xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pnp.h>
31 #include <linux/io.h>
32 #include <linux/interrupt.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <media/rc-core.h>
36 #include <linux/pci_ids.h>
37 
38 #include "nuvoton-cir.h"
39 
40 static char *chip_id = "w836x7hg";
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 	outb(reg, nvt->cr_efir);
46 	outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 	outb(reg, nvt->cr_efir);
53 	return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	u8 tmp = nvt_cr_read(nvt, reg) | val;
60 	nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 	nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 	/* Enabling Extended Function Mode explicitly requires writing 2x */
74 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 	outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 	outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 	u8 val;
105 
106 	val = inb(nvt->cir_addr + offset);
107 
108 	return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 					  u8 val, u8 offset)
114 {
115 	outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 	u8 val;
122 
123 	val = inb(nvt->cir_wake_addr + offset);
124 
125 	return val;
126 }
127 
128 #define pr_reg(text, ...) \
129 	printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)
130 
131 /* dump current cir register contents */
132 static void cir_dump_regs(struct nvt_dev *nvt)
133 {
134 	nvt_efm_enable(nvt);
135 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
136 
137 	pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
138 	pr_reg(" * CR CIR ACTIVE :   0x%x\n",
139 	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
140 	pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
141 	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
142 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
143 	pr_reg(" * CR CIR IRQ NUM:   0x%x\n",
144 	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
145 
146 	nvt_efm_disable(nvt);
147 
148 	pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
149 	pr_reg(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
150 	pr_reg(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
151 	pr_reg(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
152 	pr_reg(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
153 	pr_reg(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
154 	pr_reg(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
155 	pr_reg(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
156 	pr_reg(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
157 	pr_reg(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
158 	pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
159 	pr_reg(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
160 	pr_reg(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
161 	pr_reg(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
162 	pr_reg(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
163 	pr_reg(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
164 	pr_reg(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
165 }
166 
167 /* dump current cir wake register contents */
168 static void cir_wake_dump_regs(struct nvt_dev *nvt)
169 {
170 	u8 i, fifo_len;
171 
172 	nvt_efm_enable(nvt);
173 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
174 
175 	pr_reg("%s: Dump CIR WAKE logical device registers:\n",
176 	       NVT_DRIVER_NAME);
177 	pr_reg(" * CR CIR WAKE ACTIVE :   0x%x\n",
178 	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
179 	pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
180 	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
181 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
182 	pr_reg(" * CR CIR WAKE IRQ NUM:   0x%x\n",
183 	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
184 
185 	nvt_efm_disable(nvt);
186 
187 	pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
188 	pr_reg(" * IRCON:          0x%x\n",
189 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
190 	pr_reg(" * IRSTS:          0x%x\n",
191 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
192 	pr_reg(" * IREN:           0x%x\n",
193 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
194 	pr_reg(" * FIFO CMP DEEP:  0x%x\n",
195 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
196 	pr_reg(" * FIFO CMP TOL:   0x%x\n",
197 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
198 	pr_reg(" * FIFO COUNT:     0x%x\n",
199 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
200 	pr_reg(" * SLCH:           0x%x\n",
201 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
202 	pr_reg(" * SLCL:           0x%x\n",
203 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
204 	pr_reg(" * FIFOCON:        0x%x\n",
205 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
206 	pr_reg(" * SRXFSTS:        0x%x\n",
207 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
208 	pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
209 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
210 	pr_reg(" * WR FIFO DATA:   0x%x\n",
211 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
212 	pr_reg(" * RD FIFO ONLY:   0x%x\n",
213 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
214 	pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
215 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
216 	pr_reg(" * FIFO IGNORE:    0x%x\n",
217 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
218 	pr_reg(" * IRFSM:          0x%x\n",
219 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
220 
221 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
222 	pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
223 	pr_reg("* Contents = ");
224 	for (i = 0; i < fifo_len; i++)
