xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 	outb(reg, nvt->cr_efir);
46 	outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 	outb(reg, nvt->cr_efir);
53 	return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	u8 tmp = nvt_cr_read(nvt, reg) | val;
60 	nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 	nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 	/* Enabling Extended Function Mode explicitly requires writing 2x */
74 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 	outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 	outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 	u8 val;
105 
106 	val = inb(nvt->cir_addr + offset);
107 
108 	return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 					  u8 val, u8 offset)
114 {
115 	outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 	u8 val;
122 
123 	val = inb(nvt->cir_wake_addr + offset);
124 
125 	return val;
126 }
127 
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131 	nvt_efm_enable(nvt);
132 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133 
134 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
136 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 
143 	nvt_efm_disable(nvt);
144 
145 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163 
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167 	u8 i, fifo_len;
168 
169 	nvt_efm_enable(nvt);
170 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171 
172 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 		NVT_DRIVER_NAME);
174 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 
182 	nvt_efm_disable(nvt);
183 
184 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 	pr_info(" * IRCON:          0x%x\n",
186 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 	pr_info(" * IRSTS:          0x%x\n",
188 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 	pr_info(" * IREN:           0x%x\n",
190 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
192 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 	pr_info(" * FIFO CMP TOL:   0x%x\n",
194 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 	pr_info(" * FIFO COUNT:     0x%x\n",
196 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 	pr_info(" * SLCH:           0x%x\n",
198 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 	pr_info(" * SLCL:           0x%x\n",
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 	pr_info(" * FIFOCON:        0x%x\n",
202 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 	pr_info(" * SRXFSTS:        0x%x\n",
204 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 	pr_info(" * WR FIFO DATA:   0x%x\n",
208 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 	pr_info(" * RD FIFO ONLY:   0x%x\n",
210 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 	pr_info(" * FIFO IGNORE:    0x%x\n",
214 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 	pr_info(" * IRFSM:          0x%x\n",
216 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 
218 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 	pr_info("* Contents =");
221 	for (i = 0; i < fifo_len; i++)
222 		pr_cont(" %02x",
223 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 	pr_cont("\n");
225 }
226 
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230 	unsigned long flags;
231 	u8 chip_major, chip_minor;
232 	int ret = 0;
233 	char chip_id[12];
234 	bool chip_unknown = false;
235 
236 	nvt_efm_enable(nvt);
237 
238 	/* Check if we're wired for the alternate EFER setup */
239 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240 	if (chip_major == 0xff) {
241 		nvt->cr_efir = CR_EFIR2;
242 		nvt->cr_efdr = CR_EFDR2;
243 		nvt_efm_enable(nvt);
244 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
245 	}
246 
247 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
248 
249 	/* these are the known working chip revisions... */
250 	switch (chip_major) {
251 	case CHIP_ID_HIGH_667:
252 		strcpy(chip_id, "w83667hg\0");
253 		if (chip_minor != CHIP_ID_LOW_667)
254 			chip_unknown = true;
255 		break;
256 	case CHIP_ID_HIGH_677B:
257 		strcpy(chip_id, "w83677hg\0");
258 		if (chip_minor != CHIP_ID_LOW_677B2 &&
259 		    chip_minor != CHIP_ID_LOW_677B3)
260 			chip_unknown = true;
261 		break;
262 	case CHIP_ID_HIGH_677C:
263 		strcpy(chip_id, "w83677hg-c\0");
264 		if (chip_minor != CHIP_ID_LOW_677C)
265 			chip_unknown = true;
266 		break;
267 	default:
268 		strcpy(chip_id, "w836x7hg\0");
269 		chip_unknown = true;
270 		break;
271 	}
272 
273 	/* warn, but still let the driver load, if we don't know this chip */
274 	if (chip_unknown)
275 		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276 		       "it may not work...", chip_id, chip_major, chip_minor);
277 	else
278 		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279 			chip_id, chip_major, chip_minor);
280 
281 	nvt_efm_disable(nvt);
282 
283 	spin_lock_irqsave(&nvt->nvt_lock, flags);
284 	nvt->chip_major = chip_major;
285 	nvt->chip_minor = chip_minor;
286 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
287 
288 	return ret;
