xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision 174cd4b1)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  */
22 
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/pnp.h>
28 #include <linux/io.h>
29 #include <linux/interrupt.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <media/rc-core.h>
33 #include <linux/pci_ids.h>
34 
35 #include "nuvoton-cir.h"
36 
37 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);
38 
39 static const struct nvt_chip nvt_chips[] = {
40 	{ "w83667hg", NVT_W83667HG },
41 	{ "NCT6775F", NVT_6775F },
42 	{ "NCT6776F", NVT_6776F },
43 	{ "NCT6779D", NVT_6779D },
44 };
45 
46 static inline struct device *nvt_get_dev(const struct nvt_dev *nvt)
47 {
48 	return nvt->rdev->dev.parent;
49 }
50 
51 static inline bool is_w83667hg(struct nvt_dev *nvt)
52 {
53 	return nvt->chip_ver == NVT_W83667HG;
54 }
55 
56 /* write val to config reg */
57 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	outb(reg, nvt->cr_efir);
60 	outb(val, nvt->cr_efdr);
61 }
62 
63 /* read val from config reg */
64 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
65 {
66 	outb(reg, nvt->cr_efir);
67 	return inb(nvt->cr_efdr);
68 }
69 
70 /* update config register bit without changing other bits */
71 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
72 {
73 	u8 tmp = nvt_cr_read(nvt, reg) | val;
74 	nvt_cr_write(nvt, tmp, reg);
75 }
76 
77 /* clear config register bit without changing other bits */
78 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
79 {
80 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
81 	nvt_cr_write(nvt, tmp, reg);
82 }
83 
84 /* enter extended function mode */
85 static inline int nvt_efm_enable(struct nvt_dev *nvt)
86 {
87 	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
88 		return -EBUSY;
89 
90 	/* Enabling Extended Function Mode explicitly requires writing 2x */
91 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
92 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
93 
94 	return 0;
95 }
96 
97 /* exit extended function mode */
98 static inline void nvt_efm_disable(struct nvt_dev *nvt)
99 {
100 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
101 
102 	release_region(nvt->cr_efir, 2);
103 }
104 
105 /*
106  * When you want to address a specific logical device, write its logical
107  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
108  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
109  */
110 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
111 {
112 	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
113 }
114 
115 /* select and enable logical device with setting EFM mode*/
116 static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
117 {
118 	nvt_efm_enable(nvt);
119 	nvt_select_logical_dev(nvt, ldev);
120 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
121 	nvt_efm_disable(nvt);
122 }
123 
124 /* select and disable logical device with setting EFM mode*/
125 static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
126 {
127 	nvt_efm_enable(nvt);
128 	nvt_select_logical_dev(nvt, ldev);
129 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
130 	nvt_efm_disable(nvt);
131 }
132 
133 /* write val to cir config register */
134 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
135 {
136 	outb(val, nvt->cir_addr + offset);
137 }
138 
139 /* read val from cir config register */
140 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
141 {
142 	return inb(nvt->cir_addr + offset);
143 }
144 
145 /* write val to cir wake register */
146 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
147 					  u8 val, u8 offset)
148 {
149 	outb(val, nvt->cir_wake_addr + offset);
150 }
151 
152 /* read val from cir wake config register */
153 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
154 {
155 	return inb(nvt->cir_wake_addr + offset);
156 }
157 
158 /* don't override io address if one is set already */
159 static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
160 {
161 	unsigned long old_addr;
162 
163 	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
164 	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);
165 
166 	if (old_addr)
167 		*ioaddr = old_addr;
168 	else {
169 		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
170 		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
171 	}
172 }
173 
174 static void nvt_write_wakeup_codes(struct rc_dev *dev,
175 				   const u8 *wbuf, int count)
176 {
177 	u8 tolerance, config;
178 	struct nvt_dev *nvt = dev->priv;
179 	int i;
180 
181 	/* hardcode the tolerance to 10% */
182 	tolerance = DIV_ROUND_UP(count, 10);
183 
184 	spin_lock(&nvt->lock);
185 
186 	nvt_clear_cir_wake_fifo(nvt);
187 	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
188 	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);
189 
190 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
191 
192 	/* enable writes to wake fifo */
193 	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
194 			       CIR_WAKE_IRCON);
195 
196 	if (count)
197 		pr_info("Wake samples (%d) =", count);
198 	else
199 		pr_info("Wake sample fifo cleared");
200 
201 	for (i = 0; i < count; i++)
202 		nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA);
203 
204 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
205 
206 	spin_unlock(&nvt->lock);
207 }
208 
209 static ssize_t wakeup_data_show(struct device *dev,
210 				struct device_attribute *attr,
211 				char *buf)
212 {
213 	struct rc_dev *rc_dev = to_rc_dev(dev);
214 	struct nvt_dev *nvt = rc_dev->priv;
215 	int fifo_len, duration;
216 	unsigned long flags;
217 	ssize_t buf_len = 0;
218 	int i;
219 
220 	spin_lock_irqsave(&nvt->lock, flags);
221 
222 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
223 	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
224 
225 	/* go to first element to be read */
226 	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