225 		printk(KERN_CONT "%02x ",
226 		       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
227 	printk(KERN_CONT "\n");
228 }
229 
230 /* detect hardware features */
231 static int nvt_hw_detect(struct nvt_dev *nvt)
232 {
233 	unsigned long flags;
234 	u8 chip_major, chip_minor;
235 	int ret = 0;
236 
237 	nvt_efm_enable(nvt);
238 
239 	/* Check if we're wired for the alternate EFER setup */
240 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
241 	if (chip_major == 0xff) {
242 		nvt->cr_efir = CR_EFIR2;
243 		nvt->cr_efdr = CR_EFDR2;
244 		nvt_efm_enable(nvt);
245 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
246 	}
247 
248 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
249 	nvt_dbg("%s: chip id: 0x%02x 0x%02x", chip_id, chip_major, chip_minor);
250 
251 	if (chip_major != CHIP_ID_HIGH ||
252 	    (chip_minor != CHIP_ID_LOW && chip_minor != CHIP_ID_LOW2)) {
253 		nvt_pr(KERN_ERR, "%s: unsupported chip, id: 0x%02x 0x%02x",
254 		       chip_id, chip_major, chip_minor);
255 		ret = -ENODEV;
256 	}
257 
258 	nvt_efm_disable(nvt);
259 
260 	spin_lock_irqsave(&nvt->nvt_lock, flags);
261 	nvt->chip_major = chip_major;
262 	nvt->chip_minor = chip_minor;
263 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
264 
265 	return ret;
266 }
267 
268 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
269 {
270 	u8 val;
271 
272 	/* output pin selection (Pin95=CIRRX, Pin96=CIRTX1, WB enabled */
273 	val = nvt_cr_read(nvt, CR_OUTPUT_PIN_SEL);
274 	val &= OUTPUT_PIN_SEL_MASK;
275 	val |= (OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB);
276 	nvt_cr_write(nvt, val, CR_OUTPUT_PIN_SEL);
277 
278 	/* Select CIR logical device and enable */
279 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
280 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
281 
282 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
283 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
284 
285 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
286 
287 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
288 		nvt->cir_addr, nvt->cir_irq);
289 }
290 
291 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
292 {
293 	/* Select ACPI logical device, enable it and CIR Wake */
294 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
295 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
296 
297 	/* Enable CIR Wake via PSOUT# (Pin60) */
298 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
299 
300 	/* enable cir interrupt of mouse/keyboard IRQ event */
301 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
302 
303 	/* enable pme interrupt of cir wakeup event */
304 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
305 
306 	/* Select CIR Wake logical device and enable */
307 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
308 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
309 
310 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
311 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
312 
313 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
314 
315 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
316 		nvt->cir_wake_addr, nvt->cir_wake_irq);
317 }
318 
319 /* clear out the hardware's cir rx fifo */
320 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
321 {
322 	u8 val;
323 
324 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
325 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
326 }
327 
328 /* clear out the hardware's cir wake rx fifo */
329 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
330 {
331 	u8 val;
332 
333 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
334 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
335 			       CIR_WAKE_FIFOCON);
336 }
337 
338 /* clear out the hardware's cir tx fifo */
339 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
340 {
341 	u8 val;
342 
343 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
344 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
345 }
346 
347 /* enable RX Trigger Level Reach and Packet End interrupts */
348 static void nvt_set_cir_iren(struct nvt_dev *nvt)
349 {
350 	u8 iren;
351 
352 	iren = CIR_IREN_RTR | CIR_IREN_PE;
353 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
354 }
355 
356 static void nvt_cir_regs_init(struct nvt_dev *nvt)
357 {
358 	/* set sample limit count (PE interrupt raised when reached) */
359 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
360 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
361 
362 	/* set fifo irq trigger levels */
363 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
364 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
365 
366 	/*
367 	 * Enable TX and RX, specify carrier on = low, off = high, and set
368 	 * sample period (currently 50us)
369 	 */
370 	nvt_cir_reg_write(nvt,
371 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
372 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
373 			  CIR_IRCON);
374 
375 	/* clear hardware rx and tx fifos */
376 	nvt_clear_cir_fifo(nvt);
377 	nvt_clear_tx_fifo(nvt);
378 
379 	/* clear any and all stray interrupts */
380 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
381 
382 	/* and finally, enable interrupts */
383 	nvt_set_cir_iren(nvt);
384 }
385 
386 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
387 {
388 	/* set number of bytes needed for wake key comparison (default 67) */
389 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_LEN, CIR_WAKE_FIFO_CMP_DEEP);
390 
391 	/* set tolerance/variance allowed per byte during wake compare */
392 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
393 			       CIR_WAKE_FIFO_CMP_TOL);
394 
395 	/* set sample limit count (PE interrupt raised when reached) */
396 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
