xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
34 
35 #include "nuvoton-cir.h"
36 
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
38 
39 static const struct nvt_chip nvt_chips[] = {
40 	{ "w83667hg", NVT_W83667HG },
41 	{ "NCT6775F", NVT_6775F },
42 	{ "NCT6776F", NVT_6776F },
43 	{ "NCT6779D", NVT_6779D },
44 };
45 
46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
47 {
48 	return nvt->rdev->dev.parent;
49 }
50 
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 	return nvt->chip_ver == NVT_W83667HG;
54 }
55 
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	outb(reg, nvt->cr_efir);
60 	outb(val, nvt->cr_efdr);
61 }
62 
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 	outb(reg, nvt->cr_efir);
67 	return inb(nvt->cr_efdr);
68 }
69 
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 	u8 tmp = nvt_cr_read(nvt, reg) | val;
74 	nvt_cr_write(nvt, tmp, reg);
75 }
76 
77 /* enter extended function mode */
78 static inline int nvt_efm_enable(struct nvt_dev *nvt)
79 {
80 	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
81 		return -EBUSY;
82 
83 	/* Enabling Extended Function Mode explicitly requires writing 2x */
84 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
85 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
86 
87 	return 0;
88 }
89 
90 /* exit extended function mode */
91 static inline void nvt_efm_disable(struct nvt_dev *nvt)
92 {
93 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
94 
95 	release_region(nvt->cr_efir, 2);
96 }
97 
98 /*
99  * When you want to address a specific logical device, write its logical
100  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
101  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
102  */
103 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
104 {
105 	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
106 }
107 
108 /* select and enable logical device with setting EFM mode*/
109 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
110 {
111 	nvt_efm_enable(nvt);
112 	nvt_select_logical_dev(nvt, ldev);
113 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
114 	nvt_efm_disable(nvt);
115 }
116 
117 /* select and disable logical device with setting EFM mode*/
118 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
119 {
120 	nvt_efm_enable(nvt);
121 	nvt_select_logical_dev(nvt, ldev);
122 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
123 	nvt_efm_disable(nvt);
124 }
125 
126 /* write val to cir config register */
127 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
128 {
129 	outb(val, nvt->cir_addr + offset);
130 }
131 
132 /* read val from cir config register */
133 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
134 {
135 	return inb(nvt->cir_addr + offset);
136 }
137 
138 /* write val to cir wake register */
139 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
140 					  u8 val, u8 offset)
141 {
142 	outb(val, nvt->cir_wake_addr + offset);
143 }
144 
145 /* read val from cir wake config register */
146 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
147 {
148 	return inb(nvt->cir_wake_addr + offset);
149 }
150 
151 /* don't override io address if one is set already */
152 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
153 {
154 	unsigned long old_addr;
155 
156 	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
157 	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
158 
159 	if (old_addr)
160 		*ioaddr = old_addr;
161 	else {
162 		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
163 		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
164 	}
165 }
166 
167 static void nvt_write_wakeup_codes(struct rc_dev *dev,
168 				   const u8 *wbuf, int count)
169 {
170 	u8 tolerance, config;
171 	struct nvt_dev *nvt = dev->priv;
172 	unsigned long flags;
173 	int i;
174 
175 	/* hardcode the tolerance to 10% */
176 	tolerance = DIV_ROUND_UP(count, 10);
177 
178 	spin_lock_irqsave(&nvt->lock, flags);
179 
180 	nvt_clear_cir_wake_fifo(nvt);
181 	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
182 	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
183 
184 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
185 
186 	/* enable writes to wake fifo */
187 	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
188 			       CIR_WAKE_IRCON);
189 
190 	if (count)
191 		pr_info("Wake samples (%d) =", count);
192 	else
193 		pr_info("Wake sample fifo cleared");
194 
195 	for (i = 0; i < count; i++)
196 		nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
197 
198 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
199 
200 	spin_unlock_irqrestore(&nvt->lock, flags);
201 }
202 
203 static ssize_t wakeup_data_show(struct device *dev,
204 				struct device_attribute *attr,
205 				char *buf)
206 {
207 	struct rc_dev *rc_dev = to_rc_dev(dev);
208 	struct nvt_dev *nvt = rc_dev->priv;
209 	int fifo_len, duration;
210 	unsigned long flags;
211 	ssize_t buf_len = 0;
212 	int i;
213 
214 	spin_lock_irqsave(&nvt->lock, flags);
215 
216 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
217 	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
218 
219 	/* go to first element to be read */
220 	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
