xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision 615c36f5)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pnp.h>
31 #include <linux/io.h>
32 #include <linux/interrupt.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <media/rc-core.h>
36 #include <linux/pci_ids.h>
37 
38 #include "nuvoton-cir.h"
39 
40 /* write val to config reg */
41 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
42 {
43 	outb(reg, nvt->cr_efir);
44 	outb(val, nvt->cr_efdr);
45 }
46 
47 /* read val from config reg */
48 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
49 {
50 	outb(reg, nvt->cr_efir);
51 	return inb(nvt->cr_efdr);
52 }
53 
54 /* update config register bit without changing other bits */
55 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
56 {
57 	u8 tmp = nvt_cr_read(nvt, reg) | val;
58 	nvt_cr_write(nvt, tmp, reg);
59 }
60 
61 /* clear config register bit without changing other bits */
62 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
63 {
64 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
65 	nvt_cr_write(nvt, tmp, reg);
66 }
67 
68 /* enter extended function mode */
69 static inline void nvt_efm_enable(struct nvt_dev *nvt)
70 {
71 	/* Enabling Extended Function Mode explicitly requires writing 2x */
72 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
73 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
74 }
75 
76 /* exit extended function mode */
77 static inline void nvt_efm_disable(struct nvt_dev *nvt)
78 {
79 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
80 }
81 
82 /*
83  * When you want to address a specific logical device, write its logical
84  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
85  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
86  */
87 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
88 {
89 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
90 	outb(ldev, nvt->cr_efdr);
91 }
92 
93 /* write val to cir config register */
94 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
95 {
96 	outb(val, nvt->cir_addr + offset);
97 }
98 
99 /* read val from cir config register */
100 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
101 {
102 	u8 val;
103 
104 	val = inb(nvt->cir_addr + offset);
105 
106 	return val;
107 }
108 
109 /* write val to cir wake register */
110 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
111 					  u8 val, u8 offset)
112 {
113 	outb(val, nvt->cir_wake_addr + offset);
114 }
115 
116 /* read val from cir wake config register */
117 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
118 {
119 	u8 val;
120 
121 	val = inb(nvt->cir_wake_addr + offset);
122 
123 	return val;
124 }
125 
126 #define pr_reg(text, ...) \
127 	printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)
128 
129 /* dump current cir register contents */
130 static void cir_dump_regs(struct nvt_dev *nvt)
131 {
132 	nvt_efm_enable(nvt);
133 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
134 
135 	pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
136 	pr_reg(" * CR CIR ACTIVE :   0x%x\n",
137 	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
138 	pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
139 	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
140 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
141 	pr_reg(" * CR CIR IRQ NUM:   0x%x\n",
142 	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
143 
144 	nvt_efm_disable(nvt);
145 
146 	pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
147 	pr_reg(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
148 	pr_reg(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
149 	pr_reg(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
150 	pr_reg(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
151 	pr_reg(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
152 	pr_reg(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
153 	pr_reg(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
154 	pr_reg(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
155 	pr_reg(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
156 	pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
157 	pr_reg(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
158 	pr_reg(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
159 	pr_reg(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
160 	pr_reg(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
161 	pr_reg(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
162 	pr_reg(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
163 }
164 
165 /* dump current cir wake register contents */
166 static void cir_wake_dump_regs(struct nvt_dev *nvt)
167 {
168 	u8 i, fifo_len;
169 
170 	nvt_efm_enable(nvt);
171 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
172 
173 	pr_reg("%s: Dump CIR WAKE logical device registers:\n",
174 	       NVT_DRIVER_NAME);
175 	pr_reg(" * CR CIR WAKE ACTIVE :   0x%x\n",
176 	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
177 	pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
178 	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
179 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
180 	pr_reg(" * CR CIR WAKE IRQ NUM:   0x%x\n",
181 	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
182 
183 	nvt_efm_disable(nvt);
184 
185 	pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
186 	pr_reg(" * IRCON:          0x%x\n",
187 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
188 	pr_reg(" * IRSTS:          0x%x\n",
189 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
190 	pr_reg(" * IREN:           0x%x\n",
191 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
192 	pr_reg(" * FIFO CMP DEEP:  0x%x\n",
193 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
194 	pr_reg(" * FIFO CMP TOL:   0x%x\n",
195 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
196 	pr_reg(" * FIFO COUNT:     0x%x\n",