397 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
398 
399 	/* set cir wake fifo rx trigger level (currently 67) */
400 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
401 			       CIR_WAKE_FIFOCON);
402 
403 	/*
404 	 * Enable TX and RX, specific carrier on = low, off = high, and set
405 	 * sample period (currently 50us)
406 	 */
407 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
408 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
409 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
410 			       CIR_WAKE_IRCON);
411 
412 	/* clear cir wake rx fifo */
413 	nvt_clear_cir_wake_fifo(nvt);
414 
415 	/* clear any and all stray interrupts */
416 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
417 }
418 
419 static void nvt_enable_wake(struct nvt_dev *nvt)
420 {
421 	nvt_efm_enable(nvt);
422 
423 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
424 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
425 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
426 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
427 
428 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
429 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
430 
431 	nvt_efm_disable(nvt);
432 
433 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
434 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
435 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
436 			       CIR_WAKE_IRCON);
437 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
438 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
439 }
440 
441 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
442 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
443 {
444 	u32 count, carrier, duration = 0;
445 	int i;
446 
447 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
448 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
449 
450 	for (i = 0; i < nvt->pkts; i++) {
451 		if (nvt->buf[i] & BUF_PULSE_BIT)
452 			duration += nvt->buf[i] & BUF_LEN_MASK;
453 	}
454 
455 	duration *= SAMPLE_PERIOD;
456 
457 	if (!count || !duration) {
458 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
459 		       count, duration);
460 		return 0;
461 	}
462 
463 	carrier = MS_TO_NS(count) / duration;
464 
465 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
466 		nvt_dbg("WTF? Carrier frequency out of range!");
467 
468 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
469 		carrier, count, duration);
470 
471 	return carrier;
472 }
473 
474 /*
475  * set carrier frequency
476  *
477  * set carrier on 2 registers: CP & CC
478  * always set CP as 0x81
479  * set CC by SPEC, CC = 3MHz/carrier - 1
480  */
481 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
482 {
483 	struct nvt_dev *nvt = dev->priv;
484 	u16 val;
485 
486 	nvt_cir_reg_write(nvt, 1, CIR_CP);
487 	val = 3000000 / (carrier) - 1;
488 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
489 
490 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
491 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
492 
493 	return 0;
494 }
495 
496 /*
497  * nvt_tx_ir
498  *
499  * 1) clean TX fifo first (handled by AP)
500  * 2) copy data from user space
501  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
502  * 4) send 9 packets to TX FIFO to open TTR
503  * in interrupt_handler:
504  * 5) send all data out
505  * go back to write():
506  * 6) disable TX interrupts, re-enable RX interupts
507  *
508  * The key problem of this function is user space data may larger than
509  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
510  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
511  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
512  * set TXFCONT as 0xff, until buf_count less than 0xff.
513  */
514 static int nvt_tx_ir(struct rc_dev *dev, int *txbuf, u32 n)
515 {
516 	struct nvt_dev *nvt = dev->priv;
517 	unsigned long flags;
518 	size_t cur_count;
519 	unsigned int i;
520 	u8 iren;
521 	int ret;
522 
523 	spin_lock_irqsave(&nvt->tx.lock, flags);
524 
525 	if (n >= TX_BUF_LEN) {
526 		nvt->tx.buf_count = cur_count = TX_BUF_LEN;
527 		ret = TX_BUF_LEN;
528 	} else {
529 		nvt->tx.buf_count = cur_count = n;
530 		ret = n;
531 	}
532 
533 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
534 
535 	nvt->tx.cur_buf_num = 0;
536 
537 	/* save currently enabled interrupts */
538 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
539 
540 	/* now disable all interrupts, save TFU & TTR */
541 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
542 
543 	nvt->tx.tx_state = ST_TX_REPLY;
544 
545 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
546 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
547 
548 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
549 	for (i = 0; i < 9; i++)
550 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
551 
552 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
553 
554 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
555 
556 	spin_lock_irqsave(&nvt->tx.lock, flags);
557 	nvt->tx.tx_state = ST_TX_NONE;
558 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
559 
560 	/* restore enabled interrupts to prior state */
561 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
562 
563 	return ret;
564 }
565 
566 /* dump contents of the last rx buffer we got from the hw rx fifo */
567 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
568 {
569 	int i;
570 
571 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
572 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
573 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
574 	printk(KERN_CONT "\n");
575 }
576 
577 /*
578  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
579  * trigger decode when appropriate.
