xref: /openbmc/linux/drivers/media/rc/rc-ir-raw.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-ir-raw.c - handle IR pulse/space events
3 //
4 // Copyright (C) 2010 by Mauro Carvalho Chehab
5 
6 #include <linux/export.h>
7 #include <linux/kthread.h>
8 #include <linux/mutex.h>
9 #include <linux/kmod.h>
10 #include <linux/sched.h>
11 #include "rc-core-priv.h"
12 
13 /* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
14 static LIST_HEAD(ir_raw_client_list);
15 
16 /* Used to handle IR raw handler extensions */
17 DEFINE_MUTEX(ir_raw_handler_lock);
18 static LIST_HEAD(ir_raw_handler_list);
19 static atomic64_t available_protocols = ATOMIC64_INIT(0);
20 
21 static int ir_raw_event_thread(void *data)
22 {
23 	struct ir_raw_event ev;
24 	struct ir_raw_handler *handler;
25 	struct ir_raw_event_ctrl *raw = data;
26 	struct rc_dev *dev = raw->dev;
27 
28 	while (1) {
29 		mutex_lock(&ir_raw_handler_lock);
30 		while (kfifo_out(&raw->kfifo, &ev, 1)) {
31 			if (is_timing_event(ev)) {
32 				if (ev.duration == 0)
33 					dev_warn_once(&dev->dev, "nonsensical timing event of duration 0");
34 				if (is_timing_event(raw->prev_ev) &&
35 				    !is_transition(&ev, &raw->prev_ev))
36 					dev_warn_once(&dev->dev, "two consecutive events of type %s",
37 						      TO_STR(ev.pulse));
38 			}
39 			list_for_each_entry(handler, &ir_raw_handler_list, list)
40 				if (dev->enabled_protocols &
41 				    handler->protocols || !handler->protocols)
42 					handler->decode(dev, ev);
43 			lirc_raw_event(dev, ev);
44 			raw->prev_ev = ev;
45 		}
46 		mutex_unlock(&ir_raw_handler_lock);
47 
48 		set_current_state(TASK_INTERRUPTIBLE);
49 
50 		if (kthread_should_stop()) {
51 			__set_current_state(TASK_RUNNING);
52 			break;
53 		} else if (!kfifo_is_empty(&raw->kfifo))
54 			set_current_state(TASK_RUNNING);
55 
56 		schedule();
57 	}
58 
59 	return 0;
60 }
61 
62 /**
63  * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
64  * @dev:	the struct rc_dev device descriptor
65  * @ev:		the struct ir_raw_event descriptor of the pulse/space
66  *
67  * This routine (which may be called from an interrupt context) stores a
68  * pulse/space duration for the raw ir decoding state machines. Pulses are
69  * signalled as positive values and spaces as negative values. A zero value
70  * will reset the decoding state machines.
71  */
72 int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
73 {
74 	if (!dev->raw)
75 		return -EINVAL;
76 
77 	dev_dbg(&dev->dev, "sample: (%05dus %s)\n",
78 		ev->duration, TO_STR(ev->pulse));
79 
80 	if (!kfifo_put(&dev->raw->kfifo, *ev)) {
81 		dev_err(&dev->dev, "IR event FIFO is full!\n");
82 		return -ENOSPC;
83 	}
84 
85 	return 0;
86 }
87 EXPORT_SYMBOL_GPL(ir_raw_event_store);
88 
89 /**
90  * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
91  * @dev:	the struct rc_dev device descriptor
92  * @pulse:	true for pulse, false for space
93  *
94  * This routine (which may be called from an interrupt context) is used to
95  * store the beginning of an ir pulse or space (or the start/end of ir
96  * reception) for the raw ir decoding state machines. This is used by
97  * hardware which does not provide durations directly but only interrupts
98  * (or similar events) on state change.