221 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
222 
223 	for (i = 0; i < fifo_len; i++) {
224 		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
225 		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
226 		buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len,
227 				    "%d ", duration);
228 	}
229 	buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
230 
231 	spin_unlock_irqrestore(&nvt->lock, flags);
232 
233 	return buf_len;
234 }
235 
236 static ssize_t wakeup_data_store(struct device *dev,
237 				 struct device_attribute *attr,
238 				 const char *buf, size_t len)
239 {
240 	struct rc_dev *rc_dev = to_rc_dev(dev);
241 	u8 wake_buf[WAKEUP_MAX_SIZE];
242 	char **argv;
243 	int i, count;
244 	unsigned int val;
245 	ssize_t ret;
246 
247 	argv = argv_split(GFP_KERNEL, buf, &count);
248 	if (!argv)
249 		return -ENOMEM;
250 	if (!count || count > WAKEUP_MAX_SIZE) {
251 		ret = -EINVAL;
252 		goto out;
253 	}
254 
255 	for (i = 0; i < count; i++) {
256 		ret = kstrtouint(argv[i], 10, &val);
257 		if (ret)
258 			goto out;
259 		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
260 		if (!val || val > 0x7f) {
261 			ret = -EINVAL;
262 			goto out;
263 		}
264 		wake_buf[i] = val;
265 		/* sequence must start with a pulse */
266 		if (i % 2 == 0)
267 			wake_buf[i] |= BUF_PULSE_BIT;
268 	}
269 
270 	nvt_write_wakeup_codes(rc_dev, wake_buf, count);
271 
272 	ret = len;
273 out:
274 	argv_free(argv);
275 	return ret;
276 }
277 static DEVICE_ATTR_RW(wakeup_data);
278 
279 /* dump current cir register contents */
280 static void cir_dump_regs(struct nvt_dev *nvt)
281 {
282 	nvt_efm_enable(nvt);
283 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
284 
285 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
286 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
287 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
288 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
289 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
290 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
291 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
292 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
293 
294 	nvt_efm_disable(nvt);
295 
296 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
297 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
298 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
299 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
300 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
301 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
302 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
303 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
304 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
305 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
306 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
307 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
308 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
309 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
310 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
311 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
312 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
313 }
314 
315 /* dump current cir wake register contents */
316 static void cir_wake_dump_regs(struct nvt_dev *nvt)
317 {
318 	u8 i, fifo_len;
319 
320 	nvt_efm_enable(nvt);
321 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
322 
323 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
324 		NVT_DRIVER_NAME);
325 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
326 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
327 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
328 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
329 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
330 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
331 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
332 
333 	nvt_efm_disable(nvt);
334 
335 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
336 	pr_info(" * IRCON:          0x%x\n",
337 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
338 	pr_info(" * IRSTS:          0x%x\n",
339 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
340 	pr_info(" * IREN:           0x%x\n",
341 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
342 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
343 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
344 	pr_info(" * FIFO CMP TOL:   0x%x\n",
345 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
346 	pr_info(" * FIFO COUNT:     0x%x\n",
347 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
348 	pr_info(" * SLCH:           0x%x\n",
349 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
350 	pr_info(" * SLCL:           0x%x\n",
351 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
352 	pr_info(" * FIFOCON:        0x%x\n",
353 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
354 	pr_info(" * SRXFSTS:        0x%x\n",
355 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
356 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
357 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
358 	pr_info(" * WR FIFO DATA:   0x%x\n",
359 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