580  *
581  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
582  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
583  * (default 50us) intervals for that pulse/space. A discrete signal is
584  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
585  * to signal more IR coming (repeats) or end of IR, respectively. We store
586  * sample data in the raw event kfifo until we see 0x7<something> (except f)
587  * or 0x80, at which time, we trigger a decode operation.
588  */
589 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
590 {
591 	DEFINE_IR_RAW_EVENT(rawir);
592 	unsigned int count;
593 	u32 carrier;
594 	u8 sample;
595 	int i;
596 
597 	nvt_dbg_verbose("%s firing", __func__);
598 
599 	if (debug)
600 		nvt_dump_rx_buf(nvt);
601 
602 	if (nvt->carrier_detect_enabled)
603 		carrier = nvt_rx_carrier_detect(nvt);
604 
605 	count = nvt->pkts;
606 	nvt_dbg_verbose("Processing buffer of len %d", count);
607 
608 	init_ir_raw_event(&rawir);
609 
610 	for (i = 0; i < count; i++) {
611 		nvt->pkts--;
612 		sample = nvt->buf[i];
613 
614 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
615 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
616 					  * SAMPLE_PERIOD);
617 
618 		if ((sample & BUF_LEN_MASK) == BUF_LEN_MASK) {
619 			if (nvt->rawir.pulse == rawir.pulse)
620 				nvt->rawir.duration += rawir.duration;
621 			else {
622 				nvt->rawir.duration = rawir.duration;
623 				nvt->rawir.pulse = rawir.pulse;
624 			}
625 			continue;
626 		}
627 
628 		rawir.duration += nvt->rawir.duration;
629 
630 		init_ir_raw_event(&nvt->rawir);
631 		nvt->rawir.duration = 0;
632 		nvt->rawir.pulse = rawir.pulse;
633 
634 		if (sample == BUF_PULSE_BIT)
635 			rawir.pulse = false;
636 
637 		if (rawir.duration) {
638 			nvt_dbg("Storing %s with duration %d",
639 				rawir.pulse ? "pulse" : "space",
640 				rawir.duration);
641 
642 			ir_raw_event_store(nvt->rdev, &rawir);
643 		}
644 
645 		/*
646 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
647 		 * indicates end of IR signal, but new data incoming. In both
648 		 * cases, it means we're ready to call ir_raw_event_handle
649 		 */
650 		if ((sample == BUF_PULSE_BIT) && nvt->pkts) {
651 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
652 			ir_raw_event_handle(nvt->rdev);
653 		}
654 	}
655 
656 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
657 	ir_raw_event_handle(nvt->rdev);
658 
659 	if (nvt->pkts) {
660 		nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt->pkts);
661 		nvt->pkts = 0;
662 	}
663 
664 	nvt_dbg_verbose("%s done", __func__);
665 }
666 
667 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
668 {
669 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
670 
671 	nvt->pkts = 0;
672 	nvt_clear_cir_fifo(nvt);
673 	ir_raw_event_reset(nvt->rdev);
674 }
675 
676 /* copy data from hardware rx fifo into driver buffer */
677 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
678 {
679 	unsigned long flags;
680 	u8 fifocount, val;
681 	unsigned int b_idx;
682 	bool overrun = false;
683 	int i;
684 
685 	/* Get count of how many bytes to read from RX FIFO */
686 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
687 	/* if we get 0xff, probably means the logical dev is disabled */
688 	if (fifocount == 0xff)
689 		return;
690 	/* watch out for a fifo overrun condition */
691 	else if (fifocount > RX_BUF_LEN) {
692 		overrun = true;
693 		fifocount = RX_BUF_LEN;
694 	}
695 
696 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
697 
698 	spin_lock_irqsave(&nvt->nvt_lock, flags);
699 
700 	b_idx = nvt->pkts;
701 
702 	/* This should never happen, but lets check anyway... */
703 	if (b_idx + fifocount > RX_BUF_LEN) {
704 		nvt_process_rx_ir_data(nvt);
705 		b_idx = 0;
706 	}
707 
708 	/* Read fifocount bytes from CIR Sample RX FIFO register */
709 	for (i = 0; i < fifocount; i++) {
710 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
711 		nvt->buf[b_idx + i] = val;
