1 /* 2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR 3 * 4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com> 5 * Copyright (C) 2009 Nuvoton PS Team 6 * 7 * Special thanks to Nuvoton for providing hardware, spec sheets and 8 * sample code upon which portions of this driver are based. Indirect 9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is 10 * modeled after. 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation; either version 2 of the 15 * License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/pnp.h> 28 #include <linux/io.h> 29 #include <linux/interrupt.h> 30 #include <linux/sched.h> 31 #include <linux/slab.h> 32 #include <media/rc-core.h> 33 #include <linux/pci_ids.h> 34 35 #include "nuvoton-cir.h" 36 37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt); 38 39 static const struct nvt_chip nvt_chips[] = { 40 { "w83667hg", NVT_W83667HG }, 41 { "NCT6775F", NVT_6775F }, 42 { "NCT6776F", NVT_6776F }, 43 { "NCT6779D", NVT_6779D }, 44 }; 45 46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt) 47 { 48 return nvt->rdev->dev.parent; 49 } 50 51 static inline bool is_w83667hg(struct nvt_dev *nvt) 52 { 53 return nvt->chip_ver == NVT_W83667HG; 54 } 55 56 /* write val to config reg */ 57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg) 58 { 59 outb(reg, nvt->cr_efir); 60 outb(val, nvt->cr_efdr); 61 } 62 63 /* read val from config reg */ 64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg) 65 { 66 outb(reg, nvt->cr_efir); 67 return inb(nvt->cr_efdr); 68 } 69 70 /* update config register bit without changing other bits */ 71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) 72 { 73 u8 tmp = nvt_cr_read(nvt, reg) | val; 74 nvt_cr_write(nvt, tmp, reg); 75 } 76 77 /* clear config register bit without changing other bits */ 78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) 79 { 80 u8 tmp = nvt_cr_read(nvt, reg) & ~val; 81 nvt_cr_write(nvt, tmp, reg); 82 } 83 84 /* enter extended function mode */ 85 static inline int nvt_efm_enable(struct nvt_dev *nvt) 86 { 87 if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME)) 88 return -EBUSY; 89 90 /* Enabling Extended Function Mode explicitly requires writing 2x */ 91 outb(EFER_EFM_ENABLE, nvt->cr_efir); 92 outb(EFER_EFM_ENABLE, nvt->cr_efir); 93 94 return 0; 95 } 96 97 /* exit extended function mode */ 98 static inline void nvt_efm_disable(struct nvt_dev *nvt) 99 { 100 outb(EFER_EFM_DISABLE, nvt->cr_efir); 101 102 release_region(nvt->cr_efir, 2); 103 } 104 105 /* 106 * When you want to address a specific logical device, write its logical 107 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing 108 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN. 109 */ 110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev) 111 { 112 nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL); 113 } 114 115 /* select and enable logical device with setting EFM mode*/ 116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev) 117 { 118 nvt_efm_enable(nvt); 119 nvt_select_logical_dev(nvt, ldev); 120 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 121 nvt_efm_disable(nvt); 122 } 123 124 /* select and disable logical device with setting EFM mode*/ 125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev) 126 { 127 nvt_efm_enable(nvt); 128 nvt_select_logical_dev(nvt, ldev); 129 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); 130 nvt_efm_disable(nvt); 131 } 132 133 /* write val to cir config register */ 134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) 135 { 136 outb(val, nvt->cir_addr + offset); 137 } 138 139 /* read val from cir config register */ 140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset) 141 { 142 return inb(nvt->cir_addr + offset); 143 } 144 145 /* write val to cir wake register */ 146 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt, 147 u8 val, u8 offset) 148 { 149 outb(val, nvt->cir_wake_addr + offset); 150 } 151 152 /* read val from cir wake config register */ 153 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset) 154 { 155 return inb(nvt->cir_wake_addr + offset); 156 } 157 158 /* don't override io address if one is set already */ 159 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr) 160 { 161 unsigned long old_addr; 162 163 