xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision bc5aa3a0)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
43 
44 static const struct nvt_chip nvt_chips[] = {
45 	{ "w83667hg", NVT_W83667HG },
46 	{ "NCT6775F", NVT_6775F },
47 	{ "NCT6776F", NVT_6776F },
48 	{ "NCT6779D", NVT_6779D },
49 };
50 
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 	return nvt->chip_ver == NVT_W83667HG;
54 }
55 
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	outb(reg, nvt->cr_efir);
60 	outb(val, nvt->cr_efdr);
61 }
62 
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 	outb(reg, nvt->cr_efir);
67 	return inb(nvt->cr_efdr);
68 }
69 
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 	u8 tmp = nvt_cr_read(nvt, reg) | val;
74 	nvt_cr_write(nvt, tmp, reg);
75 }
76 
77 /* clear config register bit without changing other bits */
78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
79 {
80 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
81 	nvt_cr_write(nvt, tmp, reg);
82 }
83 
84 /* enter extended function mode */
85 static inline int nvt_efm_enable(struct nvt_dev *nvt)
86 {
87 	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
88 		return -EBUSY;
89 
90 	/* Enabling Extended Function Mode explicitly requires writing 2x */
91 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
92 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
93 
94 	return 0;
95 }
96 
97 /* exit extended function mode */
98 static inline void nvt_efm_disable(struct nvt_dev *nvt)
99 {
100 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
101 
102 	release_region(nvt->cr_efir, 2);
103 }
104 
105 /*
106  * When you want to address a specific logical device, write its logical
107  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
108  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
109  */
110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
111 {
112 	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
113 }
114 
115 /* select and enable logical device with setting EFM mode*/
116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
117 {
118 	nvt_efm_enable(nvt);
119 	nvt_select_logical_dev(nvt, ldev);
120 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
121 	nvt_efm_disable(nvt);
122 }
123 
124 /* select and disable logical device with setting EFM mode*/
125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
126 {
127 	nvt_efm_enable(nvt);
128 	nvt_select_logical_dev(nvt, ldev);
129 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
130 	nvt_efm_disable(nvt);
131 }
132 
133 /* write val to cir config register */
134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
135 {
136 	outb(val, nvt->cir_addr + offset);
137 }
138 
139 /* read val from cir config register */
140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
141 {
142 	return inb(nvt->cir_addr + offset);
143 }
144 
145 /* write val to cir wake register */
146 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
147 					  u8 val, u8 offset)
148 {
149 	outb(val, nvt->cir_wake_addr + offset);
150 }
151 
152 /* read val from cir wake config register */
153 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
154 {
155 	return inb(nvt->cir_wake_addr + offset);
156 }
157 
158 /* don't override io address if one is set already */
159 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
160 {
161 	unsigned long old_addr;
162 
163 	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
164 	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
165 
166 	if (old_addr)
167 		*ioaddr = old_addr;
168 	else {
169 		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
170 		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
171 	}
172 }
173 
174 static ssize_t wakeup_data_show(struct device *dev,
175 				struct device_attribute *attr,
176 				char *buf)
177 {
178 	struct rc_dev *rc_dev = to_rc_dev(dev);
179 	struct nvt_dev *nvt = rc_dev->priv;
180 	int fifo_len, duration;
181 	unsigned long flags;
182 	ssize_t buf_len = 0;
183 	int i;
184 
185 	spin_lock_irqsave(&nvt->nvt_lock, flags);
186 
187 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
188 	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
189 
190 	/* go to first element to be read */
191 	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
192 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
193 
194 	for (i = 0; i < fifo_len; i++) {
195 		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
196 		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
197 		buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
198 				    "%d ", duration);
199 	}
200 	buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
201 
202 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
203 
204 	return buf_len;
205 }
206 
207 static ssize_t wakeup_data_store(struct device *dev,
208 				 struct device_attribute *attr,
209 				 const char *buf, size_t len)
210 {
211 	struct rc_dev *rc_dev = to_rc_dev(dev);
212 	struct nvt_dev *nvt = rc_dev->priv;
213 	unsigned long flags;
214 	u8 tolerance, config, wake_buf[WAKEUP_MAX_SIZE];
215 	char **argv;
216 	int i, count;
217 	unsigned int val;
218 	ssize_t ret;