197 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
198 	pr_reg(" * SLCH:           0x%x\n",
199 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
200 	pr_reg(" * SLCL:           0x%x\n",
201 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
202 	pr_reg(" * FIFOCON:        0x%x\n",
203 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
204 	pr_reg(" * SRXFSTS:        0x%x\n",
205 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
206 	pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
207 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
208 	pr_reg(" * WR FIFO DATA:   0x%x\n",
209 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
210 	pr_reg(" * RD FIFO ONLY:   0x%x\n",
211 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
212 	pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
213 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
214 	pr_reg(" * FIFO IGNORE:    0x%x\n",
215 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
216 	pr_reg(" * IRFSM:          0x%x\n",
217 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
218 
219 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
220 	pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
221 	pr_reg("* Contents = ");
222 	for (i = 0; i < fifo_len; i++)
223 		printk(KERN_CONT "%02x ",
224 		       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
225 	printk(KERN_CONT "\n");
226 }
227 
228 /* detect hardware features */
229 static int nvt_hw_detect(struct nvt_dev *nvt)
230 {
231 	unsigned long flags;
232 	u8 chip_major, chip_minor;
233 	int ret = 0;
234 	char chip_id[12];
235 	bool chip_unknown = false;
236 
237 	nvt_efm_enable(nvt);
238 
239 	/* Check if we're wired for the alternate EFER setup */
240 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
241 	if (chip_major == 0xff) {
242 		nvt->cr_efir = CR_EFIR2;
243 		nvt->cr_efdr = CR_EFDR2;
244 		nvt_efm_enable(nvt);
245 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
246 	}
247 
248 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
249 
250 	/* these are the known working chip revisions... */
251 	switch (chip_major) {
252 	case CHIP_ID_HIGH_667:
253 		strcpy(chip_id, "w83667hg\0");
254 		if (chip_minor != CHIP_ID_LOW_667)
255 			chip_unknown = true;
256 		break;
257 	case CHIP_ID_HIGH_677B:
258 		strcpy(chip_id, "w83677hg\0");
259 		if (chip_minor != CHIP_ID_LOW_677B2 &&
260 		    chip_minor != CHIP_ID_LOW_677B3)
261 			chip_unknown = true;
262 		break;
263 	case CHIP_ID_HIGH_677C:
264 		strcpy(chip_id, "w83677hg-c\0");
265 		if (chip_minor != CHIP_ID_LOW_677C)
266 			chip_unknown = true;
267 		break;
268 	default:
269 		strcpy(chip_id, "w836x7hg\0");
270 		chip_unknown = true;
271 		break;
272 	}
273 
274 	/* warn, but still let the driver load, if we don't know this chip */
275 	if (chip_unknown)
276 		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
277 		       "it may not work...", chip_id, chip_major, chip_minor);
278 	else
279 		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
280 			chip_id, chip_major, chip_minor);
281 
282 	nvt_efm_disable(nvt);
283 
284 	spin_lock_irqsave(&nvt->nvt_lock, flags);
285 	nvt->chip_major = chip_major;
286 	nvt->chip_minor = chip_minor;
287 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
288 
289 	return ret;
290 }
291 
292 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
293 {
294 	u8 val, psreg, psmask, psval;
295 
296 	if (nvt->chip_major == CHIP_ID_HIGH_667) {
297 		psreg = CR_MULTIFUNC_PIN_SEL;
298 		psmask = MULTIFUNC_PIN_SEL_MASK;
299 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
300 	} else {
301 		psreg = CR_OUTPUT_PIN_SEL;
302 		psmask = OUTPUT_PIN_SEL_MASK;
303 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
304 	}
305 
306 	/* output pin selection: enable CIR, with WB sensor enabled */
307 	val = nvt_cr_read(nvt, psreg);
308 	val &= psmask;
309 	val |= psval;
310 	nvt_cr_write(nvt, val, psreg);
311 
312 	/* Select CIR logical device and enable */
313 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
314 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
315 
316 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
317 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
318 
319 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
320 
321 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
322 		nvt->cir_addr, nvt->cir_irq);
323 }
324 
325 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
326 {
327 	/* Select ACPI logical device, enable it and CIR Wake */
328 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
329 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
330 
331 	/* Enable CIR Wake via PSOUT# (Pin60) */
332 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
333 
334 	/* enable cir interrupt of mouse/keyboard IRQ event */
335 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
336 
337 	/* enable pme interrupt of cir wakeup event */
338 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
339 
340 	/* Select CIR Wake logical device and enable */
341 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
342 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
343 
344 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
345 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
346 
347 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
348 
349 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
350 		nvt->cir_wake_addr, nvt->cir_wake_irq);
351 }
352 
353 /* clear out the hardware's cir rx fifo */
354 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
355 {
356 	u8 val;
357 
358 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
359 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
360 }
361 
362 /* clear out the hardware's cir wake rx fifo */
363 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
364 {
365 	u8 val;
366 
367 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
