xref: /openbmc/linux/drivers/media/rc/rc-main.c (revision 0d456bad)
1 /* rc-main.c - Remote Controller core module
2  *
3  * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation version 2 of the License.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  */
14 
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include "rc-core-priv.h"
23 
24 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
25 #define IR_TAB_MIN_SIZE	256
26 #define IR_TAB_MAX_SIZE	8192
27 
28 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
29 #define IR_KEYPRESS_TIMEOUT 250
30 
31 /* Used to keep track of known keymaps */
32 static LIST_HEAD(rc_map_list);
33 static DEFINE_SPINLOCK(rc_map_lock);
34 
35 static struct rc_map_list *seek_rc_map(const char *name)
36 {
37 	struct rc_map_list *map = NULL;
38 
39 	spin_lock(&rc_map_lock);
40 	list_for_each_entry(map, &rc_map_list, list) {
41 		if (!strcmp(name, map->map.name)) {
42 			spin_unlock(&rc_map_lock);
43 			return map;
44 		}
45 	}
46 	spin_unlock(&rc_map_lock);
47 
48 	return NULL;
49 }
50 
51 struct rc_map *rc_map_get(const char *name)
52 {
53 
54 	struct rc_map_list *map;
55 
56 	map = seek_rc_map(name);
57 #ifdef MODULE
58 	if (!map) {
59 		int rc = request_module(name);
60 		if (rc < 0) {
61 			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
62 			return NULL;
63 		}
64 		msleep(20);	/* Give some time for IR to register */
65 
66 		map = seek_rc_map(name);
67 	}
68 #endif
69 	if (!map) {
70 		printk(KERN_ERR "IR keymap %s not found\n", name);
71 		return NULL;
72 	}
73 
74 	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
75 
76 	return &map->map;
77 }
78 EXPORT_SYMBOL_GPL(rc_map_get);
79 
80 int rc_map_register(struct rc_map_list *map)
81 {
82 	spin_lock(&rc_map_lock);
83 	list_add_tail(&map->list, &rc_map_list);
84 	spin_unlock(&rc_map_lock);
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(rc_map_register);
88 
89 void rc_map_unregister(struct rc_map_list *map)
90 {
91 	spin_lock(&rc_map_lock);
92 	list_del(&map->list);
93 	spin_unlock(&rc_map_lock);
94 }
95 EXPORT_SYMBOL_GPL(rc_map_unregister);
96 
97 
98 static struct rc_map_table empty[] = {
99 	{ 0x2a, KEY_COFFEE },
100 };
101 
102 static struct rc_map_list empty_map = {
103 	.map = {
104 		.scan    = empty,
105 		.size    = ARRAY_SIZE(empty),
106 		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
107 		.name    = RC_MAP_EMPTY,
108 	}
109 };
110 
111 /**
112  * ir_create_table() - initializes a scancode table
113  * @rc_map:	the rc_map to initialize
114  * @name:	name to assign to the table
115  * @rc_type:	ir type to assign to the new table
116  * @size:	initial size of the table
117  * @return:	zero on success or a negative error code
118  *
119  * This routine will initialize the rc_map and will allocate
120  * memory to hold at least the specified number of elements.
121  */
122 static int ir_create_table(struct rc_map *rc_map,
123 			   const char *name, u64 rc_type, size_t size)
124 {
125 	rc_map->name = name;
126 	rc_map->rc_type = rc_type;
127 	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
128 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
129 	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
130 	if (!rc_map->scan)
131 		return -ENOMEM;
132 
133 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
134 		   rc_map->size, rc_map->alloc);
135 	return 0;
136 }
137 
138 /**
139  * ir_free_table() - frees memory allocated by a scancode table
140  * @rc_map:	the table whose mappings need to be freed
141  *
142  * This routine will free memory alloctaed for key mappings used by given
143  * scancode table.
144  */
145 static void ir_free_table(struct rc_map *rc_map)
146 {
147 	rc_map->size = 0;
148 	kfree(rc_map->scan);
149 	rc_map->scan = NULL;
150 }
151 
152 /**
153  * ir_resize_table() - resizes a scancode table if necessary
154  * @rc_map:	the rc_map to resize
155  * @gfp_flags:	gfp flags to use when allocating memory
156  * @return:	zero on success or a negative error code
157  *
158  * This routine will shrink the rc_map if it has lots of
159  * unused entries and grow it if it is full.