old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8; 164 old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO); 165 166 if (old_addr) 167 *ioaddr = old_addr; 168 else { 169 nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI); 170 nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO); 171 } 172 } 173 174 static void nvt_write_wakeup_codes(struct rc_dev *dev, 175 const u8 *wbuf, int count) 176 { 177 u8 tolerance, config; 178 struct nvt_dev *nvt = dev->priv; 179 unsigned long flags; 180 int i; 181 182 /* hardcode the tolerance to 10% */ 183 tolerance = DIV_ROUND_UP(count, 10); 184 185 spin_lock_irqsave(&nvt->lock, flags); 186 187 nvt_clear_cir_wake_fifo(nvt); 188 nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP); 189 nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL); 190 191 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON); 192 193 /* enable writes to wake fifo */ 194 nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1, 195 CIR_WAKE_IRCON); 196 197 if (count) 198 pr_info("Wake samples (%d) =", count); 199 else 200 pr_info("Wake sample fifo cleared"); 201 202 for (i = 0; i < count; i++) 203 nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA); 204 205 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON); 206 207 spin_unlock_irqrestore(&nvt->lock, flags); 208 } 209 210 static ssize_t wakeup_data_show(struct device *dev, 211 struct device_attribute *attr, 212 char *buf) 213 { 214 struct rc_dev *rc_dev = to_rc_dev(dev); 215 struct nvt_dev *nvt = rc_dev->priv; 216 int fifo_len, duration; 217 unsigned long flags; 218 ssize_t buf_len = 0; 219 int i; 220 221 spin_lock_irqsave(&nvt->lock, flags); 222 223 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); 224 fifo_len = min(fifo_len, WAKEUP_MAX_SIZE); 225 226 /* go to first element to be read */ 227 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) 228 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); 229 230 for (i = 0; i < fifo_len; i++) { 231 duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); 232 duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD; 233 buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, 234 "%d ", duration); 235 } 236 buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n"); 237 238 spin_unlock_irqrestore(&nvt->lock, flags); 239 240 return buf_len; 241 } 242 243 static ssize_t wakeup_data_store(struct device *dev, 244 struct device_attribute *attr, 245 const char *buf, size_t len) 246 { 247 struct rc_dev *rc_dev = to_rc_dev(dev); 248 u8 wake_buf[WAKEUP_MAX_SIZE]; 249 char **argv; 250 int i, count; 251 unsigned int val; 252 ssize_t ret; 253 254 argv = argv_split(GFP_KERNEL, buf, &count); 255 if (!argv) 256 return -ENOMEM; 257 if (!count || count > WAKEUP_MAX_SIZE) { 258 ret = -EINVAL; 259 goto out; 260 } 261 262 for (i = 0; i < count; i++) { 263 ret = kstrtouint(argv[i], 10, &val); 264 if (ret) 265 goto out; 266 val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD); 267 if (!val || val > 0x7f) { 268 ret = -EINVAL; 269 goto out; 270 } 271 wake_buf[i] = val; 272 /* sequence must start with a pulse */ 273 if (i % 2 == 0) 274 wake_buf[i] |= BUF_PULSE_BIT; 275 } 276 277 nvt_write_wakeup_codes(rc_dev, wake_buf, count); 278 279 ret = len; 280 out: 281 argv_free(argv); 282 return ret; 283 } 284 static DEVICE_ATTR_RW(wakeup_data); 285 286 /* dump current cir register contents */ 287 static void cir_dump_regs(struct nvt_dev *nvt) 288 { 289 nvt_efm_enable(nvt); 290 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 291 292 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME); 293 pr_info(" * CR CIR ACTIVE : 0x%x\n", 294 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); 295 pr_info(" * CR CIR BASE ADDR: 0x%x\n", 296 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | 297 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); 298 pr_info(" * CR CIR IRQ NUM: 0x%x\n", 299 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); 300 301 nvt_efm_disable(nvt); 302 303 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME); 304 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON)); 305 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS)); 306 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN)); 307 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT)); 308 