289 }
290 
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
292 {
293 	u8 val, psreg, psmask, psval;
294 
295 	if (nvt->chip_major == CHIP_ID_HIGH_667) {
296 		psreg = CR_MULTIFUNC_PIN_SEL;
297 		psmask = MULTIFUNC_PIN_SEL_MASK;
298 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299 	} else {
300 		psreg = CR_OUTPUT_PIN_SEL;
301 		psmask = OUTPUT_PIN_SEL_MASK;
302 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
303 	}
304 
305 	/* output pin selection: enable CIR, with WB sensor enabled */
306 	val = nvt_cr_read(nvt, psreg);
307 	val &= psmask;
308 	val |= psval;
309 	nvt_cr_write(nvt, val, psreg);
310 
311 	/* Select CIR logical device and enable */
312 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
314 
315 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
317 
318 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
319 
320 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321 		nvt->cir_addr, nvt->cir_irq);
322 }
323 
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
325 {
326 	/* Select ACPI logical device, enable it and CIR Wake */
327 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
329 
330 	/* Enable CIR Wake via PSOUT# (Pin60) */
331 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
332 
333 	/* enable pme interrupt of cir wakeup event */
334 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
335 
336 	/* Select CIR Wake logical device and enable */
337 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
338 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
339 
340 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
341 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
342 
343 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
344 
345 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
346 		nvt->cir_wake_addr, nvt->cir_wake_irq);
347 }
348 
349 /* clear out the hardware's cir rx fifo */
350 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
351 {
352 	u8 val;
353 
354 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
355 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
356 }
357 
358 /* clear out the hardware's cir wake rx fifo */
359 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
360 {
361 	u8 val;
362 
363 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
364 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
365 			       CIR_WAKE_FIFOCON);
366 }
367 
368 /* clear out the hardware's cir tx fifo */
369 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
370 {
371 	u8 val;
372 
373 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
374 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
375 }
376 
377 /* enable RX Trigger Level Reach and Packet End interrupts */
378 static void nvt_set_cir_iren(struct nvt_dev *nvt)
379 {
380 	u8 iren;
381 
382 	iren = CIR_IREN_RTR | CIR_IREN_PE;
383 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
384 }
385 
386 static void nvt_cir_regs_init(struct nvt_dev *nvt)
387 {
388 	/* set sample limit count (PE interrupt raised when reached) */
389 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
390 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
391 
392 	/* set fifo irq trigger levels */
393 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
394 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
395 
396 	/*
397 	 * Enable TX and RX, specify carrier on = low, off = high, and set
398 	 * sample period (currently 50us)
399 	 */
400 	nvt_cir_reg_write(nvt,
401 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
402 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
403 			  CIR_IRCON);
404 
405 	/* clear hardware rx and tx fifos */
406 	nvt_clear_cir_fifo(nvt);
407 	nvt_clear_tx_fifo(nvt);
408 
409 	/* clear any and all stray interrupts */
410 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
411 
412 	/* and finally, enable interrupts */
413 	nvt_set_cir_iren(nvt);
414 }
415 
416 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
417 {
418 	/* set number of bytes needed for wake from s3 (default 65) */
419 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
420 			       CIR_WAKE_FIFO_CMP_DEEP);
421 
422 	/* set tolerance/variance allowed per byte during wake compare */
423 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
424 			       CIR_WAKE_FIFO_CMP_TOL);
425 
426 	/* set sample limit count (PE interrupt raised when reached) */
427 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
428 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
429 
430 	/* set cir wake fifo rx trigger level (currently 67) */
431 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
432 			       CIR_WAKE_FIFOCON);
433 
434 	/*
435 	 * Enable TX and RX, specific carrier on = low, off = high, and set
436 	 * sample period (currently 50us)
437 	 */
438 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
439 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
440 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
441 			       CIR_WAKE_IRCON);
442 
443 	/* clear cir wake rx fifo */