360 	pr_info(" * RD FIFO ONLY:   0x%x\n",
361 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
362 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
363 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
364 	pr_info(" * FIFO IGNORE:    0x%x\n",
365 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
366 	pr_info(" * IRFSM:          0x%x\n",
367 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
368 
369 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
370 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
371 	pr_info("* Contents =");
372 	for (i = 0; i < fifo_len; i++)
373 		pr_cont(" %02x",
374 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
375 	pr_cont("\n");
376 }
377 
378 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
379 {
380 	int i;
381 
382 	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
383 		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
384 			nvt->chip_ver = nvt_chips[i].chip_ver;
385 			return nvt_chips[i].name;
386 		}
387 
388 	return NULL;
389 }
390 
391 
392 /* detect hardware features */
393 static int nvt_hw_detect(struct nvt_dev *nvt)
394 {
395 	struct device *dev = nvt_get_dev(nvt);
396 	const char *chip_name;
397 	int chip_id;
398 
399 	nvt_efm_enable(nvt);
400 
401 	/* Check if we're wired for the alternate EFER setup */
402 	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
403 	if (nvt->chip_major == 0xff) {
404 		nvt_efm_disable(nvt);
405 		nvt->cr_efir = CR_EFIR2;
406 		nvt->cr_efdr = CR_EFDR2;
407 		nvt_efm_enable(nvt);
408 		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
409 	}
410 	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
411 
412 	nvt_efm_disable(nvt);
413 
414 	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
415 	if (chip_id == NVT_INVALID) {
416 		dev_err(dev, "No device found on either EFM port\n");
417 		return -ENODEV;
418 	}
419 
420 	chip_name = nvt_find_chip(nvt, chip_id);
421 
422 	/* warn, but still let the driver load, if we don't know this chip */
423 	if (!chip_name)
424 		dev_warn(dev,
425 			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
426 			 nvt->chip_major, nvt->chip_minor);
427 	else
428 		dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
429 			 chip_name, nvt->chip_major, nvt->chip_minor);
430 
431 	return 0;
432 }
433 
434 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
435 {
436 	u8 val, psreg, psmask, psval;
437 
438 	if (is_w83667hg(nvt)) {
439 		psreg = CR_MULTIFUNC_PIN_SEL;
440 		psmask = MULTIFUNC_PIN_SEL_MASK;
441 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
442 	} else {
443 		psreg = CR_OUTPUT_PIN_SEL;
444 		psmask = OUTPUT_PIN_SEL_MASK;
445 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
446 	}
447 
448 	/* output pin selection: enable CIR, with WB sensor enabled */
449 	val = nvt_cr_read(nvt, psreg);
450 	val &= psmask;
451 	val |= psval;
452 	nvt_cr_write(nvt, val, psreg);
453 
454 	/* Select CIR logical device */
455 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
456 
457 	nvt_set_ioaddr(nvt, &nvt->cir_addr);
458 
459 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
460 
461 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
462 		nvt->cir_addr, nvt->cir_irq);
463 }
464 
465 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
466 {
467 	/* Select ACPI logical device and anable it */
468 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
469 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
470 
471 	/* Enable CIR Wake via PSOUT# (Pin60) */
472 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
473 
474 	/* enable pme interrupt of cir wakeup event */
475 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
476 
477 	/* Select CIR Wake logical device */
478 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
479 
480 	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
481 
482 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
483 		nvt->cir_wake_addr);
484 }
485 
486 /* clear out the hardware's cir rx fifo */
487 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
488 {
489 	u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
490 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
491 }
492 
493 /* clear out the hardware's cir wake rx fifo */
494 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
495 {
496 	u8 val, config;
497 
498 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
499 
500 	/* clearing wake fifo works in learning mode only */
501 	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
502 			       CIR_WAKE_IRCON);
503 
504 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
505 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
506 			       CIR_WAKE_FIFOCON);
507 
508 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
509 }
510 
511 /* clear out the hardware's cir tx fifo */
512 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
513 {
514 	u8 val;
515 
516 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
517 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
518 }
519 
520 /* enable RX Trigger Level Reach and Packet End interrupts */
521 static void nvt_set_cir_iren(struct nvt_dev *nvt)
522 {
523 	u8 iren;
524 