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP)); 309 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC)); 310 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH)); 311 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL)); 312 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON)); 313 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS)); 314 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO)); 315 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT)); 316 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO)); 317 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH)); 318 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL)); 319 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM)); 320 } 321 322 /* dump current cir wake register contents */ 323 static void cir_wake_dump_regs(struct nvt_dev *nvt) 324 { 325 u8 i, fifo_len; 326 327 nvt_efm_enable(nvt); 328 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 329 330 pr_info("%s: Dump CIR WAKE logical device registers:\n", 331 NVT_DRIVER_NAME); 332 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n", 333 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); 334 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n", 335 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | 336 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); 337 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n", 338 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); 339 340 nvt_efm_disable(nvt); 341 342 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME); 343 pr_info(" * IRCON: 0x%x\n", 344 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON)); 345 pr_info(" * IRSTS: 0x%x\n", 346 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS)); 347 pr_info(" * IREN: 0x%x\n", 348 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN)); 349 pr_info(" * FIFO CMP DEEP: 0x%x\n", 350 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP)); 351 pr_info(" * FIFO CMP TOL: 0x%x\n", 352 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL)); 353 pr_info(" * FIFO COUNT: 0x%x\n", 354 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT)); 355 pr_info(" * SLCH: 0x%x\n", 356 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH)); 357 pr_info(" * SLCL: 0x%x\n", 358 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL)); 359 pr_info(" * FIFOCON: 0x%x\n", 360 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON)); 361 pr_info(" * SRXFSTS: 0x%x\n", 362 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS)); 363 pr_info(" * SAMPLE RX FIFO: 0x%x\n", 364 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO)); 365 pr_info(" * WR FIFO DATA: 0x%x\n", 366 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA)); 367 pr_info(" * RD FIFO ONLY: 0x%x\n", 368 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); 369 pr_info(" * RD FIFO ONLY IDX: 0x%x\n", 370 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)); 371 pr_info(" * FIFO IGNORE: 0x%x\n", 372 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE)); 373 pr_info(" * IRFSM: 0x%x\n", 374 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM)); 375 376 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); 377 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len); 378 pr_info("* Contents ="); 379 for (i = 0; i < fifo_len; i++) 380 pr_cont(" %02x", 381 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); 382 pr_cont("\n"); 383 } 384 385 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id) 386 { 387 int i; 388 389 for (i = 0; i < ARRAY_SIZE(nvt_chips); i++) 390 if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) { 391 nvt->chip_ver = nvt_chips[i].chip_ver; 392 return nvt_chips[i].name; 393 } 394 395 return NULL; 396 } 397 398 399 /* detect hardware features */ 400 static int nvt_hw_detect(struct nvt_dev *nvt) 401 { 402 struct device *dev = nvt_get_dev(nvt); 403 const char *chip_name; 404 int chip_id; 405 406 nvt_efm_enable(nvt); 407 408 /* Check if we're wired for the alternate EFER setup */ 409 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); 410 if (nvt->chip_major == 0xff) { 411 nvt_efm_disable(nvt); 412 nvt->cr_efir = CR_EFIR2; 413 nvt->cr_efdr = CR_EFDR2; 414 nvt_efm_enable(nvt); 415 nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); 416 } 417 nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO); 418 419 nvt_efm_disable(nvt); 420 421 chip_id = nvt->chip_major << 8 | nvt->chip_minor; 422 if (chip_id == NVT_INVALID) { 423 dev_err(dev, "No device found on either EFM port\n"); 424 return -ENODEV; 425 } 426 427 chip_name = nvt_find_chip(nvt, chip_id); 428 429 /* warn, but still let the driver load, if we don't know this chip */ 430 if (!chip_name) 431 dev_warn(dev, 432 "unknown chip, id: 0x%02x 0x%02x, it may not work...", 433 nvt->chip_major, nvt->chip_minor); 434 else 435 dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x", 436 chip_name, nvt->chip_major, nvt->chip_minor); 437 438 return 0; 439 } 440 441 static void nvt_cir_ldev_init(struct nvt_dev *nvt) 442 { 443 u8 val, psreg, psmask, psval; 444 445 if (is_w83667hg(nvt)) { 446 psreg = CR_MULTIFUNC_PIN_SEL; 447 psmask = MULTIFUNC_PIN_SEL_MASK; 448 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB; 449 } else { 450 psreg = CR_OUTPUT_PIN_SEL; 451 psmask = OUTPUT_PIN_SEL_MASK; 452 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB; 453 } 454 455 /* output pin selection: enable CIR, with WB sensor enabled */ 456 val = nvt_cr_read(nvt, psreg); 457 val &= psmask; 458 val |= psval; 459 nvt_cr_write(nvt, val, psreg); 460 461 /* Select CIR logical device */ 462 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); 463 464 nvt_set_ioaddr(nvt, &nvt->cir_addr); 465 466 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC); 467 468 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d", 469 nvt->cir_addr, nvt->cir_irq); 470 } 471 472 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt) 473 { 474 /* Select ACPI logical device and anable it */ 475 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); 476 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 477 478 /* Enable CIR Wake via PSOUT# (Pin60) */ 479 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); 480 481 /* enable pme interrupt of cir wakeup event */ 482 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); 483 484 /* Select CIR Wake logical device */ 485 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 486 487 nvt_set_ioaddr(nvt, &nvt->cir_wake_addr); 488 489 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx", 490 nvt->cir_wake_addr); 491 } 492 493 /* clear out the hardware's cir rx fifo */ 494 static void nvt_clear_cir_fifo(struct nvt_dev *nvt) 495 { 496 u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON); 497 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); 498 } 499 500 /* clear out the hardware's cir wake rx fifo */ 501 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt) 502 { 503 u8 val, config; 504 505 config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON); 506 507 /* clearing wake fifo works in learning mode only */ 508 nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0, 509 CIR_WAKE_IRCON); 510 511 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON); 512 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR, 513 CIR_WAKE_FIFOCON); 514 515 nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON); 516 } 517 518 /* clear out the hardware's cir tx fifo */ 519 static void nvt_clear_tx_fifo(struct nvt_dev *nvt) 520 { 521 u8 val; 522 523 val = nvt_cir_reg_read(nvt, CIR_FIFOCON); 524 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON); 525 } 526 527 /* enable RX Trigger Level Reach and Packet End interrupts */ 528 static void nvt_set_cir_iren(struct nvt_dev *nvt) 529 { 530 u8 iren; 531 532 iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO; 533 nvt_cir_reg_write(nvt, iren, CIR_IREN); 534 } 535 536 static void nvt_cir_regs_init(struct nvt_dev *nvt) 537 { 538 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR); 539 540 /* set sample limit count (PE interrupt raised when reached) */ 541 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH); 542 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL); 543 544 /* set fifo irq trigger levels */ 545 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV | 546 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON); 547 548 /* clear hardware rx and tx fifos */ 549 nvt_clear_cir_fifo(nvt); 550 nvt_clear_tx_fifo(nvt); 551 552 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR); 553 } 554 555 