368 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
369 			       CIR_WAKE_FIFOCON);
370 }
371 
372 /* clear out the hardware's cir tx fifo */
373 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
374 {
375 	u8 val;
376 
377 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
378 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
379 }
380 
381 /* enable RX Trigger Level Reach and Packet End interrupts */
382 static void nvt_set_cir_iren(struct nvt_dev *nvt)
383 {
384 	u8 iren;
385 
386 	iren = CIR_IREN_RTR | CIR_IREN_PE;
387 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
388 }
389 
390 static void nvt_cir_regs_init(struct nvt_dev *nvt)
391 {
392 	/* set sample limit count (PE interrupt raised when reached) */
393 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
394 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
395 
396 	/* set fifo irq trigger levels */
397 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
398 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
399 
400 	/*
401 	 * Enable TX and RX, specify carrier on = low, off = high, and set
402 	 * sample period (currently 50us)
403 	 */
404 	nvt_cir_reg_write(nvt,
405 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
406 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
407 			  CIR_IRCON);
408 
409 	/* clear hardware rx and tx fifos */
410 	nvt_clear_cir_fifo(nvt);
411 	nvt_clear_tx_fifo(nvt);
412 
413 	/* clear any and all stray interrupts */
414 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
415 
416 	/* and finally, enable interrupts */
417 	nvt_set_cir_iren(nvt);
418 }
419 
420 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
421 {
422 	/* set number of bytes needed for wake from s3 (default 65) */
423 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
424 			       CIR_WAKE_FIFO_CMP_DEEP);
425 
426 	/* set tolerance/variance allowed per byte during wake compare */
427 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
428 			       CIR_WAKE_FIFO_CMP_TOL);
429 
430 	/* set sample limit count (PE interrupt raised when reached) */
431 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
432 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
433 
434 	/* set cir wake fifo rx trigger level (currently 67) */
435 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
436 			       CIR_WAKE_FIFOCON);
437 
438 	/*
439 	 * Enable TX and RX, specific carrier on = low, off = high, and set
440 	 * sample period (currently 50us)
441 	 */
442 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
443 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
444 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
445 			       CIR_WAKE_IRCON);
446 
447 	/* clear cir wake rx fifo */
448 	nvt_clear_cir_wake_fifo(nvt);
449 
450 	/* clear any and all stray interrupts */
451 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
452 }
453 
454 static void nvt_enable_wake(struct nvt_dev *nvt)
455 {
456 	nvt_efm_enable(nvt);
457 
458 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
459 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
460 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
461 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
462 
463 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
464 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
465 
466 	nvt_efm_disable(nvt);
467 
468 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
469 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
470 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
471 			       CIR_WAKE_IRCON);
472 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
473 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
474 }
475 
476 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
477 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
478 {
479 	u32 count, carrier, duration = 0;
480 	int i;
481 
482 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
483 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
484 
485 	for (i = 0; i < nvt->pkts; i++) {
486 		if (nvt->buf[i] & BUF_PULSE_BIT)
487 			duration += nvt->buf[i] & BUF_LEN_MASK;
488 	}
489 
490 	duration *= SAMPLE_PERIOD;
491 
492 	if (!count || !duration) {
493 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
494 		       count, duration);
495 		return 0;
496 	}
497 
498 	carrier = MS_TO_NS(count) / duration;
499 
500 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
501 		nvt_dbg("WTF? Carrier frequency out of range!");
502 
503 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
504 		carrier, count, duration);
505 
506 	return carrier;
507 }
508 
509 /*
510  * set carrier frequency
511  *
512  * set carrier on 2 registers: CP & CC
513  * always set CP as 0x81
514  * set CC by SPEC, CC = 3MHz/carrier - 1
515  */
516 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
517 {
518 	struct nvt_dev *nvt = dev->priv;
519 	u16 val;
520 
521 	nvt_cir_reg_write(nvt, 1, CIR_CP);
522 	val = 3000000 / (carrier) - 1;
523 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
524 
525 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
526 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
527 
528 	return 0;
529 }
530 
531 /*
532  * nvt_tx_ir
533  *
534  * 1) clean TX fifo first (handled by AP)
535  * 2) copy data from user space
536  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
537  * 4) send 9 packets to TX FIFO to open TTR
538  * in interrupt_handler:
539  * 5) send all data out
540  * go back to write():
541  * 6) disable TX interrupts, re-enable RX interupts
542  *
543  * The key problem of this function is user space data may larger than
544  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
545  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
546  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
547  * set TXFCONT as 0xff, until buf_count less than 0xff.
