xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision c819e2cf)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 	outb(reg, nvt->cr_efir);
46 	outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 	outb(reg, nvt->cr_efir);
53 	return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	u8 tmp = nvt_cr_read(nvt, reg) | val;
60 	nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 	nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 	/* Enabling Extended Function Mode explicitly requires writing 2x */
74 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 	outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 	outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 	u8 val;
105 
106 	val = inb(nvt->cir_addr + offset);
107 
108 	return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 					  u8 val, u8 offset)
114 {
115 	outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 	u8 val;
122 
123 	val = inb(nvt->cir_wake_addr + offset);
124 
125 	return val;
126 }
127 
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131 	nvt_efm_enable(nvt);
132 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133 
134 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
136 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 
143 	nvt_efm_disable(nvt);
144 
145 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163 
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167 	u8 i, fifo_len;
168 
169 	nvt_efm_enable(nvt);
170 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171 
172 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 		NVT_DRIVER_NAME);
174 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 
182 	nvt_efm_disable(nvt);
183 
184 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 	pr_info(" * IRCON:          0x%x\n",
186 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 	pr_info(" * IRSTS:          0x%x\n",
188 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 	pr_info(" * IREN:           0x%x\n",
190 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
192 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 	pr_info(" * FIFO CMP TOL:   0x%x\n",
194 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 	pr_info(" * FIFO COUNT:     0x%x\n",
196 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 	pr_info(" * SLCH:           0x%x\n",
198 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 	pr_info(" * SLCL:           0x%x\n",
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 	pr_info(" * FIFOCON:        0x%x\n",
202 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 	pr_info(" * SRXFSTS:        0x%x\n",
204 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 	pr_info(" * WR FIFO DATA:   0x%x\n",
208 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 	pr_info(" * RD FIFO ONLY:   0x%x\n",
210 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 	pr_info(" * FIFO IGNORE:    0x%x\n",
214 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 	pr_info(" * IRFSM:          0x%x\n",
216 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 
218 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 	pr_info("* Contents =");
221 	for (i = 0; i < fifo_len; i++)
222 		pr_cont(" %02x",
223 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 	pr_cont("\n");
225 }
226 
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230 	unsigned long flags;
231 	u8 chip_major, chip_minor;
232 	char chip_id[12];
233 	bool chip_unknown = false;
234 
235 	nvt_efm_enable(nvt);
236 
237 	/* Check if we're wired for the alternate EFER setup */
238 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
239 	if (chip_major == 0xff) {
240 		nvt->cr_efir = CR_EFIR2;
241 		nvt->cr_efdr = CR_EFDR2;
242 		nvt_efm_enable(nvt);
243 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
244 	}
245 
246 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
247 
248 	/* these are the known working chip revisions... */
249 	switch (chip_major) {
250 	case CHIP_ID_HIGH_667:
251 		strcpy(chip_id, "w83667hg\0");
252 		if (chip_minor != CHIP_ID_LOW_667)
253 			chip_unknown = true;
254 		break;
255 	case CHIP_ID_HIGH_677B:
256 		strcpy(chip_id, "w83677hg\0");
257 		if (chip_minor != CHIP_ID_LOW_677B2 &&
258 		    chip_minor != CHIP_ID_LOW_677B3)
259 			chip_unknown = true;
260 		break;
261 	case CHIP_ID_HIGH_677C:
262 		strcpy(chip_id, "w83677hg-c\0");
263 		if (chip_minor != CHIP_ID_LOW_677C)
264 			chip_unknown = true;
265 		break;
266 	default:
267 		strcpy(chip_id, "w836x7hg\0");
268 		chip_unknown = true;
269 		break;
270 	}
271 
272 	/* warn, but still let the driver load, if we don't know this chip */
273 	if (chip_unknown)
274 		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
275 		       "it may not work...", chip_id, chip_major, chip_minor);
276 	else
277 		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
278 			chip_id, chip_major, chip_minor);
279 
280 	nvt_efm_disable(nvt);
281 
282 	spin_lock_irqsave(&nvt->nvt_lock, flags);
283 	nvt->chip_major = chip_major;
284 	nvt->chip_minor = chip_minor;
285 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
286 
287 	return 0;
288 }
289 