99  */
100 int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
101 {
102 	ktime_t			now;
103 	struct ir_raw_event	ev = {};
104 
105 	if (!dev->raw)
106 		return -EINVAL;
107 
108 	now = ktime_get();
109 	ev.duration = ktime_to_us(ktime_sub(now, dev->raw->last_event));
110 	ev.pulse = !pulse;
111 
112 	return ir_raw_event_store_with_timeout(dev, &ev);
113 }
114 EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
115 
116 /*
117  * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
118  *				       ir decoders, schedule decoding and
119  *				       timeout
120  * @dev:	the struct rc_dev device descriptor
121  * @ev:		the struct ir_raw_event descriptor of the pulse/space
122  *
123  * This routine (which may be called from an interrupt context) stores a
124  * pulse/space duration for the raw ir decoding state machines, schedules
125  * decoding and generates a timeout.
126  */
127 int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
128 {
129 	ktime_t		now;
130 	int		rc = 0;
131 
132 	if (!dev->raw)
133 		return -EINVAL;
134 
135 	now = ktime_get();
136 
137 	spin_lock(&dev->raw->edge_spinlock);
138 	rc = ir_raw_event_store(dev, ev);
139 
140 	dev->raw->last_event = now;
141 
142 	/* timer could be set to timeout (125ms by default) */
143 	if (!timer_pending(&dev->raw->edge_handle) ||
144 	    time_after(dev->raw->edge_handle.expires,
145 		       jiffies + msecs_to_jiffies(15))) {
146 		mod_timer(&dev->raw->edge_handle,
147 			  jiffies + msecs_to_jiffies(15));
148 	}
149 	spin_unlock(&dev->raw->edge_spinlock);
150 
151 	return rc;
152 }
153 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout);
154 
155 /**
156  * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
157  * @dev:	the struct rc_dev device descriptor
158  * @ev:		the event that has occurred
159  *
160  * This routine (which may be called from an interrupt context) works
161  * in similar manner to ir_raw_event_store_edge.
162  * This routine is intended for devices with limited internal buffer
163  * It automerges samples of same type, and handles timeouts. Returns non-zero
164  * if the event was added, and zero if the event was ignored due to idle
165  * processing.
166  */
167 int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
168 {
169 	if (!dev->raw)
170 		return -EINVAL;
171 
172 	/* Ignore spaces in idle mode */
173 	if (dev->idle && !ev->pulse)
174 		return 0;
175 	else if (dev->idle)
176 		ir_raw_event_set_idle(dev, false);
177 
178 	if (!dev->raw->this_ev.duration)
179 		dev->raw->this_ev = *ev;
180 	else if (ev->pulse == dev->raw->this_ev.pulse)
181 		dev->raw->this_ev.duration += ev->duration;
182 	else {
183 		ir_raw_event_store(dev, &dev->raw->this_ev);
184 		dev->raw->this_ev = *ev;
185 	}
186 
187 	/* Enter idle mode if necessary */
188 	if (!ev->pulse && dev->timeout &&
189 	    dev->raw->this_ev.duration >= dev->timeout)
190 		ir_raw_event_set_idle(dev, true);
191 
192 	return 1;
193 }
194 EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
195 
196 /**
197  * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
198  * @dev:	the struct rc_dev device descriptor
199  * @idle:	whether the device is idle or not
200  */
201 void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
202 {
203 	if (!dev->raw)
204 		return;
205 
206 	dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave");
207 
208 	if (idle) {
209 		dev->raw->this_ev.timeout = true;
210 		ir_raw_event_store(dev, &dev->raw->this_ev);
211 		dev->raw->this_ev = (struct ir_raw_event) {};
212 	}
213 
214 	if (dev->s_idle)
215 		dev->s_idle(dev, idle);
216 
217 	dev->idle = idle;
218 }
219 EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
220 
221 /**
222  * ir_raw_event_handle() - schedules the decoding of stored ir data
223  * @dev:	the struct rc_dev device descriptor
224  *
225  * This routine will tell rc-core to start decoding stored ir data.