219 
220 	argv = argv_split(GFP_KERNEL, buf, &count);
221 	if (!argv)
222 		return -ENOMEM;
223 	if (!count || count > WAKEUP_MAX_SIZE) {
224 		ret = -EINVAL;
225 		goto out;
226 	}
227 
228 	for (i = 0; i < count; i++) {
229 		ret = kstrtouint(argv[i], 10, &val);
230 		if (ret)
231 			goto out;
232 		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
233 		if (!val || val > 0x7f) {
234 			ret = -EINVAL;
235 			goto out;
236 		}
237 		wake_buf[i] = val;
238 		/* sequence must start with a pulse */
239 		if (i % 2 == 0)
240 			wake_buf[i] |= BUF_PULSE_BIT;
241 	}
242 
243 	/* hardcode the tolerance to 10% */
244 	tolerance = DIV_ROUND_UP(count, 10);
245 
246 	spin_lock_irqsave(&nvt->nvt_lock, flags);
247 
248 	nvt_clear_cir_wake_fifo(nvt);
249 	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
250 	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
251 
252 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
253 
254 	/* enable writes to wake fifo */
255 	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
256 			       CIR_WAKE_IRCON);
257 
258 	for (i = 0; i < count; i++)
259 		nvt_cir_wake_reg_write(nvt, wake_buf[i], CIR_WAKE_WR_FIFO_DATA);
260 
261 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
262 
263 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
264 
265 	ret = len;
266 out:
267 	argv_free(argv);
268 	return ret;
269 }
270 static DEVICE_ATTR_RW(wakeup_data);
271 
272 /* dump current cir register contents */
273 static void cir_dump_regs(struct nvt_dev *nvt)
274 {
275 	nvt_efm_enable(nvt);
276 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
277 
278 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
279 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
280 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
281 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
282 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
283 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
284 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
285 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
286 
287 	nvt_efm_disable(nvt);
288 
289 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
290 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
291 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
292 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
293 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
294 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
295 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
296 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
297 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
298 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
299 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
300 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
301 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
302 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
303 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
304 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
305 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
306 }
307 
308 /* dump current cir wake register contents */
309 static void cir_wake_dump_regs(struct nvt_dev *nvt)
310 {
311 	u8 i, fifo_len;
312 
313 	nvt_efm_enable(nvt);
314 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
315 
316 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
317 		NVT_DRIVER_NAME);
318 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
319 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
320 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
321 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
322 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
323 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
324 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
325 
326 	nvt_efm_disable(nvt);
327 
328 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
329 	pr_info(" * IRCON:          0x%x\n",
330 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
331 	pr_info(" * IRSTS:          0x%x\n",
332 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
333 	pr_info(" * IREN:           0x%x\n",
334 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
335 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
336 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
337 	pr_info(" * FIFO CMP TOL:   0x%x\n",
338 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
339 	pr_info(" * FIFO COUNT:     0x%x\n",
340 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
341 	pr_info(" * SLCH:           0x%x\n",
342 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
343 	pr_info(" * SLCL:           0x%x\n",
344 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
345 	pr_info(" * FIFOCON:        0x%x\n",
346 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
347 	pr_info(" * SRXFSTS:        0x%x\n",
348 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
349 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
350 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
351 	pr_info(" * WR FIFO DATA:   0x%x\n",
352 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