290 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
291 {
292 	u8 val, psreg, psmask, psval;
293 
294 	if (nvt->chip_major == CHIP_ID_HIGH_667) {
295 		psreg = CR_MULTIFUNC_PIN_SEL;
296 		psmask = MULTIFUNC_PIN_SEL_MASK;
297 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
298 	} else {
299 		psreg = CR_OUTPUT_PIN_SEL;
300 		psmask = OUTPUT_PIN_SEL_MASK;
301 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
302 	}
303 
304 	/* output pin selection: enable CIR, with WB sensor enabled */
305 	val = nvt_cr_read(nvt, psreg);
306 	val &= psmask;
307 	val |= psval;
308 	nvt_cr_write(nvt, val, psreg);
309 
310 	/* Select CIR logical device and enable */
311 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
312 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
313 
314 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
315 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
316 
317 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
318 
319 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
320 		nvt->cir_addr, nvt->cir_irq);
321 }
322 
323 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
324 {
325 	/* Select ACPI logical device, enable it and CIR Wake */
326 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
327 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
328 
329 	/* Enable CIR Wake via PSOUT# (Pin60) */
330 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
331 
332 	/* enable pme interrupt of cir wakeup event */
333 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
334 
335 	/* Select CIR Wake logical device and enable */
336 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
337 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
338 
339 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
340 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
341 
342 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
343 
344 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
345 		nvt->cir_wake_addr, nvt->cir_wake_irq);
346 }
347 
348 /* clear out the hardware's cir rx fifo */
349 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
350 {
351 	u8 val;
352 
353 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
354 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
355 }
356 
357 /* clear out the hardware's cir wake rx fifo */
358 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
359 {
360 	u8 val;
361 
362 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
363 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
364 			       CIR_WAKE_FIFOCON);
365 }
366 
367 /* clear out the hardware's cir tx fifo */
368 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
369 {
370 	u8 val;
371 
372 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
373 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
374 }
375 
376 /* enable RX Trigger Level Reach and Packet End interrupts */
377 static void nvt_set_cir_iren(struct nvt_dev *nvt)
378 {
379 	u8 iren;
380 
381 	iren = CIR_IREN_RTR | CIR_IREN_PE;
382 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
383 }
384 
385 static void nvt_cir_regs_init(struct nvt_dev *nvt)
386 {
387 	/* set sample limit count (PE interrupt raised when reached) */
388 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
389 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
390 
391 	/* set fifo irq trigger levels */
392 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
393 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
394 
395 	/*
396 	 * Enable TX and RX, specify carrier on = low, off = high, and set
397 	 * sample period (currently 50us)
398 	 */
399 	nvt_cir_reg_write(nvt,
400 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
401 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
402 			  CIR_IRCON);
403 
404 	/* clear hardware rx and tx fifos */
405 	nvt_clear_cir_fifo(nvt);
406 	nvt_clear_tx_fifo(nvt);
407 
408 	/* clear any and all stray interrupts */
409 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
410 
411 	/* and finally, enable interrupts */
412 	nvt_set_cir_iren(nvt);
413 }
414 
415 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
416 {
417 	/* set number of bytes needed for wake from s3 (default 65) */
418 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
419 			       CIR_WAKE_FIFO_CMP_DEEP);
420 
421 	/* set tolerance/variance allowed per byte during wake compare */
422 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
423 			       CIR_WAKE_FIFO_CMP_TOL);
424 
425 	/* set sample limit count (PE interrupt raised when reached) */
426 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
427 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
428 
429 	/* set cir wake fifo rx trigger level (currently 67) */
430 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
431 			       CIR_WAKE_FIFOCON);
432 
433 	/*
434 	 * Enable TX and RX, specific carrier on = low, off = high, and set
435 	 * sample period (currently 50us)
436 	 */
437 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
438 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
439 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