226  */
227 void ir_raw_event_handle(struct rc_dev *dev)
228 {
229 	if (!dev->raw || !dev->raw->thread)
230 		return;
231 
232 	wake_up_process(dev->raw->thread);
233 }
234 EXPORT_SYMBOL_GPL(ir_raw_event_handle);
235 
236 /* used internally by the sysfs interface */
237 u64
238 ir_raw_get_allowed_protocols(void)
239 {
240 	return atomic64_read(&available_protocols);
241 }
242 
243 static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
244 {
245 	struct ir_raw_handler *handler;
246 	u32 timeout = 0;
247 
248 	mutex_lock(&ir_raw_handler_lock);
249 	list_for_each_entry(handler, &ir_raw_handler_list, list) {
250 		if (!(dev->enabled_protocols & handler->protocols) &&
251 		    (*rc_proto & handler->protocols) && handler->raw_register)
252 			handler->raw_register(dev);
253 
254 		if ((dev->enabled_protocols & handler->protocols) &&
255 		    !(*rc_proto & handler->protocols) &&
256 		    handler->raw_unregister)
257 			handler->raw_unregister(dev);
258 	}
259 	mutex_unlock(&ir_raw_handler_lock);
260 
261 	if (!dev->max_timeout)
262 		return 0;
263 
264 	mutex_lock(&ir_raw_handler_lock);
265 	list_for_each_entry(handler, &ir_raw_handler_list, list) {
266 		if (handler->protocols & *rc_proto) {
267 			if (timeout < handler->min_timeout)
268 				timeout = handler->min_timeout;
269 		}
270 	}
271 	mutex_unlock(&ir_raw_handler_lock);
272 
273 	if (timeout == 0)
274 		timeout = IR_DEFAULT_TIMEOUT;
275 	else
276 		timeout += MS_TO_US(10);
277 
278 	if (timeout < dev->min_timeout)
279 		timeout = dev->min_timeout;
280 	else if (timeout > dev->max_timeout)
281 		timeout = dev->max_timeout;
282 
283 	if (dev->s_timeout)
284 		dev->s_timeout(dev, timeout);
285 	else
286 		dev->timeout = timeout;
287 
288 	return 0;
289 }
290 
291 static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
292 {
293 	mutex_lock(&dev->lock);
294 	dev->enabled_protocols &= ~protocols;
295 	mutex_unlock(&dev->lock);
296 }
297 
298 /**
299  * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
300  * @ev:		Pointer to pointer to next free event. *@ev is incremented for
301  *		each raw event filled.
302  * @max:	Maximum number of raw events to fill.
303  * @timings:	Manchester modulation timings.
304  * @n:		Number of bits of data.
305  * @data:	Data bits to encode.
306  *
307  * Encodes the @n least significant bits of @data using Manchester (bi-phase)
308  * modulation with the timing characteristics described by @timings, writing up
309  * to @max raw IR events using the *@ev pointer.
310  *
311  * Returns:	0 on success.
312  *		-ENOBUFS if there isn't enough space in the array to fit the
313  *		full encoded data. In this case all @max events will have been
314  *		written.
315  */
316 int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
317 			  const struct ir_raw_timings_manchester *timings,
318 			  unsigned int n, u64 data)
319 {
320 	bool need_pulse;
321 	u64 i;
322 	int ret = -ENOBUFS;
323 
324 	i = BIT_ULL(n - 1);
325 
326 	if (timings->leader_pulse) {
327 		if (!max--)
328 			return ret;
329 		init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
330 		if (timings->leader_space) {
331 			if (!max--)
332 				return ret;
333 			init_ir_raw_event_duration(++(*ev), 0,
334 						   timings->leader_space);
335 		}
336 	} else {
337 		/* continue existing signal */
338 		--(*ev);
339 	}
340 	/* from here on *ev will point to the last event rather than the next */
341 
342 	while (n && i > 0) {
343 		need_pulse = !(data & i);
344 		if (timings->invert)
345 			need_pulse = !need_pulse;
346 		if (need_pulse == !!(*ev)->pulse) {
347 			(*ev)->duration += timings->clock;
348 		} else {
349 			if (!max--)
350 				goto nobufs;
351 			init_ir_raw_event_duration(++(*ev), need_pulse,
352 						   timings->clock);
353 		}
354 
355 		if (!max--)
356 			goto nobufs;
357 		init_ir_raw_event_duration(++(*ev), !need_pulse,
358 					   timings->clock);
359 		i >>= 1;
360 	}
361 
362 	if (timings->trailer_space) {
363 		if (!(*ev)->pulse)
364 			(*ev)->duration += timings->trailer_space;
365 		else if (!max--)
366 			goto nobufs;
367 		else
368 			init_ir_raw_event_duration(++(*ev), 0,
369 						   timings->trailer_space);
370 	}
371 
372 	ret = 0;
373 nobufs:
374 	/* point to the next event rather than last event before returning */
375 	++(*ev);
376 	return ret;
377 }
378 EXPORT_SYMBOL(ir_raw_gen_manchester);
379 
380 /**
381  * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
382  * @ev:		Pointer to pointer to next free event. *@ev is incremented for
383  *		each raw event filled.