525 	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
526 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
527 }
528 
529 static void nvt_cir_regs_init(struct nvt_dev *nvt)
530 {
531 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
532 
533 	/* set sample limit count (PE interrupt raised when reached) */
534 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
535 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
536 
537 	/* set fifo irq trigger levels */
538 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
539 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
540 
541 	/* clear hardware rx and tx fifos */
542 	nvt_clear_cir_fifo(nvt);
543 	nvt_clear_tx_fifo(nvt);
544 
545 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
546 }
547 
548 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
549 {
550 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
551 
552 	/*
553 	 * Disable RX, set specific carrier on = low, off = high,
554 	 * and sample period (currently 50us)
555 	 */
556 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
557 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
558 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
559 			       CIR_WAKE_IRCON);
560 
561 	/* clear any and all stray interrupts */
562 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
563 }
564 
565 static void nvt_enable_wake(struct nvt_dev *nvt)
566 {
567 	unsigned long flags;
568 
569 	nvt_efm_enable(nvt);
570 
571 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
572 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
573 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
574 
575 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
576 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
577 
578 	nvt_efm_disable(nvt);
579 
580 	spin_lock_irqsave(&nvt->lock, flags);
581 
582 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
583 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
584 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
585 			       CIR_WAKE_IRCON);
586 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
587 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
588 
589 	spin_unlock_irqrestore(&nvt->lock, flags);
590 }
591 
592 #if 0 /* Currently unused */
593 /* rx carrier detect only works in learning mode, must be called w/lock */
594 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
595 {
596 	u32 count, carrier, duration = 0;
597 	int i;
598 
599 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
600 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
601 
602 	for (i = 0; i < nvt->pkts; i++) {
603 		if (nvt->buf[i] & BUF_PULSE_BIT)
604 			duration += nvt->buf[i] & BUF_LEN_MASK;
605 	}
606 
607 	duration *= SAMPLE_PERIOD;
608 
609 	if (!count || !duration) {
610 		dev_notice(nvt_get_dev(nvt),
611 			   "Unable to determine carrier! (c:%u, d:%u)",
612 			   count, duration);
613 		return 0;
614 	}
615 
616 	carrier = MS_TO_NS(count) / duration;
617 
618 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
619 		nvt_dbg("WTF? Carrier frequency out of range!");
620 
621 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
622 		carrier, count, duration);
623 
624 	return carrier;
625 }
626 #endif
627 
628 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
629 					struct rc_scancode_filter *sc_filter)
630 {
631 	u8 buf_val;
632 	int i, ret, count;
633 	unsigned int val;
634 	struct ir_raw_event *raw;
635 	u8 wake_buf[WAKEUP_MAX_SIZE];
636 	bool complete;
637 
638 	/* Require mask to be set */
639 	if (!sc_filter->mask)
640 		return 0;
641 
642 	raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
643 	if (!raw)
644 		return -ENOMEM;
645 
646 	ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
647 				     raw, WAKEUP_MAX_SIZE);
648 	complete = (ret != -ENOBUFS);
649 	if (!complete)
650 		ret = WAKEUP_MAX_SIZE;
651 	else if (ret < 0)
652 		goto out_raw;
653 
654 	/* Inspect the ir samples */
655 	for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
656 		/* NS to US */
657 		val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD;
658 
659 		/* Split too large values into several smaller ones */
660 		while (val > 0 && count < WAKEUP_MAX_SIZE) {
661 			/* Skip last value for better comparison tolerance */
662 			if (complete && i == ret - 1 && val < BUF_LEN_MASK)
663 				break;
664 
665 			/* Clamp values to BUF_LEN_MASK at most */
666 			buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
667 
668 			wake_buf[count] = buf_val;
669 			val -= buf_val;
670 			if ((raw[i]).pulse)
671 				wake_buf[count] |= BUF_PULSE_BIT;
672 			count++;
673 		}
674 	}
675 
676 	nvt_write_wakeup_codes(dev, wake_buf, count);
677 	ret = 0;
678 out_raw:
679 	kfree(raw);
680 
681 	return ret;
682 }
683 
684 /* dump contents of the last rx buffer we got from the hw rx fifo */
685 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
686 {
687 	int i;
688 
689 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
690 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
691 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
692 	printk(KERN_CONT "\n");
693 }
694 
695 /*
696  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
697  * trigger decode when appropriate.
