xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 0edff03d)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <media/rc-core.h>
18 #include <linux/bsearch.h>
19 #include <linux/spinlock.h>
20 #include <linux/delay.h>
21 #include <linux/input.h>
22 #include <linux/leds.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/device.h>
26 #include <linux/module.h>
27 #include "rc-core-priv.h"
28 
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE	256
31 #define IR_TAB_MAX_SIZE	8192
32 #define RC_DEV_MAX	256
33 
34 static const struct {
35 	const char *name;
36 	unsigned int repeat_period;
37 	unsigned int scancode_bits;
38 } protocols[] = {
39 	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
40 	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
41 	[RC_PROTO_RC5] = { .name = "rc-5",
42 		.scancode_bits = 0x1f7f, .repeat_period = 250 },
43 	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
44 		.scancode_bits = 0x1f7f3f, .repeat_period = 250 },
45 	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
46 		.scancode_bits = 0x2fff, .repeat_period = 250 },
47 	[RC_PROTO_JVC] = { .name = "jvc",
48 		.scancode_bits = 0xffff, .repeat_period = 250 },
49 	[RC_PROTO_SONY12] = { .name = "sony-12",
50 		.scancode_bits = 0x1f007f, .repeat_period = 250 },
51 	[RC_PROTO_SONY15] = { .name = "sony-15",
52 		.scancode_bits = 0xff007f, .repeat_period = 250 },
53 	[RC_PROTO_SONY20] = { .name = "sony-20",
54 		.scancode_bits = 0x1fff7f, .repeat_period = 250 },
55 	[RC_PROTO_NEC] = { .name = "nec",
56 		.scancode_bits = 0xffff, .repeat_period = 250 },
57 	[RC_PROTO_NECX] = { .name = "nec-x",
58 		.scancode_bits = 0xffffff, .repeat_period = 250 },
59 	[RC_PROTO_NEC32] = { .name = "nec-32",
60 		.scancode_bits = 0xffffffff, .repeat_period = 250 },
61 	[RC_PROTO_SANYO] = { .name = "sanyo",
62 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
63 	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
64 		.scancode_bits = 0xffff, .repeat_period = 250 },
65 	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
66 		.scancode_bits = 0x1fffff, .repeat_period = 250 },
67 	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
68 		.scancode_bits = 0xffff, .repeat_period = 250 },
69 	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
70 		.scancode_bits = 0xfffff, .repeat_period = 250 },
71 	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
72 		.scancode_bits = 0xffffff, .repeat_period = 250 },
73 	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
74 		.scancode_bits = 0xffffffff, .repeat_period = 250 },
75 	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
76 		.scancode_bits = 0xffff7fff, .repeat_period = 250 },
77 	[RC_PROTO_SHARP] = { .name = "sharp",
78 		.scancode_bits = 0x1fff, .repeat_period = 250 },
79 	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
80 	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
81 };
82 
83 /* Used to keep track of known keymaps */
84 static LIST_HEAD(rc_map_list);
85 static DEFINE_SPINLOCK(rc_map_lock);
86 static struct led_trigger *led_feedback;
87 
88 /* Used to keep track of rc devices */
89 static DEFINE_IDA(rc_ida);
90 
91 static struct rc_map_list *seek_rc_map(const char *name)
92 {
93 	struct rc_map_list *map = NULL;
94 
95 	spin_lock(&rc_map_lock);
96 	list_for_each_entry(map, &rc_map_list, list) {
97 		if (!strcmp(name, map->map.name)) {
98 			spin_unlock(&rc_map_lock);
99 			return map;
100 		}
101 	}
102 	spin_unlock(&rc_map_lock);
103 
104 	return NULL;
105 }
106 
107 struct rc_map *rc_map_get(const char *name)
108 {
109 
110 	struct rc_map_list *map;
111 
112 	map = seek_rc_map(name);
113 #ifdef CONFIG_MODULES
114 	if (!map) {
115 		int rc = request_module("%s", name);
116 		if (rc < 0) {
117 			pr_err("Couldn't load IR keymap %s\n", name);
118 			return NULL;
119 		}
120 		msleep(20);	/* Give some time for IR to register */
121 
122 		map = seek_rc_map(name);
123 	}
124 #endif
125 	if (!map) {
126 		pr_err("IR keymap %s not found\n", name);
127 		return NULL;
128 	}
129 
130 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
131 
132 	return &map->map;
133 }
134 EXPORT_SYMBOL_GPL(rc_map_get);
135 
136 int rc_map_register(struct rc_map_list *map)
137 {
138 	spin_lock(&rc_map_lock);
139 	list_add_tail(&map->list, &rc_map_list);
140 	spin_unlock(&rc_map_lock);
141 	return 0;
142 }
143 EXPORT_SYMBOL_GPL(rc_map_register);
144 
145 void rc_map_unregister(struct rc_map_list *map)
146 {
147 	spin_lock(&rc_map_lock);
148 	list_del(&map->list);
149 	spin_unlock(&rc_map_lock);
150 }
151 EXPORT_SYMBOL_GPL(rc_map_unregister);
152 
153 
154 static struct rc_map_table empty[] = {
155 	{ 0x2a, KEY_COFFEE },
156 };
157 
158 static struct rc_map_list empty_map = {
159 	.map = {
160 		.scan     = empty,
161 		.size     = ARRAY_SIZE(empty),
162 		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
163 		.name     = RC_MAP_EMPTY,
164 	}
165 };
166 
167 /**
168  * ir_create_table() - initializes a scancode table
169  * @rc_map:	the rc_map to initialize
170  * @name:	name to assign to the table
171  * @rc_proto:	ir type to assign to the new table
172  * @size:	initial size of the table
173  *
174  * This routine will initialize the rc_map and will allocate
175  * memory to hold at least the specified number of elements.
176  *
177  * return:	zero on success or a negative error code
178  */
179 static int ir_create_table(struct rc_map *rc_map,
180 			   const char *name, u64 rc_proto, size_t size)
181 {
182 	rc_map->name = kstrdup(name, GFP_KERNEL);
183 	if (!rc_map->name)
184 		return -ENOMEM;
185 	rc_map->rc_proto = rc_proto;
186 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
187 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
188 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
189 	if (!rc_map->scan) {
190 		kfree(rc_map->name);
191 		rc_map->name = NULL;
192 		return -ENOMEM;
193 	}
194 
195 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
196 		   rc_map->size, rc_map->alloc);
197 	return 0;
198 }
199 
200 /**
201  * ir_free_table() - frees memory allocated by a scancode table
202  * @rc_map:	the table whose mappings need to be freed
203  *
204  * This routine will free memory alloctaed for key mappings used by given
205  * scancode table.
206  */
207 static void ir_free_table(struct rc_map *rc_map)
208 {
209 	rc_map->size = 0;
210 	kfree(rc_map->name);
211 	rc_map->name = NULL;
212 	kfree(rc_map->scan);
213 	rc_map->scan = NULL;
214 }
215 
216 /**
217  * ir_resize_table() - resizes a scancode table if necessary
218  * @rc_map:	the rc_map to resize
219  * @gfp_flags:	gfp flags to use when allocating memory
220  *
221  * This routine will shrink the rc_map if it has lots of
222  * unused entries and grow it if it is full.