384  * @max:	Maximum number of raw events to fill.
385  * @timings:	Pulse distance modulation timings.
386  * @n:		Number of bits of data.
387  * @data:	Data bits to encode.
388  *
389  * Encodes the @n least significant bits of @data using pulse-distance
390  * modulation with the timing characteristics described by @timings, writing up
391  * to @max raw IR events using the *@ev pointer.
392  *
393  * Returns:	0 on success.
394  *		-ENOBUFS if there isn't enough space in the array to fit the
395  *		full encoded data. In this case all @max events will have been
396  *		written.
397  */
398 int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
399 		  const struct ir_raw_timings_pd *timings,
400 		  unsigned int n, u64 data)
401 {
402 	int i;
403 	int ret;
404 	unsigned int space;
405 
406 	if (timings->header_pulse) {
407 		ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
408 					     timings->header_space);
409 		if (ret)
410 			return ret;
411 	}
412 
413 	if (timings->msb_first) {
414 		for (i = n - 1; i >= 0; --i) {
415 			space = timings->bit_space[(data >> i) & 1];
416 			ret = ir_raw_gen_pulse_space(ev, &max,
417 						     timings->bit_pulse,
418 						     space);
419 			if (ret)
420 				return ret;
421 		}
422 	} else {
423 		for (i = 0; i < n; ++i, data >>= 1) {
424 			space = timings->bit_space[data & 1];
425 			ret = ir_raw_gen_pulse_space(ev, &max,
426 						     timings->bit_pulse,
427 						     space);
428 			if (ret)
429 				return ret;
430 		}
431 	}
432 
433 	ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
434 				     timings->trailer_space);
435 	return ret;
436 }
437 EXPORT_SYMBOL(ir_raw_gen_pd);
438 
439 /**
440  * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
441  * @ev:		Pointer to pointer to next free event. *@ev is incremented for
442  *		each raw event filled.
443  * @max:	Maximum number of raw events to fill.
444  * @timings:	Pulse distance modulation timings.
445  * @n:		Number of bits of data.
446  * @data:	Data bits to encode.
447  *
448  * Encodes the @n least significant bits of @data using space-distance
449  * modulation with the timing characteristics described by @timings, writing up
450  * to @max raw IR events using the *@ev pointer.
451  *
452  * Returns:	0 on success.
453  *		-ENOBUFS if there isn't enough space in the array to fit the
454  *		full encoded data. In this case all @max events will have been
455  *		written.