160  */
161 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
162 {
163 	unsigned int oldalloc = rc_map->alloc;
164 	unsigned int newalloc = oldalloc;
165 	struct rc_map_table *oldscan = rc_map->scan;
166 	struct rc_map_table *newscan;
167 
168 	if (rc_map->size == rc_map->len) {
169 		/* All entries in use -> grow keytable */
170 		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
171 			return -ENOMEM;
172 
173 		newalloc *= 2;
174 		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
175 	}
176 
177 	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
178 		/* Less than 1/3 of entries in use -> shrink keytable */
179 		newalloc /= 2;
180 		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
181 	}
182 
183 	if (newalloc == oldalloc)
184 		return 0;
185 
186 	newscan = kmalloc(newalloc, gfp_flags);
187 	if (!newscan) {
188 		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
189 		return -ENOMEM;
190 	}
191 
192 	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
193 	rc_map->scan = newscan;
194 	rc_map->alloc = newalloc;
195 	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
196 	kfree(oldscan);
197 	return 0;
198 }
199 
200 /**
201  * ir_update_mapping() - set a keycode in the scancode->keycode table
202  * @dev:	the struct rc_dev device descriptor
203  * @rc_map:	scancode table to be adjusted
204  * @index:	index of the mapping that needs to be updated
205  * @keycode:	the desired keycode
206  * @return:	previous keycode assigned to the mapping
207  *
208  * This routine is used to update scancode->keycode mapping at given
209  * position.
210  */
211 static unsigned int ir_update_mapping(struct rc_dev *dev,
212 				      struct rc_map *rc_map,
213 				      unsigned int index,
214 				      unsigned int new_keycode)
215 {
216 	int old_keycode = rc_map->scan[index].keycode;
217 	int i;
218 
219 	/* Did the user wish to remove the mapping? */
220 	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
221 		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
222 			   index, rc_map->scan[index].scancode);
223 		rc_map->len--;
224 		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
225 			(rc_map->len - index) * sizeof(struct rc_map_table));
226 	} else {
227 		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
228 			   index,
229 			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
230 			   rc_map->scan[index].scancode, new_keycode);
231 		rc_map->scan[index].keycode = new_keycode;
232 		__set_bit(new_keycode, dev->input_dev->keybit);
233 	}
234 
235 	if (old_keycode != KEY_RESERVED) {
236 		/* A previous mapping was updated... */
237 		__clear_bit(old_keycode, dev->input_dev->keybit);
238 		/* ... but another scancode might use the same keycode */
239 		for (i = 0; i < rc_map->len; i++) {
240 			if (rc_map->scan[i].keycode == old_keycode) {
241 				__set_bit(old_keycode, dev->input_dev->keybit);
242 				break;
243 			}
244 		}
245 
246 		/* Possibly shrink the keytable, failure is not a problem */
247 		ir_resize_table(rc_map, GFP_ATOMIC);
248 	}
249 
250 	return old_keycode;
251 }
252 
253 /**
254  * ir_establish_scancode() - set a keycode in the scancode->keycode table
255  * @dev:	the struct rc_dev device descriptor
256  * @rc_map:	scancode table to be searched
257  * @scancode:	the desired scancode
258  * @resize:	controls whether we allowed to resize the table to
259  *		accommodate not yet present scancodes
260  * @return:	index of the mapping containing scancode in question
261  *		or -1U in case of failure.
262  *
263  * This routine is used to locate given scancode in rc_map.
264  * If scancode is not yet present the routine will allocate a new slot
265  * for it.
266  */
267 static unsigned int ir_establish_scancode(struct rc_dev *dev,
268 					  struct rc_map *rc_map,
269 					  unsigned int scancode,
270 					  bool resize)
271 {
272 	unsigned int i;
273 
274 	/*
275 	 * Unfortunately, some hardware-based IR decoders don't provide
276 	 * all bits for the complete IR code. In general, they provide only
277 	 * the command part of the IR code. Yet, as it is possible to replace
278 	 * the provided IR with another one, it is needed to allow loading
279 	 * IR tables from other remotes. So, we support specifying a mask to
280 	 * indicate the valid bits of the scancodes.
281 	 */
282 	if (dev->scanmask)
283 		scancode &= dev->scanmask;
284 
285 	/* First check if we already have a mapping for this ir command */
286 	for (i = 0; i < rc_map->len; i++) {
287 		if (rc_map->scan[i].scancode == scancode)
288 			return i;
289 
290 		/* Keytable is sorted from lowest to highest scancode */
291 		if (rc_map->scan[i].scancode >= scancode)
292 			break;
293 	}
294 
295 	/* No previous mapping found, we might need to grow the table */
296 	if (rc_map->size == rc_map->len) {
297 		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
298 			return -1U;
299 	}
300 
301 	/* i is the proper index to insert our new keycode */
302 	if (i < rc_map->len)
303 		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
304 			(rc_map->len - i) * sizeof(struct rc_map_table));
305 	rc_map->scan[i].scancode = scancode;
306 	rc_map->scan[i].keycode = KEY_RESERVED;
307 	rc_map->len++;
308 
309 	return i;
310 }
311 
312 /**
313  * ir_setkeycode() - set a keycode in the scancode->keycode table
314  * @idev:	the struct input_dev device descriptor
315  * @scancode:	the desired scancode
316  * @keycode:	result
317  * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
318  *
319  * This routine is used to handle evdev EVIOCSKEY ioctl.