712 	}
713 
714 	nvt->pkts += fifocount;
715 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
716 
717 	nvt_process_rx_ir_data(nvt);
718 
719 	if (overrun)
720 		nvt_handle_rx_fifo_overrun(nvt);
721 
722 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
723 }
724 
725 static void nvt_cir_log_irqs(u8 status, u8 iren)
726 {
727 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
728 		status, iren,
729 		status & CIR_IRSTS_RDR	? " RDR"	: "",
730 		status & CIR_IRSTS_RTR	? " RTR"	: "",
731 		status & CIR_IRSTS_PE	? " PE"		: "",
732 		status & CIR_IRSTS_RFO	? " RFO"	: "",
733 		status & CIR_IRSTS_TE	? " TE"		: "",
734 		status & CIR_IRSTS_TTR	? " TTR"	: "",
735 		status & CIR_IRSTS_TFU	? " TFU"	: "",
736 		status & CIR_IRSTS_GH	? " GH"		: "",
737 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
738 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
739 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
740 }
741 
742 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
743 {
744 	unsigned long flags;
745 	bool tx_inactive;
746 	u8 tx_state;
747 
748 	spin_lock_irqsave(&nvt->tx.lock, flags);
749 	tx_state = nvt->tx.tx_state;
750 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
751 
752 	tx_inactive = (tx_state == ST_TX_NONE);
753 
754 	return tx_inactive;
755 }
756 
757 /* interrupt service routine for incoming and outgoing CIR data */
758 static irqreturn_t nvt_cir_isr(int irq, void *data)
759 {
760 	struct nvt_dev *nvt = data;
761 	u8 status, iren, cur_state;
762 	unsigned long flags;
763 
764 	nvt_dbg_verbose("%s firing", __func__);
765 
766 	nvt_efm_enable(nvt);
767 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
768 	nvt_efm_disable(nvt);
769 
770 	/*
771 	 * Get IR Status register contents. Write 1 to ack/clear
772 	 *
773 	 * bit: reg name      - description
774 	 *   7: CIR_IRSTS_RDR - RX Data Ready
775 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
776 	 *   5: CIR_IRSTS_PE  - Packet End
777 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
778 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
779 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
780 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
781 	 *   0: CIR_IRSTS_GH  - Min Length Detected
782 	 */
783 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
784 	if (!status) {
785 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
786 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
787 		return IRQ_RETVAL(IRQ_NONE);
788 	}
789 
790 	/* ack/clear all irq flags we've got */
791 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
792 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
793 
794 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
795 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
796 	if (!iren) {
797 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
798 		return IRQ_RETVAL(IRQ_NONE);
799 	}
800 
801 	if (debug)
802 		nvt_cir_log_irqs(status, iren);
803 
804 	if (status & CIR_IRSTS_RTR) {
805 		/* FIXME: add code for study/learn mode */
806 		/* We only do rx if not tx'ing */
807 		if (nvt_cir_tx_inactive(nvt))
808 			nvt_get_rx_ir_data(nvt);
809 	}
810 
811 	if (status & CIR_IRSTS_PE) {
812 		if (nvt_cir_tx_inactive(nvt))
813 			nvt_get_rx_ir_data(nvt);
814 
815 		spin_lock_irqsave(&nvt->nvt_lock, flags);
816 
817 		cur_state = nvt->study_state;
818 
819 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
820 
821 		if (cur_state == ST_STUDY_NONE)
822 			nvt_clear_cir_fifo(nvt);
823 	}
824 
825 	if (status & CIR_IRSTS_TE)
826 		nvt_clear_tx_fifo(nvt);
827 
828 	if (status & CIR_IRSTS_TTR) {
829 		unsigned int pos, count;
830 		u8 tmp;
831 
832 		spin_lock_irqsave(&nvt->tx.lock, flags);
833 
834 		pos = nvt->tx.cur_buf_num;
835 		count = nvt->tx.buf_count;
836 
837 		/* Write data into the hardware tx fifo while pos < count */
838 		if (pos < count) {
839 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
