_allowed_protocols();
826 	else {
827 		mutex_unlock(&dev->lock);
828 		return -ENODEV;
829 	}
830 
831 	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
832 		   (long long)allowed,
833 		   (long long)enabled);
834 
835 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
836 		if (allowed & enabled & proto_names[i].type)
837 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
838 		else if (allowed & proto_names[i].type)
839 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
840 
841 		if (allowed & proto_names[i].type)
842 			allowed &= ~proto_names[i].type;
843 	}
844 
845 	if (tmp != buf)
846 		tmp--;
847 	*tmp = '\n';
848 
849 	mutex_unlock(&dev->lock);
850 
851 	return tmp + 1 - buf;
852 }
853 
854 /**
855  * store_protocols() - changes the current IR protocol(s)
856  * @device:	the device descriptor
857  * @mattr:	the device attribute struct (unused)
858  * @buf:	a pointer to the input buffer
859  * @len:	length of the input buffer
860  *
861  * This routine is for changing the IR protocol type.
862  * It is trigged by writing to /sys/class/rc/rc?/protocols.
863  * Writing "+proto" will add a protocol to the list of enabled protocols.
864  * Writing "-proto" will remove a protocol from the list of enabled protocols.
865  * Writing "proto" will enable only "proto".
866  * Writing "none" will disable all protocols.
867  * Returns -EINVAL if an invalid protocol combination or unknown protocol name
868  * is used, otherwise @len.
869  *
870  * dev->lock is taken to guard against races between device
871  * registration, store_protocols and show_protocols.
872  */
873 static ssize_t store_protocols(struct device *device,
874 			       struct device_attribute *mattr,
875 			       const char *data,
876 			       size_t len)
877 {
878 	struct rc_dev *dev = to_rc_dev(device);
879 	bool enable, disable;
880 	const char *tmp;
881 	u64 type;
882 	u64 mask;
883 	int rc, i, count = 0;
884 	ssize_t ret;
885 
886 	/* Device is being removed */
887 	if (!dev)
888 		return -EINVAL;
889 
890 	mutex_lock(&dev->lock);
891 
892 	if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
893 		IR_dprintk(1, "Protocol switching not supported\n");
894 		ret = -EINVAL;
895 		goto out;
896 	}
897 	type = dev->enabled_protocols;
898 
899 	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
900 		if (!*tmp)
901 			break;
902 
903 		if (*tmp == '+') {
904 			enable = true;
905 			disable = false;
906 			tmp++;
907 		} else if (*tmp == '-') {
908 			enable = false;
909 			disable = true;
910 			tmp++;
911 		} else {
912 			enable = false;
913 			disable = false;
914 		}
915 
916 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
917 			if (!strcasecmp(tmp, proto_names[i].name)) {
918 				mask = proto_names[i].type;
919 				break;
920 			}
921 		}
922 
923 		if (i == ARRAY_SIZE(proto_names)) {
924 			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
925 			ret = -EINVAL;
926 			goto out;
927 		}
928 
929 		count++;
930 
931 		if (enable)
932 			type |= mask;
933 		else if (disable)
934 			type &= ~mask;
935 		else
936 			type = mask;
937 	}
938 
939 	if (!count) {
940 		IR_dprintk(1, "Protocol not specified\n");
941 		ret = -EINVAL;
942 		goto out;
943 	}
944 
945 	if (dev->change_protocol) {
946 		rc = dev->change_protocol(dev, &type);
947 		if (rc < 0) {
948 			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
949 				   (long long)type);
950 			ret = -EINVAL;
951 			goto out;
952 		}
953 	}
954 
955 	dev->enabled_protocols = type;
956 	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
957 		   (long long)type);
958 
959 	ret = len;
960 
961 out:
962 	mutex_unlock(&dev->lock);
963 	return ret;
964 }
965 
966 static void rc_dev_release(struct device *device)
967 {
968 }
969 
970 #define ADD_HOTPLUG_VAR(fmt, val...)					\
971 	do {								\
972 		int err = add_uevent_var(env, fmt, val);		\
973 		if (err)						\
974 			return err;					\
975 	} while (0)
976 
977 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
978 {
979 	struct rc_dev *dev = to_rc_dev(device);
980 
981 	if (!dev || !dev->input_dev)
982 		return -ENODEV;
983 
984 	if (dev->rc_map.name)