223  *
224  * return:	zero on success or a negative error code
225  */
226 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
227 {
228 	unsigned int oldalloc = rc_map->alloc;
229 	unsigned int newalloc = oldalloc;
230 	struct rc_map_table *oldscan = rc_map->scan;
231 	struct rc_map_table *newscan;
232 
233 	if (rc_map->size == rc_map->len) {
234 		/* All entries in use -> grow keytable */
235 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
236 			return -ENOMEM;
237 
238 		newalloc *= 2;
239 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
240 	}
241 
242 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
243 		/* Less than 1/3 of entries in use -> shrink keytable */
244 		newalloc /= 2;
245 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
246 	}
247 
248 	if (newalloc == oldalloc)
249 		return 0;
250 
251 	newscan = kmalloc(newalloc, gfp_flags);
252 	if (!newscan) {
253 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
254 		return -ENOMEM;
255 	}
256 
257 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
258 	rc_map->scan = newscan;
259 	rc_map->alloc = newalloc;
260 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
261 	kfree(oldscan);
262 	return 0;
263 }
264 
265 /**
266  * ir_update_mapping() - set a keycode in the scancode->keycode table
267  * @dev:	the struct rc_dev device descriptor
268  * @rc_map:	scancode table to be adjusted
269  * @index:	index of the mapping that needs to be updated
270  * @new_keycode: the desired keycode
271  *
272  * This routine is used to update scancode->keycode mapping at given
273  * position.
274  *
275  * return:	previous keycode assigned to the mapping
276  *
277  */
278 static unsigned int ir_update_mapping(struct rc_dev *dev,
279 				      struct rc_map *rc_map,
280 				      unsigned int index,
281 				      unsigned int new_keycode)
282 {
283 	int old_keycode = rc_map->scan[index].keycode;
284 	int i;
285 
286 	/* Did the user wish to remove the mapping? */
287 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
288 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
289 			   index, rc_map->scan[index].scancode);
290 		rc_map->len--;
291 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
292 			(rc_map->len - index) * sizeof(struct rc_map_table));
293 	} else {
294 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
295 			   index,
296 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
297 			   rc_map->scan[index].scancode, new_keycode);
298 		rc_map->scan[index].keycode = new_keycode;
299 		__set_bit(new_keycode, dev->input_dev->keybit);
300 	}
301 
302 	if (old_keycode != KEY_RESERVED) {
303 		/* A previous mapping was updated... */
304 		__clear_bit(old_keycode, dev->input_dev->keybit);
305 		/* ... but another scancode might use the same keycode */
306 		for (i = 0; i < rc_map->len; i++) {
307 			if (rc_map->scan[i].keycode == old_keycode) {
308 				__set_bit(old_keycode, dev->input_dev->keybit);
309 				break;
310 			}
311 		}
312 
313 		/* Possibly shrink the keytable, failure is not a problem */
314 		ir_resize_table(rc_map, GFP_ATOMIC);
315 	}
316 
317 	return old_keycode;
318 }
319 
320 /**
321  * ir_establish_scancode() - set a keycode in the scancode->keycode table
322  * @dev:	the struct rc_dev device descriptor
323  * @rc_map:	scancode table to be searched
324  * @scancode:	the desired scancode
325  * @resize:	controls whether we allowed to resize the table to
326  *		accommodate not yet present scancodes
327  *
328  * This routine is used to locate given scancode in rc_map.
329  * If scancode is not yet present the routine will allocate a new slot
330  * for it.
331  *
332  * return:	index of the mapping containing scancode in question
333  *		or -1U in case of failure.
334  */
335 static unsigned int ir_establish_scancode(struct rc_dev *dev,
336 					  struct rc_map *rc_map,
337 					  unsigned int scancode,
338 					  bool resize)
339 {
340 	unsigned int i;
341 
342 	/*
343 	 * Unfortunately, some hardware-based IR decoders don't provide
344 	 * all bits for the complete IR code. In general, they provide only
345 	 * the command part of the IR code. Yet, as it is possible to replace
346 	 * the provided IR with another one, it is needed to allow loading
347 	 * IR tables from other remotes. So, we support specifying a mask to
348 	 * indicate the valid bits of the scancodes.
349 	 */
350 	if (dev->scancode_mask)
351 		scancode &= dev->scancode_mask;
352 
353 	/* First check if we already have a mapping for this ir command */
354 	for (i = 0; i < rc_map->len; i++) {
355 		if (rc_map->scan[i].scancode == scancode)
356 			return i;
357 
358 		/* Keytable is sorted from lowest to highest scancode */
359 		if (rc_map->scan[i].scancode >= scancode)
360 			break;
361 	}
362 
363 	/* No previous mapping found, we might need to grow the table */
364 	if (rc_map->size == rc_map->len) {
365 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
366 			return -1U;
367 	}
368 
369 	/* i is the proper index to insert our new keycode */
370 	if (i < rc_map->len)
371 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
372 			(rc_map->len - i) * sizeof(struct rc_map_table));
373 	rc_map->scan[i].scancode = scancode;
374 	rc_map->scan[i].keycode = KEY_RESERVED;
375 	rc_map->len++;
376 
377 	return i;
378 }
379 
380 /**
381  * ir_setkeycode() - set a keycode in the scancode->keycode table
382  * @idev:	the struct input_dev device descriptor
383  * @ke:		Input keymap entry
384  * @old_keycode: result
385  *
386  * This routine is used to handle evdev EVIOCSKEY ioctl.
387  *
388  * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
389  */
390 static int ir_setkeycode(struct input_dev *idev,
391 			 const struct input_keymap_entry *ke,
392 			 unsigned int *old_keycode)
393 {
394 	struct rc_dev *rdev = input_get_drvdata(idev);
395 	struct rc_map *rc_map = &rdev->rc_map;
396 	unsigned int index;
397 	unsigned int scancode;
398 	int retval = 0;
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&rc_map->lock, flags);
402 
403 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
404 		index = ke->index;
405 		if (index >= rc_map->len) {
406 			retval = -EINVAL;
407 			goto out;
408 		}
409 	} else {
410 		retval = input_scancode_to_scalar(ke, &scancode);
411 		if (retval)
412 			goto out;
413 
414 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
415 		if (index >= rc_map->len) {
416 			retval = -ENOMEM;
417 			goto out;
418 		}
419 	}
420 
421 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
422 
423 out:
424 	spin_unlock_irqrestore(&rc_map->lock, flags);
425 	return retval;
426 }
427 
428 /**
429  * ir_setkeytable() - sets several entries in the scancode->keycode table
430  * @dev:	the struct rc_dev device descriptor
431  * @from:	the struct rc_map to copy entries from
432  *
433  * This routine is used to handle table initialization.
434  *
435  * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
436  */
437 static int ir_setkeytable(struct rc_dev *dev,
438 			  const struct rc_map *from)
439 {
440 	struct rc_map *rc_map = &dev->rc_map;
441 	unsigned int i, index;
442 	int rc;
443 
444 	rc = ir_create_table(rc_map, from->name,
445 			     from->rc_proto, from->size);
446 	if (rc)
447 		return rc;
448 
449 	for (i = 0; i < from->size; i++) {
450 		index = ir_establish_scancode(dev, rc_map,
451 					      from->scan[i].scancode, false);
452 		if (index >= rc_map->len) {
453 			rc = -ENOMEM;
454 			break;
455 		}
456 
457 		ir_update_mapping(dev, rc_map, index,
458 				  from->scan[i].keycode);
459 	}
460 
461 	if (rc)
462 		ir_free_table(rc_map);
463 
464 	return rc;
465 }
466 
467 static int rc_map_cmp(const void *key, const void *elt)
468 {
469 	const unsigned int *scancode = key;
470 	const struct rc_map_table *e = elt;
471 
472 	if (*scancode < e->scancode)
473 		return -1;
474 	else if (*scancode > e->scancode)
475 		return 1;
476 	return 0;
477 }
478 
479 /**
480  * ir_lookup_by_scancode() - locate mapping by scancode
481  * @rc_map:	the struct rc_map to search
482  * @scancode:	scancode to look for in the table
483  *
484  * This routine performs binary search in RC keykeymap table for
485  * given scancode.