548  */
549 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
550 {
551 	struct nvt_dev *nvt = dev->priv;
552 	unsigned long flags;
553 	unsigned int i;
554 	u8 iren;
555 	int ret;
556 
557 	spin_lock_irqsave(&nvt->tx.lock, flags);
558 
559 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
560 	nvt->tx.buf_count = (ret * sizeof(unsigned));
561 
562 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
563 
564 	nvt->tx.cur_buf_num = 0;
565 
566 	/* save currently enabled interrupts */
567 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
568 
569 	/* now disable all interrupts, save TFU & TTR */
570 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
571 
572 	nvt->tx.tx_state = ST_TX_REPLY;
573 
574 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
575 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
576 
577 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
578 	for (i = 0; i < 9; i++)
579 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
580 
581 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
582 
583 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
584 
585 	spin_lock_irqsave(&nvt->tx.lock, flags);
586 	nvt->tx.tx_state = ST_TX_NONE;
587 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
588 
589 	/* restore enabled interrupts to prior state */
590 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
591 
592 	return ret;
593 }
594 
595 /* dump contents of the last rx buffer we got from the hw rx fifo */
596 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
597 {
598 	int i;
599 
600 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
601 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
602 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
603 	printk(KERN_CONT "\n");
604 }
605 
606 /*
607  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
608  * trigger decode when appropriate.
609  *
610  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
611  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
612  * (default 50us) intervals for that pulse/space. A discrete signal is
613  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
614  * to signal more IR coming (repeats) or end of IR, respectively. We store
615  * sample data in the raw event kfifo until we see 0x7<something> (except f)
616  * or 0x80, at which time, we trigger a decode operation.
617  */
618 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
619 {
620 	DEFINE_IR_RAW_EVENT(rawir);
621 	u32 carrier;
622 	u8 sample;
623 	int i;
624 
625 	nvt_dbg_verbose("%s firing", __func__);
626 
627 	if (debug)
628 		nvt_dump_rx_buf(nvt);
629 
630 	if (nvt->carrier_detect_enabled)
631 		carrier = nvt_rx_carrier_detect(nvt);
632 
633 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
634 
635 	init_ir_raw_event(&rawir);
636 
637 	for (i = 0; i < nvt->pkts; i++) {
638 		sample = nvt->buf[i];
639 
640 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
641 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
642 					  * SAMPLE_PERIOD);
643 
644 		nvt_dbg("Storing %s with duration %d",
645 			rawir.pulse ? "pulse" : "space", rawir.duration);
646 
647 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
648 
649 		/*
650 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
651 		 * indicates end of IR signal, but new data incoming. In both
652 		 * cases, it means we're ready to call ir_raw_event_handle
653 		 */
654 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
655 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
656 			ir_raw_event_handle(nvt->rdev);
657 		}
658 	}
659 
660 	nvt->pkts = 0;
661 
662 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
663 	ir_raw_event_handle(nvt->rdev);
664 
665 	nvt_dbg_verbose("%s done", __func__);
666 }
667 
668 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
669 {
670 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
671 
672 	nvt->pkts = 0;
673 	nvt_clear_cir_fifo(nvt);
674 	ir_raw_event_reset(nvt->rdev);
675 }
676 
677 /* copy data from hardware rx fifo into driver buffer */
678 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
679 {
680 	unsigned long flags;
681 	u8 fifocount, val;