985 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
986 	if (dev->driver_name)
987 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
988 
989 	return 0;
990 }
991 
992 /*
993  * Static device attribute struct with the sysfs attributes for IR's
994  */
995 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
996 		   show_protocols, store_protocols);
997 
998 static struct attribute *rc_dev_attrs[] = {
999 	&dev_attr_protocols.attr,
1000 	NULL,
1001 };
1002 
1003 static struct attribute_group rc_dev_attr_grp = {
1004 	.attrs	= rc_dev_attrs,
1005 };
1006 
1007 static const struct attribute_group *rc_dev_attr_groups[] = {
1008 	&rc_dev_attr_grp,
1009 	NULL
1010 };
1011 
1012 static struct device_type rc_dev_type = {
1013 	.groups		= rc_dev_attr_groups,
1014 	.release	= rc_dev_release,
1015 	.uevent		= rc_dev_uevent,
1016 };
1017 
1018 struct rc_dev *rc_allocate_device(void)
1019 {
1020 	struct rc_dev *dev;
1021 
1022 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1023 	if (!dev)
1024 		return NULL;
1025 
1026 	dev->input_dev = input_allocate_device();
1027 	if (!dev->input_dev) {
1028 		kfree(dev);
1029 		return NULL;
1030 	}
1031 
1032 	dev->input_dev->getkeycode = ir_getkeycode;
1033 	dev->input_dev->setkeycode = ir_setkeycode;
1034 	input_set_drvdata(dev->input_dev, dev);
1035 
1036 	spin_lock_init(&dev->rc_map.lock);
1037 	spin_lock_init(&dev->keylock);
1038 	mutex_init(&dev->lock);
1039 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1040 
1041 	dev->dev.type = &rc_dev_type;
1042 	dev->dev.class = &rc_class;
1043 	device_initialize(&dev->dev);
1044 
1045 	__module_get(THIS_MODULE);
1046 	return dev;
1047 }
1048 EXPORT_SYMBOL_GPL(rc_allocate_device);
1049 
1050 void rc_free_device(struct rc_dev *dev)
1051 {
1052 	if (!dev)
1053 		return;
1054 
1055 	if (dev->input_dev)
1056 		input_free_device(dev->input_dev);
1057 
1058 	put_device(&dev->dev);
1059 
1060 	kfree(dev);
1061 	module_put(THIS_MODULE);
1062 }
1063 EXPORT_SYMBOL_GPL(rc_free_device);
1064 
1065 int rc_register_device(struct rc_dev *dev)
1066 {
1067 	static bool raw_init = false; /* raw decoders loaded? */
1068 	static atomic_t devno = ATOMIC_INIT(0);
1069 	struct rc_map *rc_map;
1070 	const char *path;
1071 	int rc;
1072 
1073 	if (!dev || !dev->map_name)
1074 		return -EINVAL;
1075 
1076 	rc_map = rc_map_get(dev->map_name);
1077 	if (!rc_map)
1078 		rc_map = rc_map_get(RC_MAP_EMPTY);
1079 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1080 		return -EINVAL;
1081 
1082 	set_bit(EV_KEY, dev->input_dev->evbit);
1083 	set_bit(EV_REP, dev->input_dev->evbit);
1084 	set_bit(EV_MSC, dev->input_dev->evbit);
1085 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1086 	if (dev->open)
1087 		dev->input_dev->open = ir_open;
1088 	if (dev->close)
1089 		dev->input_dev->close = ir_close;
1090 
1091 	/*
1092 	 * Take the lock here, as the device sysfs node will appear
1093 	 * when device_add() is called, which may trigger an ir-keytable udev
1094 	 * rule, which will in turn call show_protocols and access
1095 	 * dev->enabled_protocols before it has been initialized.
1096 	 */
1097 	mutex_lock(&dev->lock);
1098 
1099 	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1100 	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1101 	dev_set_drvdata(&dev->dev, dev);
1102 	rc = device_add(&dev->dev);
1103 	if (rc)
1104 		goto out_unlock;
1105 
1106 	rc = ir_setkeytable(dev, rc_map);
1107 	if (rc)
1108 		goto out_dev;
1109 
1110 	dev->input_dev->dev.parent = &dev->dev;
1111 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1112 	dev->input_dev->phys = dev->input_phys;
1113 	dev->input_dev->name = dev->input_name;
1114 
1115 	/* input_register_device can call ir_open, so unlock mutex here */
1116 	mutex_unlock(&dev->lock);
1117 
1118 	rc = input_register_device(dev->input_dev);
1119 
1120 	mutex_lock(&dev->lock);
1121 
1122 	if (rc)
1123 		goto out_table;
1124 
1125 	/*
1126 	 * Default delay of 250ms is too short for some protocols, especially
1127 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1128 	 * to avoid wrong repetition of the keycodes. Note that this must be
1129 	 * set after the call to input_register_device().