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt) 556 { 557 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 558 559 /* 560 * Disable RX, set specific carrier on = low, off = high, 561 * and sample period (currently 50us) 562 */ 563 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | 564 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | 565 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, 566 CIR_WAKE_IRCON); 567 568 /* clear any and all stray interrupts */ 569 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); 570 } 571 572 static void nvt_enable_wake(struct nvt_dev *nvt) 573 { 574 unsigned long flags; 575 576 nvt_efm_enable(nvt); 577 578 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); 579 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); 580 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); 581 582 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); 583 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); 584 585 nvt_efm_disable(nvt); 586 587 spin_lock_irqsave(&nvt->lock, flags); 588 589 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | 590 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | 591 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, 592 CIR_WAKE_IRCON); 593 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); 594 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); 595 596 spin_unlock_irqrestore(&nvt->lock, flags); 597 } 598 599 #if 0 /* Currently unused */ 600 /* rx carrier detect only works in learning mode, must be called w/lock */ 601 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt) 602 { 603 u32 count, carrier, duration = 0; 604 int i; 605 606 count = nvt_cir_reg_read(nvt, CIR_FCCL) | 607 nvt_cir_reg_read(nvt, CIR_FCCH) << 8; 608 609 for (i = 0; i < nvt->pkts; i++) { 610 if (nvt->buf[i] & BUF_PULSE_BIT) 611 duration += nvt->buf[i] & BUF_LEN_MASK; 612 } 613 614 duration *= SAMPLE_PERIOD; 615 616 if (!count || !duration) { 617 dev_notice(nvt_get_dev(nvt), 618 "Unable to determine carrier! (c:%u, d:%u)", 619 count, duration); 620 return 0; 621 } 622 623 carrier = MS_TO_NS(count) / duration; 624 625 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER)) 626 nvt_dbg("WTF? Carrier frequency out of range!"); 627 628 nvt_dbg("Carrier frequency: %u (count %u, duration %u)", 629 carrier, count, duration); 630 631 return carrier; 632 } 633 #endif 634 /* 635 * set carrier frequency 636 * 637 * set carrier on 2 registers: CP & CC 638 * always set CP as 0x81 639 * set CC by SPEC, CC = 3MHz/carrier - 1 640 */ 641 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier) 642 { 643 struct nvt_dev *nvt = dev->priv; 644 u16 val; 645 646 if (carrier == 0) 647 return -EINVAL; 648 649 nvt_cir_reg_write(nvt, 1, CIR_CP); 650 val = 3000000 / (carrier) - 1; 651 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC); 652 653 nvt_dbg("cp: 0x%x cc: 0x%x\n", 654 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC)); 655 656 return 0; 657 } 658 659 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev, 660 struct rc_scancode_filter *sc_filter) 661 { 662 u8 buf_val; 663 int i, ret, count; 664 unsigned int val; 665 struct ir_raw_event *raw; 666 u8 wake_buf[WAKEUP_MAX_SIZE]; 667 bool complete; 668 669 /* Require mask to be set */ 670 if (!sc_filter->mask) 671 return 0; 672 673 raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL); 674 if (!raw) 675 return -ENOMEM; 676 677 ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data, 678 raw, WAKEUP_MAX_SIZE); 679 complete = (ret != -ENOBUFS); 680 if (!complete) 681 ret = WAKEUP_MAX_SIZE; 682 else if (ret < 0) 683 goto out_raw; 684 685 /* Inspect the ir samples */ 686 for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) { 687 /* NS to US */ 688 val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD; 689 690 /* Split too large values into several smaller ones */ 691 while (val > 0 && count < WAKEUP_MAX_SIZE) { 692 /* Skip last value for better comparison tolerance */ 693 if (complete && i == ret - 1 && val < BUF_LEN_MASK) 694 break; 695 696 /* Clamp values to BUF_LEN_MASK at most */ 697 buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val; 698 699 wake_buf[count] = buf_val; 700 val -= buf_val; 701 if ((raw[i]).pulse) 702 wake_buf[count] |= BUF_PULSE_BIT; 703 count++; 704 } 705 } 706 707 nvt_write_wakeup_codes(dev, wake_buf, count); 708 ret = 0; 709 out_raw: 710 kfree(raw); 711 712 return ret; 713 } 714 715 /* dump contents of the last rx buffer we got from the hw rx fifo */ 716 static void nvt_dump_rx_buf(struct nvt_dev *nvt) 717 { 718 int i; 719 720 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts); 721 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++) 722 printk(KERN_CONT "0x%02x ", nvt->buf[i]); 723 printk(KERN_CONT "\n"); 724 } 725 726 /* 727 * Process raw data in rx driver buffer, store it in raw IR event kfifo, 728 * trigger decode when appropriate. 