353 	pr_info(" * RD FIFO ONLY:   0x%x\n",
354 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
355 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
356 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
357 	pr_info(" * FIFO IGNORE:    0x%x\n",
358 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
359 	pr_info(" * IRFSM:          0x%x\n",
360 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
361 
362 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
363 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
364 	pr_info("* Contents =");
365 	for (i = 0; i < fifo_len; i++)
366 		pr_cont(" %02x",
367 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
368 	pr_cont("\n");
369 }
370 
371 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
372 {
373 	int i;
374 
375 	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
376 		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
377 			nvt->chip_ver = nvt_chips[i].chip_ver;
378 			return nvt_chips[i].name;
379 		}
380 
381 	return NULL;
382 }
383 
384 
385 /* detect hardware features */
386 static int nvt_hw_detect(struct nvt_dev *nvt)
387 {
388 	const char *chip_name;
389 	int chip_id;
390 
391 	nvt_efm_enable(nvt);
392 
393 	/* Check if we're wired for the alternate EFER setup */
394 	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
395 	if (nvt->chip_major == 0xff) {
396 		nvt_efm_disable(nvt);
397 		nvt->cr_efir = CR_EFIR2;
398 		nvt->cr_efdr = CR_EFDR2;
399 		nvt_efm_enable(nvt);
400 		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
401 	}
402 	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
403 
404 	nvt_efm_disable(nvt);
405 
406 	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
407 	if (chip_id == NVT_INVALID) {
408 		dev_err(&nvt->pdev->dev,
409 			"No device found on either EFM port\n");
410 		return -ENODEV;
411 	}
412 
413 	chip_name = nvt_find_chip(nvt, chip_id);
414 
415 	/* warn, but still let the driver load, if we don't know this chip */
416 	if (!chip_name)
417 		dev_warn(&nvt->pdev->dev,
418 			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
419 			 nvt->chip_major, nvt->chip_minor);
420 	else
421 		dev_info(&nvt->pdev->dev,
422 			 "found %s or compatible: chip id: 0x%02x 0x%02x",
423 			 chip_name, nvt->chip_major, nvt->chip_minor);
424 
425 	return 0;
426 }
427 
428 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
429 {
430 	u8 val, psreg, psmask, psval;
431 
432 	if (is_w83667hg(nvt)) {
433 		psreg = CR_MULTIFUNC_PIN_SEL;
434 		psmask = MULTIFUNC_PIN_SEL_MASK;
435 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
436 	} else {
437 		psreg = CR_OUTPUT_PIN_SEL;
438 		psmask = OUTPUT_PIN_SEL_MASK;
439 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
440 	}
441 
442 	/* output pin selection: enable CIR, with WB sensor enabled */
443 	val = nvt_cr_read(nvt, psreg);
444 	val &= psmask;
445 	val |= psval;
446 	nvt_cr_write(nvt, val, psreg);
447 
448 	/* Select CIR logical device */
449 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
450 
451 	nvt_set_ioaddr(nvt, &nvt->cir_addr);
452 
453 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
454 
455 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
456 		nvt->cir_addr, nvt->cir_irq);
457 }
458 
459 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
460 {
461 	/* Select ACPI logical device and anable it */
462 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
463 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
464 
465 	/* Enable CIR Wake via PSOUT# (Pin60) */
466 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
467 
468 	/* enable pme interrupt of cir wakeup event */
469 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
470 
471 	/* Select CIR Wake logical device */
472 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
473 
474 	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
475 
476 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
477 		nvt->cir_wake_addr);
478 }
479 
480 /* clear out the hardware's cir rx fifo */
481 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
482 {
483 	u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
484 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
485 }
486 
487 /* clear out the hardware's cir wake rx fifo */
488 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
489 {
490 	u8 val, config;
491 
492 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
493 
494 	/* clearing wake fifo works in learning mode only */
495 	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
496 			       CIR_WAKE_IRCON);
497 
498 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
499 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
500 			       CIR_WAKE_FIFOCON);
501 
502 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
503 }
504 
505 /* clear out the hardware's cir tx fifo */
506 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
507 {
508 	u8 val;
509 
510 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
511 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
512 }
513 
514 /* enable RX Trigger Level Reach and Packet End interrupts */