320  */
321 static int ir_setkeycode(struct input_dev *idev,
322 			 const struct input_keymap_entry *ke,
323 			 unsigned int *old_keycode)
324 {
325 	struct rc_dev *rdev = input_get_drvdata(idev);
326 	struct rc_map *rc_map = &rdev->rc_map;
327 	unsigned int index;
328 	unsigned int scancode;
329 	int retval = 0;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&rc_map->lock, flags);
333 
334 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
335 		index = ke->index;
336 		if (index >= rc_map->len) {
337 			retval = -EINVAL;
338 			goto out;
339 		}
340 	} else {
341 		retval = input_scancode_to_scalar(ke, &scancode);
342 		if (retval)
343 			goto out;
344 
345 		index = ir_establish_scancode(rdev, rc_map, scancode, true);
346 		if (index >= rc_map->len) {
347 			retval = -ENOMEM;
348 			goto out;
349 		}
350 	}
351 
352 	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
353 
354 out:
355 	spin_unlock_irqrestore(&rc_map->lock, flags);
356 	return retval;
357 }
358 
359 /**
360  * ir_setkeytable() - sets several entries in the scancode->keycode table
361  * @dev:	the struct rc_dev device descriptor
362  * @to:		the struct rc_map to copy entries to
363  * @from:	the struct rc_map to copy entries from
364  * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
365  *
366  * This routine is used to handle table initialization.
367  */
368 static int ir_setkeytable(struct rc_dev *dev,
369 			  const struct rc_map *from)
370 {
371 	struct rc_map *rc_map = &dev->rc_map;
372 	unsigned int i, index;
373 	int rc;
374 
375 	rc = ir_create_table(rc_map, from->name,
376 			     from->rc_type, from->size);
377 	if (rc)
378 		return rc;
379 
380 	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
381 		   rc_map->size, rc_map->alloc);
382 
383 	for (i = 0; i < from->size; i++) {
384 		index = ir_establish_scancode(dev, rc_map,
385 					      from->scan[i].scancode, false);
386 		if (index >= rc_map->len) {
387 			rc = -ENOMEM;
388 			break;
389 		}
390 
391 		ir_update_mapping(dev, rc_map, index,
392 				  from->scan[i].keycode);
393 	}
394 
395 	if (rc)
396 		ir_free_table(rc_map);
397 
398 	return rc;
399 }
400 
401 /**
402  * ir_lookup_by_scancode() - locate mapping by scancode
403  * @rc_map:	the struct rc_map to search
404  * @scancode:	scancode to look for in the table
405  * @return:	index in the table, -1U if not found
406  *
407  * This routine performs binary search in RC keykeymap table for
408  * given scancode.
409  */
410 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
411 					  unsigned int scancode)
412 {
413 	int start = 0;
414 	int end = rc_map->len - 1;
415 	int mid;
416 
417 	while (start <= end) {
418 		mid = (start + end) / 2;
419 		if (rc_map->scan[mid].scancode < scancode)
420 			start = mid + 1;
421 		else if (rc_map->scan[mid].scancode > scancode)
422 			end = mid - 1;
423 		else
424 			return mid;
425 	}
426 
427 	return -1U;
428 }
429 
430 /**
431  * ir_getkeycode() - get a keycode from the scancode->keycode table
432  * @idev:	the struct input_dev device descriptor
433  * @scancode:	the desired scancode
434  * @keycode:	used to return the keycode, if found, or KEY_RESERVED
435  * @return:	always returns zero.
436  *
437  * This routine is used to handle evdev EVIOCGKEY ioctl.
438  */
439 static int ir_getkeycode(struct input_dev *idev,
440 			 struct input_keymap_entry *ke)
441 {
442 	struct rc_dev *rdev = input_get_drvdata(idev);
443 	struct rc_map *rc_map = &rdev->rc_map;
444 	struct rc_map_table *entry;
445 	unsigned long flags;
446 	unsigned int index;
447 	unsigned int scancode;
448 	int retval;
449 
450 	spin_lock_irqsave(&rc_map->lock, flags);
451 
452 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
453 		index = ke->index;
454 	} else {
455 		retval = input_scancode_to_scalar(ke, &scancode);
456 		if (retval)
457 			goto out;
458 
459 		index = ir_lookup_by_scancode(rc_map, scancode);
460 	}
461 
462 	if (index < rc_map->len) {
463 		entry = &rc_map->scan[index];
464 
465 		ke->index = index;
466 		ke->keycode = entry->keycode;
467 		ke->len = sizeof(entry->scancode);
468 		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
469 
470 	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
471 		/*
472 		 * We do not really know the valid range of scancodes
473 		 * so let's respond with KEY_RESERVED to anything we
474 		 * do not have mapping for [yet].