729 * 730 * We get IR data samples one byte at a time. If the msb is set, its a pulse, 731 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD 732 * (default 50us) intervals for that pulse/space. A discrete signal is 733 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80 734 * to signal more IR coming (repeats) or end of IR, respectively. We store 735 * sample data in the raw event kfifo until we see 0x7<something> (except f) 736 * or 0x80, at which time, we trigger a decode operation. 737 */ 738 static void nvt_process_rx_ir_data(struct nvt_dev *nvt) 739 { 740 DEFINE_IR_RAW_EVENT(rawir); 741 u8 sample; 742 int i; 743 744 nvt_dbg_verbose("%s firing", __func__); 745 746 if (debug) 747 nvt_dump_rx_buf(nvt); 748 749 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts); 750 751 for (i = 0; i < nvt->pkts; i++) { 752 sample = nvt->buf[i]; 753 754 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0); 755 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK) 756 * SAMPLE_PERIOD); 757 758 nvt_dbg("Storing %s with duration %d", 759 rawir.pulse ? "pulse" : "space", rawir.duration); 760 761 ir_raw_event_store_with_filter(nvt->rdev, &rawir); 762 } 763 764 nvt->pkts = 0; 765 766 nvt_dbg("Calling ir_raw_event_handle\n"); 767 ir_raw_event_handle(nvt->rdev); 768 769 nvt_dbg_verbose("%s done", __func__); 770 } 771 772 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt) 773 { 774 dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!"); 775 776 nvt->pkts = 0; 777 nvt_clear_cir_fifo(nvt); 778 ir_raw_event_reset(nvt->rdev); 779 } 780 781 /* copy data from hardware rx fifo into driver buffer */ 782 static void nvt_get_rx_ir_data(struct nvt_dev *nvt) 783 { 784 u8 fifocount; 785 int i; 786 787 /* Get count of how many bytes to read from RX FIFO */ 788 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT); 789 790 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount); 791 792 /* Read fifocount bytes from CIR Sample RX FIFO register */ 793 for (i = 0; i < fifocount; i++) 794 nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO); 795 796 nvt->pkts = fifocount; 797 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts); 798 799 nvt_process_rx_ir_data(nvt); 800 } 801 802 static void nvt_cir_log_irqs(u8 status, u8 iren) 803 { 804 nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", 805 status, iren, 806 status & CIR_IRSTS_RDR ? " RDR" : "", 807 status & CIR_IRSTS_RTR ? " RTR" : "", 808 status & CIR_IRSTS_PE ? " PE" : "", 809 status & CIR_IRSTS_RFO ? " RFO" : "", 810 status & CIR_IRSTS_TE ? " TE" : "", 811 status & CIR_IRSTS_TTR ? " TTR" : "", 812 status & CIR_IRSTS_TFU ? " TFU" : "", 813 status & CIR_IRSTS_GH ? " GH" : "", 814 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE | 815 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR | 816 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : ""); 817 } 818 819 /* interrupt service routine for incoming and outgoing CIR data */ 820 static irqreturn_t nvt_cir_isr(int irq, void *data) 821 { 822 struct nvt_dev *nvt = data; 823 u8 status, iren; 824 825 nvt_dbg_verbose("%s firing", __func__); 826 827 spin_lock(&nvt->lock); 828 829 /* 830 * Get IR Status register contents. Write 1 to ack/clear 831 * 832 * bit: reg name - description 833 * 7: CIR_IRSTS_RDR - RX Data Ready 834 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach 835 * 5: CIR_IRSTS_PE - Packet End 836 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set) 837 * 3: CIR_IRSTS_TE - TX FIFO Empty 838 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach 839 * 1: CIR_IRSTS_TFU - TX FIFO Underrun 840 * 0: CIR_IRSTS_GH - Min Length Detected 841 */ 842 status = nvt_cir_reg_read(nvt, CIR_IRSTS); 843 iren = nvt_cir_reg_read(nvt, CIR_IREN); 844 845 /* At least NCT6779D creates a spurious interrupt when the 846 * logical device is being disabled. 