682 	unsigned int b_idx;
683 	bool overrun = false;
684 	int i;
685 
686 	/* Get count of how many bytes to read from RX FIFO */
687 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
688 	/* if we get 0xff, probably means the logical dev is disabled */
689 	if (fifocount == 0xff)
690 		return;
691 	/* watch out for a fifo overrun condition */
692 	else if (fifocount > RX_BUF_LEN) {
693 		overrun = true;
694 		fifocount = RX_BUF_LEN;
695 	}
696 
697 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
698 
699 	spin_lock_irqsave(&nvt->nvt_lock, flags);
700 
701 	b_idx = nvt->pkts;
702 
703 	/* This should never happen, but lets check anyway... */
704 	if (b_idx + fifocount > RX_BUF_LEN) {
705 		nvt_process_rx_ir_data(nvt);
706 		b_idx = 0;
707 	}
708 
709 	/* Read fifocount bytes from CIR Sample RX FIFO register */
710 	for (i = 0; i < fifocount; i++) {
711 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
712 		nvt->buf[b_idx + i] = val;
713 	}
714 
715 	nvt->pkts += fifocount;
716 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
717 
718 	nvt_process_rx_ir_data(nvt);
719 
720 	if (overrun)
721 		nvt_handle_rx_fifo_overrun(nvt);
722 
723 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
724 }
725 
726 static void nvt_cir_log_irqs(u8 status, u8 iren)
727 {
728 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
729 		status, iren,
730 		status & CIR_IRSTS_RDR	? " RDR"	: "",
731 		status & CIR_IRSTS_RTR	? " RTR"	: "",
732 		status & CIR_IRSTS_PE	? " PE"		: "",
733 		status & CIR_IRSTS_RFO	? " RFO"	: "",
734 		status & CIR_IRSTS_TE	? " TE"		: "",
735 		status & CIR_IRSTS_TTR	? " TTR"	: "",
736 		status & CIR_IRSTS_TFU	? " TFU"	: "",
737 		status & CIR_IRSTS_GH	? " GH"		: "",
738 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
739 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
740 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
741 }
742 
743 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
744 {
745 	unsigned long flags;
746 	bool tx_inactive;
747 	u8 tx_state;
748 
749 	spin_lock_irqsave(&nvt->tx.lock, flags);
750 	tx_state = nvt->tx.tx_state;
751 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
752 
753 	tx_inactive = (tx_state == ST_TX_NONE);
754 
755 	return tx_inactive;
756 }
757 
758 /* interrupt service routine for incoming and outgoing CIR data */
759 static irqreturn_t nvt_cir_isr(int irq, void *data)
760 {
761 	struct nvt_dev *nvt = data;
762 	u8 status, iren, cur_state;
763 	unsigned long flags;
764 
765 	nvt_dbg_verbose("%s firing", __func__);
766 
767 	nvt_efm_enable(nvt);
768 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
769 	nvt_efm_disable(nvt);
770 
771 	/*
772 	 * Get IR Status register contents. Write 1 to ack/clear
773 	 *
774 	 * bit: reg name      - description
775 	 *   7: CIR_IRSTS_RDR - RX Data Ready
776 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
777 	 *   5: CIR_IRSTS_PE  - Packet End
778 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
779 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
780 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
781 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
782 	 *   0: CIR_IRSTS_GH  - Min Length Detected
783 	 */
784 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
785 	if (!status) {
786 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
787 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
788 		return IRQ_RETVAL(IRQ_NONE);
789 	}
790 
791 	/* ack/clear all irq flags we've got */
792 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
793 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
794 
795 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
796 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
797 	if (!iren) {
798 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
799 		return IRQ_RETVAL(IRQ_NONE);
800 	}
801 
802 	if (debug)
803 		nvt_cir_log_irqs(status, iren);
804 
805 	if (status & CIR_IRSTS_RTR) {
806 		/* FIXME: add code for study/learn mode */
807 		/* We only do rx if not tx'ing */
808 		if (nvt_cir_tx_inactive(nvt))
809 			nvt_get_rx_ir_data(nvt);
810 	}
811 
812 	if (status & CIR_IRSTS_PE) {