486  *
487  * return:	index in the table, -1U if not found
488  */
489 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
490 					  unsigned int scancode)
491 {
492 	struct rc_map_table *res;
493 
494 	res = bsearch(&scancode, rc_map->scan, rc_map->len,
495 		      sizeof(struct rc_map_table), rc_map_cmp);
496 	if (!res)
497 		return -1U;
498 	else
499 		return res - rc_map->scan;
500 }
501 
502 /**
503  * ir_getkeycode() - get a keycode from the scancode->keycode table
504  * @idev:	the struct input_dev device descriptor
505  * @ke:		Input keymap entry
506  *
507  * This routine is used to handle evdev EVIOCGKEY ioctl.
508  *
509  * return:	always returns zero.
510  */
511 static int ir_getkeycode(struct input_dev *idev,
512 			 struct input_keymap_entry *ke)
513 {
514 	struct rc_dev *rdev = input_get_drvdata(idev);
515 	struct rc_map *rc_map = &rdev->rc_map;
516 	struct rc_map_table *entry;
517 	unsigned long flags;
518 	unsigned int index;
519 	unsigned int scancode;
520 	int retval;
521 
522 	spin_lock_irqsave(&rc_map->lock, flags);
523 
524 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
525 		index = ke->index;
526 	} else {
527 		retval = input_scancode_to_scalar(ke, &scancode);
528 		if (retval)
529 			goto out;
530 
531 		index = ir_lookup_by_scancode(rc_map, scancode);
532 	}
533 
534 	if (index < rc_map->len) {
535 		entry = &rc_map->scan[index];
536 
537 		ke->index = index;
538 		ke->keycode = entry->keycode;
539 		ke->len = sizeof(entry->scancode);
540 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
541 
542 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
543 		/*
544 		 * We do not really know the valid range of scancodes
545 		 * so let's respond with KEY_RESERVED to anything we
546 		 * do not have mapping for [yet].
547 		 */
548 		ke->index = index;
549 		ke->keycode = KEY_RESERVED;
550 	} else {
551 		retval = -EINVAL;
552 		goto out;
553 	}
554 
555 	retval = 0;
556 
557 out:
558 	spin_unlock_irqrestore(&rc_map->lock, flags);
559 	return retval;
560 }
561 
562 /**
563  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
564  * @dev:	the struct rc_dev descriptor of the device
565  * @scancode:	the scancode to look for
566  *
567  * This routine is used by drivers which need to convert a scancode to a
568  * keycode. Normally it should not be used since drivers should have no
569  * interest in keycodes.
570  *
571  * return:	the corresponding keycode, or KEY_RESERVED
572  */
573 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
574 {
575 	struct rc_map *rc_map = &dev->rc_map;
576 	unsigned int keycode;
577 	unsigned int index;
578 	unsigned long flags;
579 
580 	spin_lock_irqsave(&rc_map->lock, flags);
581 
582 	index = ir_lookup_by_scancode(rc_map, scancode);
583 	keycode = index < rc_map->len ?
584 			rc_map->scan[index].keycode : KEY_RESERVED;
585 
586 	spin_unlock_irqrestore(&rc_map->lock, flags);
587 
588 	if (keycode != KEY_RESERVED)
589 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
590 			   dev->device_name, scancode, keycode);
591 
592 	return keycode;
593 }
594 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
595 
596 /**
597  * ir_do_keyup() - internal function to signal the release of a keypress
598  * @dev:	the struct rc_dev descriptor of the device
599  * @sync:	whether or not to call input_sync
600  *
601  * This function is used internally to release a keypress, it must be
602  * called with keylock held.
603  */
604 static void ir_do_keyup(struct rc_dev *dev, bool sync)
605 {
606 	if (!dev->keypressed)
607 		return;
608 
609 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
610 	input_report_key(dev->input_dev, dev->last_keycode, 0);
611 	led_trigger_event(led_feedback, LED_OFF);
612 	if (sync)
613 		input_sync(dev->input_dev);
614 	dev->keypressed = false;
615 }
616 
617 /**
618  * rc_keyup() - signals the release of a keypress
619  * @dev:	the struct rc_dev descriptor of the device
620  *
621  * This routine is used to signal that a key has been released on the
622  * remote control.
623  */
624 void rc_keyup(struct rc_dev *dev)
625 {
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&dev->keylock, flags);
629 	ir_do_keyup(dev, true);
630 	spin_unlock_irqrestore(&dev->keylock, flags);
631 }
632 EXPORT_SYMBOL_GPL(rc_keyup);
633 
634 /**
635  * ir_timer_keyup() - generates a keyup event after a timeout
636  *
637  * @t:		a pointer to the struct timer_list
638  *
639  * This routine will generate a keyup event some time after a keydown event
640  * is generated when no further activity has been detected.
641  */
642 static void ir_timer_keyup(struct timer_list *t)
643 {
644 	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
645 	unsigned long flags;
646 
647 	/*
648 	 * ir->keyup_jiffies is used to prevent a race condition if a
649 	 * hardware interrupt occurs at this point and the keyup timer
650 	 * event is moved further into the future as a result.
651 	 *
652 	 * The timer will then be reactivated and this function called
653 	 * again in the future. We need to exit gracefully in that case
654 	 * to allow the input subsystem to do its auto-repeat magic or
655 	 * a keyup event might follow immediately after the keydown.
656 	 */
657 	spin_lock_irqsave(&dev->keylock, flags);
658 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
659 		ir_do_keyup(dev, true);
660 	spin_unlock_irqrestore(&dev->keylock, flags);
661 }
662 
663 /**
664  * rc_repeat() - signals that a key is still pressed
665  * @dev:	the struct rc_dev descriptor of the device
666  *
667  * This routine is used by IR decoders when a repeat message which does
668  * not include the necessary bits to reproduce the scancode has been
669  * received.
670  */
671 void rc_repeat(struct rc_dev *dev)
672 {
673 	unsigned long flags;
674 	unsigned int timeout = protocols[dev->last_protocol].repeat_period;
675 
676 	spin_lock_irqsave(&dev->keylock, flags);
677 
678 	if (!dev->keypressed)
679 		goto out;
680 
681 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
682 	input_sync(dev->input_dev);
683 
684 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
685 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
686 
687 out:
688 	spin_unlock_irqrestore(&dev->keylock, flags);
689 }
690 EXPORT_SYMBOL_GPL(rc_repeat);
691 
692 /**
693  * ir_do_keydown() - internal function to process a keypress
694  * @dev:	the struct rc_dev descriptor of the device
695  * @protocol:	the protocol of the keypress
696  * @scancode:   the scancode of the keypress
697  * @keycode:    the keycode of the keypress
698  * @toggle:     the toggle value of the keypress
699  *
700  * This function is used internally to register a keypress, it must be
701  * called with keylock held.
