1 // SPDX-License-Identifier: GPL-2.0 2 // rc-main.c - Remote Controller core module 3 // 4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <media/rc-core.h> 9 #include <linux/bsearch.h> 10 #include <linux/spinlock.h> 11 #include <linux/delay.h> 12 #include <linux/input.h> 13 #include <linux/leds.h> 14 #include <linux/slab.h> 15 #include <linux/idr.h> 16 #include <linux/device.h> 17 #include <linux/module.h> 18 #include "rc-core-priv.h" 19 20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ 21 #define IR_TAB_MIN_SIZE 256 22 #define IR_TAB_MAX_SIZE 8192 23 24 static const struct { 25 const char *name; 26 unsigned int repeat_period; 27 unsigned int scancode_bits; 28 } protocols[] = { 29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 }, 30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 }, 31 [RC_PROTO_RC5] = { .name = "rc-5", 32 .scancode_bits = 0x1f7f, .repeat_period = 250 }, 33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", 34 .scancode_bits = 0x1f7f3f, .repeat_period = 250 }, 35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", 36 .scancode_bits = 0x2fff, .repeat_period = 250 }, 37 [RC_PROTO_JVC] = { .name = "jvc", 38 .scancode_bits = 0xffff, .repeat_period = 250 }, 39 [RC_PROTO_SONY12] = { .name = "sony-12", 40 .scancode_bits = 0x1f007f, .repeat_period = 250 }, 41 [RC_PROTO_SONY15] = { .name = "sony-15", 42 .scancode_bits = 0xff007f, .repeat_period = 250 }, 43 [RC_PROTO_SONY20] = { .name = "sony-20", 44 .scancode_bits = 0x1fff7f, .repeat_period = 250 }, 45 [RC_PROTO_NEC] = { .name = "nec", 46 .scancode_bits = 0xffff, .repeat_period = 250 }, 47 [RC_PROTO_NECX] = { .name = "nec-x", 48 .scancode_bits = 0xffffff, .repeat_period = 250 }, 49 [RC_PROTO_NEC32] = { .name = "nec-32", 50 .scancode_bits = 0xffffffff, .repeat_period = 250 }, 51 [RC_PROTO_SANYO] = { .name = "sanyo", 52 .scancode_bits = 0x1fffff, .repeat_period = 250 }, 53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", 54 .scancode_bits = 0xffff, .repeat_period = 250 }, 55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", 56 .scancode_bits = 0x1fffff, .repeat_period = 250 }, 57 [RC_PROTO_RC6_0] = { .name = "rc-6-0", 58 .scancode_bits = 0xffff, .repeat_period = 250 }, 59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", 60 .scancode_bits = 0xfffff, .repeat_period = 250 }, 61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", 62 .scancode_bits = 0xffffff, .repeat_period = 250 }, 63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", 64 .scancode_bits = 0xffffffff, .repeat_period = 250 }, 65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", 66 .scancode_bits = 0xffff7fff, .repeat_period = 250 }, 67 [RC_PROTO_SHARP] = { .name = "sharp", 68 .scancode_bits = 0x1fff, .repeat_period = 250 }, 69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 }, 70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 }, 71 }; 72 73 /* Used to keep track of known keymaps */ 74 static LIST_HEAD(rc_map_list); 75 static DEFINE_SPINLOCK(rc_map_lock); 76 static struct led_trigger *led_feedback; 77 78 /* Used to keep track of rc devices */ 79 static DEFINE_IDA(rc_ida); 80 81 static struct rc_map_list *seek_rc_map(const char *name) 82 { 83 struct rc_map_list *map = NULL; 84 85 spin_lock(&rc_map_lock); 86 list_for_each_entry(map, &rc_map_list, list) { 87 if (!strcmp(name, map->map.name)) { 88 spin_unlock(&rc_map_lock); 89 return map; 90 } 91 } 92 spin_unlock(&rc_map_lock); 93 94 return NULL; 95 } 96 97 struct rc_map *rc_map_get(const char *name) 98 { 99 100 struct rc_map_list *map; 101 102 map = seek_rc_map(name); 103 #ifdef CONFIG_MODULES 104 if (!map) { 105 int rc = request_module("%s", name); 106 if (rc < 0) { 107 pr_err("Couldn't load IR keymap %s\n", name); 108 return NULL; 109 } 110 msleep(20); /* Give some time for IR to register */ 111 112 map = seek_rc_map(name); 113 } 114 #endif 115 if (!map) { 116 pr_err("IR keymap %s not found\n", name); 117 return NULL; 118 } 119 120 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); 121 122 return &map->map; 123 } 124 EXPORT_SYMBOL_GPL(rc_map_get); 125 126 int rc_map_register(struct rc_map_list *map) 127 { 128 spin_lock(&rc_map_lock); 129 list_add_tail(&map->list, &rc_map_list); 130 spin_unlock(&rc_map_lock); 131 return 0; 132 } 133 EXPORT_SYMBOL_GPL(rc_map_register); 134 135 void rc_map_unregister(struct rc_map_list *map) 136 { 137 spin_lock(&rc_map_lock); 138 list_del(&map->list); 139 spin_unlock(&rc_map_lock); 140 } 141 EXPORT_SYMBOL_GPL(rc_map_unregister); 142 143 144 static struct rc_map_table empty[] = { 145 { 0x2a, KEY_COFFEE }, 146 }; 147 148 static struct rc_map_list empty_map = { 149 .map = { 150 .scan = empty, 151 .size = ARRAY_SIZE(empty), 152 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ 153 .name = RC_MAP_EMPTY, 154 } 155 }; 156 157 /** 158 * ir_create_table() - initializes a scancode table 159 * @dev: the rc_dev device 160 * @rc_map: the rc_map to initialize 161 * @name: name to assign to the table 162 * @rc_proto: ir type to assign to the new table 163 * @size: initial size of the table 164 * 165 * This routine will initialize the rc_map and will allocate 166 * memory to hold at least the specified number of elements. 167 * 168 * return: zero on success or a negative error code 169 */ 170 static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, 171 const char *name, u64 rc_proto, size_t size) 172 { 173 rc_map->name = kstrdup(name, GFP_KERNEL); 174 if (!rc_map->name) 175 return -ENOMEM; 176 rc_map->rc_proto = rc_proto; 177 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); 178 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 179 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); 180 if (!rc_map->scan) { 181 kfree(rc_map->name); 182 rc_map->name = NULL; 183 return -ENOMEM; 184 } 185 186 dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", 187 rc_map->size, rc_map->alloc); 188 return 0; 189 } 190 191 /** 192 * ir_free_table() - frees memory allocated by a scancode table 193 * @rc_map: the table whose mappings need to be freed 194 * 195 * This routine will free memory alloctaed for key mappings used by given 196 * scancode table. 197 */ 198 static void ir_free_table(struct rc_map *rc_map) 199 { 200 rc_map->size = 0; 201 kfree(rc_map->name); 202 rc_map->name = NULL; 203 kfree(rc_map->scan); 204 rc_map->scan = NULL; 205 } 206 207 /** 208 * ir_resize_table() - resizes a scancode table if necessary 209 * @dev: the rc_dev device 210 * @rc_map: the rc_map to resize 211 * @gfp_flags: gfp flags to use when allocating memory 212 * 213 * This routine will shrink the rc_map if it has lots of 214 * unused entries and grow it if it is full. 215 * 216 * return: zero on success or a negative error code 217 */ 218 static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, 219 gfp_t gfp_flags) 220 { 221 unsigned int oldalloc = rc_map->alloc; 222 unsigned int newalloc = oldalloc; 223 struct rc_map_table *oldscan = rc_map->scan; 224 struct rc_map_table *newscan; 225 226 if (rc_map->size == rc_map->len) { 227 /* All entries in use -> grow keytable */ 228 if (rc_map->alloc >= IR_TAB_MAX_SIZE) 229 return -ENOMEM; 230 231 newalloc *= 2; 232 dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); 233 } 234 235 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { 236 /* Less than 1/3 of entries in use -> shrink keytable */ 237 newalloc /= 2; 238 dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); 239 } 240 241 if (newalloc == oldalloc) 242 return 0; 243 244 newscan = kmalloc(newalloc, gfp_flags); 245 if (!newscan) 246 return -ENOMEM; 247 248 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); 249 rc_map->scan = newscan; 250 rc_map->alloc = newalloc; 251 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); 252 kfree(oldscan); 253 return 0; 254 } 255 256 /** 257 * ir_update_mapping() - set a keycode in the scancode->keycode table 258 * @dev: the struct rc_dev device descriptor 259 * @rc_map: scancode table to be adjusted 260 * @index: index of the mapping that needs to be updated 261 * @new_keycode: the desired keycode 262 * 263 * This routine is used to update scancode->keycode mapping at given 264 * position. 