444 	nvt_clear_cir_wake_fifo(nvt);
445 
446 	/* clear any and all stray interrupts */
447 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
448 }
449 
450 static void nvt_enable_wake(struct nvt_dev *nvt)
451 {
452 	nvt_efm_enable(nvt);
453 
454 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
455 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
456 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
457 
458 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
459 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
460 
461 	nvt_efm_disable(nvt);
462 
463 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
464 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
465 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
466 			       CIR_WAKE_IRCON);
467 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
468 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
469 }
470 
471 #if 0 /* Currently unused */
472 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
473 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
474 {
475 	u32 count, carrier, duration = 0;
476 	int i;
477 
478 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
479 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
480 
481 	for (i = 0; i < nvt->pkts; i++) {
482 		if (nvt->buf[i] & BUF_PULSE_BIT)
483 			duration += nvt->buf[i] & BUF_LEN_MASK;
484 	}
485 
486 	duration *= SAMPLE_PERIOD;
487 
488 	if (!count || !duration) {
489 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
490 		       count, duration);
491 		return 0;
492 	}
493 
494 	carrier = MS_TO_NS(count) / duration;
495 
496 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
497 		nvt_dbg("WTF? Carrier frequency out of range!");
498 
499 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
500 		carrier, count, duration);
501 
502 	return carrier;
503 }
504 #endif
505 /*
506  * set carrier frequency
507  *
508  * set carrier on 2 registers: CP & CC
509  * always set CP as 0x81
510  * set CC by SPEC, CC = 3MHz/carrier - 1
511  */
512 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
513 {
514 	struct nvt_dev *nvt = dev->priv;
515 	u16 val;
516 
517 	if (carrier == 0)
518 		return -EINVAL;
519 
520 	nvt_cir_reg_write(nvt, 1, CIR_CP);
521 	val = 3000000 / (carrier) - 1;
522 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
523 
524 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
525 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
526 
527 	return 0;
528 }
529 
530 /*
531  * nvt_tx_ir
532  *
533  * 1) clean TX fifo first (handled by AP)
534  * 2) copy data from user space
535  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
536  * 4) send 9 packets to TX FIFO to open TTR
537  * in interrupt_handler:
538  * 5) send all data out
539  * go back to write():
540  * 6) disable TX interrupts, re-enable RX interupts
541  *
542  * The key problem of this function is user space data may larger than
543  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
544  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
545  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
546  * set TXFCONT as 0xff, until buf_count less than 0xff.
547  */
548 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
549 {
550 	struct nvt_dev *nvt = dev->priv;
551 	unsigned long flags;
552 	unsigned int i;
553 	u8 iren;
554 	int ret;
555 
556 	spin_lock_irqsave(&nvt->tx.lock, flags);
557 
558 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
559 	nvt->tx.buf_count = (ret * sizeof(unsigned));
560 
561 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
562 
563 	nvt->tx.cur_buf_num = 0;
564 
565 	/* save currently enabled interrupts */
566 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
567 
568 	/* now disable all interrupts, save TFU & TTR */
569 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
570 
571 	nvt->tx.tx_state = ST_TX_REPLY;
572 
573 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
574 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
575 
576 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
577 	for (i = 0; i < 9; i++)
578 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
579 
580 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
581 
582 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
583 
584 	spin_lock_irqsave(&nvt->tx.lock, flags);
585 	nvt->tx.tx_state = ST_TX_NONE;
586 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
587 
588 	/* restore enabled interrupts to prior state */
589 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
590 
591 	return ret;
592 }
593 
594 /* dump contents of the last rx buffer we got from the hw rx fifo */
595 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
596 {
597 	int i;
598 
599 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
600 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
601 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
602 	printk(KERN_CONT "\n");
603 }
604 
605 /*
606  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
607  * trigger decode when appropriate.