227 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
228 
229 	for (i = 0; i < fifo_len; i++) {
230 		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
231 		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
232 		buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
233 				    "%d ", duration);
234 	}
235 	buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
236 
237 	spin_unlock_irqrestore(&nvt->lock, flags);
238 
239 	return buf_len;
240 }
241 
242 static ssize_t wakeup_data_store(struct device *dev,
243 				 struct device_attribute *attr,
244 				 const char *buf, size_t len)
245 {
246 	struct rc_dev *rc_dev = to_rc_dev(dev);
247 	u8 wake_buf[WAKEUP_MAX_SIZE];
248 	char **argv;
249 	int i, count;
250 	unsigned int val;
251 	ssize_t ret;
252 
253 	argv = argv_split(GFP_KERNEL, buf, &count);
254 	if (!argv)
255 		return -ENOMEM;
256 	if (!count || count > WAKEUP_MAX_SIZE) {
257 		ret = -EINVAL;
258 		goto out;
259 	}
260 
261 	for (i = 0; i < count; i++) {
262 		ret = kstrtouint(argv[i], 10, &val);
263 		if (ret)
264 			goto out;
265 		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
266 		if (!val || val > 0x7f) {
267 			ret = -EINVAL;
268 			goto out;
269 		}
270 		wake_buf[i] = val;
271 		/* sequence must start with a pulse */
272 		if (i % 2 == 0)
273 			wake_buf[i] |= BUF_PULSE_BIT;
274 	}
275 
276 	nvt_write_wakeup_codes(rc_dev, wake_buf, count);
277 
278 	ret = len;
279 out:
280 	argv_free(argv);
281 	return ret;
282 }
283 static DEVICE_ATTR_RW(wakeup_data);
284 
285 /* dump current cir register contents */
286 static void cir_dump_regs(struct nvt_dev *nvt)
287 {
288 	nvt_efm_enable(nvt);
289 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
290 
291 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
292 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
293 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
294 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
295 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
296 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
297 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
298 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
299 
300 	nvt_efm_disable(nvt);
301 
302 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
303 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
304 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
305 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
306 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
307 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
308 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
309 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
310 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
311 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
312 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
313 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
314 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
315 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
316 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
317 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
318 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
319 }
320 
321 /* dump current cir wake register contents */
322 static void cir_wake_dump_regs(struct nvt_dev *nvt)
323 {
324 	u8 i, fifo_len;
325 
326 	nvt_efm_enable(nvt);
327 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
328 
329 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
330 		NVT_DRIVER_NAME);
331 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
332 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
333 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
334 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
335 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
336 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
337 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
338 
339 	nvt_efm_disable(nvt);
340 
341 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
342 	pr_info(" * IRCON:          0x%x\n",
343 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
344 	pr_info(" * IRSTS:          0x%x\n",
345 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
346 	pr_info(" * IREN:           0x%x\n",
347 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
348 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
349 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
350 	pr_info(" * FIFO CMP TOL:   0x%x\n",
351 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
352 	pr_info(" * FIFO COUNT:     0x%x\n",
353 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
354 	pr_info(" * SLCH:           0x%x\n",
355 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
356 	pr_info(" * SLCL:           0x%x\n",
357 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
358 	pr_info(" * FIFOCON:        0x%x\n",
359 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
360 	pr_info(" * SRXFSTS:        0x%x\n",
361 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
362 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
363 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
364 	pr_info(" * WR FIFO DATA:   0x%x\n",
365 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
366 	pr_info(" * RD FIFO ONLY:   0x%x\n",
367 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
368 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
369 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
370 	pr_info(" * FIFO IGNORE:    0x%x\n",
371 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
372 	pr_info(" * IRFSM:          0x%x\n",
373 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
374 
375 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
376 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
377 	pr_info("* Contents =");
378 	for (i = 0; i < fifo_len; i++)