515 static void nvt_set_cir_iren(struct nvt_dev *nvt)
516 {
517 	u8 iren;
518 
519 	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
520 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
521 }
522 
523 static void nvt_cir_regs_init(struct nvt_dev *nvt)
524 {
525 	/* set sample limit count (PE interrupt raised when reached) */
526 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
527 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
528 
529 	/* set fifo irq trigger levels */
530 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
531 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
532 
533 	/*
534 	 * Enable TX and RX, specify carrier on = low, off = high, and set
535 	 * sample period (currently 50us)
536 	 */
537 	nvt_cir_reg_write(nvt,
538 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
539 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
540 			  CIR_IRCON);
541 
542 	/* clear hardware rx and tx fifos */
543 	nvt_clear_cir_fifo(nvt);
544 	nvt_clear_tx_fifo(nvt);
545 
546 	/* clear any and all stray interrupts */
547 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
548 
549 	/* and finally, enable interrupts */
550 	nvt_set_cir_iren(nvt);
551 
552 	/* enable the CIR logical device */
553 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
554 }
555 
556 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
557 {
558 	/*
559 	 * Disable RX, set specific carrier on = low, off = high,
560 	 * and sample period (currently 50us)
561 	 */
562 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
563 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
564 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
565 			       CIR_WAKE_IRCON);
566 
567 	/* clear any and all stray interrupts */
568 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
569 
570 	/* enable the CIR WAKE logical device */
571 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
572 }
573 
574 static void nvt_enable_wake(struct nvt_dev *nvt)
575 {
576 	unsigned long flags;
577 
578 	nvt_efm_enable(nvt);
579 
580 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
581 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
582 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
583 
584 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
585 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
586 
587 	nvt_efm_disable(nvt);
588 
589 	spin_lock_irqsave(&nvt->nvt_lock, flags);
590 
591 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
592 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
593 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
594 			       CIR_WAKE_IRCON);
595 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
596 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
597 
598 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
599 }
600 
601 #if 0 /* Currently unused */
602 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
603 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
604 {
605 	u32 count, carrier, duration = 0;
606 	int i;
607 
608 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
609 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
610 
611 	for (i = 0; i < nvt->pkts; i++) {
612 		if (nvt->buf[i] & BUF_PULSE_BIT)
613 			duration += nvt->buf[i] & BUF_LEN_MASK;
614 	}
615 
616 	duration *= SAMPLE_PERIOD;
617 
618 	if (!count || !duration) {
619 		dev_notice(&nvt->pdev->dev,
620 			   "Unable to determine carrier! (c:%u, d:%u)",
621 			   count, duration);
622 		return 0;
623 	}
624 
625 	carrier = MS_TO_NS(count) / duration;
626 
627 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
628 		nvt_dbg("WTF? Carrier frequency out of range!");
629 
630 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
631 		carrier, count, duration);
632 
633 	return carrier;
634 }
635 #endif
636 /*
637  * set carrier frequency
638  *
639  * set carrier on 2 registers: CP & CC
640  * always set CP as 0x81
641  * set CC by SPEC, CC = 3MHz/carrier - 1
642  */
643 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
644 {
645 	struct nvt_dev *nvt = dev->priv;
646 	u16 val;
647 
648 	if (carrier == 0)
649 		return -EINVAL;
650 
651 	nvt_cir_reg_write(nvt, 1, CIR_CP);
652 	val = 3000000 / (carrier) - 1;
653 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
654 
655 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
656 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
657 
658 	return 0;
659 }
660 
661 /*
662  * nvt_tx_ir
663  *
664  * 1) clean TX fifo first (handled by AP)
665  * 2) copy data from user space
666  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
667  * 4) send 9 packets to TX FIFO to open TTR
668  * in interrupt_handler:
669  * 5) send all data out
670  * go back to write():
671  * 6) disable TX interrupts, re-enable RX interupts
672  *
673  * The key problem of this function is user space data may larger than
674  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
675  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
676  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
677  * set TXFCONT as 0xff, until buf_count less than 0xff.