698  *
699  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
700  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
701  * (default 50us) intervals for that pulse/space. A discrete signal is
702  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
703  * to signal more IR coming (repeats) or end of IR, respectively. We store
704  * sample data in the raw event kfifo until we see 0x7<something> (except f)
705  * or 0x80, at which time, we trigger a decode operation.
706  */
707 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
708 {
709 	struct ir_raw_event rawir = {};
710 	u8 sample;
711 	int i;
712 
713 	nvt_dbg_verbose("%s firing", __func__);
714 
715 	if (debug)
716 		nvt_dump_rx_buf(nvt);
717 
718 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
719 
720 	for (i = 0; i < nvt->pkts; i++) {
721 		sample = nvt->buf[i];
722 
723 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
724 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
725 					  * SAMPLE_PERIOD);
726 
727 		nvt_dbg("Storing %s with duration %d",
728 			rawir.pulse ? "pulse" : "space", rawir.duration);
729 
730 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
731 	}
732 
733 	nvt->pkts = 0;
734 
735 	nvt_dbg("Calling ir_raw_event_handle\n");
736 	ir_raw_event_handle(nvt->rdev);
737 
738 	nvt_dbg_verbose("%s done", __func__);
739 }
740 
741 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
742 {
743 	dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
744 
745 	nvt->pkts = 0;
746 	nvt_clear_cir_fifo(nvt);
747 	ir_raw_event_reset(nvt->rdev);
748 }
749 
750 /* copy data from hardware rx fifo into driver buffer */
751 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
752 {
753 	u8 fifocount;
754 	int i;
755 
756 	/* Get count of how many bytes to read from RX FIFO */
757 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
758 
759 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
760 
761 	/* Read fifocount bytes from CIR Sample RX FIFO register */
762 	for (i = 0; i < fifocount; i++)
763 		nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
764 
765 	nvt->pkts = fifocount;
766 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
767 
768 	nvt_process_rx_ir_data(nvt);
769 }
770 
771 static void nvt_cir_log_irqs(u8 status, u8 iren)
772 {
773 	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
774 		status, iren,
775 		status & CIR_IRSTS_RDR	? " RDR"	: "",
776 		status & CIR_IRSTS_RTR	? " RTR"	: "",
777 		status & CIR_IRSTS_PE	? " PE"		: "",
778 		status & CIR_IRSTS_RFO	? " RFO"	: "",
779 		status & CIR_IRSTS_TE	? " TE"		: "",
780 		status & CIR_IRSTS_TTR	? " TTR"	: "",
781 		status & CIR_IRSTS_TFU	? " TFU"	: "",
782 		status & CIR_IRSTS_GH	? " GH"		: "",
783 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
784 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
785 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
786 }
787 
788 /* interrupt service routine for incoming and outgoing CIR data */
789 static irqreturn_t nvt_cir_isr(int irq, void *data)
790 {
791 	struct nvt_dev *nvt = data;
792 	u8 status, iren;
793 
794 	nvt_dbg_verbose("%s firing", __func__);
795 
796 	spin_lock(&nvt->lock);
797 
798 	/*
799 	 * Get IR Status register contents. Write 1 to ack/clear
800 	 *
801 	 * bit: reg name      - description
802 	 *   7: CIR_IRSTS_RDR - RX Data Ready
803 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
804 	 *   5: CIR_IRSTS_PE  - Packet End
805 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
806 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
807 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
808 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
809 	 *   0: CIR_IRSTS_GH  - Min Length Detected
810 	 */
811 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
812 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
813 
814 	/* At least NCT6779D creates a spurious interrupt when the
815 	 * logical device is being disabled.