379 		pr_cont(" %02x",
380 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
381 	pr_cont("\n");
382 }
383 
384 static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
385 {
386 	int i;
387 
388 	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
389 		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
390 			nvt->chip_ver = nvt_chips[i].chip_ver;
391 			return nvt_chips[i].name;
392 		}
393 
394 	return NULL;
395 }
396 
397 
398 /* detect hardware features */
399 static int nvt_hw_detect(struct nvt_dev *nvt)
400 {
401 	struct device *dev = nvt_get_dev(nvt);
402 	const char *chip_name;
403 	int chip_id;
404 
405 	nvt_efm_enable(nvt);
406 
407 	/* Check if we're wired for the alternate EFER setup */
408 	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
409 	if (nvt->chip_major == 0xff) {
410 		nvt_efm_disable(nvt);
411 		nvt->cr_efir = CR_EFIR2;
412 		nvt->cr_efdr = CR_EFDR2;
413 		nvt_efm_enable(nvt);
414 		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
415 	}
416 	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
417 
418 	nvt_efm_disable(nvt);
419 
420 	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
421 	if (chip_id == NVT_INVALID) {
422 		dev_err(dev, "No device found on either EFM port\n");
423 		return -ENODEV;
424 	}
425 
426 	chip_name = nvt_find_chip(nvt, chip_id);
427 
428 	/* warn, but still let the driver load, if we don't know this chip */
429 	if (!chip_name)
430 		dev_warn(dev,
431 			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
432 			 nvt->chip_major, nvt->chip_minor);
433 	else
434 		dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x",
435 			 chip_name, nvt->chip_major, nvt->chip_minor);
436 
437 	return 0;
438 }
439 
440 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
441 {
442 	u8 val, psreg, psmask, psval;
443 
444 	if (is_w83667hg(nvt)) {
445 		psreg = CR_MULTIFUNC_PIN_SEL;
446 		psmask = MULTIFUNC_PIN_SEL_MASK;
447 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
448 	} else {
449 		psreg = CR_OUTPUT_PIN_SEL;
450 		psmask = OUTPUT_PIN_SEL_MASK;
451 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
452 	}
453 
454 	/* output pin selection: enable CIR, with WB sensor enabled */
455 	val = nvt_cr_read(nvt, psreg);
456 	val &= psmask;
457 	val |= psval;
458 	nvt_cr_write(nvt, val, psreg);
459 
460 	/* Select CIR logical device */
461 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
462 
463 	nvt_set_ioaddr(nvt, &nvt->cir_addr);
464 
465 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
466 
467 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
468 		nvt->cir_addr, nvt->cir_irq);
469 }
470 
471 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
472 {
473 	/* Select ACPI logical device and anable it */
474 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
475 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
476 
477 	/* Enable CIR Wake via PSOUT# (Pin60) */
478 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
479 
480 	/* enable pme interrupt of cir wakeup event */
481 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
482 
483 	/* Select CIR Wake logical device */
484 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
485 
486 	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
487 
488 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
489 		nvt->cir_wake_addr);
490 }
491 
492 /* clear out the hardware's cir rx fifo */
493 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
494 {
495 	u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
496 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
497 }
498 
499 /* clear out the hardware's cir wake rx fifo */
500 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
501 {
502 	u8 val, config;
503 
504 	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);
505 
506 	/* clearing wake fifo works in learning mode only */
507 	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
508 			       CIR_WAKE_IRCON);
509 
510 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
511 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
512 			       CIR_WAKE_FIFOCON);
513 
514 	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
515 }
516 
517 /* clear out the hardware's cir tx fifo */
518 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
519 {
520 	u8 val;
521 
522 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
523 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
524 }
525 
526 /* enable RX Trigger Level Reach and Packet End interrupts */
527 static void nvt_set_cir_iren(struct nvt_dev *nvt)
528 {
529 	u8 iren;
530 
531 	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
532 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
533 }
534 
535 static void nvt_cir_regs_init(struct nvt_dev *nvt)
536 {
537 	/* set sample limit count (PE interrupt raised when reached) */
538 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
539 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
540 
541 	/* set fifo irq trigger levels */
542 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
543 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
544 
545 	/*
546 	 * Enable TX and RX, specify carrier on = low, off = high, and set
547 	 * sample period (currently 50us)
548 	 */
549 	nvt_cir_reg_write(nvt,
550 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
551 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
552 			  CIR_IRCON);
553 
554 	/* clear hardware rx and tx fifos */
555 	nvt_clear_cir_fifo(nvt);
556 	nvt_clear_tx_fifo(nvt);
557 
558 	/* clear any and all stray interrupts */
559 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
560 
561 	/* and finally, enable interrupts */
562 	nvt_set_cir_iren(nvt);
563 
564 	/* enable the CIR logical device */
565 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
566 }
567 
568 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