265 * 266 * return: previous keycode assigned to the mapping 267 * 268 */ 269 static unsigned int ir_update_mapping(struct rc_dev *dev, 270 struct rc_map *rc_map, 271 unsigned int index, 272 unsigned int new_keycode) 273 { 274 int old_keycode = rc_map->scan[index].keycode; 275 int i; 276 277 /* Did the user wish to remove the mapping? */ 278 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { 279 dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n", 280 index, rc_map->scan[index].scancode); 281 rc_map->len--; 282 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], 283 (rc_map->len - index) * sizeof(struct rc_map_table)); 284 } else { 285 dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n", 286 index, 287 old_keycode == KEY_RESERVED ? "New" : "Replacing", 288 rc_map->scan[index].scancode, new_keycode); 289 rc_map->scan[index].keycode = new_keycode; 290 __set_bit(new_keycode, dev->input_dev->keybit); 291 } 292 293 if (old_keycode != KEY_RESERVED) { 294 /* A previous mapping was updated... */ 295 __clear_bit(old_keycode, dev->input_dev->keybit); 296 /* ... but another scancode might use the same keycode */ 297 for (i = 0; i < rc_map->len; i++) { 298 if (rc_map->scan[i].keycode == old_keycode) { 299 __set_bit(old_keycode, dev->input_dev->keybit); 300 break; 301 } 302 } 303 304 /* Possibly shrink the keytable, failure is not a problem */ 305 ir_resize_table(dev, rc_map, GFP_ATOMIC); 306 } 307 308 return old_keycode; 309 } 310 311 /** 312 * ir_establish_scancode() - set a keycode in the scancode->keycode table 313 * @dev: the struct rc_dev device descriptor 314 * @rc_map: scancode table to be searched 315 * @scancode: the desired scancode 316 * @resize: controls whether we allowed to resize the table to 317 * accommodate not yet present scancodes 318 * 319 * This routine is used to locate given scancode in rc_map. 320 * If scancode is not yet present the routine will allocate a new slot 321 * for it. 322 * 323 * return: index of the mapping containing scancode in question 324 * or -1U in case of failure. 325 */ 326 static unsigned int ir_establish_scancode(struct rc_dev *dev, 327 struct rc_map *rc_map, 328 unsigned int scancode, 329 bool resize) 330 { 331 unsigned int i; 332 333 /* 334 * Unfortunately, some hardware-based IR decoders don't provide 335 * all bits for the complete IR code. In general, they provide only 336 * the command part of the IR code. Yet, as it is possible to replace 337 * the provided IR with another one, it is needed to allow loading 338 * IR tables from other remotes. So, we support specifying a mask to 339 * indicate the valid bits of the scancodes. 340 */ 341 if (dev->scancode_mask) 342 scancode &= dev->scancode_mask; 343 344 /* First check if we already have a mapping for this ir command */ 345 for (i = 0; i < rc_map->len; i++) { 346 if (rc_map->scan[i].scancode == scancode) 347 return i; 348 349 /* Keytable is sorted from lowest to highest scancode */ 350 if (rc_map->scan[i].scancode >= scancode) 351 break; 352 } 353 354 /* No previous mapping found, we might need to grow the table */ 355 if (rc_map->size == rc_map->len) { 356 if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) 357 return -1U; 358 } 359 360 /* i is the proper index to insert our new keycode */ 361 if (i < rc_map->len) 362 memmove(&rc_map->scan[i + 1], &rc_map->scan[i], 363 (rc_map->len - i) * sizeof(struct rc_map_table)); 364 rc_map->scan[i].scancode = scancode; 365 rc_map->scan[i].keycode = KEY_RESERVED; 366 rc_map->len++; 367 368 return i; 369 } 370 371 /** 372 * ir_setkeycode() - set a keycode in the scancode->keycode table 373 * @idev: the struct input_dev device descriptor 374 * @ke: Input keymap entry 375 * @old_keycode: result 376 * 377 * This routine is used to handle evdev EVIOCSKEY ioctl. 378 * 379 * return: -EINVAL if the keycode could not be inserted, otherwise zero. 380 */ 381 static int ir_setkeycode(struct input_dev *idev, 382 const struct input_keymap_entry *ke, 383 unsigned int *old_keycode) 384 { 385 struct rc_dev *rdev = input_get_drvdata(idev); 386 struct rc_map *rc_map = &rdev->rc_map; 387 unsigned int index; 388 unsigned int scancode; 389 int retval = 0; 390 unsigned long flags; 391 392 spin_lock_irqsave(&rc_map->lock, flags); 393 394 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 395 index = ke->index; 396 if (index >= rc_map->len) { 397 retval = -EINVAL; 398 goto out; 399 } 400 } else { 401 retval = input_scancode_to_scalar(ke, &scancode); 402 if (retval) 403 goto out; 404 405 index = ir_establish_scancode(rdev, rc_map, scancode, true); 406 if (index >= rc_map->len) { 407 retval = -ENOMEM; 408 goto out; 409 } 410 } 411 412 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); 413 414 out: 415 spin_unlock_irqrestore(&rc_map->lock, flags); 416 return retval; 417 } 418 419 /** 420 * ir_setkeytable() - sets several entries in the scancode->keycode table 421 * @dev: the struct rc_dev device descriptor 422 * @from: the struct rc_map to copy entries from 423 * 424 * This routine is used to handle table initialization. 425 * 426 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. 427 */ 428 static int ir_setkeytable(struct rc_dev *dev, 429 const struct rc_map *from) 430 { 431 struct rc_map *rc_map = &dev->rc_map; 432 unsigned int i, index; 433 int rc; 434 435 rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, 436 from->size); 437 if (rc) 438 return rc; 439 440 for (i = 0; i < from->size; i++) { 441 index = ir_establish_scancode(dev, rc_map, 442 from->scan[i].scancode, false); 443 if (index >= rc_map->len) { 444 rc = -ENOMEM; 445 break; 446 } 447 448 ir_update_mapping(dev, rc_map, index, 449 from->scan[i].keycode); 450 } 451 452 if (rc) 453 ir_free_table(rc_map); 454 455 return rc; 456 } 457 458 static int rc_map_cmp(const void *key, const void *elt) 459 { 460 const unsigned int *scancode = key; 461 const struct rc_map_table *e = elt; 462 463 if (*scancode < e->scancode) 464 return -1; 465 else if (*scancode > e->scancode) 466 return 1; 467 return 0; 468 } 469 470 /** 471 * ir_lookup_by_scancode() - locate mapping by scancode 472 * @rc_map: the struct rc_map to search 473 * @scancode: scancode to look for in the table 474 * 475 * This routine performs binary search in RC keykeymap table for 476 * given scancode. 