440 			       CIR_WAKE_IRCON);
441 
442 	/* clear cir wake rx fifo */
443 	nvt_clear_cir_wake_fifo(nvt);
444 
445 	/* clear any and all stray interrupts */
446 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
447 }
448 
449 static void nvt_enable_wake(struct nvt_dev *nvt)
450 {
451 	nvt_efm_enable(nvt);
452 
453 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
454 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
455 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
456 
457 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
458 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
459 
460 	nvt_efm_disable(nvt);
461 
462 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
463 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
464 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
465 			       CIR_WAKE_IRCON);
466 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
467 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
468 }
469 
470 #if 0 /* Currently unused */
471 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
472 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
473 {
474 	u32 count, carrier, duration = 0;
475 	int i;
476 
477 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
478 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
479 
480 	for (i = 0; i < nvt->pkts; i++) {
481 		if (nvt->buf[i] & BUF_PULSE_BIT)
482 			duration += nvt->buf[i] & BUF_LEN_MASK;
483 	}
484 
485 	duration *= SAMPLE_PERIOD;
486 
487 	if (!count || !duration) {
488 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
489 		       count, duration);
490 		return 0;
491 	}
492 
493 	carrier = MS_TO_NS(count) / duration;
494 
495 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
496 		nvt_dbg("WTF? Carrier frequency out of range!");
497 
498 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
499 		carrier, count, duration);
500 
501 	return carrier;
502 }
503 #endif
504 /*
505  * set carrier frequency
506  *
507  * set carrier on 2 registers: CP & CC
508  * always set CP as 0x81
509  * set CC by SPEC, CC = 3MHz/carrier - 1
510  */
511 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
512 {
513 	struct nvt_dev *nvt = dev->priv;
514 	u16 val;
515 
516 	if (carrier == 0)
517 		return -EINVAL;
518 
519 	nvt_cir_reg_write(nvt, 1, CIR_CP);
520 	val = 3000000 / (carrier) - 1;
521 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
522 
523 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
524 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
525 
526 	return 0;
527 }
528 
529 /*
530  * nvt_tx_ir
531  *
532  * 1) clean TX fifo first (handled by AP)
533  * 2) copy data from user space
534  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
535  * 4) send 9 packets to TX FIFO to open TTR
536  * in interrupt_handler:
537  * 5) send all data out
538  * go back to write():
539  * 6) disable TX interrupts, re-enable RX interupts
540  *
541  * The key problem of this function is user space data may larger than
542  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
543  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
544  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
545  * set TXFCONT as 0xff, until buf_count less than 0xff.
546  */
547 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
548 {
549 	struct nvt_dev *nvt = dev->priv;
550 	unsigned long flags;
551 	unsigned int i;
552 	u8 iren;
553 	int ret;
554 
555 	spin_lock_irqsave(&nvt->tx.lock, flags);
556 
557 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
558 	nvt->tx.buf_count = (ret * sizeof(unsigned));
559 
560 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
561 
562 	nvt->tx.cur_buf_num = 0;
563 
564 	/* save currently enabled interrupts */
565 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
566 
567 	/* now disable all interrupts, save TFU & TTR */
568 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
569 
570 	nvt->tx.tx_state = ST_TX_REPLY;
571 
572 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
573 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
574 
575 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
576 	for (i = 0; i < 9; i++)
577 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
578 
579 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
580 
581 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
582 
583 	spin_lock_irqsave(&nvt->tx.lock, flags);
584 	nvt->tx.tx_state = ST_TX_NONE;
585 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
586 
587 	/* restore enabled interrupts to prior state */
588 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
589 
590 	return ret;
591 }
592 
593 /* dump contents of the last rx buffer we got from the hw rx fifo */
594 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
595 {
596 	int i;
597 
598 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
599 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
600 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
601 	printk(KERN_CONT "\n");
602 }
603 
604 /*
605  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
606  * trigger decode when appropriate.