847 */ 848 if (status == 0xff && iren == 0xff) { 849 spin_unlock(&nvt->lock); 850 nvt_dbg_verbose("Spurious interrupt detected"); 851 return IRQ_HANDLED; 852 } 853 854 /* IRQ may be shared with CIR WAKE, therefore check for each 855 * status bit whether the related interrupt source is enabled 856 */ 857 if (!(status & iren)) { 858 spin_unlock(&nvt->lock); 859 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__); 860 return IRQ_NONE; 861 } 862 863 /* ack/clear all irq flags we've got */ 864 nvt_cir_reg_write(nvt, status, CIR_IRSTS); 865 nvt_cir_reg_write(nvt, 0, CIR_IRSTS); 866 867 nvt_cir_log_irqs(status, iren); 868 869 if (status & CIR_IRSTS_RFO) 870 nvt_handle_rx_fifo_overrun(nvt); 871 else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE)) 872 nvt_get_rx_ir_data(nvt); 873 874 spin_unlock(&nvt->lock); 875 876 nvt_dbg_verbose("%s done", __func__); 877 return IRQ_HANDLED; 878 } 879 880 static void nvt_enable_cir(struct nvt_dev *nvt) 881 { 882 unsigned long flags; 883 884 /* enable the CIR logical device */ 885 nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR); 886 887 spin_lock_irqsave(&nvt->lock, flags); 888 889 /* 890 * Enable TX and RX, specify carrier on = low, off = high, and set 891 * sample period (currently 50us) 892 */ 893 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | 894 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, 895 CIR_IRCON); 896 897 /* clear all pending interrupts */ 898 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); 899 900 /* enable interrupts */ 901 nvt_set_cir_iren(nvt); 902 903 spin_unlock_irqrestore(&nvt->lock, flags); 904 } 905 906 static void nvt_disable_cir(struct nvt_dev *nvt) 907 { 908 unsigned long flags; 909 910 spin_lock_irqsave(&nvt->lock, flags); 911 912 /* disable CIR interrupts */ 913 nvt_cir_reg_write(nvt, 0, CIR_IREN); 914 915 /* clear any and all pending interrupts */ 916 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); 917 918 /* clear all function enable flags */ 919 nvt_cir_reg_write(nvt, 0, CIR_IRCON); 920 921 /* clear hardware rx and tx fifos */ 922 nvt_clear_cir_fifo(nvt); 923 nvt_clear_tx_fifo(nvt); 924 925 spin_unlock_irqrestore(&nvt->lock, flags); 926 927 /* disable the CIR logical device */ 928 nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR); 929 } 930 931 static int nvt_open(struct rc_dev *dev) 932 { 933 struct nvt_dev *nvt = dev->priv; 934 935 nvt_enable_cir(nvt); 936 937 return 0; 938 } 939 940 static void nvt_close(struct rc_dev *dev) 941 { 942 struct nvt_dev *nvt = dev->priv; 943 944 nvt_disable_cir(nvt); 945 } 946 947 /* Allocate memory, probe hardware, and initialize everything */ 948 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) 949 { 950 struct nvt_dev *nvt; 951 struct rc_dev *rdev; 952 int ret; 953 954 nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL); 955 if (!nvt) 956 return -ENOMEM; 957 958 /* input device for IR remote */ 959 nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW); 960 if (!nvt->rdev) 961 return -ENOMEM; 962 rdev = nvt->rdev; 963 964 /* activate pnp device */ 965 ret = pnp_activate_dev(pdev); 966 if (ret) { 967 dev_err(&pdev->dev, "Could not activate PNP device!\n"); 968 return ret; 969 } 970 971 /* validate pnp resources */ 972 if (!pnp_port_valid(pdev, 0) || 973 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) { 974 dev_err(&pdev->dev, "IR PNP Port not valid!\n"); 975 return -EINVAL; 976 } 977 978 if (!pnp_irq_valid(pdev, 0)) { 979 dev_err(&pdev->dev, "PNP IRQ not valid!\n"); 980 return -EINVAL; 981 } 982 983 if (!pnp_port_valid(pdev, 1) || 984 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) { 985 dev_err(&pdev->dev, "Wake PNP Port not valid!