813 		if (nvt_cir_tx_inactive(nvt))
814 			nvt_get_rx_ir_data(nvt);
815 
816 		spin_lock_irqsave(&nvt->nvt_lock, flags);
817 
818 		cur_state = nvt->study_state;
819 
820 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
821 
822 		if (cur_state == ST_STUDY_NONE)
823 			nvt_clear_cir_fifo(nvt);
824 	}
825 
826 	if (status & CIR_IRSTS_TE)
827 		nvt_clear_tx_fifo(nvt);
828 
829 	if (status & CIR_IRSTS_TTR) {
830 		unsigned int pos, count;
831 		u8 tmp;
832 
833 		spin_lock_irqsave(&nvt->tx.lock, flags);
834 
835 		pos = nvt->tx.cur_buf_num;
836 		count = nvt->tx.buf_count;
837 
838 		/* Write data into the hardware tx fifo while pos < count */
839 		if (pos < count) {
840 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
841 			nvt->tx.cur_buf_num++;
842 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
843 		} else {
844 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
845 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
846 		}
847 
848 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
849 
850 	}
851 
852 	if (status & CIR_IRSTS_TFU) {
853 		spin_lock_irqsave(&nvt->tx.lock, flags);
854 		if (nvt->tx.tx_state == ST_TX_REPLY) {
855 			nvt->tx.tx_state = ST_TX_REQUEST;
856 			wake_up(&nvt->tx.queue);
857 		}
858 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
859 	}
860 
861 	nvt_dbg_verbose("%s done", __func__);
862 	return IRQ_RETVAL(IRQ_HANDLED);
863 }
864 
865 /* Interrupt service routine for CIR Wake */
866 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
867 {
868 	u8 status, iren, val;
869 	struct nvt_dev *nvt = data;
870 	unsigned long flags;
871 
872 	nvt_dbg_wake("%s firing", __func__);
873 
874 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
875 	if (!status)
876 		return IRQ_RETVAL(IRQ_NONE);
877 
878 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
879 		nvt_clear_cir_wake_fifo(nvt);
880 
881 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
882 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
883 
884 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
885 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
886 	if (!iren) {
887 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
888 		return IRQ_RETVAL(IRQ_HANDLED);
889 	}
890 
891 	if ((status & CIR_WAKE_IRSTS_PE) &&
892 	    (nvt->wake_state == ST_WAKE_START)) {
893 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
894 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
895 			nvt_dbg("setting wake up key: 0x%x", val);
896 		}
897 
898 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
899 		spin_lock_irqsave(&nvt->nvt_lock, flags);
900 		nvt->wake_state = ST_WAKE_FINISH;
901 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
902 	}
903 
904 	nvt_dbg_wake("%s done", __func__);
905 	return IRQ_RETVAL(IRQ_HANDLED);
906 }
907 
908 static void nvt_enable_cir(struct nvt_dev *nvt)
909 {
910 	/* set function enable flags */
911 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
912 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
913 			  CIR_IRCON);
914 
915 	nvt_efm_enable(nvt);
916 
917 	/* enable the CIR logical device */
918 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
919 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
920 
921 	nvt_efm_disable(nvt);
922 
923 	/* clear all pending interrupts */
924 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
925 
926 	/* enable interrupts */
927 	nvt_set_cir_iren(nvt);
928 }
929 
930 static void nvt_disable_cir(struct nvt_dev *nvt)
931 {
932 	/* disable CIR interrupts */
933 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
934 
935 	/* clear any and all pending interrupts */
936 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
937 
938 	/* clear all function enable flags */
939 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
940 
941 	/* clear hardware rx and tx fifos */
942 	nvt_clear_cir_fifo(nvt);
943 	nvt_clear_tx_fifo(nvt);
944 
945 	nvt_efm_enable(nvt);
946 
947 	/* disable the CIR logical device */
948 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
949 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
950 
951 	nvt_efm_disable(nvt);
952 }
953 