678  */
679 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
680 {
681 	struct nvt_dev *nvt = dev->priv;
682 	unsigned long flags;
683 	unsigned int i;
684 	u8 iren;
685 	int ret;
686 
687 	spin_lock_irqsave(&nvt->tx.lock, flags);
688 
689 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
690 	nvt->tx.buf_count = (ret * sizeof(unsigned));
691 
692 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
693 
694 	nvt->tx.cur_buf_num = 0;
695 
696 	/* save currently enabled interrupts */
697 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
698 
699 	/* now disable all interrupts, save TFU & TTR */
700 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
701 
702 	nvt->tx.tx_state = ST_TX_REPLY;
703 
704 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
705 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
706 
707 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
708 	for (i = 0; i < 9; i++)
709 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
710 
711 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
712 
713 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
714 
715 	spin_lock_irqsave(&nvt->tx.lock, flags);
716 	nvt->tx.tx_state = ST_TX_NONE;
717 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
718 
719 	/* restore enabled interrupts to prior state */
720 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
721 
722 	return ret;
723 }
724 
725 /* dump contents of the last rx buffer we got from the hw rx fifo */
726 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
727 {
728 	int i;
729 
730 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
731 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
732 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
733 	printk(KERN_CONT "\n");
734 }
735 
736 /*
737  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
738  * trigger decode when appropriate.
739  *
740  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
741  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
742  * (default 50us) intervals for that pulse/space. A discrete signal is
743  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
744  * to signal more IR coming (repeats) or end of IR, respectively. We store
745  * sample data in the raw event kfifo until we see 0x7<something> (except f)
746  * or 0x80, at which time, we trigger a decode operation.
747  */
748 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
749 {
750 	DEFINE_IR_RAW_EVENT(rawir);
751 	u8 sample;
752 	int i;
753 
754 	nvt_dbg_verbose("%s firing", __func__);
755 
756 	if (debug)
757 		nvt_dump_rx_buf(nvt);
758 
759 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
760 
761 	for (i = 0; i < nvt->pkts; i++) {
762 		sample = nvt->buf[i];
763 
764 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
765 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
766 					  * SAMPLE_PERIOD);
767 
768 		nvt_dbg("Storing %s with duration %d",
769 			rawir.pulse ? "pulse" : "space", rawir.duration);
770 
771 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
772 
773 		/*
774 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
775 		 * indicates end of IR signal, but new data incoming. In both
776 		 * cases, it means we're ready to call ir_raw_event_handle
777 		 */
778 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
779 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
780 			ir_raw_event_handle(nvt->rdev);
781 		}
782 	}
783 
784 	nvt->pkts = 0;
785 
786 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
787 	ir_raw_event_handle(nvt->rdev);
788 
789 	nvt_dbg_verbose("%s done", __func__);
790 }
791 
792 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
793 {
794 	dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
795 
796 	nvt->pkts = 0;
797 	nvt_clear_cir_fifo(nvt);
798 	ir_raw_event_reset(nvt->rdev);
799 }
800 
801 /* copy data from hardware rx fifo into driver buffer */
802 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
803 {
804 	u8 fifocount, val;
805 	unsigned int b_idx;
806 	int i;
807 
808 	/* Get count of how many bytes to read from RX FIFO */
809 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
810 
811 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
812 
813 	b_idx = nvt->pkts;