608  *
609  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
610  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
611  * (default 50us) intervals for that pulse/space. A discrete signal is
612  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
613  * to signal more IR coming (repeats) or end of IR, respectively. We store
614  * sample data in the raw event kfifo until we see 0x7<something> (except f)
615  * or 0x80, at which time, we trigger a decode operation.
616  */
617 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
618 {
619 	DEFINE_IR_RAW_EVENT(rawir);
620 	u8 sample;
621 	int i;
622 
623 	nvt_dbg_verbose("%s firing", __func__);
624 
625 	if (debug)
626 		nvt_dump_rx_buf(nvt);
627 
628 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
629 
630 	init_ir_raw_event(&rawir);
631 
632 	for (i = 0; i < nvt->pkts; i++) {
633 		sample = nvt->buf[i];
634 
635 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
636 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
637 					  * SAMPLE_PERIOD);
638 
639 		nvt_dbg("Storing %s with duration %d",
640 			rawir.pulse ? "pulse" : "space", rawir.duration);
641 
642 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
643 
644 		/*
645 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
646 		 * indicates end of IR signal, but new data incoming. In both
647 		 * cases, it means we're ready to call ir_raw_event_handle
648 		 */
649 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
650 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
651 			ir_raw_event_handle(nvt->rdev);
652 		}
653 	}
654 
655 	nvt->pkts = 0;
656 
657 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
658 	ir_raw_event_handle(nvt->rdev);
659 
660 	nvt_dbg_verbose("%s done", __func__);
661 }
662 
663 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
664 {
665 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
666 
667 	nvt->pkts = 0;
668 	nvt_clear_cir_fifo(nvt);
669 	ir_raw_event_reset(nvt->rdev);
670 }
671 
672 /* copy data from hardware rx fifo into driver buffer */
673 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
674 {
675 	unsigned long flags;
676 	u8 fifocount, val;
677 	unsigned int b_idx;
678 	bool overrun = false;
679 	int i;
680 
681 	/* Get count of how many bytes to read from RX FIFO */
682 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
683 	/* if we get 0xff, probably means the logical dev is disabled */
684 	if (fifocount == 0xff)
685 		return;
686 	/* watch out for a fifo overrun condition */
687 	else if (fifocount > RX_BUF_LEN) {
688 		overrun = true;
689 		fifocount = RX_BUF_LEN;
690 	}
691 
692 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
693 
694 	spin_lock_irqsave(&nvt->nvt_lock, flags);
695 
696 	b_idx = nvt->pkts;
697 
698 	/* This should never happen, but lets check anyway... */
699 	if (b_idx + fifocount > RX_BUF_LEN) {
700 		nvt_process_rx_ir_data(nvt);
701 		b_idx = 0;
702 	}
703 
704 	/* Read fifocount bytes from CIR Sample RX FIFO register */
705 	for (i = 0; i < fifocount; i++) {
706 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
707 		nvt->buf[b_idx + i] = val;
708 	}
709 
710 	nvt->pkts += fifocount;
711 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
712 
713 	nvt_process_rx_ir_data(nvt);
714 
715 	if (overrun)
716 		nvt_handle_rx_fifo_overrun(nvt);
717 
718 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
719 }
720 
721 static void nvt_cir_log_irqs(u8 status, u8 iren)
722 {
723 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
724 		status, iren,
725 		status & CIR_IRSTS_RDR	? " RDR"	: "",
726 		status & CIR_IRSTS_RTR	? " RTR"	: "",
727 		status & CIR_IRSTS_PE	? " PE"		: "",
728 		status & CIR_IRSTS_RFO	? " RFO"	: "",
729 		status & CIR_IRSTS_TE	? " TE"		: "",
730 		status & CIR_IRSTS_TTR	? " TTR"	: "",