607  *
608  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
609  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
610  * (default 50us) intervals for that pulse/space. A discrete signal is
611  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
612  * to signal more IR coming (repeats) or end of IR, respectively. We store
613  * sample data in the raw event kfifo until we see 0x7<something> (except f)
614  * or 0x80, at which time, we trigger a decode operation.
615  */
616 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
617 {
618 	DEFINE_IR_RAW_EVENT(rawir);
619 	u8 sample;
620 	int i;
621 
622 	nvt_dbg_verbose("%s firing", __func__);
623 
624 	if (debug)
625 		nvt_dump_rx_buf(nvt);
626 
627 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
628 
629 	init_ir_raw_event(&rawir);
630 
631 	for (i = 0; i < nvt->pkts; i++) {
632 		sample = nvt->buf[i];
633 
634 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
635 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
636 					  * SAMPLE_PERIOD);
637 
638 		nvt_dbg("Storing %s with duration %d",
639 			rawir.pulse ? "pulse" : "space", rawir.duration);
640 
641 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
642 
643 		/*
644 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
645 		 * indicates end of IR signal, but new data incoming. In both
646 		 * cases, it means we're ready to call ir_raw_event_handle
647 		 */
648 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
649 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
650 			ir_raw_event_handle(nvt->rdev);
651 		}
652 	}
653 
654 	nvt->pkts = 0;
655 
656 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
657 	ir_raw_event_handle(nvt->rdev);
658 
659 	nvt_dbg_verbose("%s done", __func__);
660 }
661 
662 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
663 {
664 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
665 
666 	nvt->pkts = 0;
667 	nvt_clear_cir_fifo(nvt);
668 	ir_raw_event_reset(nvt->rdev);
669 }
670 
671 /* copy data from hardware rx fifo into driver buffer */
672 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
673 {
674 	unsigned long flags;
675 	u8 fifocount, val;
676 	unsigned int b_idx;
677 	bool overrun = false;
678 	int i;
679 
680 	/* Get count of how many bytes to read from RX FIFO */
681 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
682 	/* if we get 0xff, probably means the logical dev is disabled */
683 	if (fifocount == 0xff)
684 		return;
685 	/* watch out for a fifo overrun condition */
686 	else if (fifocount > RX_BUF_LEN) {
687 		overrun = true;
688 		fifocount = RX_BUF_LEN;
689 	}
690 
691 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
692 
693 	spin_lock_irqsave(&nvt->nvt_lock, flags);
694 
695 	b_idx = nvt->pkts;
696 
697 	/* This should never happen, but lets check anyway... */
698 	if (b_idx + fifocount > RX_BUF_LEN) {
699 		nvt_process_rx_ir_data(nvt);
700 		b_idx = 0;
701 	}
702 
703 	/* Read fifocount bytes from CIR Sample RX FIFO register */
704 	for (i = 0; i < fifocount; i++) {
705 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
706 		nvt->buf[b_idx + i] = val;
707 	}
708 
709 	nvt->pkts += fifocount;
710 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
711 
712 	nvt_process_rx_ir_data(nvt);
713 
714 	if (overrun)
715 		nvt_handle_rx_fifo_overrun(nvt);
716 
717 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
718 }
719 
720 static void nvt_cir_log_irqs(u8 status, u8 iren)
721 {
722 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
723 		status, iren,
724 		status & CIR_IRSTS_RDR	? " RDR"	: "",
725 		status & CIR_IRSTS_RTR	? " RTR"	: "",
726 		status & CIR_IRSTS_PE	? " PE"		: "",
727 		status & CIR_IRSTS_RFO	? " RFO"	: "",
728 		status & CIR_IRSTS_TE	? " TE"		: "",
729 		status & CIR_IRSTS_TTR	? " TTR"	: "",