814 
815 	/* This should never happen, but lets check anyway... */
816 	if (b_idx + fifocount > RX_BUF_LEN) {
817 		nvt_process_rx_ir_data(nvt);
818 		b_idx = 0;
819 	}
820 
821 	/* Read fifocount bytes from CIR Sample RX FIFO register */
822 	for (i = 0; i < fifocount; i++) {
823 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
824 		nvt->buf[b_idx + i] = val;
825 	}
826 
827 	nvt->pkts += fifocount;
828 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
829 
830 	nvt_process_rx_ir_data(nvt);
831 }
832 
833 static void nvt_cir_log_irqs(u8 status, u8 iren)
834 {
835 	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
836 		status, iren,
837 		status & CIR_IRSTS_RDR	? " RDR"	: "",
838 		status & CIR_IRSTS_RTR	? " RTR"	: "",
839 		status & CIR_IRSTS_PE	? " PE"		: "",
840 		status & CIR_IRSTS_RFO	? " RFO"	: "",
841 		status & CIR_IRSTS_TE	? " TE"		: "",
842 		status & CIR_IRSTS_TTR	? " TTR"	: "",
843 		status & CIR_IRSTS_TFU	? " TFU"	: "",
844 		status & CIR_IRSTS_GH	? " GH"		: "",
845 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
846 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
847 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
848 }
849 
850 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
851 {
852 	unsigned long flags;
853 	u8 tx_state;
854 
855 	spin_lock_irqsave(&nvt->tx.lock, flags);
856 	tx_state = nvt->tx.tx_state;
857 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
858 
859 	return tx_state == ST_TX_NONE;
860 }
861 
862 /* interrupt service routine for incoming and outgoing CIR data */
863 static irqreturn_t nvt_cir_isr(int irq, void *data)
864 {
865 	struct nvt_dev *nvt = data;
866 	u8 status, iren;
867 	unsigned long flags;
868 
869 	nvt_dbg_verbose("%s firing", __func__);
870 
871 	spin_lock_irqsave(&nvt->nvt_lock, flags);
872 
873 	/*
874 	 * Get IR Status register contents. Write 1 to ack/clear
875 	 *
876 	 * bit: reg name      - description
877 	 *   7: CIR_IRSTS_RDR - RX Data Ready
878 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
879 	 *   5: CIR_IRSTS_PE  - Packet End
880 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
881 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
882 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
883 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
884 	 *   0: CIR_IRSTS_GH  - Min Length Detected
885 	 */
886 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
887 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
888 
889 	/* IRQ may be shared with CIR WAKE, therefore check for each
890 	 * status bit whether the related interrupt source is enabled
891 	 */
892 	if (!(status & iren)) {
893 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
894 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
895 		return IRQ_NONE;
896 	}
897 
898 	/* ack/clear all irq flags we've got */
899 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
900 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
901 
902 	nvt_cir_log_irqs(status, iren);
903 
904 	if (status & CIR_IRSTS_RFO)
905 		nvt_handle_rx_fifo_overrun(nvt);
906 
907 	else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE)) {
908 		/* We only do rx if not tx'ing */
909 		if (nvt_cir_tx_inactive(nvt))
910 			nvt_get_rx_ir_data(nvt);
911 	}
912 
913 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
914 
915 	if (status & CIR_IRSTS_TE)
916 		nvt_clear_tx_fifo(nvt);
917 
918 	if (status & CIR_IRSTS_TTR) {
919 		unsigned int pos, count;
920 		u8 tmp;
921 
922 		spin_lock_irqsave(&nvt->tx.lock, flags);
923 
924 		pos = nvt->tx.cur_buf_num;
925 		count = nvt->tx.buf_count;
926 
927 		/* Write data into the hardware tx fifo while pos < count */
928 		if (pos < count) {
929 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
930 			nvt->tx.cur_buf_num++;
931 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
932 		} else {
933 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
934 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
935 		}
936 
937 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
938 
939 	}
940 
941 	if (status & CIR_IRSTS_TFU) {
942 		spin_lock_irqsave(&nvt->tx.lock, flags);
943 		if (nvt->tx.tx_state == ST_TX_REPLY) {
944 			nvt->tx.tx_state = ST_TX_REQUEST;