702  */
703 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
704 			  u32 scancode, u32 keycode, u8 toggle)
705 {
706 	bool new_event = (!dev->keypressed		 ||
707 			  dev->last_protocol != protocol ||
708 			  dev->last_scancode != scancode ||
709 			  dev->last_toggle   != toggle);
710 
711 	if (new_event && dev->keypressed)
712 		ir_do_keyup(dev, false);
713 
714 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
715 
716 	if (new_event && keycode != KEY_RESERVED) {
717 		/* Register a keypress */
718 		dev->keypressed = true;
719 		dev->last_protocol = protocol;
720 		dev->last_scancode = scancode;
721 		dev->last_toggle = toggle;
722 		dev->last_keycode = keycode;
723 
724 		IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
725 			   dev->device_name, keycode, protocol, scancode);
726 		input_report_key(dev->input_dev, keycode, 1);
727 
728 		led_trigger_event(led_feedback, LED_FULL);
729 	}
730 
731 	input_sync(dev->input_dev);
732 }
733 
734 /**
735  * rc_keydown() - generates input event for a key press
736  * @dev:	the struct rc_dev descriptor of the device
737  * @protocol:	the protocol for the keypress
738  * @scancode:	the scancode for the keypress
739  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
740  *              support toggle values, this should be set to zero)
741  *
742  * This routine is used to signal that a key has been pressed on the
743  * remote control.
744  */
745 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
746 		u8 toggle)
747 {
748 	unsigned long flags;
749 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
750 
751 	spin_lock_irqsave(&dev->keylock, flags);
752 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
753 
754 	if (dev->keypressed) {
755 		dev->keyup_jiffies = jiffies +
756 			msecs_to_jiffies(protocols[protocol].repeat_period);
757 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
758 	}
759 	spin_unlock_irqrestore(&dev->keylock, flags);
760 }
761 EXPORT_SYMBOL_GPL(rc_keydown);
762 
763 /**
764  * rc_keydown_notimeout() - generates input event for a key press without
765  *                          an automatic keyup event at a later time
766  * @dev:	the struct rc_dev descriptor of the device
767  * @protocol:	the protocol for the keypress
768  * @scancode:	the scancode for the keypress
769  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
770  *              support toggle values, this should be set to zero)
771  *
772  * This routine is used to signal that a key has been pressed on the
773  * remote control. The driver must manually call rc_keyup() at a later stage.
774  */
775 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
776 			  u32 scancode, u8 toggle)
777 {
778 	unsigned long flags;
779 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
780 
781 	spin_lock_irqsave(&dev->keylock, flags);
782 	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
783 	spin_unlock_irqrestore(&dev->keylock, flags);
784 }
785 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
786 
787 /**
788  * rc_validate_filter() - checks that the scancode and mask are valid and
789  *			  provides sensible defaults
790  * @dev:	the struct rc_dev descriptor of the device
791  * @filter:	the scancode and mask
792  *
793  * return:	0 or -EINVAL if the filter is not valid
794  */
795 static int rc_validate_filter(struct rc_dev *dev,
796 			      struct rc_scancode_filter *filter)
797 {
798 	u32 mask, s = filter->data;
799 	enum rc_proto protocol = dev->wakeup_protocol;
800 
801 	if (protocol >= ARRAY_SIZE(protocols))
802 		return -EINVAL;
803 
804 	mask = protocols[protocol].scancode_bits;
805 
806 	switch (protocol) {
807 	case RC_PROTO_NECX:
808 		if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
809 			return -EINVAL;
810 		break;
811 	case RC_PROTO_NEC32:
812 		if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
813 			return -EINVAL;
814 		break;
815 	case RC_PROTO_RC6_MCE:
816 		if ((s & 0xffff0000) != 0x800f0000)
817 			return -EINVAL;
818 		break;
819 	case RC_PROTO_RC6_6A_32:
820 		if ((s & 0xffff0000) == 0x800f0000)
821 			return -EINVAL;
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	filter->data &= mask;
828 	filter->mask &= mask;
829 
830 	/*
831 	 * If we have to raw encode the IR for wakeup, we cannot have a mask
832 	 */
833 	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
834 		return -EINVAL;
835 
836 	return 0;
837 }
838 
839 int rc_open(struct rc_dev *rdev)
840 {
841 	int rval = 0;
842 
843 	if (!rdev)
844 		return -EINVAL;
845 
846 	mutex_lock(&rdev->lock);
847 
848 	if (!rdev->users++ && rdev->open != NULL)
849 		rval = rdev->open(rdev);
850 
851 	if (rval)
852 		rdev->users--;
853 
854 	mutex_unlock(&rdev->lock);
855 
856 	return rval;
857 }
858 EXPORT_SYMBOL_GPL(rc_open);
859 
860 static int ir_open(struct input_dev *idev)
861 {
862 	struct rc_dev *rdev = input_get_drvdata(idev);
863 
864 	return rc_open(rdev);
865 }
866 
867 void rc_close(struct rc_dev *rdev)
868 {
869 	if (rdev) {
870 		mutex_lock(&rdev->lock);
871 
872 		if (!--rdev->users && rdev->close != NULL)
873 			rdev->close(rdev);
874 
875 		mutex_unlock(&rdev->lock);
876 	}
877 }
878 EXPORT_SYMBOL_GPL(rc_close);
879 
880 static void ir_close(struct input_dev *idev)
881 {
882 	struct rc_dev *rdev = input_get_drvdata(idev);
883 	rc_close(rdev);
884 }
885 
886 /* class for /sys/class/rc */
887 static char *rc_devnode(struct device *dev, umode_t *mode)
888 {
889 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
890 }
891 
892 static struct class rc_class = {
893 	.name		= "rc",
894 	.devnode	= rc_devnode,
895 };
896 
897 /*
898  * These are the protocol textual descriptions that are
899  * used by the sysfs protocols file. Note that the order
900  * of the entries is relevant.
901  */
902 static const struct {
903 	u64	type;
904 	const char	*name;
905 	const char	*module_name;
906 } proto_names[] = {
907 	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
908 	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
909 	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
910 	{ RC_PROTO_BIT_RC5 |
911 	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
912 	{ RC_PROTO_BIT_NEC |
913 	  RC_PROTO_BIT_NECX |
914 	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
915 	{ RC_PROTO_BIT_RC6_0 |
916 	  RC_PROTO_BIT_RC6_6A_20 |
917 	  RC_PROTO_BIT_RC6_6A_24 |
918 	  RC_PROTO_BIT_RC6_6A_32 |
919 	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
920 	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
921 	{ RC_PROTO_BIT_SONY12 |
922 	  RC_PROTO_BIT_SONY15 |
923 	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
924 	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
925 	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
926 	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
927 	{ RC_PROTO_BIT_MCIR2_KBD |
928 	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
929 	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
930 	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
931 };
932 
933 /**
934  * struct rc_filter_attribute - Device attribute relating to a filter type.
935  * @attr:	Device attribute.
936  * @type:	Filter type.
937  * @mask:	false for filter value, true for filter mask.