475 		 */
476 		ke->index = index;
477 		ke->keycode = KEY_RESERVED;
478 	} else {
479 		retval = -EINVAL;
480 		goto out;
481 	}
482 
483 	retval = 0;
484 
485 out:
486 	spin_unlock_irqrestore(&rc_map->lock, flags);
487 	return retval;
488 }
489 
490 /**
491  * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
492  * @dev:	the struct rc_dev descriptor of the device
493  * @scancode:	the scancode to look for
494  * @return:	the corresponding keycode, or KEY_RESERVED
495  *
496  * This routine is used by drivers which need to convert a scancode to a
497  * keycode. Normally it should not be used since drivers should have no
498  * interest in keycodes.
499  */
500 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
501 {
502 	struct rc_map *rc_map = &dev->rc_map;
503 	unsigned int keycode;
504 	unsigned int index;
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&rc_map->lock, flags);
508 
509 	index = ir_lookup_by_scancode(rc_map, scancode);
510 	keycode = index < rc_map->len ?
511 			rc_map->scan[index].keycode : KEY_RESERVED;
512 
513 	spin_unlock_irqrestore(&rc_map->lock, flags);
514 
515 	if (keycode != KEY_RESERVED)
516 		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
517 			   dev->input_name, scancode, keycode);
518 
519 	return keycode;
520 }
521 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
522 
523 /**
524  * ir_do_keyup() - internal function to signal the release of a keypress
525  * @dev:	the struct rc_dev descriptor of the device
526  * @sync:	whether or not to call input_sync
527  *
528  * This function is used internally to release a keypress, it must be
529  * called with keylock held.
530  */
531 static void ir_do_keyup(struct rc_dev *dev, bool sync)
532 {
533 	if (!dev->keypressed)
534 		return;
535 
536 	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
537 	input_report_key(dev->input_dev, dev->last_keycode, 0);
538 	if (sync)
539 		input_sync(dev->input_dev);
540 	dev->keypressed = false;
541 }
542 
543 /**
544  * rc_keyup() - signals the release of a keypress
545  * @dev:	the struct rc_dev descriptor of the device
546  *
547  * This routine is used to signal that a key has been released on the
548  * remote control.
549  */
550 void rc_keyup(struct rc_dev *dev)
551 {
552 	unsigned long flags;
553 
554 	spin_lock_irqsave(&dev->keylock, flags);
555 	ir_do_keyup(dev, true);
556 	spin_unlock_irqrestore(&dev->keylock, flags);
557 }
558 EXPORT_SYMBOL_GPL(rc_keyup);
559 
560 /**
561  * ir_timer_keyup() - generates a keyup event after a timeout
562  * @cookie:	a pointer to the struct rc_dev for the device
563  *
564  * This routine will generate a keyup event some time after a keydown event
565  * is generated when no further activity has been detected.
566  */
567 static void ir_timer_keyup(unsigned long cookie)
568 {
569 	struct rc_dev *dev = (struct rc_dev *)cookie;
570 	unsigned long flags;
571 
572 	/*
573 	 * ir->keyup_jiffies is used to prevent a race condition if a
574 	 * hardware interrupt occurs at this point and the keyup timer
575 	 * event is moved further into the future as a result.
576 	 *
577 	 * The timer will then be reactivated and this function called
578 	 * again in the future. We need to exit gracefully in that case
579 	 * to allow the input subsystem to do its auto-repeat magic or
580 	 * a keyup event might follow immediately after the keydown.
581 	 */
582 	spin_lock_irqsave(&dev->keylock, flags);
583 	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
584 		ir_do_keyup(dev, true);
585 	spin_unlock_irqrestore(&dev->keylock, flags);
586 }
587 
588 /**
589  * rc_repeat() - signals that a key is still pressed
590  * @dev:	the struct rc_dev descriptor of the device
591  *
592  * This routine is used by IR decoders when a repeat message which does
593  * not include the necessary bits to reproduce the scancode has been
594  * received.
595  */
596 void rc_repeat(struct rc_dev *dev)
597 {
598 	unsigned long flags;
599 
600 	spin_lock_irqsave(&dev->keylock, flags);
601 
602 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
603 	input_sync(dev->input_dev);
604 
605 	if (!dev->keypressed)
606 		goto out;
607 
608 	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
609 	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
610 
611 out:
612 	spin_unlock_irqrestore(&dev->keylock, flags);
613 }
614 EXPORT_SYMBOL_GPL(rc_repeat);
615 
616 /**
617  * ir_do_keydown() - internal function to process a keypress
618  * @dev:	the struct rc_dev descriptor of the device
619  * @scancode:   the scancode of the keypress
620  * @keycode:    the keycode of the keypress
621  * @toggle:     the toggle value of the keypress
622  *
623  * This function is used internally to register a keypress, it must be
624  * called with keylock held.