945 			wake_up(&nvt->tx.queue);
946 		}
947 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
948 	}
949 
950 	nvt_dbg_verbose("%s done", __func__);
951 	return IRQ_HANDLED;
952 }
953 
954 static void nvt_disable_cir(struct nvt_dev *nvt)
955 {
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&nvt->nvt_lock, flags);
959 
960 	/* disable CIR interrupts */
961 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
962 
963 	/* clear any and all pending interrupts */
964 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
965 
966 	/* clear all function enable flags */
967 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
968 
969 	/* clear hardware rx and tx fifos */
970 	nvt_clear_cir_fifo(nvt);
971 	nvt_clear_tx_fifo(nvt);
972 
973 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
974 
975 	/* disable the CIR logical device */
976 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
977 }
978 
979 static int nvt_open(struct rc_dev *dev)
980 {
981 	struct nvt_dev *nvt = dev->priv;
982 	unsigned long flags;
983 
984 	spin_lock_irqsave(&nvt->nvt_lock, flags);
985 
986 	/* set function enable flags */
987 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
988 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
989 			  CIR_IRCON);
990 
991 	/* clear all pending interrupts */
992 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
993 
994 	/* enable interrupts */
995 	nvt_set_cir_iren(nvt);
996 
997 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
998 
999 	/* enable the CIR logical device */
1000 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
1001 
1002 	return 0;
1003 }
1004 
1005 static void nvt_close(struct rc_dev *dev)
1006 {
1007 	struct nvt_dev *nvt = dev->priv;
1008 
1009 	nvt_disable_cir(nvt);
1010 }
1011 
1012 /* Allocate memory, probe hardware, and initialize everything */
1013 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1014 {
1015 	struct nvt_dev *nvt;
1016 	struct rc_dev *rdev;
1017 	int ret = -ENOMEM;
1018 
1019 	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
1020 	if (!nvt)
1021 		return ret;
1022 
1023 	/* input device for IR remote (and tx) */
1024 	rdev = rc_allocate_device();
1025 	if (!rdev)
1026 		goto exit_free_dev_rdev;
1027 
1028 	ret = -ENODEV;
1029 	/* activate pnp device */
1030 	if (pnp_activate_dev(pdev) < 0) {
1031 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
1032 		goto exit_free_dev_rdev;
1033 	}
1034 
1035 	/* validate pnp resources */
1036 	if (!pnp_port_valid(pdev, 0) ||
1037 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1038 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1039 		goto exit_free_dev_rdev;
1040 	}
1041 
1042 	if (!pnp_irq_valid(pdev, 0)) {
1043 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1044 		goto exit_free_dev_rdev;
1045 	}
1046 
1047 	if (!pnp_port_valid(pdev, 1) ||
1048 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1049 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1050 		goto exit_free_dev_rdev;
1051 	}
1052 
1053 	nvt->cir_addr = pnp_port_start(pdev, 0);
1054 	nvt->cir_irq  = pnp_irq(pdev, 0);
1055 
1056 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1057 
1058 	nvt->cr_efir = CR_EFIR;
1059 	nvt->cr_efdr = CR_EFDR;
1060 
1061 	spin_lock_init(&nvt->nvt_lock);
1062 	spin_lock_init(&nvt->tx.lock);
1063 
1064 	pnp_set_drvdata(pdev, nvt);
1065 	nvt->pdev = pdev;
1066 
1067 	init_waitqueue_head(&nvt->tx.queue);
1068 
1069 	ret = nvt_hw_detect(nvt);
1070 	if (ret)
1071 		goto exit_free_dev_rdev;
1072 
1073 	/* Initialize CIR & CIR Wake Logical Devices */
1074 	nvt_efm_enable(nvt);
1075 	nvt_cir_ldev_init(nvt);
1076 	nvt_cir_wake_ldev_init(nvt);
1077 	nvt_efm_disable(nvt);
1078 
1079 	/*
1080 	 * Initialize CIR & CIR Wake Config Registers
1081 	 * and enable logical devices
1082 	 */
1083 	nvt_cir_regs_init(nvt);
1084 	nvt_cir_wake_regs_init(nvt);
1085 
1086 	/* Set up the rc device */
1087 	rdev->priv = nvt;
1088 	rdev->driver_type = RC_DRIVER_IR_RAW;
1089 	rdev->allowed_protocols = RC_BIT_ALL;
1090 	rdev->open = nvt_open;
1091 	rdev->close = nvt_close;
1092 	rdev->tx_ir = nvt_tx_ir;
1093 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1094 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1095 	rdev->input_phys = "nuvoton/cir0";