477 * 478 * return: index in the table, -1U if not found 479 */ 480 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, 481 unsigned int scancode) 482 { 483 struct rc_map_table *res; 484 485 res = bsearch(&scancode, rc_map->scan, rc_map->len, 486 sizeof(struct rc_map_table), rc_map_cmp); 487 if (!res) 488 return -1U; 489 else 490 return res - rc_map->scan; 491 } 492 493 /** 494 * ir_getkeycode() - get a keycode from the scancode->keycode table 495 * @idev: the struct input_dev device descriptor 496 * @ke: Input keymap entry 497 * 498 * This routine is used to handle evdev EVIOCGKEY ioctl. 499 * 500 * return: always returns zero. 501 */ 502 static int ir_getkeycode(struct input_dev *idev, 503 struct input_keymap_entry *ke) 504 { 505 struct rc_dev *rdev = input_get_drvdata(idev); 506 struct rc_map *rc_map = &rdev->rc_map; 507 struct rc_map_table *entry; 508 unsigned long flags; 509 unsigned int index; 510 unsigned int scancode; 511 int retval; 512 513 spin_lock_irqsave(&rc_map->lock, flags); 514 515 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 516 index = ke->index; 517 } else { 518 retval = input_scancode_to_scalar(ke, &scancode); 519 if (retval) 520 goto out; 521 522 index = ir_lookup_by_scancode(rc_map, scancode); 523 } 524 525 if (index < rc_map->len) { 526 entry = &rc_map->scan[index]; 527 528 ke->index = index; 529 ke->keycode = entry->keycode; 530 ke->len = sizeof(entry->scancode); 531 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); 532 533 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { 534 /* 535 * We do not really know the valid range of scancodes 536 * so let's respond with KEY_RESERVED to anything we 537 * do not have mapping for [yet]. 538 */ 539 ke->index = index; 540 ke->keycode = KEY_RESERVED; 541 } else { 542 retval = -EINVAL; 543 goto out; 544 } 545 546 retval = 0; 547 548 out: 549 spin_unlock_irqrestore(&rc_map->lock, flags); 550 return retval; 551 } 552 553 /** 554 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode 555 * @dev: the struct rc_dev descriptor of the device 556 * @scancode: the scancode to look for 557 * 558 * This routine is used by drivers which need to convert a scancode to a 559 * keycode. Normally it should not be used since drivers should have no 560 * interest in keycodes. 561 * 562 * return: the corresponding keycode, or KEY_RESERVED 563 */ 564 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) 565 { 566 struct rc_map *rc_map = &dev->rc_map; 567 unsigned int keycode; 568 unsigned int index; 569 unsigned long flags; 570 571 spin_lock_irqsave(&rc_map->lock, flags); 572 573 index = ir_lookup_by_scancode(rc_map, scancode); 574 keycode = index < rc_map->len ? 575 rc_map->scan[index].keycode : KEY_RESERVED; 576 577 spin_unlock_irqrestore(&rc_map->lock, flags); 578 579 if (keycode != KEY_RESERVED) 580 dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n", 581 dev->device_name, scancode, keycode); 582 583 return keycode; 584 } 585 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); 586 587 /** 588 * ir_do_keyup() - internal function to signal the release of a keypress 589 * @dev: the struct rc_dev descriptor of the device 590 * @sync: whether or not to call input_sync 591 * 592 * This function is used internally to release a keypress, it must be 593 * called with keylock held. 594 */ 595 static void ir_do_keyup(struct rc_dev *dev, bool sync) 596 { 597 if (!dev->keypressed) 598 return; 599 600 dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); 601 del_timer(&dev->timer_repeat); 602 input_report_key(dev->input_dev, dev->last_keycode, 0); 603 led_trigger_event(led_feedback, LED_OFF); 604 if (sync) 605 input_sync(dev->input_dev); 606 dev->keypressed = false; 607 } 608 609 /** 610 * rc_keyup() - signals the release of a keypress 611 * @dev: the struct rc_dev descriptor of the device 612 * 613 * This routine is used to signal that a key has been released on the 614 * remote control. 615 */ 616 void rc_keyup(struct rc_dev *dev) 617 { 618 unsigned long flags; 619 620 spin_lock_irqsave(&dev->keylock, flags); 621 ir_do_keyup(dev, true); 622 spin_unlock_irqrestore(&dev->keylock, flags); 623 } 624 EXPORT_SYMBOL_GPL(rc_keyup); 625 626 /** 627 * ir_timer_keyup() - generates a keyup event after a timeout 628 * 629 * @t: a pointer to the struct timer_list 630 * 631 * This routine will generate a keyup event some time after a keydown event 632 * is generated when no further activity has been detected. 633 */ 634 static void ir_timer_keyup(struct timer_list *t) 635 { 636 struct rc_dev *dev = from_timer(dev, t, timer_keyup); 637 unsigned long flags; 638 639 /* 640 * ir->keyup_jiffies is used to prevent a race condition if a 641 * hardware interrupt occurs at this point and the keyup timer 642 * event is moved further into the future as a result. 643 * 644 * The timer will then be reactivated and this function called 645 * again in the future. We need to exit gracefully in that case 646 * to allow the input subsystem to do its auto-repeat magic or 647 * a keyup event might follow immediately after the keydown. 648 */ 649 spin_lock_irqsave(&dev->keylock, flags); 650 if (time_is_before_eq_jiffies(dev->keyup_jiffies)) 651 ir_do_keyup(dev, true); 652 spin_unlock_irqrestore(&dev->keylock, flags); 653 } 654 655 /** 656 * ir_timer_repeat() - generates a repeat event after a timeout 657 * 658 * @t: a pointer to the struct timer_list 659 * 660 * This routine will generate a soft repeat event every REP_PERIOD 661 * milliseconds. 662 */ 663 static void ir_timer_repeat(struct timer_list *t) 664 { 665 struct rc_dev *dev = from_timer(dev, t, timer_repeat); 666 struct input_dev *input = dev->input_dev; 667 unsigned long flags; 668 669 spin_lock_irqsave(&dev->keylock, flags); 670 if (dev->keypressed) { 671 input_event(input, EV_KEY, dev->last_keycode, 2); 672 input_sync(input); 673 if (input->rep[REP_PERIOD]) 674 mod_timer(&dev->timer_repeat, jiffies + 675 msecs_to_jiffies(input->rep[REP_PERIOD])); 676 } 677 spin_unlock_irqrestore(&dev->keylock, flags); 678 } 679 680 /** 681 * rc_repeat() - signals that a key is still pressed 682 * @dev: the struct rc_dev descriptor of the device 683 * 684 * This routine is used by IR decoders when a repeat message which does 685 * not include the necessary bits to reproduce the scancode has been 686 * received. 