954 static int nvt_open(struct rc_dev *dev)
955 {
956 	struct nvt_dev *nvt = dev->priv;
957 	unsigned long flags;
958 
959 	spin_lock_irqsave(&nvt->nvt_lock, flags);
960 	nvt_enable_cir(nvt);
961 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
962 
963 	return 0;
964 }
965 
966 static void nvt_close(struct rc_dev *dev)
967 {
968 	struct nvt_dev *nvt = dev->priv;
969 	unsigned long flags;
970 
971 	spin_lock_irqsave(&nvt->nvt_lock, flags);
972 	nvt_disable_cir(nvt);
973 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
974 }
975 
976 /* Allocate memory, probe hardware, and initialize everything */
977 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
978 {
979 	struct nvt_dev *nvt;
980 	struct rc_dev *rdev;
981 	int ret = -ENOMEM;
982 
983 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
984 	if (!nvt)
985 		return ret;
986 
987 	/* input device for IR remote (and tx) */
988 	rdev = rc_allocate_device();
989 	if (!rdev)
990 		goto failure;
991 
992 	ret = -ENODEV;
993 	/* validate pnp resources */
994 	if (!pnp_port_valid(pdev, 0) ||
995 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
996 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
997 		goto failure;
998 	}
999 
1000 	if (!pnp_irq_valid(pdev, 0)) {
1001 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1002 		goto failure;
1003 	}
1004 
1005 	if (!pnp_port_valid(pdev, 1) ||
1006 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1007 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1008 		goto failure;
1009 	}
1010 
1011 	nvt->cir_addr = pnp_port_start(pdev, 0);
1012 	nvt->cir_irq  = pnp_irq(pdev, 0);
1013 
1014 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1015 	/* irq is always shared between cir and cir wake */
1016 	nvt->cir_wake_irq  = nvt->cir_irq;
1017 
1018 	nvt->cr_efir = CR_EFIR;
1019 	nvt->cr_efdr = CR_EFDR;
1020 
1021 	spin_lock_init(&nvt->nvt_lock);
1022 	spin_lock_init(&nvt->tx.lock);
1023 
1024 	ret = -EBUSY;
1025 	/* now claim resources */
1026 	if (!request_region(nvt->cir_addr,
1027 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1028 		goto failure;
1029 
1030 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1031 			NVT_DRIVER_NAME, (void *)nvt))
1032 		goto failure;
1033 
1034 	if (!request_region(nvt->cir_wake_addr,
1035 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1036 		goto failure;
1037 
1038 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1039 			NVT_DRIVER_NAME, (void *)nvt))
1040 		goto failure;
1041 
1042 	pnp_set_drvdata(pdev, nvt);
1043 	nvt->pdev = pdev;
1044 
1045 	init_waitqueue_head(&nvt->tx.queue);
1046 
1047 	ret = nvt_hw_detect(nvt);
1048 	if (ret)
1049 		goto failure;
1050 
1051 	/* Initialize CIR & CIR Wake Logical Devices */
1052 	nvt_efm_enable(nvt);
1053 	nvt_cir_ldev_init(nvt);
1054 	nvt_cir_wake_ldev_init(nvt);
1055 	nvt_efm_disable(nvt);
1056 
1057 	/* Initialize CIR & CIR Wake Config Registers */
1058 	nvt_cir_regs_init(nvt);
1059 	nvt_cir_wake_regs_init(nvt);
1060 
1061 	/* Set up the rc device */
1062 	rdev->priv = nvt;
1063 	rdev->driver_type = RC_DRIVER_IR_RAW;
1064 	rdev->allowed_protos = RC_TYPE_ALL;
1065 	rdev->open = nvt_open;
1066 	rdev->close = nvt_close;
1067 	rdev->tx_ir = nvt_tx_ir;
1068 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1069 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1070 	rdev->input_phys = "nuvoton/cir0";
1071 	rdev->input_id.bustype = BUS_HOST;
1072 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1073 	rdev->input_id.product = nvt->chip_major;
1074 	rdev->input_id.version = nvt->chip_minor;
1075 	rdev->dev.parent = &pdev->dev;
1076 	rdev->driver_name = NVT_DRIVER_NAME;
1077 	rdev->map_name = RC_MAP_RC6_MCE;
1078 	rdev->timeout = MS_TO_NS(100);
1079 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1080 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1081 #if 0
1082 	rdev->min_timeout = XYZ;
1083 	rdev->max_timeout = XYZ;
1084 	/* tx bits */
1085 	rdev->tx_resolution = XYZ;
1086 #endif
1087 
1088 	ret = rc_register_device(rdev);
1089 	if (ret)
1090 		goto failure;
1091 
1092 	device_init_wakeup(&pdev->dev, true);
1093 	nvt->rdev = rdev;