730 		status & CIR_IRSTS_TFU	? " TFU"	: "",
731 		status & CIR_IRSTS_GH	? " GH"		: "",
732 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
733 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
734 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
735 }
736 
737 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
738 {
739 	unsigned long flags;
740 	bool tx_inactive;
741 	u8 tx_state;
742 
743 	spin_lock_irqsave(&nvt->tx.lock, flags);
744 	tx_state = nvt->tx.tx_state;
745 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
746 
747 	tx_inactive = (tx_state == ST_TX_NONE);
748 
749 	return tx_inactive;
750 }
751 
752 /* interrupt service routine for incoming and outgoing CIR data */
753 static irqreturn_t nvt_cir_isr(int irq, void *data)
754 {
755 	struct nvt_dev *nvt = data;
756 	u8 status, iren, cur_state;
757 	unsigned long flags;
758 
759 	nvt_dbg_verbose("%s firing", __func__);
760 
761 	nvt_efm_enable(nvt);
762 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
763 	nvt_efm_disable(nvt);
764 
765 	/*
766 	 * Get IR Status register contents. Write 1 to ack/clear
767 	 *
768 	 * bit: reg name      - description
769 	 *   7: CIR_IRSTS_RDR - RX Data Ready
770 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
771 	 *   5: CIR_IRSTS_PE  - Packet End
772 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
773 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
774 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
775 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
776 	 *   0: CIR_IRSTS_GH  - Min Length Detected
777 	 */
778 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
779 	if (!status) {
780 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
781 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
782 		return IRQ_RETVAL(IRQ_NONE);
783 	}
784 
785 	/* ack/clear all irq flags we've got */
786 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
787 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
788 
789 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
790 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
791 	if (!iren) {
792 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
793 		return IRQ_RETVAL(IRQ_NONE);
794 	}
795 
796 	if (debug)
797 		nvt_cir_log_irqs(status, iren);
798 
799 	if (status & CIR_IRSTS_RTR) {
800 		/* FIXME: add code for study/learn mode */
801 		/* We only do rx if not tx'ing */
802 		if (nvt_cir_tx_inactive(nvt))
803 			nvt_get_rx_ir_data(nvt);
804 	}
805 
806 	if (status & CIR_IRSTS_PE) {
807 		if (nvt_cir_tx_inactive(nvt))
808 			nvt_get_rx_ir_data(nvt);
809 
810 		spin_lock_irqsave(&nvt->nvt_lock, flags);
811 
812 		cur_state = nvt->study_state;
813 
814 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
815 
816 		if (cur_state == ST_STUDY_NONE)
817 			nvt_clear_cir_fifo(nvt);
818 	}
819 
820 	if (status & CIR_IRSTS_TE)
821 		nvt_clear_tx_fifo(nvt);
822 
823 	if (status & CIR_IRSTS_TTR) {
824 		unsigned int pos, count;
825 		u8 tmp;
826 
827 		spin_lock_irqsave(&nvt->tx.lock, flags);
828 
829 		pos = nvt->tx.cur_buf_num;
830 		count = nvt->tx.buf_count;
831 
832 		/* Write data into the hardware tx fifo while pos < count */
833 		if (pos < count) {
834 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
835 			nvt->tx.cur_buf_num++;
836 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
837 		} else {
838 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
839 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
840 		}
841 
842 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
843 
844 	}
845 
846 	if (status & CIR_IRSTS_TFU) {
847 		spin_lock_irqsave(&nvt->tx.lock, flags);
848 		if (nvt->tx.tx_state == ST_TX_REPLY) {
849 			nvt->tx.tx_state = ST_TX_REQUEST;
850 			wake_up(&nvt->tx.queue);
851 		}
852 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