687 */ 688 void rc_repeat(struct rc_dev *dev) 689 { 690 unsigned long flags; 691 unsigned int timeout = protocols[dev->last_protocol].repeat_period; 692 struct lirc_scancode sc = { 693 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, 694 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, 695 .flags = LIRC_SCANCODE_FLAG_REPEAT | 696 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) 697 }; 698 699 ir_lirc_scancode_event(dev, &sc); 700 701 spin_lock_irqsave(&dev->keylock, flags); 702 703 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); 704 input_sync(dev->input_dev); 705 706 if (dev->keypressed) { 707 dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout); 708 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 709 } 710 711 spin_unlock_irqrestore(&dev->keylock, flags); 712 } 713 EXPORT_SYMBOL_GPL(rc_repeat); 714 715 /** 716 * ir_do_keydown() - internal function to process a keypress 717 * @dev: the struct rc_dev descriptor of the device 718 * @protocol: the protocol of the keypress 719 * @scancode: the scancode of the keypress 720 * @keycode: the keycode of the keypress 721 * @toggle: the toggle value of the keypress 722 * 723 * This function is used internally to register a keypress, it must be 724 * called with keylock held. 725 */ 726 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, 727 u32 scancode, u32 keycode, u8 toggle) 728 { 729 bool new_event = (!dev->keypressed || 730 dev->last_protocol != protocol || 731 dev->last_scancode != scancode || 732 dev->last_toggle != toggle); 733 struct lirc_scancode sc = { 734 .scancode = scancode, .rc_proto = protocol, 735 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, 736 .keycode = keycode 737 }; 738 739 ir_lirc_scancode_event(dev, &sc); 740 741 if (new_event && dev->keypressed) 742 ir_do_keyup(dev, false); 743 744 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); 745 746 dev->last_protocol = protocol; 747 dev->last_scancode = scancode; 748 dev->last_toggle = toggle; 749 dev->last_keycode = keycode; 750 751 if (new_event && keycode != KEY_RESERVED) { 752 /* Register a keypress */ 753 dev->keypressed = true; 754 755 dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", 756 dev->device_name, keycode, protocol, scancode); 757 input_report_key(dev->input_dev, keycode, 1); 758 759 led_trigger_event(led_feedback, LED_FULL); 760 } 761 762 /* 763 * For CEC, start sending repeat messages as soon as the first 764 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD 765 * is non-zero. Otherwise, the input layer will generate repeat 766 * messages. 767 */ 768 if (!new_event && keycode != KEY_RESERVED && 769 dev->allowed_protocols == RC_PROTO_BIT_CEC && 770 !timer_pending(&dev->timer_repeat) && 771 dev->input_dev->rep[REP_PERIOD] && 772 !dev->input_dev->rep[REP_DELAY]) { 773 input_event(dev->input_dev, EV_KEY, keycode, 2); 774 mod_timer(&dev->timer_repeat, jiffies + 775 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); 776 } 777 778 input_sync(dev->input_dev); 779 } 780 781 /** 782 * rc_keydown() - generates input event for a key press 783 * @dev: the struct rc_dev descriptor of the device 784 * @protocol: the protocol for the keypress 785 * @scancode: the scancode for the keypress 786 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 787 * support toggle values, this should be set to zero) 788 * 789 * This routine is used to signal that a key has been pressed on the 790 * remote control. 791 */ 792 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, 793 u8 toggle) 794 { 795 unsigned long flags; 796 u32 keycode = rc_g_keycode_from_table(dev, scancode); 797 798 spin_lock_irqsave(&dev->keylock, flags); 799 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 800 801 if (dev->keypressed) { 802 dev->keyup_jiffies = jiffies + 803 msecs_to_jiffies(protocols[protocol].repeat_period); 804 mod_timer(&dev->timer_keyup, dev->keyup_jiffies); 805 } 806 spin_unlock_irqrestore(&dev->keylock, flags); 807 } 808 EXPORT_SYMBOL_GPL(rc_keydown); 809 810 /** 811 * rc_keydown_notimeout() - generates input event for a key press without 812 * an automatic keyup event at a later time 813 * @dev: the struct rc_dev descriptor of the device 814 * @protocol: the protocol for the keypress 815 * @scancode: the scancode for the keypress 816 * @toggle: the toggle value (protocol dependent, if the protocol doesn't 817 * support toggle values, this should be set to zero) 818 * 819 * This routine is used to signal that a key has been pressed on the 820 * remote control. The driver must manually call rc_keyup() at a later stage. 821 */ 822 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, 823 u32 scancode, u8 toggle) 824 { 825 unsigned long flags; 826 u32 keycode = rc_g_keycode_from_table(dev, scancode); 827 828 spin_lock_irqsave(&dev->keylock, flags); 829 ir_do_keydown(dev, protocol, scancode, keycode, toggle); 830 spin_unlock_irqrestore(&dev->keylock, flags); 831 } 832 EXPORT_SYMBOL_GPL(rc_keydown_notimeout); 833 834 /** 835 * rc_validate_scancode() - checks that a scancode is valid for a protocol. 836 * For nec, it should do the opposite of ir_nec_bytes_to_scancode() 837 * @proto: protocol 838 * @scancode: scancode 839 */ 840 bool rc_validate_scancode(enum rc_proto proto, u32 scancode) 841 { 842 switch (proto) { 843 /* 844 * NECX has a 16-bit address; if the lower 8 bits match the upper 845 * 8 bits inverted, then the address would match regular nec. 846 */ 847 case RC_PROTO_NECX: 848 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) 849 return false; 850 break; 851 /* 852 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits 853 * of the command match the upper 8 bits inverted, then it would 854 * be either NEC or NECX. 855 */ 856 case RC_PROTO_NEC32: 857 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) 858 return false; 859 break; 860 /* 861 * If the customer code (top 32-bit) is 0x800f, it is MCE else it 862 * is regular mode-6a 32 bit 863 */ 864 case RC_PROTO_RC6_MCE: 865 if ((scancode & 0xffff0000) != 0x800f0000) 866 return false; 867 break; 868 case RC_PROTO_RC6_6A_32: 869 if ((scancode & 0xffff0000) == 0x800f0000) 870 return false; 871 break; 872 default: 873 break; 874 } 875 876 return true; 877 } 878 879 /** 880 * rc_validate_filter() - checks that the scancode and mask are valid and 881 * provides sensible defaults 882 * @dev: the struct rc_dev descriptor of the device 883 * @filter: the scancode and mask 884 * 885 * return: 0 or -EINVAL if the filter is not valid 886 */ 887 static int rc_validate_filter(struct rc_dev *dev, 888 struct rc_scancode_filter *filter) 889 { 890 u32 mask, s = filter->data; 891 enum rc_proto protocol = dev->wakeup_protocol; 892 893 if (protocol >= ARRAY_SIZE(protocols)) 894 return -EINVAL; 895 896 mask = protocols[protocol].scancode_bits; 897 898 if (!rc_validate_scancode(protocol, s)) 899 return -EINVAL; 900 901 filter->data &= mask; 902 filter->mask &= mask; 903 904 /* 905 * If we have to raw encode the IR for wakeup, we cannot have a mask 906 */ 907 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) 908 return -EINVAL; 909 910 return 0; 911 } 912 913 int rc_open(struct rc_dev *rdev) 914 { 915 int rval = 0; 916 917 if (!rdev) 918 return -EINVAL; 919 920 mutex_lock(&rdev->lock); 921 922 if (!rdev->registered) { 923 rval = -ENODEV; 924 } else { 925 if (!rdev->users++ && rdev->open) 926 rval = rdev->open(rdev); 927 928 if (rval) 929 rdev->users--; 930 } 931 932 mutex_unlock(&rdev->lock); 933 934 return rval; 935 } 936 937 static int ir_open(struct input_dev *idev) 938 { 939 struct rc_dev *rdev = input_get_drvdata(idev); 940 941 return rc_open(rdev); 942 } 943 944 void rc_close(struct rc_dev *rdev) 945 { 946 if (rdev) { 947 mutex_lock(&rdev->lock); 948 949 if (!--rdev->users && rdev->close && rdev->registered) 950 rdev->close(rdev); 951 952 mutex_unlock(&rdev->lock); 953 } 954 } 955 956 static void ir_close(struct input_dev *idev) 957 { 958 struct rc_dev *rdev = input_get_drvdata(idev); 959 rc_close(rdev); 960 } 961 962 /* class for /sys/class/rc */ 963 static char *rc_devnode(struct device *dev, umode_t *mode) 964 { 965 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); 966 } 967 968 static struct class rc_class = { 969 .name = "rc", 970 .devnode = rc_devnode, 971 }; 972 973 /* 974 * These are the protocol textual descriptions that are 975 * used by the sysfs protocols file. Note that the order 976 * of the entries is relevant. 