938  */
939 struct rc_filter_attribute {
940 	struct device_attribute		attr;
941 	enum rc_filter_type		type;
942 	bool				mask;
943 };
944 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
945 
946 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
947 	struct rc_filter_attribute dev_attr_##_name = {			\
948 		.attr = __ATTR(_name, _mode, _show, _store),		\
949 		.type = (_type),					\
950 		.mask = (_mask),					\
951 	}
952 
953 static bool lirc_is_present(void)
954 {
955 #if defined(CONFIG_LIRC_MODULE)
956 	struct module *lirc;
957 
958 	mutex_lock(&module_mutex);
959 	lirc = find_module("lirc_dev");
960 	mutex_unlock(&module_mutex);
961 
962 	return lirc ? true : false;
963 #elif defined(CONFIG_LIRC)
964 	return true;
965 #else
966 	return false;
967 #endif
968 }
969 
970 /**
971  * show_protocols() - shows the current IR protocol(s)
972  * @device:	the device descriptor
973  * @mattr:	the device attribute struct
974  * @buf:	a pointer to the output buffer
975  *
976  * This routine is a callback routine for input read the IR protocol type(s).
977  * it is trigged by reading /sys/class/rc/rc?/protocols.
978  * It returns the protocol names of supported protocols.
979  * Enabled protocols are printed in brackets.
980  *
981  * dev->lock is taken to guard against races between
982  * store_protocols and show_protocols.
983  */
984 static ssize_t show_protocols(struct device *device,
985 			      struct device_attribute *mattr, char *buf)
986 {
987 	struct rc_dev *dev = to_rc_dev(device);
988 	u64 allowed, enabled;
989 	char *tmp = buf;
990 	int i;
991 
992 	mutex_lock(&dev->lock);
993 
994 	enabled = dev->enabled_protocols;
995 	allowed = dev->allowed_protocols;
996 	if (dev->raw && !allowed)
997 		allowed = ir_raw_get_allowed_protocols();
998 
999 	mutex_unlock(&dev->lock);
1000 
1001 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1002 		   __func__, (long long)allowed, (long long)enabled);
1003 
1004 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1005 		if (allowed & enabled & proto_names[i].type)
1006 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1007 		else if (allowed & proto_names[i].type)
1008 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1009 
1010 		if (allowed & proto_names[i].type)
1011 			allowed &= ~proto_names[i].type;
1012 	}
1013 
1014 	if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
1015 		tmp += sprintf(tmp, "[lirc] ");
1016 
1017 	if (tmp != buf)
1018 		tmp--;
1019 	*tmp = '\n';
1020 
1021 	return tmp + 1 - buf;
1022 }
1023 
1024 /**
1025  * parse_protocol_change() - parses a protocol change request
1026  * @protocols:	pointer to the bitmask of current protocols
1027  * @buf:	pointer to the buffer with a list of changes
1028  *
1029  * Writing "+proto" will add a protocol to the protocol mask.
1030  * Writing "-proto" will remove a protocol from protocol mask.
1031  * Writing "proto" will enable only "proto".
1032  * Writing "none" will disable all protocols.
1033  * Returns the number of changes performed or a negative error code.
1034  */
1035 static int parse_protocol_change(u64 *protocols, const char *buf)
1036 {
1037 	const char *tmp;
1038 	unsigned count = 0;
1039 	bool enable, disable;
1040 	u64 mask;
1041 	int i;
1042 
1043 	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1044 		if (!*tmp)
1045 			break;
1046 
1047 		if (*tmp == '+') {
1048 			enable = true;
1049 			disable = false;
1050 			tmp++;
1051 		} else if (*tmp == '-') {
1052 			enable = false;
1053 			disable = true;
1054 			tmp++;
1055 		} else {
1056 			enable = false;
1057 			disable = false;
1058 		}
1059 
1060 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1061 			if (!strcasecmp(tmp, proto_names[i].name)) {
1062 				mask = proto_names[i].type;
1063 				break;
1064 			}
1065 		}
1066 
1067 		if (i == ARRAY_SIZE(proto_names)) {
1068 			if (!strcasecmp(tmp, "lirc"))
1069 				mask = 0;
1070 			else {
1071 				IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1072 				return -EINVAL;
1073 			}
1074 		}
1075 
1076 		count++;
1077 
1078 		if (enable)
1079 			*protocols |= mask;
1080 		else if (disable)
1081 			*protocols &= ~mask;
1082 		else
1083 			*protocols = mask;
1084 	}
1085 
1086 	if (!count) {
1087 		IR_dprintk(1, "Protocol not specified\n");
1088 		return -EINVAL;
1089 	}
1090 
1091 	return count;
1092 }
1093 
1094 static void ir_raw_load_modules(u64 *protocols)
1095 {
1096 	u64 available;
1097 	int i, ret;
1098 
1099 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1100 		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1101 		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1102 					   RC_PROTO_BIT_UNKNOWN))
1103 			continue;
1104 
1105 		available = ir_raw_get_allowed_protocols();
1106 		if (!(*protocols & proto_names[i].type & ~available))
1107 			continue;
1108 
1109 		if (!proto_names[i].module_name) {
1110 			pr_err("Can't enable IR protocol %s\n",
1111 			       proto_names[i].name);
1112 			*protocols &= ~proto_names[i].type;
1113 			continue;
1114 		}
1115 
1116 		ret = request_module("%s", proto_names[i].module_name);
1117 		if (ret < 0) {
1118 			pr_err("Couldn't load IR protocol module %s\n",
1119 			       proto_names[i].module_name);
1120 			*protocols &= ~proto_names[i].type;
1121 			continue;
1122 		}
1123 		msleep(20);
1124 		available = ir_raw_get_allowed_protocols();
1125 		if (!(*protocols & proto_names[i].type & ~available))
1126 			continue;
1127 
1128 		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1129 		       proto_names[i].module_name,
1130 		       proto_names[i].name);
1131 		*protocols &= ~proto_names[i].type;
1132 	}
1133 }
1134 
1135 /**
1136  * store_protocols() - changes the current/wakeup IR protocol(s)
1137  * @device:	the device descriptor
1138  * @mattr:	the device attribute struct
1139  * @buf:	a pointer to the input buffer
1140  * @len:	length of the input buffer
1141  *
1142  * This routine is for changing the IR protocol type.
1143  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1144  * See parse_protocol_change() for the valid commands.
1145  * Returns @len on success or a negative error code.
1146  *
1147  * dev->lock is taken to guard against races between
1148  * store_protocols and show_protocols.
1149  */
1150 static ssize_t store_protocols(struct device *device,
1151 			       struct device_attribute *mattr,
1152 			       const char *buf, size_t len)
1153 {
1154 	struct rc_dev *dev = to_rc_dev(device);
1155 	u64 *current_protocols;
1156 	struct rc_scancode_filter *filter;
1157 	u64 old_protocols, new_protocols;
1158 	ssize_t rc;
1159 
1160 	IR_dprintk(1, "Normal protocol change requested\n");
1161 	current_protocols = &dev->enabled_protocols;
1162 	filter = &dev->scancode_filter;
1163 
1164 	if (!dev->change_protocol) {
1165 		IR_dprintk(1, "Protocol switching not supported\n");
1166 		return -EINVAL;
1167 	}
1168 
1169 	mutex_lock(&dev->lock);
1170 
1171 	old_protocols = *current_protocols;
1172 	new_protocols = old_protocols;
1173 	rc = parse_protocol_change(&new_protocols, buf);
1174 	if (rc < 0)
1175 		goto out;
1176 
1177 	rc = dev->change_protocol(dev, &new_protocols);
1178 	if (rc < 0) {
1179 		IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1180 			   (long long)new_protocols);
1181 		goto out;
1182 	}
1183 
1184 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1185 		ir_raw_load_modules(&new_protocols);
1186 
1187 	if (new_protocols != old_protocols) {
1188 		*current_protocols = new_protocols;
1189 		IR_dprintk(1, "Protocols changed to 0x%llx\n",
1190 			   (long long)new_protocols);
1191 	}
1192 
1193 	/*
1194 	 * If a protocol change was attempted the filter may need updating, even
1195 	 * if the actual protocol mask hasn't changed (since the driver may have
1196 	 * cleared the filter).