625  */
626 static void ir_do_keydown(struct rc_dev *dev, int scancode,
627 			  u32 keycode, u8 toggle)
628 {
629 	bool new_event = !dev->keypressed ||
630 			 dev->last_scancode != scancode ||
631 			 dev->last_toggle != toggle;
632 
633 	if (new_event && dev->keypressed)
634 		ir_do_keyup(dev, false);
635 
636 	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
637 
638 	if (new_event && keycode != KEY_RESERVED) {
639 		/* Register a keypress */
640 		dev->keypressed = true;
641 		dev->last_scancode = scancode;
642 		dev->last_toggle = toggle;
643 		dev->last_keycode = keycode;
644 
645 		IR_dprintk(1, "%s: key down event, "
646 			   "key 0x%04x, scancode 0x%04x\n",
647 			   dev->input_name, keycode, scancode);
648 		input_report_key(dev->input_dev, keycode, 1);
649 	}
650 
651 	input_sync(dev->input_dev);
652 }
653 
654 /**
655  * rc_keydown() - generates input event for a key press
656  * @dev:	the struct rc_dev descriptor of the device
657  * @scancode:   the scancode that we're seeking
658  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
659  *              support toggle values, this should be set to zero)
660  *
661  * This routine is used to signal that a key has been pressed on the
662  * remote control.
663  */
664 void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
665 {
666 	unsigned long flags;
667 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
668 
669 	spin_lock_irqsave(&dev->keylock, flags);
670 	ir_do_keydown(dev, scancode, keycode, toggle);
671 
672 	if (dev->keypressed) {
673 		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
674 		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
675 	}
676 	spin_unlock_irqrestore(&dev->keylock, flags);
677 }
678 EXPORT_SYMBOL_GPL(rc_keydown);
679 
680 /**
681  * rc_keydown_notimeout() - generates input event for a key press without
682  *                          an automatic keyup event at a later time
683  * @dev:	the struct rc_dev descriptor of the device
684  * @scancode:   the scancode that we're seeking
685  * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
686  *              support toggle values, this should be set to zero)
687  *
688  * This routine is used to signal that a key has been pressed on the
689  * remote control. The driver must manually call rc_keyup() at a later stage.
690  */
691 void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
692 {
693 	unsigned long flags;
694 	u32 keycode = rc_g_keycode_from_table(dev, scancode);
695 
696 	spin_lock_irqsave(&dev->keylock, flags);
697 	ir_do_keydown(dev, scancode, keycode, toggle);
698 	spin_unlock_irqrestore(&dev->keylock, flags);
699 }
700 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
701 
702 static int ir_open(struct input_dev *idev)
703 {
704 	struct rc_dev *rdev = input_get_drvdata(idev);
705 
706 	return rdev->open(rdev);
707 }
708 
709 static void ir_close(struct input_dev *idev)
710 {
711 	struct rc_dev *rdev = input_get_drvdata(idev);
712 
713 	 if (rdev)
714 		rdev->close(rdev);
715 }
716 
717 /* class for /sys/class/rc */
718 static char *ir_devnode(struct device *dev, umode_t *mode)
719 {
720 	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
721 }
722 
723 static struct class ir_input_class = {
724 	.name		= "rc",
725 	.devnode	= ir_devnode,
726 };
727 
728 /*
729  * These are the protocol textual descriptions that are
730  * used by the sysfs protocols file. Note that the order
731  * of the entries is relevant.
732  */
733 static struct {
734 	u64	type;
735 	char	*name;
736 } proto_names[] = {
737 	{ RC_BIT_NONE,		"none"		},
738 	{ RC_BIT_OTHER,		"other"		},
739 	{ RC_BIT_UNKNOWN,	"unknown"	},
740 	{ RC_BIT_RC5 |
741 	  RC_BIT_RC5X,		"rc-5"		},
742 	{ RC_BIT_NEC,		"nec"		},
743 	{ RC_BIT_RC6_0 |
744 	  RC_BIT_RC6_6A_20 |
745 	  RC_BIT_RC6_6A_24 |
746 	  RC_BIT_RC6_6A_32 |
747 	  RC_BIT_RC6_MCE,	"rc-6"		},
748 	{ RC_BIT_JVC,		"jvc"		},
749 	{ RC_BIT_SONY12 |
750 	  RC_BIT_SONY15 |
751 	  RC_BIT_SONY20,	"sony"		},
752 	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
753 	{ RC_BIT_SANYO,		"sanyo"		},
754 	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
755 	{ RC_BIT_LIRC,		"lirc"		},
756 };
757 
758 /**
759  * show_protocols() - shows the current IR protocol(s)
760  * @device:	the device descriptor
761  * @mattr:	the device attribute struct (unused)
762  * @buf:	a pointer to the output buffer
763  *
764  * This routine is a callback routine for input read the IR protocol type(s).