456  */
457 int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
458 		  const struct ir_raw_timings_pl *timings,
459 		  unsigned int n, u64 data)
460 {
461 	int i;
462 	int ret = -ENOBUFS;
463 	unsigned int pulse;
464 
465 	if (!max--)
466 		return ret;
467 
468 	init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
469 
470 	if (timings->msb_first) {
471 		for (i = n - 1; i >= 0; --i) {
472 			if (!max--)
473 				return ret;
474 			init_ir_raw_event_duration((*ev)++, 0,
475 						   timings->bit_space);
476 			if (!max--)
477 				return ret;
478 			pulse = timings->bit_pulse[(data >> i) & 1];
479 			init_ir_raw_event_duration((*ev)++, 1, pulse);
480 		}
481 	} else {
482 		for (i = 0; i < n; ++i, data >>= 1) {
483 			if (!max--)
484 				return ret;
485 			init_ir_raw_event_duration((*ev)++, 0,
486 						   timings->bit_space);
487 			if (!max--)
488 				return ret;
489 			pulse = timings->bit_pulse[data & 1];
490 			init_ir_raw_event_duration((*ev)++, 1, pulse);
491 		}
492 	}
493 
494 	if (!max--)
495 		return ret;
496 
497 	init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
498 
499 	return 0;
500 }
501 EXPORT_SYMBOL(ir_raw_gen_pl);
502 
503 /**
504  * ir_raw_encode_scancode() - Encode a scancode as raw events
505  *
506  * @protocol:		protocol
507  * @scancode:		scancode filter describing a single scancode
508  * @events:		array of raw events to write into
509  * @max:		max number of raw events
510  *
511  * Attempts to encode the scancode as raw events.
512  *
513  * Returns:	The number of events written.
514  *		-ENOBUFS if there isn't enough space in the array to fit the
515  *		encoding. In this case all @max events will have been written.
516  *		-EINVAL if the scancode is ambiguous or invalid, or if no
517  *		compatible encoder was found.
518  */
519 int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
520 			   struct ir_raw_event *events, unsigned int max)
521 {
522 	struct ir_raw_handler *handler;
523 	int ret = -EINVAL;
524 	u64 mask = 1ULL << protocol;
525 
526 	ir_raw_load_modules(&mask);
527 
528 	mutex_lock(&ir_raw_handler_lock);
529 	list_for_each_entry(handler, &ir_raw_handler_list, list) {
530 		if (handler->protocols & mask && handler->encode) {
531 			ret = handler->encode(protocol, scancode, events, max);
532 			if (ret >= 0 || ret == -ENOBUFS)
533 				break;
534 		}
535 	}
536 	mutex_unlock(&ir_raw_handler_lock);
537 
538 	return ret;
539 }
540 EXPORT_SYMBOL(ir_raw_encode_scancode);
541 
542 /**
543  * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
544  *
545  * @t:		timer_list
546  *
547  * This callback is armed by ir_raw_event_store_edge(). It does two things:
548  * first of all, rather than calling ir_raw_event_handle() for each
549  * edge and waking up the rc thread, 15 ms after the first edge
550  * ir_raw_event_handle() is called. Secondly, generate a timeout event
551  * no more IR is received after the rc_dev timeout.
552  */
553 static void ir_raw_edge_handle(struct timer_list *t)
554 {
555 	struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
556 	struct rc_dev *dev = raw->dev;
557 	unsigned long flags;
558 	ktime_t interval;
559 
560 	spin_lock_irqsave(&dev->raw->edge_spinlock, flags);
561 	interval = ktime_sub(ktime_get(), dev->raw->last_event);
562 	if (ktime_to_us(interval) >= dev->timeout) {
563 		struct ir_raw_event ev = {
564 			.timeout = true,
565 			.duration = ktime_to_us(interval)
566 		};
567 
568 		ir_raw_event_store(dev, &ev);
569 	} else {
570 		mod_timer(&dev->raw->edge_handle,
571 			  jiffies + usecs_to_jiffies(dev->timeout -
572 						     ktime_to_us(interval)));
573 	}
574 	spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags);
575 
576 	ir_raw_event_handle(dev);
577 }
578 
579 /**
580  * ir_raw_encode_carrier() - Get carrier used for protocol
581  *
582  * @protocol:		protocol
583  *
584  * Attempts to find the carrier for the specified protocol
585  *
586  * Returns:	The carrier in Hz
587  *		-EINVAL if the protocol is invalid, or if no
588  *		compatible encoder was found.