977 */ 978 static const struct { 979 u64 type; 980 const char *name; 981 const char *module_name; 982 } proto_names[] = { 983 { RC_PROTO_BIT_NONE, "none", NULL }, 984 { RC_PROTO_BIT_OTHER, "other", NULL }, 985 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, 986 { RC_PROTO_BIT_RC5 | 987 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, 988 { RC_PROTO_BIT_NEC | 989 RC_PROTO_BIT_NECX | 990 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, 991 { RC_PROTO_BIT_RC6_0 | 992 RC_PROTO_BIT_RC6_6A_20 | 993 RC_PROTO_BIT_RC6_6A_24 | 994 RC_PROTO_BIT_RC6_6A_32 | 995 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, 996 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, 997 { RC_PROTO_BIT_SONY12 | 998 RC_PROTO_BIT_SONY15 | 999 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, 1000 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, 1001 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, 1002 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, 1003 { RC_PROTO_BIT_MCIR2_KBD | 1004 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, 1005 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, 1006 { RC_PROTO_BIT_CEC, "cec", NULL }, 1007 }; 1008 1009 /** 1010 * struct rc_filter_attribute - Device attribute relating to a filter type. 1011 * @attr: Device attribute. 1012 * @type: Filter type. 1013 * @mask: false for filter value, true for filter mask. 1014 */ 1015 struct rc_filter_attribute { 1016 struct device_attribute attr; 1017 enum rc_filter_type type; 1018 bool mask; 1019 }; 1020 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) 1021 1022 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ 1023 struct rc_filter_attribute dev_attr_##_name = { \ 1024 .attr = __ATTR(_name, _mode, _show, _store), \ 1025 .type = (_type), \ 1026 .mask = (_mask), \ 1027 } 1028 1029 /** 1030 * show_protocols() - shows the current IR protocol(s) 1031 * @device: the device descriptor 1032 * @mattr: the device attribute struct 1033 * @buf: a pointer to the output buffer 1034 * 1035 * This routine is a callback routine for input read the IR protocol type(s). 1036 * it is trigged by reading /sys/class/rc/rc?/protocols. 1037 * It returns the protocol names of supported protocols. 1038 * Enabled protocols are printed in brackets. 1039 * 1040 * dev->lock is taken to guard against races between 1041 * store_protocols and show_protocols. 1042 */ 1043 static ssize_t show_protocols(struct device *device, 1044 struct device_attribute *mattr, char *buf) 1045 { 1046 struct rc_dev *dev = to_rc_dev(device); 1047 u64 allowed, enabled; 1048 char *tmp = buf; 1049 int i; 1050 1051 mutex_lock(&dev->lock); 1052 1053 enabled = dev->enabled_protocols; 1054 allowed = dev->allowed_protocols; 1055 if (dev->raw && !allowed) 1056 allowed = ir_raw_get_allowed_protocols(); 1057 1058 mutex_unlock(&dev->lock); 1059 1060 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", 1061 __func__, (long long)allowed, (long long)enabled); 1062 1063 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1064 if (allowed & enabled & proto_names[i].type) 1065 tmp += sprintf(tmp, "[%s] ", proto_names[i].name); 1066 else if (allowed & proto_names[i].type) 1067 tmp += sprintf(tmp, "%s ", proto_names[i].name); 1068 1069 if (allowed & proto_names[i].type) 1070 allowed &= ~proto_names[i].type; 1071 } 1072 1073 #ifdef CONFIG_LIRC 1074 if (dev->driver_type == RC_DRIVER_IR_RAW) 1075 tmp += sprintf(tmp, "[lirc] "); 1076 #endif 1077 1078 if (tmp != buf) 1079 tmp--; 1080 *tmp = '\n'; 1081 1082 return tmp + 1 - buf; 1083 } 1084 1085 /** 1086 * parse_protocol_change() - parses a protocol change request 1087 * @dev: rc_dev device 1088 * @protocols: pointer to the bitmask of current protocols 1089 * @buf: pointer to the buffer with a list of changes 1090 * 1091 * Writing "+proto" will add a protocol to the protocol mask. 1092 * Writing "-proto" will remove a protocol from protocol mask. 1093 * Writing "proto" will enable only "proto". 1094 * Writing "none" will disable all protocols. 1095 * Returns the number of changes performed or a negative error code. 1096 */ 1097 static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, 1098 const char *buf) 1099 { 1100 const char *tmp; 1101 unsigned count = 0; 1102 bool enable, disable; 1103 u64 mask; 1104 int i; 1105 1106 while ((tmp = strsep((char **)&buf, " \n")) != NULL) { 1107 if (!*tmp) 1108 break; 1109 1110 if (*tmp == '+') { 1111 enable = true; 1112 disable = false; 1113 tmp++; 1114 } else if (*tmp == '-') { 1115 enable = false; 1116 disable = true; 1117 tmp++; 1118 } else { 1119 enable = false; 1120 disable = false; 1121 } 1122 1123 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1124 if (!strcasecmp(tmp, proto_names[i].name)) { 1125 mask = proto_names[i].type; 1126 break; 1127 } 1128 } 1129 1130 if (i == ARRAY_SIZE(proto_names)) { 1131 if (!strcasecmp(tmp, "lirc")) 1132 mask = 0; 1133 else { 1134 dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", 1135 tmp); 1136 return -EINVAL; 1137 } 1138 } 1139 1140 count++; 1141 1142 if (enable) 1143 *protocols |= mask; 1144 else if (disable) 1145 *protocols &= ~mask; 1146 else 1147 *protocols = mask; 1148 } 1149 1150 if (!count) { 1151 dev_dbg(&dev->dev, "Protocol not specified\n"); 1152 return -EINVAL; 1153 } 1154 1155 return count; 1156 } 1157 1158 void ir_raw_load_modules(u64 *protocols) 1159 { 1160 u64 available; 1161 int i, ret; 1162 1163 for (i = 0; i < ARRAY_SIZE(proto_names); i++) { 1164 if (proto_names[i].type == RC_PROTO_BIT_NONE || 1165 proto_names[i].type & (RC_PROTO_BIT_OTHER | 1166 RC_PROTO_BIT_UNKNOWN)) 1167 continue; 1168 1169 available = ir_raw_get_allowed_protocols(); 1170 if (!(*protocols & proto_names[i].type & ~available)) 1171 continue; 1172 1173 if (!proto_names[i].module_name) { 1174 pr_err("Can't enable IR protocol %s\n", 1175 proto_names[i].name); 1176 *protocols &= ~proto_names[i].type; 1177 continue; 1178 } 1179 1180 ret = request_module("%s", proto_names[i].module_name); 1181 if (ret < 0) { 1182 pr_err("Couldn't load IR protocol module %s\n", 1183 proto_names[i].module_name); 1184 *protocols &= ~proto_names[i].type; 1185 continue; 1186 } 1187 msleep(20); 1188 available = ir_raw_get_allowed_protocols(); 1189 if (!(*protocols & proto_names[i].type & ~available)) 1190 continue; 1191 1192 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", 1193 proto_names[i].module_name, 1194 proto_names[i].name); 1195 *protocols &= ~proto_names[i].type; 1196 } 1197 } 1198 1199 /** 1200 * store_protocols() - changes the current/wakeup IR protocol(s) 1201 * @device: the device descriptor 1202 * @mattr: the device attribute struct 1203 * @buf: a pointer to the input buffer 1204 * @len: length of the input buffer 1205 * 1206 * This routine is for changing the IR protocol type. 1207 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. 1208 * See parse_protocol_change() for the valid commands. 