853 	}
854 
855 	nvt_dbg_verbose("%s done", __func__);
856 	return IRQ_RETVAL(IRQ_HANDLED);
857 }
858 
859 /* Interrupt service routine for CIR Wake */
860 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
861 {
862 	u8 status, iren, val;
863 	struct nvt_dev *nvt = data;
864 	unsigned long flags;
865 
866 	nvt_dbg_wake("%s firing", __func__);
867 
868 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
869 	if (!status)
870 		return IRQ_RETVAL(IRQ_NONE);
871 
872 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
873 		nvt_clear_cir_wake_fifo(nvt);
874 
875 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
876 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
877 
878 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
879 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
880 	if (!iren) {
881 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
882 		return IRQ_RETVAL(IRQ_HANDLED);
883 	}
884 
885 	if ((status & CIR_WAKE_IRSTS_PE) &&
886 	    (nvt->wake_state == ST_WAKE_START)) {
887 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
888 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
889 			nvt_dbg("setting wake up key: 0x%x", val);
890 		}
891 
892 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
893 		spin_lock_irqsave(&nvt->nvt_lock, flags);
894 		nvt->wake_state = ST_WAKE_FINISH;
895 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
896 	}
897 
898 	nvt_dbg_wake("%s done", __func__);
899 	return IRQ_RETVAL(IRQ_HANDLED);
900 }
901 
902 static void nvt_enable_cir(struct nvt_dev *nvt)
903 {
904 	/* set function enable flags */
905 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
906 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
907 			  CIR_IRCON);
908 
909 	nvt_efm_enable(nvt);
910 
911 	/* enable the CIR logical device */
912 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
913 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
914 
915 	nvt_efm_disable(nvt);
916 
917 	/* clear all pending interrupts */
918 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
919 
920 	/* enable interrupts */
921 	nvt_set_cir_iren(nvt);
922 }
923 
924 static void nvt_disable_cir(struct nvt_dev *nvt)
925 {
926 	/* disable CIR interrupts */
927 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
928 
929 	/* clear any and all pending interrupts */
930 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
931 
932 	/* clear all function enable flags */
933 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
934 
935 	/* clear hardware rx and tx fifos */
936 	nvt_clear_cir_fifo(nvt);
937 	nvt_clear_tx_fifo(nvt);
938 
939 	nvt_efm_enable(nvt);
940 
941 	/* disable the CIR logical device */
942 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
943 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
944 
945 	nvt_efm_disable(nvt);
946 }
947 
948 static int nvt_open(struct rc_dev *dev)
949 {
950 	struct nvt_dev *nvt = dev->priv;
951 	unsigned long flags;
952 
953 	spin_lock_irqsave(&nvt->nvt_lock, flags);
954 	nvt_enable_cir(nvt);
955 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
956 
957 	return 0;
958 }
959 
960 static void nvt_close(struct rc_dev *dev)
961 {
962 	struct nvt_dev *nvt = dev->priv;
963 	unsigned long flags;
964 
965 	spin_lock_irqsave(&nvt->nvt_lock, flags);
966 	nvt_disable_cir(nvt);
967 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
968 }
969 
970 /* Allocate memory, probe hardware, and initialize everything */
971 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
972 {
973 	struct nvt_dev *nvt;
974 	struct rc_dev *rdev;
975 	int ret = -ENOMEM;
976 
977 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
978 	if (!nvt)
979 		return ret;
980 
981 	/* input device for IR remote (and tx) */
982 	rdev = rc_allocate_device();
983 	if (!rdev)