1197 	 * Try setting the same filter with the new protocol (if any).
1198 	 * Fall back to clearing the filter.
1199 	 */
1200 	if (dev->s_filter && filter->mask) {
1201 		if (new_protocols)
1202 			rc = dev->s_filter(dev, filter);
1203 		else
1204 			rc = -1;
1205 
1206 		if (rc < 0) {
1207 			filter->data = 0;
1208 			filter->mask = 0;
1209 			dev->s_filter(dev, filter);
1210 		}
1211 	}
1212 
1213 	rc = len;
1214 
1215 out:
1216 	mutex_unlock(&dev->lock);
1217 	return rc;
1218 }
1219 
1220 /**
1221  * show_filter() - shows the current scancode filter value or mask
1222  * @device:	the device descriptor
1223  * @attr:	the device attribute struct
1224  * @buf:	a pointer to the output buffer
1225  *
1226  * This routine is a callback routine to read a scancode filter value or mask.
1227  * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1228  * It prints the current scancode filter value or mask of the appropriate filter
1229  * type in hexadecimal into @buf and returns the size of the buffer.
1230  *
1231  * Bits of the filter value corresponding to set bits in the filter mask are
1232  * compared against input scancodes and non-matching scancodes are discarded.
1233  *
1234  * dev->lock is taken to guard against races between
1235  * store_filter and show_filter.
1236  */
1237 static ssize_t show_filter(struct device *device,
1238 			   struct device_attribute *attr,
1239 			   char *buf)
1240 {
1241 	struct rc_dev *dev = to_rc_dev(device);
1242 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1243 	struct rc_scancode_filter *filter;
1244 	u32 val;
1245 
1246 	mutex_lock(&dev->lock);
1247 
1248 	if (fattr->type == RC_FILTER_NORMAL)
1249 		filter = &dev->scancode_filter;
1250 	else
1251 		filter = &dev->scancode_wakeup_filter;
1252 
1253 	if (fattr->mask)
1254 		val = filter->mask;
1255 	else
1256 		val = filter->data;
1257 	mutex_unlock(&dev->lock);
1258 
1259 	return sprintf(buf, "%#x\n", val);
1260 }
1261 
1262 /**
1263  * store_filter() - changes the scancode filter value
1264  * @device:	the device descriptor
1265  * @attr:	the device attribute struct
1266  * @buf:	a pointer to the input buffer
1267  * @len:	length of the input buffer
1268  *
1269  * This routine is for changing a scancode filter value or mask.
1270  * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1271  * Returns -EINVAL if an invalid filter value for the current protocol was
1272  * specified or if scancode filtering is not supported by the driver, otherwise
1273  * returns @len.
1274  *
1275  * Bits of the filter value corresponding to set bits in the filter mask are
1276  * compared against input scancodes and non-matching scancodes are discarded.
1277  *
1278  * dev->lock is taken to guard against races between
1279  * store_filter and show_filter.
1280  */
1281 static ssize_t store_filter(struct device *device,
1282 			    struct device_attribute *attr,
1283 			    const char *buf, size_t len)
1284 {
1285 	struct rc_dev *dev = to_rc_dev(device);
1286 	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1287 	struct rc_scancode_filter new_filter, *filter;
1288 	int ret;
1289 	unsigned long val;
1290 	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1291 
1292 	ret = kstrtoul(buf, 0, &val);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	if (fattr->type == RC_FILTER_NORMAL) {
1297 		set_filter = dev->s_filter;
1298 		filter = &dev->scancode_filter;
1299 	} else {
1300 		set_filter = dev->s_wakeup_filter;
1301 		filter = &dev->scancode_wakeup_filter;
1302 	}
1303 
1304 	if (!set_filter)
1305 		return -EINVAL;
1306 
1307 	mutex_lock(&dev->lock);
1308 
1309 	new_filter = *filter;
1310 	if (fattr->mask)
1311 		new_filter.mask = val;
1312 	else
1313 		new_filter.data = val;
1314 
1315 	if (fattr->type == RC_FILTER_WAKEUP) {
1316 		/*
1317 		 * Refuse to set a filter unless a protocol is enabled
1318 		 * and the filter is valid for that protocol
1319 		 */
1320 		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1321 			ret = rc_validate_filter(dev, &new_filter);
1322 		else
1323 			ret = -EINVAL;
1324 
1325 		if (ret != 0)
1326 			goto unlock;
1327 	}
1328 
1329 	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1330 	    val) {
1331 		/* refuse to set a filter unless a protocol is enabled */
1332 		ret = -EINVAL;
1333 		goto unlock;
1334 	}
1335 
1336 	ret = set_filter(dev, &new_filter);
1337 	if (ret < 0)
1338 		goto unlock;
1339 
1340 	*filter = new_filter;
1341 
1342 unlock:
1343 	mutex_unlock(&dev->lock);
1344 	return (ret < 0) ? ret : len;
1345 }
1346 
1347 /**
1348  * show_wakeup_protocols() - shows the wakeup IR protocol
1349  * @device:	the device descriptor
1350  * @mattr:	the device attribute struct
1351  * @buf:	a pointer to the output buffer
1352  *
1353  * This routine is a callback routine for input read the IR protocol type(s).
1354  * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1355  * It returns the protocol names of supported protocols.
1356  * The enabled protocols are printed in brackets.
1357  *
1358  * dev->lock is taken to guard against races between
1359  * store_wakeup_protocols and show_wakeup_protocols.
1360  */
1361 static ssize_t show_wakeup_protocols(struct device *device,
1362 				     struct device_attribute *mattr,
1363 				     char *buf)
1364 {
1365 	struct rc_dev *dev = to_rc_dev(device);
1366 	u64 allowed;
1367 	enum rc_proto enabled;
1368 	char *tmp = buf;
1369 	int i;
1370 
1371 	mutex_lock(&dev->lock);
1372 
1373 	allowed = dev->allowed_wakeup_protocols;
1374 	enabled = dev->wakeup_protocol;
1375 
1376 	mutex_unlock(&dev->lock);
1377 
1378 	IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1379 		   __func__, (long long)allowed, enabled);
1380 
1381 	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1382 		if (allowed & (1ULL << i)) {
1383 			if (i == enabled)
1384 				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1385 			else
1386 				tmp += sprintf(tmp, "%s ", protocols[i].name);
1387 		}
1388 	}
1389 
1390 	if (tmp != buf)
1391 		tmp--;
1392 	*tmp = '\n';
1393 
1394 	return tmp + 1 - buf;
1395 }
1396 
1397 /**
1398  * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1399  * @device:	the device descriptor
1400  * @mattr:	the device attribute struct
1401  * @buf:	a pointer to the input buffer
1402  * @len:	length of the input buffer
1403  *
1404  * This routine is for changing the IR protocol type.
1405  * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1406  * Returns @len on success or a negative error code.