765  * it is trigged by reading /sys/class/rc/rc?/protocols.
766  * It returns the protocol names of supported protocols.
767  * Enabled protocols are printed in brackets.
768  *
769  * dev->lock is taken to guard against races between device
770  * registration, store_protocols and show_protocols.
771  */
772 static ssize_t show_protocols(struct device *device,
773 			      struct device_attribute *mattr, char *buf)
774 {
775 	struct rc_dev *dev = to_rc_dev(device);
776 	u64 allowed, enabled;
777 	char *tmp = buf;
778 	int i;
779 
780 	/* Device is being removed */
781 	if (!dev)
782 		return -EINVAL;
783 
784 	mutex_lock(&dev->lock);
785 
786 	if (dev->driver_type == RC_DRIVER_SCANCODE) {
787 		enabled = dev->rc_map.rc_type;
788 		allowed = dev->allowed_protos;
789 	} else if (dev->raw) {
790 		enabled = dev->raw->enabled_protocols;
791 		allowed = ir_raw_get_allowed_protocols();
792 	} else
793 		return -ENODEV;
794 
795 	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
796 		   (long long)allowed,
797 		   (long long)enabled);
798 
799 	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
800 		if (allowed & enabled & proto_names[i].type)
801 			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
802 		else if (allowed & proto_names[i].type)
803 			tmp += sprintf(tmp, "%s ", proto_names[i].name);
804 
805 		if (allowed & proto_names[i].type)
806 			allowed &= ~proto_names[i].type;
807 	}
808 
809 	if (tmp != buf)
810 		tmp--;
811 	*tmp = '\n';
812 
813 	mutex_unlock(&dev->lock);
814 
815 	return tmp + 1 - buf;
816 }
817 
818 /**
819  * store_protocols() - changes the current IR protocol(s)
820  * @device:	the device descriptor
821  * @mattr:	the device attribute struct (unused)
822  * @buf:	a pointer to the input buffer
823  * @len:	length of the input buffer
824  *
825  * This routine is for changing the IR protocol type.
826  * It is trigged by writing to /sys/class/rc/rc?/protocols.
827  * Writing "+proto" will add a protocol to the list of enabled protocols.
828  * Writing "-proto" will remove a protocol from the list of enabled protocols.
829  * Writing "proto" will enable only "proto".
830  * Writing "none" will disable all protocols.
831  * Returns -EINVAL if an invalid protocol combination or unknown protocol name
832  * is used, otherwise @len.
833  *
834  * dev->lock is taken to guard against races between device
835  * registration, store_protocols and show_protocols.
836  */
837 static ssize_t store_protocols(struct device *device,
838 			       struct device_attribute *mattr,
839 			       const char *data,
840 			       size_t len)
841 {
842 	struct rc_dev *dev = to_rc_dev(device);
843 	bool enable, disable;
844 	const char *tmp;
845 	u64 type;
846 	u64 mask;
847 	int rc, i, count = 0;
848 	unsigned long flags;
849 	ssize_t ret;
850 
851 	/* Device is being removed */
852 	if (!dev)
853 		return -EINVAL;
854 
855 	mutex_lock(&dev->lock);
856 
857 	if (dev->driver_type == RC_DRIVER_SCANCODE)
858 		type = dev->rc_map.rc_type;
859 	else if (dev->raw)
860 		type = dev->raw->enabled_protocols;
861 	else {
862 		IR_dprintk(1, "Protocol switching not supported\n");
863 		ret = -EINVAL;
864 		goto out;
865 	}
866 
867 	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
868 		if (!*tmp)
869 			break;
870 
871 		if (*tmp == '+') {
872 			enable = true;
873 			disable = false;
874 			tmp++;
875 		} else if (*tmp == '-') {
876 			enable = false;
877 			disable = true;
878 			tmp++;
879 		} else {
880 			enable = false;
881 			disable = false;
882 		}
883 
884 		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
885 			if (!strcasecmp(tmp, proto_names[i].name)) {
886 				mask = proto_names[i].type;
887 				break;
888 			}
889 		}
890 
891 		if (i == ARRAY_SIZE(proto_names)) {
892 			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
893 			return -EINVAL;
894 		}
895 
896 		count++;
897 
898 		if (enable)
899 			type |= mask;
900 		else if (disable)
901 			type &= ~mask;
902 		else
903 			type = mask;
904 	}
905 
906 	if (!count) {
907 		IR_dprintk(1, "Protocol not specified\n");
908 		ret = -EINVAL;
909 		goto out;
910 	}
911 
912 	if (dev->change_protocol) {
913 		rc = dev->change_protocol(dev, &type);