816 	 */
817 	if (status == 0xff && iren == 0xff) {
818 		spin_unlock(&nvt->lock);
819 		nvt_dbg_verbose("Spurious interrupt detected");
820 		return IRQ_HANDLED;
821 	}
822 
823 	/* IRQ may be shared with CIR WAKE, therefore check for each
824 	 * status bit whether the related interrupt source is enabled
825 	 */
826 	if (!(status & iren)) {
827 		spin_unlock(&nvt->lock);
828 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
829 		return IRQ_NONE;
830 	}
831 
832 	/* ack/clear all irq flags we've got */
833 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
834 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
835 
836 	nvt_cir_log_irqs(status, iren);
837 
838 	if (status & CIR_IRSTS_RFO)
839 		nvt_handle_rx_fifo_overrun(nvt);
840 	else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE))
841 		nvt_get_rx_ir_data(nvt);
842 
843 	spin_unlock(&nvt->lock);
844 
845 	nvt_dbg_verbose("%s done", __func__);
846 	return IRQ_HANDLED;
847 }
848 
849 static void nvt_enable_cir(struct nvt_dev *nvt)
850 {
851 	unsigned long flags;
852 
853 	/* enable the CIR logical device */
854 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
855 
856 	spin_lock_irqsave(&nvt->lock, flags);
857 
858 	/*
859 	 * Enable TX and RX, specify carrier on = low, off = high, and set
860 	 * sample period (currently 50us)
861 	 */
862 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
863 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
864 			  CIR_IRCON);
865 
866 	/* clear all pending interrupts */
867 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
868 
869 	/* enable interrupts */
870 	nvt_set_cir_iren(nvt);
871 
872 	spin_unlock_irqrestore(&nvt->lock, flags);
873 }
874 
875 static void nvt_disable_cir(struct nvt_dev *nvt)
876 {
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&nvt->lock, flags);
880 
881 	/* disable CIR interrupts */
882 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
883 
884 	/* clear any and all pending interrupts */
885 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
886 
887 	/* clear all function enable flags */
888 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
889 
890 	/* clear hardware rx and tx fifos */
891 	nvt_clear_cir_fifo(nvt);
892 	nvt_clear_tx_fifo(nvt);
893 
894 	spin_unlock_irqrestore(&nvt->lock, flags);
895 
896 	/* disable the CIR logical device */
897 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
898 }
899 
900 static int nvt_open(struct rc_dev *dev)
901 {
902 	struct nvt_dev *nvt = dev->priv;
903 
904 	nvt_enable_cir(nvt);
905 
906 	return 0;
907 }
908 
909 static void nvt_close(struct rc_dev *dev)
910 {
911 	struct nvt_dev *nvt = dev->priv;
912 
913 	nvt_disable_cir(nvt);
914 }
915 
916 /* Allocate memory, probe hardware, and initialize everything */
917 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
918 {
919 	struct nvt_dev *nvt;
920 	struct rc_dev *rdev;
921 	int ret;
922 
923 	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
924 	if (!nvt)
925 		return -ENOMEM;
926 
927 	/* input device for IR remote */
928 	nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
929 	if (!nvt->rdev)
930 		return -ENOMEM;
931 	rdev = nvt->rdev;
932 
933 	/* activate pnp device */
934 	ret = pnp_activate_dev(pdev);
935 	if (ret) {
936 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
937 		return ret;
938 	}
939 
940 	/* validate pnp resources */
941 	if (!pnp_port_valid(pdev, 0) ||
942 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
943 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
944 		return -EINVAL;
945 	}
946 
947 	if (!pnp_irq_valid(pdev, 0)) {
948 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
949 		return -EINVAL;
950 	}
951 
952 	if (!pnp_port_valid(pdev, 1) ||
953 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
954 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
955 		return -EINVAL;
956 	}
957 
958 	nvt->cir_addr = pnp_port_start(pdev, 0);
959 	nvt->cir_irq  = pnp_irq(pdev, 0);
960 
961 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
962 
963 	nvt->cr_efir = CR_EFIR;
964 	nvt->cr_efdr = CR_EFDR;
965 
966 	spin_lock_init(&nvt->lock);
967 
968 	pnp_set_drvdata(pdev, nvt);
969 
970 	ret = nvt_hw_detect(nvt);
971 	if (ret)
972 		return ret;
973 
974 	/* Initialize CIR & CIR Wake Logical Devices */