840 			nvt->tx.cur_buf_num++;
841 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
842 		} else {
843 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
844 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
845 		}
846 
847 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
848 
849 	}
850 
851 	if (status & CIR_IRSTS_TFU) {
852 		spin_lock_irqsave(&nvt->tx.lock, flags);
853 		if (nvt->tx.tx_state == ST_TX_REPLY) {
854 			nvt->tx.tx_state = ST_TX_REQUEST;
855 			wake_up(&nvt->tx.queue);
856 		}
857 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
858 	}
859 
860 	nvt_dbg_verbose("%s done", __func__);
861 	return IRQ_RETVAL(IRQ_HANDLED);
862 }
863 
864 /* Interrupt service routine for CIR Wake */
865 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
866 {
867 	u8 status, iren, val;
868 	struct nvt_dev *nvt = data;
869 	unsigned long flags;
870 
871 	nvt_dbg_wake("%s firing", __func__);
872 
873 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
874 	if (!status)
875 		return IRQ_RETVAL(IRQ_NONE);
876 
877 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
878 		nvt_clear_cir_wake_fifo(nvt);
879 
880 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
881 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
882 
883 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
884 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
885 	if (!iren) {
886 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
887 		return IRQ_RETVAL(IRQ_HANDLED);
888 	}
889 
890 	if ((status & CIR_WAKE_IRSTS_PE) &&
891 	    (nvt->wake_state == ST_WAKE_START)) {
892 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
893 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
894 			nvt_dbg("setting wake up key: 0x%x", val);
895 		}
896 
897 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
898 		spin_lock_irqsave(&nvt->nvt_lock, flags);
899 		nvt->wake_state = ST_WAKE_FINISH;
900 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
901 	}
902 
903 	nvt_dbg_wake("%s done", __func__);
904 	return IRQ_RETVAL(IRQ_HANDLED);
905 }
906 
907 static void nvt_enable_cir(struct nvt_dev *nvt)
908 {
909 	/* set function enable flags */
910 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
911 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
912 			  CIR_IRCON);
913 
914 	nvt_efm_enable(nvt);
915 
916 	/* enable the CIR logical device */
917 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
918 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
919 
920 	nvt_efm_disable(nvt);
921 
922 	/* clear all pending interrupts */
923 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
924 
925 	/* enable interrupts */
926 	nvt_set_cir_iren(nvt);
927 }
928 
929 static void nvt_disable_cir(struct nvt_dev *nvt)
930 {
931 	/* disable CIR interrupts */
932 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
933 
934 	/* clear any and all pending interrupts */
935 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
936 
937 	/* clear all function enable flags */
938 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
939 
940 	/* clear hardware rx and tx fifos */
941 	nvt_clear_cir_fifo(nvt);
942 	nvt_clear_tx_fifo(nvt);
943 
944 	nvt_efm_enable(nvt);
945 
946 	/* disable the CIR logical device */
947 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
948 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
949 
950 	nvt_efm_disable(nvt);
951 }
952 
953 static int nvt_open(struct rc_dev *dev)
954 {
955 	struct nvt_dev *nvt = dev->priv;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&nvt->nvt_lock, flags);
959 	nvt->in_use = true;
960 	nvt_enable_cir(nvt);
961 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
962 
963 	return 0;
964 }
965 
966 static void nvt_close(struct rc_dev *dev)
967 {
968 	struct nvt_dev *nvt = dev->priv;
969 	unsigned long flags;
970 
971 	spin_lock_irqsave(&nvt->nvt_lock, flags);
972 	nvt->in_use = false;