914 		if (rc < 0) {
915 			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
916 				   (long long)type);
917 			ret = -EINVAL;
918 			goto out;
919 		}
920 	}
921 
922 	if (dev->driver_type == RC_DRIVER_SCANCODE) {
923 		spin_lock_irqsave(&dev->rc_map.lock, flags);
924 		dev->rc_map.rc_type = type;
925 		spin_unlock_irqrestore(&dev->rc_map.lock, flags);
926 	} else {
927 		dev->raw->enabled_protocols = type;
928 	}
929 
930 	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
931 		   (long long)type);
932 
933 	ret = len;
934 
935 out:
936 	mutex_unlock(&dev->lock);
937 	return ret;
938 }
939 
940 static void rc_dev_release(struct device *device)
941 {
942 }
943 
944 #define ADD_HOTPLUG_VAR(fmt, val...)					\
945 	do {								\
946 		int err = add_uevent_var(env, fmt, val);		\
947 		if (err)						\
948 			return err;					\
949 	} while (0)
950 
951 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
952 {
953 	struct rc_dev *dev = to_rc_dev(device);
954 
955 	if (!dev || !dev->input_dev)
956 		return -ENODEV;
957 
958 	if (dev->rc_map.name)
959 		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
960 	if (dev->driver_name)
961 		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
962 
963 	return 0;
964 }
965 
966 /*
967  * Static device attribute struct with the sysfs attributes for IR's
968  */
969 static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
970 		   show_protocols, store_protocols);
971 
972 static struct attribute *rc_dev_attrs[] = {
973 	&dev_attr_protocols.attr,
974 	NULL,
975 };
976 
977 static struct attribute_group rc_dev_attr_grp = {
978 	.attrs	= rc_dev_attrs,
979 };
980 
981 static const struct attribute_group *rc_dev_attr_groups[] = {
982 	&rc_dev_attr_grp,
983 	NULL
984 };
985 
986 static struct device_type rc_dev_type = {
987 	.groups		= rc_dev_attr_groups,
988 	.release	= rc_dev_release,
989 	.uevent		= rc_dev_uevent,
990 };
991 
992 struct rc_dev *rc_allocate_device(void)
993 {
994 	struct rc_dev *dev;
995 
996 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
997 	if (!dev)
998 		return NULL;
999 
1000 	dev->input_dev = input_allocate_device();
1001 	if (!dev->input_dev) {
1002 		kfree(dev);
1003 		return NULL;
1004 	}
1005 
1006 	dev->input_dev->getkeycode = ir_getkeycode;
1007 	dev->input_dev->setkeycode = ir_setkeycode;
1008 	input_set_drvdata(dev->input_dev, dev);
1009 
1010 	spin_lock_init(&dev->rc_map.lock);
1011 	spin_lock_init(&dev->keylock);
1012 	mutex_init(&dev->lock);
1013 	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1014 
1015 	dev->dev.type = &rc_dev_type;
1016 	dev->dev.class = &ir_input_class;
1017 	device_initialize(&dev->dev);
1018 
1019 	__module_get(THIS_MODULE);
1020 	return dev;
1021 }
1022 EXPORT_SYMBOL_GPL(rc_allocate_device);
1023 
1024 void rc_free_device(struct rc_dev *dev)
1025 {
1026 	if (!dev)
1027 		return;
1028 
1029 	if (dev->input_dev)
1030 		input_free_device(dev->input_dev);
1031 
1032 	put_device(&dev->dev);
1033 
1034 	kfree(dev);
1035 	module_put(THIS_MODULE);
1036 }
1037 EXPORT_SYMBOL_GPL(rc_free_device);
1038 
1039 int rc_register_device(struct rc_dev *dev)
1040 {
1041 	static bool raw_init = false; /* raw decoders loaded? */
1042 	static atomic_t devno = ATOMIC_INIT(0);
1043 	struct rc_map *rc_map;
1044 	const char *path;
1045 	int rc;
1046 
1047 	if (!dev || !dev->map_name)
1048 		return -EINVAL;
1049 
1050 	rc_map = rc_map_get(dev->map_name);
1051 	if (!rc_map)
1052 		rc_map = rc_map_get(RC_MAP_EMPTY);
1053 	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1054 		return -EINVAL;
1055 
1056 	set_bit(EV_KEY, dev->input_dev->evbit);
1057 	set_bit(EV_REP, dev->input_dev->evbit);
1058 	set_bit(EV_MSC, dev->input_dev->evbit);
1059 	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1060 	if (dev->open)
1061 		dev->input_dev->open = ir_open;
1062 	if (dev->close)
1063 		dev->input_dev->close = ir_close;
1064 
1065 	/*
1066 	 * Take the lock here, as the device sysfs node will appear
1067 	 * when device_add() is called, which may trigger an ir-keytable udev
1068 	 * rule, which will in turn call show_protocols and access either
1069 	 * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
1070 	 * been initialized.