731 		status & CIR_IRSTS_TFU	? " TFU"	: "",
732 		status & CIR_IRSTS_GH	? " GH"		: "",
733 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
734 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
735 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
736 }
737 
738 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
739 {
740 	unsigned long flags;
741 	bool tx_inactive;
742 	u8 tx_state;
743 
744 	spin_lock_irqsave(&nvt->tx.lock, flags);
745 	tx_state = nvt->tx.tx_state;
746 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
747 
748 	tx_inactive = (tx_state == ST_TX_NONE);
749 
750 	return tx_inactive;
751 }
752 
753 /* interrupt service routine for incoming and outgoing CIR data */
754 static irqreturn_t nvt_cir_isr(int irq, void *data)
755 {
756 	struct nvt_dev *nvt = data;
757 	u8 status, iren, cur_state;
758 	unsigned long flags;
759 
760 	nvt_dbg_verbose("%s firing", __func__);
761 
762 	nvt_efm_enable(nvt);
763 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
764 	nvt_efm_disable(nvt);
765 
766 	/*
767 	 * Get IR Status register contents. Write 1 to ack/clear
768 	 *
769 	 * bit: reg name      - description
770 	 *   7: CIR_IRSTS_RDR - RX Data Ready
771 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
772 	 *   5: CIR_IRSTS_PE  - Packet End
773 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
774 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
775 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
776 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
777 	 *   0: CIR_IRSTS_GH  - Min Length Detected
778 	 */
779 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
780 	if (!status) {
781 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
782 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
783 		return IRQ_RETVAL(IRQ_NONE);
784 	}
785 
786 	/* ack/clear all irq flags we've got */
787 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
788 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
789 
790 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
791 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
792 	if (!iren) {
793 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
794 		return IRQ_RETVAL(IRQ_NONE);
795 	}
796 
797 	if (debug)
798 		nvt_cir_log_irqs(status, iren);
799 
800 	if (status & CIR_IRSTS_RTR) {
801 		/* FIXME: add code for study/learn mode */
802 		/* We only do rx if not tx'ing */
803 		if (nvt_cir_tx_inactive(nvt))
804 			nvt_get_rx_ir_data(nvt);
805 	}
806 
807 	if (status & CIR_IRSTS_PE) {
808 		if (nvt_cir_tx_inactive(nvt))
809 			nvt_get_rx_ir_data(nvt);
810 
811 		spin_lock_irqsave(&nvt->nvt_lock, flags);
812 
813 		cur_state = nvt->study_state;
814 
815 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
816 
817 		if (cur_state == ST_STUDY_NONE)
818 			nvt_clear_cir_fifo(nvt);
819 	}
820 
821 	if (status & CIR_IRSTS_TE)
822 		nvt_clear_tx_fifo(nvt);
823 
824 	if (status & CIR_IRSTS_TTR) {
825 		unsigned int pos, count;
826 		u8 tmp;
827 
828 		spin_lock_irqsave(&nvt->tx.lock, flags);
829 
830 		pos = nvt->tx.cur_buf_num;
831 		count = nvt->tx.buf_count;
832 
833 		/* Write data into the hardware tx fifo while pos < count */
834 		if (pos < count) {
835 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
836 			nvt->tx.cur_buf_num++;
837 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
838 		} else {
839 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
840 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
841 		}
842 
843 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
844 
845 	}
846 
847 	if (status & CIR_IRSTS_TFU) {
848 		spin_lock_irqsave(&nvt->tx.lock, flags);
849 		if (nvt->tx.tx_state == ST_TX_REPLY) {
850 			nvt->tx.tx_state = ST_TX_REQUEST;
851 			wake_up(&nvt->tx.queue);
852 		}
853 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