1407  *
1408  * dev->lock is taken to guard against races between
1409  * store_wakeup_protocols and show_wakeup_protocols.
1410  */
1411 static ssize_t store_wakeup_protocols(struct device *device,
1412 				      struct device_attribute *mattr,
1413 				      const char *buf, size_t len)
1414 {
1415 	struct rc_dev *dev = to_rc_dev(device);
1416 	enum rc_proto protocol;
1417 	ssize_t rc;
1418 	u64 allowed;
1419 	int i;
1420 
1421 	mutex_lock(&dev->lock);
1422 
1423 	allowed = dev->allowed_wakeup_protocols;
1424 
1425 	if (sysfs_streq(buf, "none")) {
1426 		protocol = RC_PROTO_UNKNOWN;
1427 	} else {
1428 		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1429 			if ((allowed & (1ULL << i)) &&
1430 			    sysfs_streq(buf, protocols[i].name)) {
1431 				protocol = i;
1432 				break;
1433 			}
1434 		}
1435 
1436 		if (i == ARRAY_SIZE(protocols)) {
1437 			rc = -EINVAL;
1438 			goto out;
1439 		}
1440 
1441 		if (dev->encode_wakeup) {
1442 			u64 mask = 1ULL << protocol;
1443 
1444 			ir_raw_load_modules(&mask);
1445 			if (!mask) {
1446 				rc = -EINVAL;
1447 				goto out;
1448 			}
1449 		}
1450 	}
1451 
1452 	if (dev->wakeup_protocol != protocol) {
1453 		dev->wakeup_protocol = protocol;
1454 		IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1455 
1456 		if (protocol == RC_PROTO_RC6_MCE)
1457 			dev->scancode_wakeup_filter.data = 0x800f0000;
1458 		else
1459 			dev->scancode_wakeup_filter.data = 0;
1460 		dev->scancode_wakeup_filter.mask = 0;
1461 
1462 		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1463 		if (rc == 0)
1464 			rc = len;
1465 	} else {
1466 		rc = len;
1467 	}
1468 
1469 out:
1470 	mutex_unlock(&dev->lock);
1471 	return rc;
1472 }
1473 
1474 static void rc_dev_release(struct device *device)
1475 {
1476 	struct rc_dev *dev = to_rc_dev(device);
1477 
1478 	kfree(dev);
1479 }
1480 
1481 #define ADD_HOTPLUG_VAR(fmt, val...)					\
1482 	do {								\
1483 		int err = add_uevent_var(env, fmt, val);		\
1484 		if (err)						\
1485 			return err;					\
1486 	} while (0)
1487 
1488 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1489 {
1490 	struct rc_dev *dev = to_rc_dev(device);
1491 
1492 	if (dev->rc_map.name)
1493 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1494 	if (dev->driver_name)
1495 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1496 	if (dev->device_name)
1497 		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1498 
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Static device attribute struct with the sysfs attributes for IR's
1504  */
1505 static struct device_attribute dev_attr_ro_protocols =
1506 __ATTR(protocols, 0444, show_protocols, NULL);
1507 static struct device_attribute dev_attr_rw_protocols =
1508 __ATTR(protocols, 0644, show_protocols, store_protocols);
1509 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1510 		   store_wakeup_protocols);
1511 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1512 		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1513 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1514 		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1515 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1516 		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1517 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1518 		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1519 
1520 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1521 	&dev_attr_rw_protocols.attr,
1522 	NULL,
1523 };
1524 
1525 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1526 	.attrs	= rc_dev_rw_protocol_attrs,
1527 };
1528 
1529 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1530 	&dev_attr_ro_protocols.attr,
1531 	NULL,
1532 };
1533 
1534 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1535 	.attrs	= rc_dev_ro_protocol_attrs,
1536 };
1537 
1538 static struct attribute *rc_dev_filter_attrs[] = {
1539 	&dev_attr_filter.attr.attr,
1540 	&dev_attr_filter_mask.attr.attr,
1541 	NULL,
1542 };
1543 
1544 static const struct attribute_group rc_dev_filter_attr_grp = {
1545 	.attrs	= rc_dev_filter_attrs,
1546 };
1547 
1548 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1549 	&dev_attr_wakeup_filter.attr.attr,
1550 	&dev_attr_wakeup_filter_mask.attr.attr,
1551 	&dev_attr_wakeup_protocols.attr,
1552 	NULL,
1553 };
1554 
1555 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1556 	.attrs	= rc_dev_wakeup_filter_attrs,
1557 };
1558 
1559 static const struct device_type rc_dev_type = {
1560 	.release	= rc_dev_release,
1561 	.uevent		= rc_dev_uevent,
1562 };
1563 
1564 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1565 {
1566 	struct rc_dev *dev;
1567 
1568 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1569 	if (!dev)
1570 		return NULL;
1571 
1572 	if (type != RC_DRIVER_IR_RAW_TX) {
1573 		dev->input_dev = input_allocate_device();
1574 		if (!dev->input_dev) {
1575 			kfree(dev);
1576 			return NULL;
1577 		}
1578 
1579 		dev->input_dev->getkeycode = ir_getkeycode;
1580 		dev->input_dev->setkeycode = ir_setkeycode;
1581 		input_set_drvdata(dev->input_dev, dev);
1582 
1583 		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1584 
1585 		spin_lock_init(&dev->rc_map.lock);
1586 		spin_lock_init(&dev->keylock);
1587 	}
1588 	mutex_init(&dev->lock);
1589 
1590 	dev->dev.type = &rc_dev_type;
1591 	dev->dev.class = &rc_class;
1592 	device_initialize(&dev->dev);
1593 
1594 	dev->driver_type = type;
1595 
1596 	__module_get(THIS_MODULE);
1597 	return dev;
1598 }
1599 EXPORT_SYMBOL_GPL(rc_allocate_device);
1600 
1601 void rc_free_device(struct rc_dev *dev)
1602 {
1603 	if (!dev)
1604 		return;
1605 
1606 	input_free_device(dev->input_dev);
1607 
1608 	put_device(&dev->dev);
1609 
1610 	/* kfree(dev) will be called by the callback function
1611 	   rc_dev_release() */
1612 
1613 	module_put(THIS_MODULE);
1614 }
1615 EXPORT_SYMBOL_GPL(rc_free_device);
1616 
1617 static void devm_rc_alloc_release(struct device *dev, void *res)
1618 {
1619 	rc_free_device(*(struct rc_dev **)res);
1620 }
1621 
1622 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1623 				       enum rc_driver_type type)
1624 {
1625 	struct rc_dev **dr, *rc;
1626 
1627 	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1628 	if (!dr)
1629 		return NULL;
1630 
1631 	rc = rc_allocate_device(type);
1632 	if (!rc) {
1633 		devres_free(dr);
1634 		return NULL;
1635 	}
1636 
1637 	rc->dev.parent = dev;
1638 	rc->managed_alloc = true;
1639 	*dr = rc;
1640 	devres_add(dev, dr);
1641 
1642 	return rc;
1643 }
1644 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1645 
1646 static int rc_prepare_rx_device(struct rc_dev *dev)
1647 {
1648 	int rc;
1649 	struct rc_map *rc_map;
1650 	u64 rc_proto;
1651 
1652 	if (!dev->map_name)
1653 		return -EINVAL;
1654 
1655 	rc_map = rc_map_get(dev->map_name);
1656 	if (!rc_map)
1657 		rc_map = rc_map_get(RC_MAP_EMPTY);
1658 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1659 		return -EINVAL;
1660 
1661 	rc = ir_setkeytable(dev, rc_map);
1662 	if (rc)
1663 		return rc;
1664 
1665 	rc_proto = BIT_ULL(rc_map->rc_proto);
1666 
1667 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1668 		dev->enabled_protocols = dev->allowed_protocols;
1669 
1670 	if (dev->change_protocol) {
1671 		rc = dev->change_protocol(dev, &rc_proto);
1672 		if (rc < 0)
1673 			goto out_table;
1674 		dev->enabled_protocols = rc_proto;
1675 	}
1676 
1677 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1678 		ir_raw_load_modules(&rc_proto);
1679 
1680 	set_bit(EV_KEY, dev->input_dev->evbit);
1681 	set_bit(EV_REP, dev->input_dev->evbit);
1682 	set_bit(EV_MSC, dev->input_dev->evbit);
1683 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1684 	if (dev->open)
1685 		dev->input_dev->open = ir_open;
1686 	if (dev->close)
1687 		dev->input_dev->close = ir_close;
1688 
1689 	dev->input_dev->dev.parent = &dev->dev;
1690 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1691 	dev->input_dev->phys = dev->input_phys;
1692 	dev->input_dev->name = dev->device_name;
1693 
1694 	return 0;
1695 
1696 out_table:
1697 	ir_free_table(&dev->rc_map);
1698 
1699 	return rc;
1700 }
1701 
1702 static int rc_setup_rx_device(struct rc_dev *dev)
1703 {
1704 	int rc;
1705 
1706 	/* rc_open will be called here */
1707 	rc = input_register_device(dev->input_dev);
1708 	if (rc)
1709 		return rc;
1710 
1711 	/*
1712 	 * Default delay of 250ms is too short for some protocols, especially
1713 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1714 	 * to avoid wrong repetition of the keycodes. Note that this must be
1715 	 * set after the call to input_register_device().