1209 * Returns @len on success or a negative error code. 1210 * 1211 * dev->lock is taken to guard against races between 1212 * store_protocols and show_protocols. 1213 */ 1214 static ssize_t store_protocols(struct device *device, 1215 struct device_attribute *mattr, 1216 const char *buf, size_t len) 1217 { 1218 struct rc_dev *dev = to_rc_dev(device); 1219 u64 *current_protocols; 1220 struct rc_scancode_filter *filter; 1221 u64 old_protocols, new_protocols; 1222 ssize_t rc; 1223 1224 dev_dbg(&dev->dev, "Normal protocol change requested\n"); 1225 current_protocols = &dev->enabled_protocols; 1226 filter = &dev->scancode_filter; 1227 1228 if (!dev->change_protocol) { 1229 dev_dbg(&dev->dev, "Protocol switching not supported\n"); 1230 return -EINVAL; 1231 } 1232 1233 mutex_lock(&dev->lock); 1234 1235 old_protocols = *current_protocols; 1236 new_protocols = old_protocols; 1237 rc = parse_protocol_change(dev, &new_protocols, buf); 1238 if (rc < 0) 1239 goto out; 1240 1241 rc = dev->change_protocol(dev, &new_protocols); 1242 if (rc < 0) { 1243 dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", 1244 (long long)new_protocols); 1245 goto out; 1246 } 1247 1248 if (dev->driver_type == RC_DRIVER_IR_RAW) 1249 ir_raw_load_modules(&new_protocols); 1250 1251 if (new_protocols != old_protocols) { 1252 *current_protocols = new_protocols; 1253 dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", 1254 (long long)new_protocols); 1255 } 1256 1257 /* 1258 * If a protocol change was attempted the filter may need updating, even 1259 * if the actual protocol mask hasn't changed (since the driver may have 1260 * cleared the filter). 1261 * Try setting the same filter with the new protocol (if any). 1262 * Fall back to clearing the filter. 1263 */ 1264 if (dev->s_filter && filter->mask) { 1265 if (new_protocols) 1266 rc = dev->s_filter(dev, filter); 1267 else 1268 rc = -1; 1269 1270 if (rc < 0) { 1271 filter->data = 0; 1272 filter->mask = 0; 1273 dev->s_filter(dev, filter); 1274 } 1275 } 1276 1277 rc = len; 1278 1279 out: 1280 mutex_unlock(&dev->lock); 1281 return rc; 1282 } 1283 1284 /** 1285 * show_filter() - shows the current scancode filter value or mask 1286 * @device: the device descriptor 1287 * @attr: the device attribute struct 1288 * @buf: a pointer to the output buffer 1289 * 1290 * This routine is a callback routine to read a scancode filter value or mask. 1291 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1292 * It prints the current scancode filter value or mask of the appropriate filter 1293 * type in hexadecimal into @buf and returns the size of the buffer. 1294 * 1295 * Bits of the filter value corresponding to set bits in the filter mask are 1296 * compared against input scancodes and non-matching scancodes are discarded. 1297 * 1298 * dev->lock is taken to guard against races between 1299 * store_filter and show_filter. 1300 */ 1301 static ssize_t show_filter(struct device *device, 1302 struct device_attribute *attr, 1303 char *buf) 1304 { 1305 struct rc_dev *dev = to_rc_dev(device); 1306 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1307 struct rc_scancode_filter *filter; 1308 u32 val; 1309 1310 mutex_lock(&dev->lock); 1311 1312 if (fattr->type == RC_FILTER_NORMAL) 1313 filter = &dev->scancode_filter; 1314 else 1315 filter = &dev->scancode_wakeup_filter; 1316 1317 if (fattr->mask) 1318 val = filter->mask; 1319 else 1320 val = filter->data; 1321 mutex_unlock(&dev->lock); 1322 1323 return sprintf(buf, "%#x\n", val); 1324 } 1325 1326 /** 1327 * store_filter() - changes the scancode filter value 1328 * @device: the device descriptor 1329 * @attr: the device attribute struct 1330 * @buf: a pointer to the input buffer 1331 * @len: length of the input buffer 1332 * 1333 * This routine is for changing a scancode filter value or mask. 1334 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. 1335 * Returns -EINVAL if an invalid filter value for the current protocol was 1336 * specified or if scancode filtering is not supported by the driver, otherwise 1337 * returns @len. 1338 * 1339 * Bits of the filter value corresponding to set bits in the filter mask are 1340 * compared against input scancodes and non-matching scancodes are discarded. 1341 * 1342 * dev->lock is taken to guard against races between 1343 * store_filter and show_filter. 1344 */ 1345 static ssize_t store_filter(struct device *device, 1346 struct device_attribute *attr, 1347 const char *buf, size_t len) 1348 { 1349 struct rc_dev *dev = to_rc_dev(device); 1350 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); 1351 struct rc_scancode_filter new_filter, *filter; 1352 int ret; 1353 unsigned long val; 1354 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); 1355 1356 ret = kstrtoul(buf, 0, &val); 1357 if (ret < 0) 1358 return ret; 1359 1360 if (fattr->type == RC_FILTER_NORMAL) { 1361 set_filter = dev->s_filter; 1362 filter = &dev->scancode_filter; 1363 } else { 1364 set_filter = dev->s_wakeup_filter; 1365 filter = &dev->scancode_wakeup_filter; 1366 } 1367 1368 if (!set_filter) 1369 return -EINVAL; 1370 1371 mutex_lock(&dev->lock); 1372 1373 new_filter = *filter; 1374 if (fattr->mask) 1375 new_filter.mask = val; 1376 else 1377 new_filter.data = val; 1378 1379 if (fattr->type == RC_FILTER_WAKEUP) { 1380 /* 1381 * Refuse to set a filter unless a protocol is enabled 1382 * and the filter is valid for that protocol 1383 */ 1384 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) 1385 ret = rc_validate_filter(dev, &new_filter); 1386 else 1387 ret = -EINVAL; 1388 1389 if (ret != 0) 1390 goto unlock; 1391 } 1392 1393 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && 1394 val) { 1395 /* refuse to set a filter unless a protocol is enabled */ 1396 ret = -EINVAL; 1397 goto unlock; 1398 } 1399 1400 ret = set_filter(dev, &new_filter); 1401 if (ret < 0) 1402 goto unlock; 1403 1404 *filter = new_filter; 1405 1406 unlock: 1407 mutex_unlock(&dev->lock); 1408 return (ret < 0) ? ret : len; 1409 } 1410 1411 /** 1412 * show_wakeup_protocols() - shows the wakeup IR protocol 1413 * @device: the device descriptor 1414 * @mattr: the device attribute struct 1415 * @buf: a pointer to the output buffer 1416 * 1417 * This routine is a callback routine for input read the IR protocol type(s). 1418 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols. 1419 * It returns the protocol names of supported protocols. 1420 * The enabled protocols are printed in brackets. 1421 * 1422 * dev->lock is taken to guard against races between 1423 * store_wakeup_protocols and show_wakeup_protocols. 