854 	}
855 
856 	nvt_dbg_verbose("%s done", __func__);
857 	return IRQ_RETVAL(IRQ_HANDLED);
858 }
859 
860 /* Interrupt service routine for CIR Wake */
861 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
862 {
863 	u8 status, iren, val;
864 	struct nvt_dev *nvt = data;
865 	unsigned long flags;
866 
867 	nvt_dbg_wake("%s firing", __func__);
868 
869 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
870 	if (!status)
871 		return IRQ_RETVAL(IRQ_NONE);
872 
873 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
874 		nvt_clear_cir_wake_fifo(nvt);
875 
876 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
877 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
878 
879 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
880 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
881 	if (!iren) {
882 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
883 		return IRQ_RETVAL(IRQ_HANDLED);
884 	}
885 
886 	if ((status & CIR_WAKE_IRSTS_PE) &&
887 	    (nvt->wake_state == ST_WAKE_START)) {
888 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
889 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
890 			nvt_dbg("setting wake up key: 0x%x", val);
891 		}
892 
893 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
894 		spin_lock_irqsave(&nvt->nvt_lock, flags);
895 		nvt->wake_state = ST_WAKE_FINISH;
896 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
897 	}
898 
899 	nvt_dbg_wake("%s done", __func__);
900 	return IRQ_RETVAL(IRQ_HANDLED);
901 }
902 
903 static void nvt_enable_cir(struct nvt_dev *nvt)
904 {
905 	/* set function enable flags */
906 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
907 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
908 			  CIR_IRCON);
909 
910 	nvt_efm_enable(nvt);
911 
912 	/* enable the CIR logical device */
913 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
914 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
915 
916 	nvt_efm_disable(nvt);
917 
918 	/* clear all pending interrupts */
919 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
920 
921 	/* enable interrupts */
922 	nvt_set_cir_iren(nvt);
923 }
924 
925 static void nvt_disable_cir(struct nvt_dev *nvt)
926 {
927 	/* disable CIR interrupts */
928 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
929 
930 	/* clear any and all pending interrupts */
931 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
932 
933 	/* clear all function enable flags */
934 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
935 
936 	/* clear hardware rx and tx fifos */
937 	nvt_clear_cir_fifo(nvt);
938 	nvt_clear_tx_fifo(nvt);
939 
940 	nvt_efm_enable(nvt);
941 
942 	/* disable the CIR logical device */
943 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
944 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
945 
946 	nvt_efm_disable(nvt);
947 }
948 
949 static int nvt_open(struct rc_dev *dev)
950 {
951 	struct nvt_dev *nvt = dev->priv;
952 	unsigned long flags;
953 
954 	spin_lock_irqsave(&nvt->nvt_lock, flags);
955 	nvt_enable_cir(nvt);
956 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
957 
958 	return 0;
959 }
960 
961 static void nvt_close(struct rc_dev *dev)
962 {
963 	struct nvt_dev *nvt = dev->priv;
964 	unsigned long flags;
965 
966 	spin_lock_irqsave(&nvt->nvt_lock, flags);
967 	nvt_disable_cir(nvt);
968 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
969 }
970 
971 /* Allocate memory, probe hardware, and initialize everything */
972 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
973 {
974 	struct nvt_dev *nvt;
975 	struct rc_dev *rdev;
976 	int ret = -ENOMEM;
977 
978 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
979 	if (!nvt)
980 		return ret;
981 
982 	/* input device for IR remote (and tx) */
983 	rdev = rc_allocate_device();
984 	if (!rdev)
985 		goto exit_free_dev_rdev;