975 	nvt_efm_enable(nvt);
976 	nvt_cir_ldev_init(nvt);
977 	nvt_cir_wake_ldev_init(nvt);
978 	nvt_efm_disable(nvt);
979 
980 	/*
981 	 * Initialize CIR & CIR Wake Config Registers
982 	 * and enable logical devices
983 	 */
984 	nvt_cir_regs_init(nvt);
985 	nvt_cir_wake_regs_init(nvt);
986 
987 	/* Set up the rc device */
988 	rdev->priv = nvt;
989 	rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
990 	rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER;
991 	rdev->encode_wakeup = true;
992 	rdev->open = nvt_open;
993 	rdev->close = nvt_close;
994 	rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
995 	rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
996 	rdev->input_phys = "nuvoton/cir0";
997 	rdev->input_id.bustype = BUS_HOST;
998 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
999 	rdev->input_id.product = nvt->chip_major;
1000 	rdev->input_id.version = nvt->chip_minor;
1001 	rdev->driver_name = NVT_DRIVER_NAME;
1002 	rdev->map_name = RC_MAP_RC6_MCE;
1003 	rdev->timeout = MS_TO_NS(100);
1004 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1005 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1006 #if 0
1007 	rdev->min_timeout = XYZ;
1008 	rdev->max_timeout = XYZ;
1009 #endif
1010 	ret = devm_rc_register_device(&pdev->dev, rdev);
1011 	if (ret)
1012 		return ret;
1013 
1014 	/* now claim resources */
1015 	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1016 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1017 		return -EBUSY;
1018 
1019 	ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1020 			       IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1021 	if (ret)
1022 		return ret;
1023 
1024 	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1025 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1026 		return -EBUSY;
1027 
1028 	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1029 	if (ret)
1030 		return ret;
1031 
1032 	device_init_wakeup(&pdev->dev, true);
1033 
1034 	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1035 	if (debug) {
1036 		cir_dump_regs(nvt);
1037 		cir_wake_dump_regs(nvt);
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static void nvt_remove(struct pnp_dev *pdev)
1044 {
1045 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1046 
1047 	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1048 
1049 	nvt_disable_cir(nvt);
1050 
1051 	/* enable CIR Wake (for IR power-on) */
1052 	nvt_enable_wake(nvt);
1053 }
1054 
1055 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1056 {
1057 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1058 
1059 	nvt_dbg("%s called", __func__);
1060 
1061 	mutex_lock(&nvt->rdev->lock);
1062 	if (nvt->rdev->users)
1063 		nvt_disable_cir(nvt);
1064 	mutex_unlock(&nvt->rdev->lock);
1065 
1066 	/* make sure wake is enabled */
1067 	nvt_enable_wake(nvt);
1068 
1069 	return 0;
1070 }
1071 
1072 static int nvt_resume(struct pnp_dev *pdev)
1073 {
1074 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1075 
1076 	nvt_dbg("%s called", __func__);
1077 
1078 	nvt_cir_regs_init(nvt);
1079 	nvt_cir_wake_regs_init(nvt);
1080 
1081 	mutex_lock(&nvt->rdev->lock);
1082 	if (nvt->rdev->users)
1083 		nvt_enable_cir(nvt);
1084 	mutex_unlock(&nvt->rdev->lock);
1085 
1086 	return 0;
1087 }
1088 
1089 static void nvt_shutdown(struct pnp_dev *pdev)
1090 {
1091 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1092 
1093 	nvt_enable_wake(nvt);
1094 }
1095 
1096 static const struct pnp_device_id nvt_ids[] = {
1097 	{ "WEC0530", 0 },   /* CIR */
1098 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1099 	{ "", 0 },
1100 };
1101 
1102 static struct pnp_driver nvt_driver = {
1103 	.name		= NVT_DRIVER_NAME,
1104 	.id_table	= nvt_ids,
1105 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1106 	.probe		= nvt_probe,
1107 	.remove		= nvt_remove,
1108 	.suspend	= nvt_suspend,
1109 	.resume		= nvt_resume,
1110 	.shutdown	= nvt_shutdown,
1111 };
1112 
1113 module_param(debug, int, S_IRUGO | S_IWUSR);
1114 MODULE_PARM_DESC(debug, "Enable debugging output");
1115 
1116 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1117 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1118 
1119 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1120 MODULE_LICENSE("GPL");
1121 
1122 module_pnp_driver(nvt_driver);
1123