973 	nvt_disable_cir(nvt);
974 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
975 }
976 
977 /* Allocate memory, probe hardware, and initialize everything */
978 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
979 {
980 	struct nvt_dev *nvt;
981 	struct rc_dev *rdev;
982 	int ret = -ENOMEM;
983 
984 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
985 	if (!nvt)
986 		return ret;
987 
988 	/* input device for IR remote (and tx) */
989 	rdev = rc_allocate_device();
990 	if (!rdev)
991 		goto failure;
992 
993 	ret = -ENODEV;
994 	/* validate pnp resources */
995 	if (!pnp_port_valid(pdev, 0) ||
996 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
997 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
998 		goto failure;
999 	}
1000 
1001 	if (!pnp_irq_valid(pdev, 0)) {
1002 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1003 		goto failure;
1004 	}
1005 
1006 	if (!pnp_port_valid(pdev, 1) ||
1007 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1008 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1009 		goto failure;
1010 	}
1011 
1012 	nvt->cir_addr = pnp_port_start(pdev, 0);
1013 	nvt->cir_irq  = pnp_irq(pdev, 0);
1014 
1015 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1016 	/* irq is always shared between cir and cir wake */
1017 	nvt->cir_wake_irq  = nvt->cir_irq;
1018 
1019 	nvt->cr_efir = CR_EFIR;
1020 	nvt->cr_efdr = CR_EFDR;
1021 
1022 	spin_lock_init(&nvt->nvt_lock);
1023 	spin_lock_init(&nvt->tx.lock);
1024 	init_ir_raw_event(&nvt->rawir);
1025 
1026 	ret = -EBUSY;
1027 	/* now claim resources */
1028 	if (!request_region(nvt->cir_addr,
1029 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1030 		goto failure;
1031 
1032 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1033 			NVT_DRIVER_NAME, (void *)nvt))
1034 		goto failure;
1035 
1036 	if (!request_region(nvt->cir_wake_addr,
1037 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1038 		goto failure;
1039 
1040 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1041 			NVT_DRIVER_NAME, (void *)nvt))
1042 		goto failure;
1043 
1044 	pnp_set_drvdata(pdev, nvt);
1045 	nvt->pdev = pdev;
1046 
1047 	init_waitqueue_head(&nvt->tx.queue);
1048 
1049 	ret = nvt_hw_detect(nvt);
1050 	if (ret)
1051 		goto failure;
1052 
1053 	/* Initialize CIR & CIR Wake Logical Devices */
1054 	nvt_efm_enable(nvt);
1055 	nvt_cir_ldev_init(nvt);
1056 	nvt_cir_wake_ldev_init(nvt);
1057 	nvt_efm_disable(nvt);
1058 
1059 	/* Initialize CIR & CIR Wake Config Registers */
1060 	nvt_cir_regs_init(nvt);
1061 	nvt_cir_wake_regs_init(nvt);
1062 
1063 	/* Set up the rc device */
1064 	rdev->priv = nvt;
1065 	rdev->driver_type = RC_DRIVER_IR_RAW;
1066 	rdev->allowed_protos = RC_TYPE_ALL;
1067 	rdev->open = nvt_open;
1068 	rdev->close = nvt_close;
1069 	rdev->tx_ir = nvt_tx_ir;
1070 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1071 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1072 	rdev->input_id.bustype = BUS_HOST;
1073 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1074 	rdev->input_id.product = nvt->chip_major;
1075 	rdev->input_id.version = nvt->chip_minor;
1076 	rdev->driver_name = NVT_DRIVER_NAME;
1077 	rdev->map_name = RC_MAP_RC6_MCE;
1078 #if 0
1079 	rdev->min_timeout = XYZ;
1080 	rdev->max_timeout = XYZ;
1081 	rdev->timeout = XYZ;
1082 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1083 	rdev->rx_resolution = XYZ;
1084 	/* tx bits */
1085 	rdev->tx_resolution = XYZ;
1086 #endif
1087 
1088 	ret = rc_register_device(rdev);
1089 	if (ret)
1090 		goto failure;
1091 
1092 	device_set_wakeup_capable(&pdev->dev, 1);
1093 	device_set_wakeup_enable(&pdev->dev, 1);
1094 	nvt->rdev = rdev;
1095 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1096 	if (debug) {
1097 		cir_dump_regs(nvt);
1098 		cir_wake_dump_regs(nvt);
1099 	}
1100 
1101 	return 0;
1102 
1103 failure:
1104 	if (nvt->cir_irq)
1105 		free_irq(nvt->cir_irq, nvt);