1096 	rdev->input_id.bustype = BUS_HOST;
1097 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1098 	rdev->input_id.product = nvt->chip_major;
1099 	rdev->input_id.version = nvt->chip_minor;
1100 	rdev->dev.parent = &pdev->dev;
1101 	rdev->driver_name = NVT_DRIVER_NAME;
1102 	rdev->map_name = RC_MAP_RC6_MCE;
1103 	rdev->timeout = MS_TO_NS(100);
1104 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1105 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1106 #if 0
1107 	rdev->min_timeout = XYZ;
1108 	rdev->max_timeout = XYZ;
1109 	/* tx bits */
1110 	rdev->tx_resolution = XYZ;
1111 #endif
1112 	nvt->rdev = rdev;
1113 
1114 	ret = rc_register_device(rdev);
1115 	if (ret)
1116 		goto exit_free_dev_rdev;
1117 
1118 	ret = -EBUSY;
1119 	/* now claim resources */
1120 	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1121 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1122 		goto exit_unregister_device;
1123 
1124 	if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1125 			     IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
1126 		goto exit_unregister_device;
1127 
1128 	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1129 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1130 		goto exit_unregister_device;
1131 
1132 	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1133 	if (ret)
1134 		goto exit_unregister_device;
1135 
1136 	device_init_wakeup(&pdev->dev, true);
1137 
1138 	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1139 	if (debug) {
1140 		cir_dump_regs(nvt);
1141 		cir_wake_dump_regs(nvt);
1142 	}
1143 
1144 	return 0;
1145 
1146 exit_unregister_device:
1147 	rc_unregister_device(rdev);
1148 	rdev = NULL;
1149 exit_free_dev_rdev:
1150 	rc_free_device(rdev);
1151 
1152 	return ret;
1153 }
1154 
1155 static void nvt_remove(struct pnp_dev *pdev)
1156 {
1157 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1158 
1159 	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1160 
1161 	nvt_disable_cir(nvt);
1162 
1163 	/* enable CIR Wake (for IR power-on) */
1164 	nvt_enable_wake(nvt);
1165 
1166 	rc_unregister_device(nvt->rdev);
1167 }
1168 
1169 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1170 {
1171 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1172 	unsigned long flags;
1173 
1174 	nvt_dbg("%s called", __func__);
1175 
1176 	spin_lock_irqsave(&nvt->tx.lock, flags);
1177 	nvt->tx.tx_state = ST_TX_NONE;
1178 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1179 
1180 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1181 
1182 	/* disable all CIR interrupts */
1183 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1184 
1185 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1186 
1187 	/* disable cir logical dev */
1188 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1189 
1190 	/* make sure wake is enabled */
1191 	nvt_enable_wake(nvt);
1192 
1193 	return 0;
1194 }
1195 
1196 static int nvt_resume(struct pnp_dev *pdev)
1197 {
1198 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1199 
1200 	nvt_dbg("%s called", __func__);
1201 
1202 	nvt_cir_regs_init(nvt);
1203 	nvt_cir_wake_regs_init(nvt);
1204 
1205 	return 0;
1206 }
1207 
1208 static void nvt_shutdown(struct pnp_dev *pdev)
1209 {
1210 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1211 
1212 	nvt_enable_wake(nvt);
1213 }
1214 
1215 static const struct pnp_device_id nvt_ids[] = {
1216 	{ "WEC0530", 0 },   /* CIR */
1217 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1218 	{ "", 0 },
1219 };
1220 
1221 static struct pnp_driver nvt_driver = {
1222 	.name		= NVT_DRIVER_NAME,
1223 	.id_table	= nvt_ids,
1224 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1225 	.probe		= nvt_probe,
1226 	.remove		= nvt_remove,
1227 	.suspend	= nvt_suspend,
1228 	.resume		= nvt_resume,
1229 	.shutdown	= nvt_shutdown,
1230 };
1231 
1232 module_param(debug, int, S_IRUGO | S_IWUSR);
1233 MODULE_PARM_DESC(debug, "Enable debugging output");
1234 
1235 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1236 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1237 
1238 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1239 MODULE_LICENSE("GPL");
1240 
1241 module_pnp_driver(nvt_driver);
1242