984 		goto exit_free_dev_rdev;
985 
986 	ret = -ENODEV;
987 	/* activate pnp device */
988 	if (pnp_activate_dev(pdev) < 0) {
989 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
990 		goto exit_free_dev_rdev;
991 	}
992 
993 	/* validate pnp resources */
994 	if (!pnp_port_valid(pdev, 0) ||
995 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
996 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
997 		goto exit_free_dev_rdev;
998 	}
999 
1000 	if (!pnp_irq_valid(pdev, 0)) {
1001 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1002 		goto exit_free_dev_rdev;
1003 	}
1004 
1005 	if (!pnp_port_valid(pdev, 1) ||
1006 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1007 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1008 		goto exit_free_dev_rdev;
1009 	}
1010 
1011 	nvt->cir_addr = pnp_port_start(pdev, 0);
1012 	nvt->cir_irq  = pnp_irq(pdev, 0);
1013 
1014 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1015 	/* irq is always shared between cir and cir wake */
1016 	nvt->cir_wake_irq  = nvt->cir_irq;
1017 
1018 	nvt->cr_efir = CR_EFIR;
1019 	nvt->cr_efdr = CR_EFDR;
1020 
1021 	spin_lock_init(&nvt->nvt_lock);
1022 	spin_lock_init(&nvt->tx.lock);
1023 
1024 	pnp_set_drvdata(pdev, nvt);
1025 	nvt->pdev = pdev;
1026 
1027 	init_waitqueue_head(&nvt->tx.queue);
1028 
1029 	ret = nvt_hw_detect(nvt);
1030 	if (ret)
1031 		goto exit_free_dev_rdev;
1032 
1033 	/* Initialize CIR & CIR Wake Logical Devices */
1034 	nvt_efm_enable(nvt);
1035 	nvt_cir_ldev_init(nvt);
1036 	nvt_cir_wake_ldev_init(nvt);
1037 	nvt_efm_disable(nvt);
1038 
1039 	/* Initialize CIR & CIR Wake Config Registers */
1040 	nvt_cir_regs_init(nvt);
1041 	nvt_cir_wake_regs_init(nvt);
1042 
1043 	/* Set up the rc device */
1044 	rdev->priv = nvt;
1045 	rdev->driver_type = RC_DRIVER_IR_RAW;
1046 	rdev->allowed_protocols = RC_BIT_ALL;
1047 	rdev->open = nvt_open;
1048 	rdev->close = nvt_close;
1049 	rdev->tx_ir = nvt_tx_ir;
1050 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1051 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1052 	rdev->input_phys = "nuvoton/cir0";
1053 	rdev->input_id.bustype = BUS_HOST;
1054 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1055 	rdev->input_id.product = nvt->chip_major;
1056 	rdev->input_id.version = nvt->chip_minor;
1057 	rdev->dev.parent = &pdev->dev;
1058 	rdev->driver_name = NVT_DRIVER_NAME;
1059 	rdev->map_name = RC_MAP_RC6_MCE;
1060 	rdev->timeout = MS_TO_NS(100);
1061 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1062 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1063 #if 0
1064 	rdev->min_timeout = XYZ;
1065 	rdev->max_timeout = XYZ;
1066 	/* tx bits */
1067 	rdev->tx_resolution = XYZ;
1068 #endif
1069 	nvt->rdev = rdev;
1070 
1071 	ret = rc_register_device(rdev);
1072 	if (ret)
1073 		goto exit_free_dev_rdev;
1074 
1075 	ret = -EBUSY;
1076 	/* now claim resources */
1077 	if (!request_region(nvt->cir_addr,
1078 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1079 		goto exit_unregister_device;
1080 
1081 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1082 			NVT_DRIVER_NAME, (void *)nvt))
1083 		goto exit_release_cir_addr;
1084 
1085 	if (!request_region(nvt->cir_wake_addr,
1086 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1087 		goto exit_free_irq;
1088 
1089 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1090 			NVT_DRIVER_NAME, (void *)nvt))
1091 		goto exit_release_cir_wake_addr;
1092 
1093 	device_init_wakeup(&pdev->dev, true);
1094 
1095 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1096 	if (debug) {
1097 		cir_dump_regs(nvt);
1098 		cir_wake_dump_regs(nvt);
1099 	}
1100 
1101 	return 0;
1102 
1103 exit_release_cir_wake_addr:
1104 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1105 exit_free_irq:
1106 	free_irq(nvt->cir_irq, nvt);
1107 exit_release_cir_addr:
1108 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1109 exit_unregister_device:
1110 	rc_unregister_device(rdev);
1111 	rdev = NULL;
1112 exit_free_dev_rdev:
1113 	rc_free_device(rdev);
1114 	kfree(nvt);
1115 
1116 	return ret;
1117 }
1118 
1119 static void nvt_remove(struct pnp_dev *pdev)
1120 {
1121 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1122 	unsigned long flags;
1123 
1124 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1125 	/* disable CIR */
1126 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1127 	nvt_disable_cir(nvt);
1128 	/* enable CIR Wake (for IR power-on) */
1129 	nvt_enable_wake(nvt);
1130 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1131 
1132 	/* free resources */
1133 	free_irq(nvt->cir_irq, nvt);
1134 	free_irq(nvt->cir_wake_irq, nvt);
1135 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1136 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1137 
1138 	rc_unregister_device(nvt->rdev);
1139 
1140 	kfree(nvt);
1141 }
1142 
1143 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1144 {
1145 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1146 	unsigned long flags;
1147 
1148 	nvt_dbg("%s called", __func__);
1149 
1150 	/* zero out misc state tracking */
1151 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1152 	nvt->study_state = ST_STUDY_NONE;
1153 	nvt->wake_state = ST_WAKE_NONE;
1154 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1155 
1156 	spin_lock_irqsave(&nvt->tx.lock, flags);
1157 	nvt->tx.tx_state = ST_TX_NONE;
1158 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1159 
1160 	/* disable all CIR interrupts */
1161 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162 
1163 	nvt_efm_enable(nvt);
1164 
1165 	/* disable cir logical dev */
1166 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1167 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1168 
1169 	nvt_efm_disable(nvt);
1170 
1171 	/* make sure wake is enabled */
1172 	nvt_enable_wake(nvt);
1173 
1174 	return 0;
1175 }
1176 
1177 static int nvt_resume(struct pnp_dev *pdev)
1178 {
1179 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1180 
1181 	nvt_dbg("%s called", __func__);
1182 
1183 	/* open interrupt */
1184 	nvt_set_cir_iren(nvt);
1185 
1186 	/* Enable CIR logical device */
1187 	nvt_efm_enable(nvt);
1188 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1189 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1190 
1191 	nvt_efm_disable(nvt);
1192 
1193 	nvt_cir_regs_init(nvt);
1194 	nvt_cir_wake_regs_init(nvt);
1195 
1196 	return 0;
1197 }
1198 
1199 static void nvt_shutdown(struct pnp_dev *pdev)
1200 {
1201 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1202 	nvt_enable_wake(nvt);
1203 }
1204 
1205 static const struct pnp_device_id nvt_ids[] = {
1206 	{ "WEC0530", 0 },   /* CIR */
1207 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1208 	{ "", 0 },
1209 };
1210 
1211 static struct pnp_driver nvt_driver = {
1212 	.name		= NVT_DRIVER_NAME,
1213 	.id_table	= nvt_ids,
1214 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1215 	.probe		= nvt_probe,
1216 	.remove		= nvt_remove,
1217 	.suspend	= nvt_suspend,
1218 	.resume		= nvt_resume,
1219 	.shutdown	= nvt_shutdown,
1220 };
1221 
1222 static int __init nvt_init(void)
1223 {
1224 	return pnp_register_driver(&nvt_driver);
1225 }
1226 
1227 static void __exit nvt_exit(void)
1228 {
1229 	pnp_unregister_driver(&nvt_driver);
1230 }
1231 
1232 module_param(debug, int, S_IRUGO | S_IWUSR);
1233 MODULE_PARM_DESC(debug, "Enable debugging output");
1234 
1235 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1236 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1237 
1238 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1239 MODULE_LICENSE("GPL");
1240 
1241 module_init(nvt_init);
1242 module_exit(nvt_exit);
1243