1424 */ 1425 static ssize_t show_wakeup_protocols(struct device *device, 1426 struct device_attribute *mattr, 1427 char *buf) 1428 { 1429 struct rc_dev *dev = to_rc_dev(device); 1430 u64 allowed; 1431 enum rc_proto enabled; 1432 char *tmp = buf; 1433 int i; 1434 1435 mutex_lock(&dev->lock); 1436 1437 allowed = dev->allowed_wakeup_protocols; 1438 enabled = dev->wakeup_protocol; 1439 1440 mutex_unlock(&dev->lock); 1441 1442 dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", 1443 __func__, (long long)allowed, enabled); 1444 1445 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1446 if (allowed & (1ULL << i)) { 1447 if (i == enabled) 1448 tmp += sprintf(tmp, "[%s] ", protocols[i].name); 1449 else 1450 tmp += sprintf(tmp, "%s ", protocols[i].name); 1451 } 1452 } 1453 1454 if (tmp != buf) 1455 tmp--; 1456 *tmp = '\n'; 1457 1458 return tmp + 1 - buf; 1459 } 1460 1461 /** 1462 * store_wakeup_protocols() - changes the wakeup IR protocol(s) 1463 * @device: the device descriptor 1464 * @mattr: the device attribute struct 1465 * @buf: a pointer to the input buffer 1466 * @len: length of the input buffer 1467 * 1468 * This routine is for changing the IR protocol type. 1469 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols. 1470 * Returns @len on success or a negative error code. 1471 * 1472 * dev->lock is taken to guard against races between 1473 * store_wakeup_protocols and show_wakeup_protocols. 1474 */ 1475 static ssize_t store_wakeup_protocols(struct device *device, 1476 struct device_attribute *mattr, 1477 const char *buf, size_t len) 1478 { 1479 struct rc_dev *dev = to_rc_dev(device); 1480 enum rc_proto protocol; 1481 ssize_t rc; 1482 u64 allowed; 1483 int i; 1484 1485 mutex_lock(&dev->lock); 1486 1487 allowed = dev->allowed_wakeup_protocols; 1488 1489 if (sysfs_streq(buf, "none")) { 1490 protocol = RC_PROTO_UNKNOWN; 1491 } else { 1492 for (i = 0; i < ARRAY_SIZE(protocols); i++) { 1493 if ((allowed & (1ULL << i)) && 1494 sysfs_streq(buf, protocols[i].name)) { 1495 protocol = i; 1496 break; 1497 } 1498 } 1499 1500 if (i == ARRAY_SIZE(protocols)) { 1501 rc = -EINVAL; 1502 goto out; 1503 } 1504 1505 if (dev->encode_wakeup) { 1506 u64 mask = 1ULL << protocol; 1507 1508 ir_raw_load_modules(&mask); 1509 if (!mask) { 1510 rc = -EINVAL; 1511 goto out; 1512 } 1513 } 1514 } 1515 1516 if (dev->wakeup_protocol != protocol) { 1517 dev->wakeup_protocol = protocol; 1518 dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); 1519 1520 if (protocol == RC_PROTO_RC6_MCE) 1521 dev->scancode_wakeup_filter.data = 0x800f0000; 1522 else 1523 dev->scancode_wakeup_filter.data = 0; 1524 dev->scancode_wakeup_filter.mask = 0; 1525 1526 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); 1527 if (rc == 0) 1528 rc = len; 1529 } else { 1530 rc = len; 1531 } 1532 1533 out: 1534 mutex_unlock(&dev->lock); 1535 return rc; 1536 } 1537 1538 static void rc_dev_release(struct device *device) 1539 { 1540 struct rc_dev *dev = to_rc_dev(device); 1541 1542 kfree(dev); 1543 } 1544 1545 #define ADD_HOTPLUG_VAR(fmt, val...) \ 1546 do { \ 1547 int err = add_uevent_var(env, fmt, val); \ 1548 if (err) \ 1549 return err; \ 1550 } while (0) 1551 1552 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1553 { 1554 struct rc_dev *dev = to_rc_dev(device); 1555 1556 if (dev->rc_map.name) 1557 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); 1558 if (dev->driver_name) 1559 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); 1560 if (dev->device_name) 1561 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); 1562 1563 return 0; 1564 } 1565 1566 /* 1567 * Static device attribute struct with the sysfs attributes for IR's 1568 */ 1569 static struct device_attribute dev_attr_ro_protocols = 1570 __ATTR(protocols, 0444, show_protocols, NULL); 1571 static struct device_attribute dev_attr_rw_protocols = 1572 __ATTR(protocols, 0644, show_protocols, store_protocols); 1573 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, 1574 store_wakeup_protocols); 1575 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, 1576 show_filter, store_filter, RC_FILTER_NORMAL, false); 1577 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, 1578 show_filter, store_filter, RC_FILTER_NORMAL, true); 1579 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, 1580 show_filter, store_filter, RC_FILTER_WAKEUP, false); 1581 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, 1582 show_filter, store_filter, RC_FILTER_WAKEUP, true); 1583 1584 static struct attribute *rc_dev_rw_protocol_attrs[] = { 1585 &dev_attr_rw_protocols.attr, 1586 NULL, 1587 }; 1588 1589 static const struct attribute_group rc_dev_rw_protocol_attr_grp = { 1590 .attrs = rc_dev_rw_protocol_attrs, 1591 }; 1592 1593 static struct attribute *rc_dev_ro_protocol_attrs[] = { 1594 &dev_attr_ro_protocols.attr, 1595 NULL, 1596 }; 1597 1598 static const struct attribute_group rc_dev_ro_protocol_attr_grp = { 1599 .attrs = rc_dev_ro_protocol_attrs, 1600 }; 1601 1602 static struct attribute *rc_dev_filter_attrs[] = { 1603 &dev_attr_filter.attr.attr, 1604 &dev_attr_filter_mask.attr.attr, 1605 NULL, 1606 }; 1607 1608 static const struct attribute_group rc_dev_filter_attr_grp = { 1609 .attrs = rc_dev_filter_attrs, 1610 }; 1611 1612 static struct attribute *rc_dev_wakeup_filter_attrs[] = { 1613 &dev_attr_wakeup_filter.attr.attr, 1614 &dev_attr_wakeup_filter_mask.attr.attr, 1615 &dev_attr_wakeup_protocols.attr, 1616 NULL, 1617 }; 1618 1619 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { 1620 .attrs = rc_dev_wakeup_filter_attrs, 1621 }; 1622 1623 static const struct device_type rc_dev_type = { 1624 .release = rc_dev_release, 1625 .uevent = rc_dev_uevent, 1626 }; 1627 1628 struct rc_dev *rc_allocate_device(enum rc_driver_type type) 1629 { 1630 struct rc_dev *dev; 1631 1632 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1633 if (!dev) 1634 return NULL; 1635 1636 if (type != RC_DRIVER_IR_RAW_TX) { 1637 dev->input_dev = input_allocate_device(); 1638 if (!dev->input_dev) { 1639 kfree(dev); 1640 return NULL; 1641 } 1642 1643 dev->input_dev->getkeycode = ir_getkeycode; 1644 dev->input_dev->setkeycode = ir_setkeycode; 1645 input_set_drvdata(dev->input_dev, dev); 1646 1647 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); 1648 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); 1649 1650 spin_lock_init(&dev->rc_map.lock); 1651 spin_lock_init(&dev->keylock); 1652 } 1653 mutex_init(&dev->lock); 1654 1655 dev->dev.type = &rc_dev_type; 1656 dev->dev.class = &rc_class; 1657 device_initialize(&dev->dev); 1658 1659 dev->driver_type = type; 1660 1661 __module_get(THIS_MODULE); 1662 return dev; 1663 } 1664 EXPORT_SYMBOL_GPL(rc_allocate_device); 1665 1666 void rc_free_device(struct rc_dev *dev) 1667 { 1668 if (!dev) 1669 return; 1670 1671 input_free_device(dev->input_dev); 1672 1673 put_device(&dev->dev); 1674 1675 /* kfree(dev) will be called by the callback function 1676 rc_dev_release() */ 1677 1678 module_put(THIS_MODULE); 1679 } 1680 EXPORT_SYMBOL_GPL(rc_free_device); 1681 1682 static void devm_rc_alloc_release(struct device *dev, void *res) 1683 { 1684 rc_free_device(*(struct rc_dev **)res); 1685 } 1686 1687 struct rc_dev *devm_rc_allocate_device(struct device *dev, 1688 enum rc_driver_type type) 1689 { 1690 struct rc_dev **dr, *rc; 1691 1692 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); 1693 if (!dr) 1694 return NULL; 1695 1696 rc = rc_allocate_device(type); 1697 if (!rc) { 1698 devres_free(dr); 1699 return NULL; 1700 } 1701 1702 rc->dev.parent = dev; 1703 rc->managed_alloc = true; 1704 *dr = rc; 1705 devres_add(dev, dr); 1706 1707 return rc; 1708 } 1709 EXPORT_SYMBOL_GPL(devm_rc_allocate_device); 1710 1711 static int rc_prepare_rx_device(struct rc_dev *dev) 1712 { 1713 int rc; 1714 struct rc_map *rc_map; 1715 u64 rc_proto; 1716 1717 if (!dev->map_name) 1718 return -EINVAL; 1719 1720 rc_map = rc_map_get(dev->map_name); 1721 if (!rc_map) 1722 