1130 	 */
1131 	dev->input_dev->rep[REP_DELAY] = 500;
1132 
1133 	/*
1134 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1135 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1136 	 * to do.
1137 	 */
1138 	dev->input_dev->rep[REP_PERIOD] = 125;
1139 
1140 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1141 	printk(KERN_INFO "%s: %s as %s\n",
1142 		dev_name(&dev->dev),
1143 		dev->input_name ? dev->input_name : "Unspecified device",
1144 		path ? path : "N/A");
1145 	kfree(path);
1146 
1147 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1148 		/* Load raw decoders, if they aren't already */
1149 		if (!raw_init) {
1150 			IR_dprintk(1, "Loading raw decoders\n");
1151 			ir_raw_init();
1152 			raw_init = true;
1153 		}
1154 		rc = ir_raw_event_register(dev);
1155 		if (rc < 0)
1156 			goto out_input;
1157 	}
1158 
1159 	if (dev->change_protocol) {
1160 		u64 rc_type = (1 << rc_map->rc_type);
1161 		rc = dev->change_protocol(dev, &rc_type);
1162 		if (rc < 0)
1163 			goto out_raw;
1164 		dev->enabled_protocols = rc_type;
1165 	}
1166 
1167 	mutex_unlock(&dev->lock);
1168 
1169 	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1170 		   dev->devno,
1171 		   dev->driver_name ? dev->driver_name : "unknown",
1172 		   rc_map->name ? rc_map->name : "unknown",
1173 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1174 
1175 	return 0;
1176 
1177 out_raw:
1178 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1179 		ir_raw_event_unregister(dev);
1180 out_input:
1181 	input_unregister_device(dev->input_dev);
1182 	dev->input_dev = NULL;
1183 out_table:
1184 	ir_free_table(&dev->rc_map);
1185 out_dev:
1186 	device_del(&dev->dev);
1187 out_unlock:
1188 	mutex_unlock(&dev->lock);
1189 	return rc;
1190 }
1191 EXPORT_SYMBOL_GPL(rc_register_device);
1192 
1193 void rc_unregister_device(struct rc_dev *dev)
1194 {
1195 	if (!dev)
1196 		return;
1197 
1198 	del_timer_sync(&dev->timer_keyup);
1199 
1200 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1201 		ir_raw_event_unregister(dev);
1202 
1203 	/* Freeing the table should also call the stop callback */
1204 	ir_free_table(&dev->rc_map);
1205 	IR_dprintk(1, "Freed keycode table\n");
1206 
1207 	input_unregister_device(dev->input_dev);
1208 	dev->input_dev = NULL;
1209 
1210 	device_del(&dev->dev);
1211 
1212 	rc_free_device(dev);
1213 }
1214 
1215 EXPORT_SYMBOL_GPL(rc_unregister_device);
1216 
1217 /*
1218  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1219  */
1220 
1221 static int __init rc_core_init(void)
1222 {
1223 	int rc = class_register(&rc_class);
1224 	if (rc) {
1225 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1226 		return rc;
1227 	}
1228 
1229 	led_trigger_register_simple("rc-feedback", &led_feedback);
1230 	rc_map_register(&empty_map);
1231 
1232 	return 0;
1233 }
1234 
1235 static void __exit rc_core_exit(void)
1236 {
1237 	class_unregister(&rc_class);
1238 	led_trigger_unregister_simple(led_feedback);
1239 	rc_map_unregister(&empty_map);
1240 }
1241 
1242 subsys_initcall(rc_core_init);
1243 module_exit(rc_core_exit);
1244 
1245 int rc_core_debug;    /* ir_debug level (0,1,2) */
1246 EXPORT_SYMBOL_GPL(rc_core_debug);
1247 module_param_named(debug, rc_core_debug, int, 0644);
1248 
1249 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1250 MODULE_LICENSE("GPL");
1251