1716 	 */
1717 	dev->input_dev->rep[REP_DELAY] = 500;
1718 
1719 	/*
1720 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1721 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1722 	 * to do.
1723 	 */
1724 	dev->input_dev->rep[REP_PERIOD] = 125;
1725 
1726 	return 0;
1727 }
1728 
1729 static void rc_free_rx_device(struct rc_dev *dev)
1730 {
1731 	if (!dev)
1732 		return;
1733 
1734 	if (dev->input_dev) {
1735 		input_unregister_device(dev->input_dev);
1736 		dev->input_dev = NULL;
1737 	}
1738 
1739 	ir_free_table(&dev->rc_map);
1740 }
1741 
1742 int rc_register_device(struct rc_dev *dev)
1743 {
1744 	const char *path;
1745 	int attr = 0;
1746 	int minor;
1747 	int rc;
1748 
1749 	if (!dev)
1750 		return -EINVAL;
1751 
1752 	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1753 	if (minor < 0)
1754 		return minor;
1755 
1756 	dev->minor = minor;
1757 	dev_set_name(&dev->dev, "rc%u", dev->minor);
1758 	dev_set_drvdata(&dev->dev, dev);
1759 
1760 	dev->dev.groups = dev->sysfs_groups;
1761 	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1762 		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1763 	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1764 		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1765 	if (dev->s_filter)
1766 		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1767 	if (dev->s_wakeup_filter)
1768 		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1769 	dev->sysfs_groups[attr++] = NULL;
1770 
1771 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1772 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1773 		rc = ir_raw_event_prepare(dev);
1774 		if (rc < 0)
1775 			goto out_minor;
1776 	}
1777 
1778 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1779 		rc = rc_prepare_rx_device(dev);
1780 		if (rc)
1781 			goto out_raw;
1782 	}
1783 
1784 	rc = device_add(&dev->dev);
1785 	if (rc)
1786 		goto out_rx_free;
1787 
1788 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1789 	dev_info(&dev->dev, "%s as %s\n",
1790 		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1791 	kfree(path);
1792 
1793 	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1794 		rc = rc_setup_rx_device(dev);
1795 		if (rc)
1796 			goto out_dev;
1797 	}
1798 
1799 	if (dev->driver_type == RC_DRIVER_IR_RAW ||
1800 	    dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1801 		rc = ir_raw_event_register(dev);
1802 		if (rc < 0)
1803 			goto out_rx;
1804 	}
1805 
1806 	IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1807 		   dev->minor,
1808 		   dev->driver_name ? dev->driver_name : "unknown");
1809 
1810 	return 0;
1811 
1812 out_rx:
1813 	rc_free_rx_device(dev);
1814 out_dev:
1815 	device_del(&dev->dev);
1816 out_rx_free:
1817 	ir_free_table(&dev->rc_map);
1818 out_raw:
1819 	ir_raw_event_free(dev);
1820 out_minor:
1821 	ida_simple_remove(&rc_ida, minor);
1822 	return rc;
1823 }
1824 EXPORT_SYMBOL_GPL(rc_register_device);
1825 
1826 static void devm_rc_release(struct device *dev, void *res)
1827 {
1828 	rc_unregister_device(*(struct rc_dev **)res);
1829 }
1830 
1831 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1832 {
1833 	struct rc_dev **dr;
1834 	int ret;
1835 
1836 	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1837 	if (!dr)
1838 		return -ENOMEM;
1839 
1840 	ret = rc_register_device(dev);
1841 	if (ret) {
1842 		devres_free(dr);
1843 		return ret;
1844 	}
1845 
1846 	*dr = dev;
1847 	devres_add(parent, dr);
1848 
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1852 
1853 void rc_unregister_device(struct rc_dev *dev)
1854 {
1855 	if (!dev)
1856 		return;
1857 
1858 	del_timer_sync(&dev->timer_keyup);
1859 
1860 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1861 		ir_raw_event_unregister(dev);
1862 
1863 	rc_free_rx_device(dev);
1864 
1865 	device_del(&dev->dev);
1866 
1867 	ida_simple_remove(&rc_ida, dev->minor);
1868 
1869 	if (!dev->managed_alloc)
1870 		rc_free_device(dev);
1871 }
1872 
1873 EXPORT_SYMBOL_GPL(rc_unregister_device);
1874 
1875 /*
1876  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1877  */
1878 
1879 static int __init rc_core_init(void)
1880 {
1881 	int rc = class_register(&rc_class);
1882 	if (rc) {
1883 		pr_err("rc_core: unable to register rc class\n");
1884 		return rc;
1885 	}
1886 
1887 	led_trigger_register_simple("rc-feedback", &led_feedback);
1888 	rc_map_register(&empty_map);
1889 
1890 	return 0;
1891 }
1892 
1893 static void __exit rc_core_exit(void)
1894 {
1895 	class_unregister(&rc_class);
1896 	led_trigger_unregister_simple(led_feedback);
1897 	rc_map_unregister(&empty_map);
1898 }
1899 
1900 subsys_initcall(rc_core_init);
1901 module_exit(rc_core_exit);
1902 
1903 int rc_core_debug;    /* ir_debug level (0,1,2) */
1904 EXPORT_SYMBOL_GPL(rc_core_debug);
1905 module_param_named(debug, rc_core_debug, int, 0644);
1906 
1907 MODULE_AUTHOR("Mauro Carvalho Chehab");
1908 MODULE_LICENSE("GPL");
1909