1094 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1095 	if (debug) {
1096 		cir_dump_regs(nvt);
1097 		cir_wake_dump_regs(nvt);
1098 	}
1099 
1100 	return 0;
1101 
1102 failure:
1103 	if (nvt->cir_irq)
1104 		free_irq(nvt->cir_irq, nvt);
1105 	if (nvt->cir_addr)
1106 		release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1107 
1108 	if (nvt->cir_wake_irq)
1109 		free_irq(nvt->cir_wake_irq, nvt);
1110 	if (nvt->cir_wake_addr)
1111 		release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1112 
1113 	rc_free_device(rdev);
1114 	kfree(nvt);
1115 
1116 	return ret;
1117 }
1118 
1119 static void __devexit nvt_remove(struct pnp_dev *pdev)
1120 {
1121 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1122 	unsigned long flags;
1123 
1124 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1125 	/* disable CIR */
1126 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1127 	nvt_disable_cir(nvt);
1128 	/* enable CIR Wake (for IR power-on) */
1129 	nvt_enable_wake(nvt);
1130 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1131 
1132 	/* free resources */
1133 	free_irq(nvt->cir_irq, nvt);
1134 	free_irq(nvt->cir_wake_irq, nvt);
1135 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1136 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1137 
1138 	rc_unregister_device(nvt->rdev);
1139 
1140 	kfree(nvt);
1141 }
1142 
1143 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1144 {
1145 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1146 	unsigned long flags;
1147 
1148 	nvt_dbg("%s called", __func__);
1149 
1150 	/* zero out misc state tracking */
1151 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1152 	nvt->study_state = ST_STUDY_NONE;
1153 	nvt->wake_state = ST_WAKE_NONE;
1154 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1155 
1156 	spin_lock_irqsave(&nvt->tx.lock, flags);
1157 	nvt->tx.tx_state = ST_TX_NONE;
1158 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1159 
1160 	/* disable all CIR interrupts */
1161 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162 
1163 	nvt_efm_enable(nvt);
1164 
1165 	/* disable cir logical dev */
1166 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1167 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1168 
1169 	nvt_efm_disable(nvt);
1170 
1171 	/* make sure wake is enabled */
1172 	nvt_enable_wake(nvt);
1173 
1174 	return 0;
1175 }
1176 
1177 static int nvt_resume(struct pnp_dev *pdev)
1178 {
1179 	int ret = 0;
1180 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1181 
1182 	nvt_dbg("%s called", __func__);
1183 
1184 	/* open interrupt */
1185 	nvt_set_cir_iren(nvt);
1186 
1187 	/* Enable CIR logical device */
1188 	nvt_efm_enable(nvt);
1189 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1190 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1191 
1192 	nvt_efm_disable(nvt);
1193 
1194 	nvt_cir_regs_init(nvt);
1195 	nvt_cir_wake_regs_init(nvt);
1196 
1197 	return ret;
1198 }
1199 
1200 static void nvt_shutdown(struct pnp_dev *pdev)
1201 {
1202 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1203 	nvt_enable_wake(nvt);
1204 }
1205 
1206 static const struct pnp_device_id nvt_ids[] = {
1207 	{ "WEC0530", 0 },   /* CIR */
1208 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1209 	{ "", 0 },
1210 };
1211 
1212 static struct pnp_driver nvt_driver = {
1213 	.name		= NVT_DRIVER_NAME,
1214 	.id_table	= nvt_ids,
1215 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1216 	.probe		= nvt_probe,
1217 	.remove		= __devexit_p(nvt_remove),
1218 	.suspend	= nvt_suspend,
1219 	.resume		= nvt_resume,
1220 	.shutdown	= nvt_shutdown,
1221 };
1222 
1223 int nvt_init(void)
1224 {
1225 	return pnp_register_driver(&nvt_driver);
1226 }
1227 
1228 void nvt_exit(void)
1229 {
1230 	pnp_unregister_driver(&nvt_driver);
1231 }
1232 
1233 module_param(debug, int, S_IRUGO | S_IWUSR);
1234 MODULE_PARM_DESC(debug, "Enable debugging output");
1235 
1236 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1237 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1238 
1239 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1240 MODULE_LICENSE("GPL");
1241 
1242 module_init(nvt_init);
1243 module_exit(nvt_exit);
1244