1071 	 */
1072 	mutex_lock(&dev->lock);
1073 
1074 	dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
1075 	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1076 	dev_set_drvdata(&dev->dev, dev);
1077 	rc = device_add(&dev->dev);
1078 	if (rc)
1079 		goto out_unlock;
1080 
1081 	rc = ir_setkeytable(dev, rc_map);
1082 	if (rc)
1083 		goto out_dev;
1084 
1085 	dev->input_dev->dev.parent = &dev->dev;
1086 	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1087 	dev->input_dev->phys = dev->input_phys;
1088 	dev->input_dev->name = dev->input_name;
1089 	rc = input_register_device(dev->input_dev);
1090 	if (rc)
1091 		goto out_table;
1092 
1093 	/*
1094 	 * Default delay of 250ms is too short for some protocols, especially
1095 	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1096 	 * to avoid wrong repetition of the keycodes. Note that this must be
1097 	 * set after the call to input_register_device().
1098 	 */
1099 	dev->input_dev->rep[REP_DELAY] = 500;
1100 
1101 	/*
1102 	 * As a repeat event on protocols like RC-5 and NEC take as long as
1103 	 * 110/114ms, using 33ms as a repeat period is not the right thing
1104 	 * to do.
1105 	 */
1106 	dev->input_dev->rep[REP_PERIOD] = 125;
1107 
1108 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1109 	printk(KERN_INFO "%s: %s as %s\n",
1110 		dev_name(&dev->dev),
1111 		dev->input_name ? dev->input_name : "Unspecified device",
1112 		path ? path : "N/A");
1113 	kfree(path);
1114 
1115 	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1116 		/* Load raw decoders, if they aren't already */
1117 		if (!raw_init) {
1118 			IR_dprintk(1, "Loading raw decoders\n");
1119 			ir_raw_init();
1120 			raw_init = true;
1121 		}
1122 		rc = ir_raw_event_register(dev);
1123 		if (rc < 0)
1124 			goto out_input;
1125 	}
1126 
1127 	if (dev->change_protocol) {
1128 		u64 rc_type = (1 << rc_map->rc_type);
1129 		rc = dev->change_protocol(dev, &rc_type);
1130 		if (rc < 0)
1131 			goto out_raw;
1132 	}
1133 
1134 	mutex_unlock(&dev->lock);
1135 
1136 	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1137 		   dev->devno,
1138 		   dev->driver_name ? dev->driver_name : "unknown",
1139 		   rc_map->name ? rc_map->name : "unknown",
1140 		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1141 
1142 	return 0;
1143 
1144 out_raw:
1145 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1146 		ir_raw_event_unregister(dev);
1147 out_input:
1148 	input_unregister_device(dev->input_dev);
1149 	dev->input_dev = NULL;
1150 out_table:
1151 	ir_free_table(&dev->rc_map);
1152 out_dev:
1153 	device_del(&dev->dev);
1154 out_unlock:
1155 	mutex_unlock(&dev->lock);
1156 	return rc;
1157 }
1158 EXPORT_SYMBOL_GPL(rc_register_device);
1159 
1160 void rc_unregister_device(struct rc_dev *dev)
1161 {
1162 	if (!dev)
1163 		return;
1164 
1165 	del_timer_sync(&dev->timer_keyup);
1166 
1167 	if (dev->driver_type == RC_DRIVER_IR_RAW)
1168 		ir_raw_event_unregister(dev);
1169 
1170 	/* Freeing the table should also call the stop callback */
1171 	ir_free_table(&dev->rc_map);
1172 	IR_dprintk(1, "Freed keycode table\n");
1173 
1174 	input_unregister_device(dev->input_dev);
1175 	dev->input_dev = NULL;
1176 
1177 	device_del(&dev->dev);
1178 
1179 	rc_free_device(dev);
1180 }
1181 
1182 EXPORT_SYMBOL_GPL(rc_unregister_device);
1183 
1184 /*
1185  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1186  */
1187 
1188 static int __init rc_core_init(void)
1189 {
1190 	int rc = class_register(&ir_input_class);
1191 	if (rc) {
1192 		printk(KERN_ERR "rc_core: unable to register rc class\n");
1193 		return rc;
1194 	}
1195 
1196 	rc_map_register(&empty_map);
1197 
1198 	return 0;
1199 }
1200 
1201 static void __exit rc_core_exit(void)
1202 {
1203 	class_unregister(&ir_input_class);
1204 	rc_map_unregister(&empty_map);
1205 }
1206 
1207 module_init(rc_core_init);
1208 module_exit(rc_core_exit);
1209 
1210 int rc_core_debug;    /* ir_debug level (0,1,2) */
1211 EXPORT_SYMBOL_GPL(rc_core_debug);
1212 module_param_named(debug, rc_core_debug, int, 0644);
1213 
1214 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1215 MODULE_LICENSE("GPL");
1216