\n"); 986 return -EINVAL; 987 } 988 989 nvt->cir_addr = pnp_port_start(pdev, 0); 990 nvt->cir_irq = pnp_irq(pdev, 0); 991 992 nvt->cir_wake_addr = pnp_port_start(pdev, 1); 993 994 nvt->cr_efir = CR_EFIR; 995 nvt->cr_efdr = CR_EFDR; 996 997 spin_lock_init(&nvt->lock); 998 999 pnp_set_drvdata(pdev, nvt); 1000 1001 ret = nvt_hw_detect(nvt); 1002 if (ret) 1003 return ret; 1004 1005 /* Initialize CIR & CIR Wake Logical Devices */ 1006 nvt_efm_enable(nvt); 1007 nvt_cir_ldev_init(nvt); 1008 nvt_cir_wake_ldev_init(nvt); 1009 nvt_efm_disable(nvt); 1010 1011 /* 1012 * Initialize CIR & CIR Wake Config Registers 1013 * and enable logical devices 1014 */ 1015 nvt_cir_regs_init(nvt); 1016 nvt_cir_wake_regs_init(nvt); 1017 1018 /* Set up the rc device */ 1019 rdev->priv = nvt; 1020 rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER; 1021 rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER; 1022 rdev->encode_wakeup = true; 1023 rdev->open = nvt_open; 1024 rdev->close = nvt_close; 1025 rdev->s_tx_carrier = nvt_set_tx_carrier; 1026 rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter; 1027 rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver"; 1028 rdev->input_phys = "nuvoton/cir0"; 1029 rdev->input_id.bustype = BUS_HOST; 1030 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2; 1031 rdev->input_id.product = nvt->chip_major; 1032 rdev->input_id.version = nvt->chip_minor; 1033 rdev->driver_name = NVT_DRIVER_NAME; 1034 rdev->map_name = RC_MAP_RC6_MCE; 1035 rdev->timeout = MS_TO_NS(100); 1036 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */ 1037 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD); 1038 #if 0 1039 rdev->min_timeout = XYZ; 1040 rdev->max_timeout = XYZ; 1041 #endif 1042 ret = devm_rc_register_device(&pdev->dev, rdev); 1043 if (ret) 1044 return ret; 1045 1046 /* now claim resources */ 1047 if (!devm_request_region(&pdev->dev, nvt->cir_addr, 1048 CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) 1049 return -EBUSY; 1050 1051 ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr, 1052 IRQF_SHARED, NVT_DRIVER_NAME, nvt); 1053 if (ret) 1054 return ret; 1055 1056 if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr, 1057 CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake")) 1058 return -EBUSY; 1059 1060 ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data); 1061 if (ret) 1062 return ret; 1063 1064 device_init_wakeup(&pdev->dev, true); 1065 1066 dev_notice(&pdev->dev, "driver has been successfully loaded\n"); 1067 if (debug) { 1068 cir_dump_regs(nvt); 1069 cir_wake_dump_regs(nvt); 1070 } 1071 1072 return 0; 1073 } 1074 1075 static void nvt_remove(struct pnp_dev *pdev) 1076 { 1077 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1078 1079 device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data); 1080 1081 nvt_disable_cir(nvt); 1082 1083 /* enable CIR Wake (for IR power-on) */ 1084 nvt_enable_wake(nvt); 1085 } 1086 1087 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state) 1088 { 1089 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1090 1091 nvt_dbg("%s called", __func__); 1092 1093 mutex_lock(&nvt->rdev->lock); 1094 if (nvt->rdev->users) 1095 nvt_disable_cir(nvt); 1096 mutex_unlock(&nvt->rdev->lock); 1097 1098 /* make sure wake is enabled */ 1099 nvt_enable_wake(nvt); 1100 1101 return 0; 1102 } 1103 1104 static int nvt_resume(struct pnp_dev *pdev) 1105 { 1106 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1107 1108 nvt_dbg("%s called", __func__); 1109 1110 nvt_cir_regs_init(nvt); 1111 nvt_cir_wake_regs_init(nvt); 1112 1113 mutex_lock(&nvt->rdev->lock); 1114 if (nvt->rdev->users) 1115 nvt_enable_cir(nvt); 1116 mutex_unlock(&nvt->rdev->lock); 1117 1118 return 0; 1119 } 1120 1121 static void nvt_shutdown(struct pnp_dev *pdev) 1122 { 1123 struct nvt_dev *nvt = pnp_get_drvdata(pdev); 1124 1125 nvt_enable_wake(nvt); 1126 } 1127 1128 static const struct pnp_device_id nvt_ids[] = { 1129 { "WEC0530", 0 }, /* CIR */ 1130 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/ 1131 { "", 0 }, 1132 }; 1133 1134 static struct pnp_driver nvt_driver = { 1135 .name = NVT_DRIVER_NAME, 1136 .id_table = nvt_ids, 1137 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1138 .probe = nvt_probe, 1139 .remove = nvt_remove, 1140 .suspend = nvt_suspend, 1141 .resume = nvt_resume, 1142 .shutdown = nvt_shutdown, 1143 }; 1144 1145 module_param(debug, int, S_IRUGO | S_IWUSR); 1146 MODULE_PARM_DESC(debug, "Enable debugging output"); 1147 1148 MODULE_DEVICE_TABLE(pnp, nvt_ids); 1149 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver"); 1150 1151 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>"); 1152 MODULE_LICENSE("GPL"); 1153 1154 module_pnp_driver(nvt_driver); 1155