1106 	if (nvt->cir_addr)
1107 		release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1108 
1109 	if (nvt->cir_wake_irq)
1110 		free_irq(nvt->cir_wake_irq, nvt);
1111 	if (nvt->cir_wake_addr)
1112 		release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1113 
1114 	rc_free_device(rdev);
1115 	kfree(nvt);
1116 
1117 	return ret;
1118 }
1119 
1120 static void __devexit nvt_remove(struct pnp_dev *pdev)
1121 {
1122 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1123 	unsigned long flags;
1124 
1125 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1126 	/* disable CIR */
1127 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1128 	nvt_disable_cir(nvt);
1129 	/* enable CIR Wake (for IR power-on) */
1130 	nvt_enable_wake(nvt);
1131 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1132 
1133 	/* free resources */
1134 	free_irq(nvt->cir_irq, nvt);
1135 	free_irq(nvt->cir_wake_irq, nvt);
1136 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1137 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1138 
1139 	rc_unregister_device(nvt->rdev);
1140 
1141 	kfree(nvt);
1142 }
1143 
1144 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1145 {
1146 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1147 	unsigned long flags;
1148 
1149 	nvt_dbg("%s called", __func__);
1150 
1151 	/* zero out misc state tracking */
1152 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1153 	nvt->study_state = ST_STUDY_NONE;
1154 	nvt->wake_state = ST_WAKE_NONE;
1155 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1156 
1157 	spin_lock_irqsave(&nvt->tx.lock, flags);
1158 	nvt->tx.tx_state = ST_TX_NONE;
1159 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1160 
1161 	/* disable all CIR interrupts */
1162 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1163 
1164 	nvt_efm_enable(nvt);
1165 
1166 	/* disable cir logical dev */
1167 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1168 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1169 
1170 	nvt_efm_disable(nvt);
1171 
1172 	/* make sure wake is enabled */
1173 	nvt_enable_wake(nvt);
1174 
1175 	return 0;
1176 }
1177 
1178 static int nvt_resume(struct pnp_dev *pdev)
1179 {
1180 	int ret = 0;
1181 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1182 
1183 	nvt_dbg("%s called", __func__);
1184 
1185 	/* open interrupt */
1186 	nvt_set_cir_iren(nvt);
1187 
1188 	/* Enable CIR logical device */
1189 	nvt_efm_enable(nvt);
1190 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1191 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1192 
1193 	nvt_efm_disable(nvt);
1194 
1195 	nvt_cir_regs_init(nvt);
1196 	nvt_cir_wake_regs_init(nvt);
1197 
1198 	return ret;
1199 }
1200 
1201 static void nvt_shutdown(struct pnp_dev *pdev)
1202 {
1203 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1204 	nvt_enable_wake(nvt);
1205 }
1206 
1207 static const struct pnp_device_id nvt_ids[] = {
1208 	{ "WEC0530", 0 },   /* CIR */
1209 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1210 	{ "", 0 },
1211 };
1212 
1213 static struct pnp_driver nvt_driver = {
1214 	.name		= NVT_DRIVER_NAME,
1215 	.id_table	= nvt_ids,
1216 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1217 	.probe		= nvt_probe,
1218 	.remove		= __devexit_p(nvt_remove),
1219 	.suspend	= nvt_suspend,
1220 	.resume		= nvt_resume,
1221 	.shutdown	= nvt_shutdown,
1222 };
1223 
1224 int nvt_init(void)
1225 {
1226 	return pnp_register_driver(&nvt_driver);
1227 }
1228 
1229 void nvt_exit(void)
1230 {
1231 	pnp_unregister_driver(&nvt_driver);
1232 }
1233 
1234 module_param(debug, int, S_IRUGO | S_IWUSR);
1235 MODULE_PARM_DESC(debug, "Enable debugging output");
1236 
1237 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1238 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1239 
1240 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1241 MODULE_LICENSE("GPL");
1242 
1243 module_init(nvt_init);
1244 module_exit(nvt_exit);
1245