rc_map = rc_map_get(RC_MAP_EMPTY); 1723 if (!rc_map || !rc_map->scan || rc_map->size == 0) 1724 return -EINVAL; 1725 1726 rc = ir_setkeytable(dev, rc_map); 1727 if (rc) 1728 return rc; 1729 1730 rc_proto = BIT_ULL(rc_map->rc_proto); 1731 1732 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1733 dev->enabled_protocols = dev->allowed_protocols; 1734 1735 if (dev->change_protocol) { 1736 rc = dev->change_protocol(dev, &rc_proto); 1737 if (rc < 0) 1738 goto out_table; 1739 dev->enabled_protocols = rc_proto; 1740 } 1741 1742 if (dev->driver_type == RC_DRIVER_IR_RAW) 1743 ir_raw_load_modules(&rc_proto); 1744 1745 set_bit(EV_KEY, dev->input_dev->evbit); 1746 set_bit(EV_REP, dev->input_dev->evbit); 1747 set_bit(EV_MSC, dev->input_dev->evbit); 1748 set_bit(MSC_SCAN, dev->input_dev->mscbit); 1749 if (dev->open) 1750 dev->input_dev->open = ir_open; 1751 if (dev->close) 1752 dev->input_dev->close = ir_close; 1753 1754 dev->input_dev->dev.parent = &dev->dev; 1755 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); 1756 dev->input_dev->phys = dev->input_phys; 1757 dev->input_dev->name = dev->device_name; 1758 1759 return 0; 1760 1761 out_table: 1762 ir_free_table(&dev->rc_map); 1763 1764 return rc; 1765 } 1766 1767 static int rc_setup_rx_device(struct rc_dev *dev) 1768 { 1769 int rc; 1770 1771 /* rc_open will be called here */ 1772 rc = input_register_device(dev->input_dev); 1773 if (rc) 1774 return rc; 1775 1776 /* 1777 * Default delay of 250ms is too short for some protocols, especially 1778 * since the timeout is currently set to 250ms. Increase it to 500ms, 1779 * to avoid wrong repetition of the keycodes. Note that this must be 1780 * set after the call to input_register_device(). 1781 */ 1782 if (dev->allowed_protocols == RC_PROTO_BIT_CEC) 1783 dev->input_dev->rep[REP_DELAY] = 0; 1784 else 1785 dev->input_dev->rep[REP_DELAY] = 500; 1786 1787 /* 1788 * As a repeat event on protocols like RC-5 and NEC take as long as 1789 * 110/114ms, using 33ms as a repeat period is not the right thing 1790 * to do. 1791 */ 1792 dev->input_dev->rep[REP_PERIOD] = 125; 1793 1794 return 0; 1795 } 1796 1797 static void rc_free_rx_device(struct rc_dev *dev) 1798 { 1799 if (!dev) 1800 return; 1801 1802 if (dev->input_dev) { 1803 input_unregister_device(dev->input_dev); 1804 dev->input_dev = NULL; 1805 } 1806 1807 ir_free_table(&dev->rc_map); 1808 } 1809 1810 int rc_register_device(struct rc_dev *dev) 1811 { 1812 const char *path; 1813 int attr = 0; 1814 int minor; 1815 int rc; 1816 1817 if (!dev) 1818 return -EINVAL; 1819 1820 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); 1821 if (minor < 0) 1822 return minor; 1823 1824 dev->minor = minor; 1825 dev_set_name(&dev->dev, "rc%u", dev->minor); 1826 dev_set_drvdata(&dev->dev, dev); 1827 1828 dev->dev.groups = dev->sysfs_groups; 1829 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) 1830 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; 1831 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) 1832 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; 1833 if (dev->s_filter) 1834 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; 1835 if (dev->s_wakeup_filter) 1836 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; 1837 dev->sysfs_groups[attr++] = NULL; 1838 1839 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1840 rc = ir_raw_event_prepare(dev); 1841 if (rc < 0) 1842 goto out_minor; 1843 } 1844 1845 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1846 rc = rc_prepare_rx_device(dev); 1847 if (rc) 1848 goto out_raw; 1849 } 1850 1851 rc = device_add(&dev->dev); 1852 if (rc) 1853 goto out_rx_free; 1854 1855 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1856 dev_info(&dev->dev, "%s as %s\n", 1857 dev->device_name ?: "Unspecified device", path ?: "N/A"); 1858 kfree(path); 1859 1860 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { 1861 rc = rc_setup_rx_device(dev); 1862 if (rc) 1863 goto out_dev; 1864 } 1865 1866 /* Ensure that the lirc kfifo is setup before we start the thread */ 1867 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { 1868 rc = ir_lirc_register(dev); 1869 if (rc < 0) 1870 goto out_rx; 1871 } 1872 1873 if (dev->driver_type == RC_DRIVER_IR_RAW) { 1874 rc = ir_raw_event_register(dev); 1875 if (rc < 0) 1876 goto out_lirc; 1877 } 1878 1879 dev->registered = true; 1880 1881 dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, 1882 dev->driver_name ? dev->driver_name : "unknown"); 1883 1884 return 0; 1885 1886 out_lirc: 1887 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1888 ir_lirc_unregister(dev); 1889 out_rx: 1890 rc_free_rx_device(dev); 1891 out_dev: 1892 device_del(&dev->dev); 1893 out_rx_free: 1894 ir_free_table(&dev->rc_map); 1895 out_raw: 1896 ir_raw_event_free(dev); 1897 out_minor: 1898 ida_simple_remove(&rc_ida, minor); 1899 return rc; 1900 } 1901 EXPORT_SYMBOL_GPL(rc_register_device); 1902 1903 static void devm_rc_release(struct device *dev, void *res) 1904 { 1905 rc_unregister_device(*(struct rc_dev **)res); 1906 } 1907 1908 int devm_rc_register_device(struct device *parent, struct rc_dev *dev) 1909 { 1910 struct rc_dev **dr; 1911 int ret; 1912 1913 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); 1914 if (!dr) 1915 return -ENOMEM; 1916 1917 ret = rc_register_device(dev); 1918 if (ret) { 1919 devres_free(dr); 1920 return ret; 1921 } 1922 1923 *dr = dev; 1924 devres_add(parent, dr); 1925 1926 return 0; 1927 } 1928 EXPORT_SYMBOL_GPL(devm_rc_register_device); 1929 1930 void rc_unregister_device(struct rc_dev *dev) 1931 { 1932 if (!dev) 1933 return; 1934 1935 del_timer_sync(&dev->timer_keyup); 1936 del_timer_sync(&dev->timer_repeat); 1937 1938 if (dev->driver_type == RC_DRIVER_IR_RAW) 1939 ir_raw_event_unregister(dev); 1940 1941 rc_free_rx_device(dev); 1942 1943 mutex_lock(&dev->lock); 1944 dev->registered = false; 1945 mutex_unlock(&dev->lock); 1946 1947 /* 1948 * lirc device should be freed with dev->registered = false, so 1949 * that userspace polling will get notified. 1950 */ 1951 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) 1952 ir_lirc_unregister(dev); 1953 1954 device_del(&dev->dev); 1955 1956 ida_simple_remove(&rc_ida, dev->minor); 1957 1958 if (!dev->managed_alloc) 1959 rc_free_device(dev); 1960 } 1961 1962 EXPORT_SYMBOL_GPL(rc_unregister_device); 1963 1964 /* 1965 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1966 */ 1967 1968 static int __init rc_core_init(void) 1969 { 1970 int rc = class_register(&rc_class); 1971 if (rc) { 1972 pr_err("rc_core: unable to register rc class\n"); 1973 return rc; 1974 } 1975 1976 rc = lirc_dev_init(); 1977 if (rc) { 1978 pr_err("rc_core: unable to init lirc\n"); 1979 class_unregister(&rc_class); 1980 return 0; 1981 } 1982 1983 led_trigger_register_simple("rc-feedback", &led_feedback); 1984 rc_map_register(&empty_map); 1985 1986 return 0; 1987 } 1988 1989 static void __exit rc_core_exit(void) 1990 { 1991 lirc_dev_exit(); 1992 class_unregister(&rc_class); 1993 led_trigger_unregister_simple(led_feedback); 1994 rc_map_unregister(&empty_map); 1995 } 1996 1997 subsys_initcall(rc_core_init); 1998 module_exit(rc_core_exit); 1999 2000 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2001 MODULE_LICENSE("GPL v2"); 2002