589  */
590 int ir_raw_encode_carrier(enum rc_proto protocol)
591 {
592 	struct ir_raw_handler *handler;
593 	int ret = -EINVAL;
594 	u64 mask = BIT_ULL(protocol);
595 
596 	mutex_lock(&ir_raw_handler_lock);
597 	list_for_each_entry(handler, &ir_raw_handler_list, list) {
598 		if (handler->protocols & mask && handler->encode) {
599 			ret = handler->carrier;
600 			break;
601 		}
602 	}
603 	mutex_unlock(&ir_raw_handler_lock);
604 
605 	return ret;
606 }
607 EXPORT_SYMBOL(ir_raw_encode_carrier);
608 
609 /*
610  * Used to (un)register raw event clients
611  */
612 int ir_raw_event_prepare(struct rc_dev *dev)
613 {
614 	if (!dev)
615 		return -EINVAL;
616 
617 	dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
618 	if (!dev->raw)
619 		return -ENOMEM;
620 
621 	dev->raw->dev = dev;
622 	dev->change_protocol = change_protocol;
623 	dev->idle = true;
624 	spin_lock_init(&dev->raw->edge_spinlock);
625 	timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0);
626 	INIT_KFIFO(dev->raw->kfifo);
627 
628 	return 0;
629 }
630 
631 int ir_raw_event_register(struct rc_dev *dev)
632 {
633 	struct task_struct *thread;
634 
635 	thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
636 	if (IS_ERR(thread))
637 		return PTR_ERR(thread);
638 
639 	dev->raw->thread = thread;
640 
641 	mutex_lock(&ir_raw_handler_lock);
642 	list_add_tail(&dev->raw->list, &ir_raw_client_list);
643 	mutex_unlock(&ir_raw_handler_lock);
644 
645 	return 0;
646 }
647 
648 void ir_raw_event_free(struct rc_dev *dev)
649 {
650 	if (!dev)
651 		return;
652 
653 	kfree(dev->raw);
654 	dev->raw = NULL;
655 }
656 
657 void ir_raw_event_unregister(struct rc_dev *dev)
658 {
659 	struct ir_raw_handler *handler;
660 
661 	if (!dev || !dev->raw)
662 		return;
663 
664 	kthread_stop(dev->raw->thread);
665 	del_timer_sync(&dev->raw->edge_handle);
666 
667 	mutex_lock(&ir_raw_handler_lock);
668 	list_del(&dev->raw->list);
669 	list_for_each_entry(handler, &ir_raw_handler_list, list)
670 		if (handler->raw_unregister &&
671 		    (handler->protocols & dev->enabled_protocols))
672 			handler->raw_unregister(dev);
673 
674 	lirc_bpf_free(dev);
675 
676 	ir_raw_event_free(dev);
677 
678 	/*
679 	 * A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so
680 	 * ensure that the raw member is null on unlock; this is how
681 	 * "device gone" is checked.
682 	 */
683 	mutex_unlock(&ir_raw_handler_lock);
684 }
685 
686 /*
687  * Extension interface - used to register the IR decoders
688  */
689 
690 int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
691 {
692 	mutex_lock(&ir_raw_handler_lock);
693 	list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
694 	atomic64_or(ir_raw_handler->protocols, &available_protocols);
695 	mutex_unlock(&ir_raw_handler_lock);
696 
697 	return 0;
698 }
699 EXPORT_SYMBOL(ir_raw_handler_register);
700 
701 void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
702 {
703 	struct ir_raw_event_ctrl *raw;
704 	u64 protocols = ir_raw_handler->protocols;
705 
706 	mutex_lock(&ir_raw_handler_lock);
707 	list_del(&ir_raw_handler->list);
708 	list_for_each_entry(raw, &ir_raw_client_list, list) {
709 		if (ir_raw_handler->raw_unregister &&
710 		    (raw->dev->enabled_protocols & protocols))
711 			ir_raw_handler->raw_unregister(raw->dev);
712 		ir_raw_disable_protocols(raw->dev, protocols);
713 	}
714 	atomic64_andnot(protocols, &available_protocols);
715 	mutex_unlock(&ir_raw_handler_lock);
716 }
717 EXPORT_SYMBOL(ir_raw_handler_unregister);
718