986 
987 	ret = -ENODEV;
988 	/* activate pnp device */
989 	if (pnp_activate_dev(pdev) < 0) {
990 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
991 		goto exit_free_dev_rdev;
992 	}
993 
994 	/* validate pnp resources */
995 	if (!pnp_port_valid(pdev, 0) ||
996 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
997 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
998 		goto exit_free_dev_rdev;
999 	}
1000 
1001 	if (!pnp_irq_valid(pdev, 0)) {
1002 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1003 		goto exit_free_dev_rdev;
1004 	}
1005 
1006 	if (!pnp_port_valid(pdev, 1) ||
1007 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1008 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1009 		goto exit_free_dev_rdev;
1010 	}
1011 
1012 	nvt->cir_addr = pnp_port_start(pdev, 0);
1013 	nvt->cir_irq  = pnp_irq(pdev, 0);
1014 
1015 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1016 	/* irq is always shared between cir and cir wake */
1017 	nvt->cir_wake_irq  = nvt->cir_irq;
1018 
1019 	nvt->cr_efir = CR_EFIR;
1020 	nvt->cr_efdr = CR_EFDR;
1021 
1022 	spin_lock_init(&nvt->nvt_lock);
1023 	spin_lock_init(&nvt->tx.lock);
1024 
1025 	pnp_set_drvdata(pdev, nvt);
1026 	nvt->pdev = pdev;
1027 
1028 	init_waitqueue_head(&nvt->tx.queue);
1029 
1030 	ret = nvt_hw_detect(nvt);
1031 	if (ret)
1032 		goto exit_free_dev_rdev;
1033 
1034 	/* Initialize CIR & CIR Wake Logical Devices */
1035 	nvt_efm_enable(nvt);
1036 	nvt_cir_ldev_init(nvt);
1037 	nvt_cir_wake_ldev_init(nvt);
1038 	nvt_efm_disable(nvt);
1039 
1040 	/* Initialize CIR & CIR Wake Config Registers */
1041 	nvt_cir_regs_init(nvt);
1042 	nvt_cir_wake_regs_init(nvt);
1043 
1044 	/* Set up the rc device */
1045 	rdev->priv = nvt;
1046 	rdev->driver_type = RC_DRIVER_IR_RAW;
1047 	rc_set_allowed_protocols(rdev, RC_BIT_ALL);
1048 	rdev->open = nvt_open;
1049 	rdev->close = nvt_close;
1050 	rdev->tx_ir = nvt_tx_ir;
1051 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1052 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1053 	rdev->input_phys = "nuvoton/cir0";
1054 	rdev->input_id.bustype = BUS_HOST;
1055 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1056 	rdev->input_id.product = nvt->chip_major;
1057 	rdev->input_id.version = nvt->chip_minor;
1058 	rdev->dev.parent = &pdev->dev;
1059 	rdev->driver_name = NVT_DRIVER_NAME;
1060 	rdev->map_name = RC_MAP_RC6_MCE;
1061 	rdev->timeout = MS_TO_NS(100);
1062 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1063 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1064 #if 0
1065 	rdev->min_timeout = XYZ;
1066 	rdev->max_timeout = XYZ;
1067 	/* tx bits */
1068 	rdev->tx_resolution = XYZ;
1069 #endif
1070 	nvt->rdev = rdev;
1071 
1072 	ret = rc_register_device(rdev);
1073 	if (ret)
1074 		goto exit_free_dev_rdev;
1075 
1076 	ret = -EBUSY;
1077 	/* now claim resources */
1078 	if (!request_region(nvt->cir_addr,
1079 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1080 		goto exit_unregister_device;
1081 
1082 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1083 			NVT_DRIVER_NAME, (void *)nvt))
1084 		goto exit_release_cir_addr;
1085 
1086 	if (!request_region(nvt->cir_wake_addr,
1087 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1088 		goto exit_free_irq;
1089 
1090 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1091 			NVT_DRIVER_NAME, (void *)nvt))
1092 		goto exit_release_cir_wake_addr;
1093 
1094 	device_init_wakeup(&pdev->dev, true);
1095 
1096 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1097 	if (debug) {
1098 		cir_dump_regs(nvt);
1099 		cir_wake_dump_regs(nvt);
1100 	}
1101 
1102 	return 0;
1103 
1104 exit_release_cir_wake_addr:
1105 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1106 exit_free_irq:
1107 	free_irq(nvt->cir_irq, nvt);
1108 exit_release_cir_addr:
1109 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1110 exit_unregister_device:
1111 	rc_unregister_device(rdev);
1112 	rdev = NULL;
1113 exit_free_dev_rdev:
1114 	rc_free_device(rdev);
1115 	kfree(nvt);
1116 
1117 	return ret;
1118 }
1119 
1120 static void nvt_remove(struct pnp_dev *pdev)
1121 {
1122 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1123 	unsigned long flags;
1124 
1125 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1126 	/* disable CIR */
1127 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1128 	nvt_disable_cir(nvt);
1129 	/* enable CIR Wake (for IR power-on) */
1130 	nvt_enable_wake(nvt);
1131 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1132 
1133 	/* free resources */
1134 	free_irq(nvt->cir_irq, nvt);
1135 	free_irq(nvt->cir_wake_irq, nvt);
1136 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1137 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1138 
1139 	rc_unregister_device(nvt->rdev);
1140 
1141 	kfree(nvt);
1142 }
1143 
1144 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1145 {
1146 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1147 	unsigned long flags;
1148 
1149 	nvt_dbg("%s called", __func__);
1150 
1151 	/* zero out misc state tracking */
1152 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1153 	nvt->study_state = ST_STUDY_NONE;
1154 	nvt->wake_state = ST_WAKE_NONE;
1155 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1156 
1157 	spin_lock_irqsave(&nvt->tx.lock, flags);
1158 	nvt->tx.tx_state = ST_TX_NONE;
1159 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1160 
1161 	/* disable all CIR interrupts */
1162 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1163 
1164 	nvt_efm_enable(nvt);
1165 
1166 	/* disable cir logical dev */
1167 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1168 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1169 
1170 	nvt_efm_disable(nvt);
1171 
1172 	/* make sure wake is enabled */
1173 	nvt_enable_wake(nvt);
1174 
1175 	return 0;
1176 }
1177 
1178 static int nvt_resume(struct pnp_dev *pdev)
1179 {
1180 	int ret = 0;
1181 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1182 
1183 	nvt_dbg("%s called", __func__);
1184 
1185 	/* open interrupt */
1186 	nvt_set_cir_iren(nvt);
1187 
1188 	/* Enable CIR logical device */
1189 	nvt_efm_enable(nvt);
1190 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1191 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1192 
1193 	nvt_efm_disable(nvt);
1194 
1195 	nvt_cir_regs_init(nvt);
1196 	nvt_cir_wake_regs_init(nvt);
1197 
1198 	return ret;
1199 }
1200 
1201 static void nvt_shutdown(struct pnp_dev *pdev)
1202 {
1203 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1204 	nvt_enable_wake(nvt);
1205 }
1206 
1207 static const struct pnp_device_id nvt_ids[] = {
1208 	{ "WEC0530", 0 },   /* CIR */
1209 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1210 	{ "", 0 },
1211 };
1212 
1213 static struct pnp_driver nvt_driver = {
1214 	.name		= NVT_DRIVER_NAME,
1215 	.id_table	= nvt_ids,
1216 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1217 	.probe		= nvt_probe,
1218 	.remove		= nvt_remove,
1219 	.suspend	= nvt_suspend,
1220 	.resume		= nvt_resume,
1221 	.shutdown	= nvt_shutdown,
1222 };
1223 
1224 static int nvt_init(void)
1225 {
1226 	return pnp_register_driver(&nvt_driver);
1227 }
1228 
1229 static void nvt_exit(void)
1230 {
1231 	pnp_unregister_driver(&nvt_driver);
1232 }
1233 
1234 module_param(debug, int, S_IRUGO | S_IWUSR);
1235 MODULE_PARM_DESC(debug, "Enable debugging output");
1236 
1237 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1238 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1239 
1240 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1241 MODULE_LICENSE("GPL");
1242 
1243 module_init(nvt_init);
1244 module_exit(nvt_exit);
1245