569 {
570 	/*
571 	 * Disable RX, set specific carrier on = low, off = high,
572 	 * and sample period (currently 50us)
573 	 */
574 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
575 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
576 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
577 			       CIR_WAKE_IRCON);
578 
579 	/* clear any and all stray interrupts */
580 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
581 
582 	/* enable the CIR WAKE logical device */
583 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
584 }
585 
586 static void nvt_enable_wake(struct nvt_dev *nvt)
587 {
588 	unsigned long flags;
589 
590 	nvt_efm_enable(nvt);
591 
592 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
593 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
594 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
595 
596 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
597 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
598 
599 	nvt_efm_disable(nvt);
600 
601 	spin_lock_irqsave(&nvt->lock, flags);
602 
603 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
604 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
605 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
606 			       CIR_WAKE_IRCON);
607 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
608 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
609 
610 	spin_unlock_irqrestore(&nvt->lock, flags);
611 }
612 
613 #if 0 /* Currently unused */
614 /* rx carrier detect only works in learning mode, must be called w/lock */
615 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
616 {
617 	u32 count, carrier, duration = 0;
618 	int i;
619 
620 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
621 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
622 
623 	for (i = 0; i < nvt->pkts; i++) {
624 		if (nvt->buf[i] & BUF_PULSE_BIT)
625 			duration += nvt->buf[i] & BUF_LEN_MASK;
626 	}
627 
628 	duration *= SAMPLE_PERIOD;
629 
630 	if (!count || !duration) {
631 		dev_notice(nvt_get_dev(nvt),
632 			   "Unable to determine carrier! (c:%u, d:%u)",
633 			   count, duration);
634 		return 0;
635 	}
636 
637 	carrier = MS_TO_NS(count) / duration;
638 
639 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
640 		nvt_dbg("WTF? Carrier frequency out of range!");
641 
642 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
643 		carrier, count, duration);
644 
645 	return carrier;
646 }
647 #endif
648 /*
649  * set carrier frequency
650  *
651  * set carrier on 2 registers: CP & CC
652  * always set CP as 0x81
653  * set CC by SPEC, CC = 3MHz/carrier - 1
654  */
655 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
656 {
657 	struct nvt_dev *nvt = dev->priv;
658 	u16 val;
659 
660 	if (carrier == 0)
661 		return -EINVAL;
662 
663 	nvt_cir_reg_write(nvt, 1, CIR_CP);
664 	val = 3000000 / (carrier) - 1;
665 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
666 
667 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
668 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
669 
670 	return 0;
671 }
672 
673 static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev,
674 					struct rc_scancode_filter *sc_filter)
675 {
676 	u8 buf_val;
677 	int i, ret, count;
678 	unsigned int val;
679 	struct ir_raw_event *raw;
680 	u8 wake_buf[WAKEUP_MAX_SIZE];
681 	bool complete;
682 
683 	/* Require mask to be set */
684 	if (!sc_filter->mask)
685 		return 0;
686 
687 	raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL);
688 	if (!raw)
689 		return -ENOMEM;
690 
691 	ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data,
692 				     raw, WAKEUP_MAX_SIZE);
693 	complete = (ret != -ENOBUFS);
694 	if (!complete)
695 		ret = WAKEUP_MAX_SIZE;
696 	else if (ret < 0)
697 		goto out_raw;
698 
699 	/* Inspect the ir samples */
700 	for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) {
701 		/* NS to US */
702 		val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD;
703 
704 		/* Split too large values into several smaller ones */
705 		while (val > 0 && count < WAKEUP_MAX_SIZE) {
706 			/* Skip last value for better comparison tolerance */
707 			if (complete && i == ret - 1 && val < BUF_LEN_MASK)
708 				break;
709 
710 			/* Clamp values to BUF_LEN_MASK at most */
711 			buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val;
712 
713 			wake_buf[count] = buf_val;
714 			val -= buf_val;
715 			if ((raw[i]).pulse)
716 				wake_buf[count] |= BUF_PULSE_BIT;
717 			count++;
718 		}
719 	}
720 
721 	nvt_write_wakeup_codes(dev, wake_buf, count);
722 	ret = 0;
723 out_raw:
724 	kfree(raw);
725 
726 	return ret;
727 }
728 
729 /*
730  * nvt_tx_ir
731  *
732  * 1) clean TX fifo first (handled by AP)
733  * 2) copy data from user space
734  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
735  * 4) send 9 packets to TX FIFO to open TTR
736  * in interrupt_handler:
737  * 5) send all data out
738  * go back to write():
739  * 6) disable TX interrupts, re-enable RX interupts
740  *
741  * The key problem of this function is user space data may larger than
742  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
743  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
744  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
745  * set TXFCONT as 0xff, until buf_count less than 0xff.
746  */
747 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
748 {
749 	struct nvt_dev *nvt = dev->priv;
750 	unsigned long flags;
751 	unsigned int i;
752 	u8 iren;
753 	int ret;
754 
755 	spin_lock_irqsave(&nvt->lock, flags);
756 
757 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
758 	nvt->tx.buf_count = (ret * sizeof(unsigned));
759 
760 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
761 
762 	nvt->tx.cur_buf_num = 0;
763 
764 	/* save currently enabled interrupts */
765 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
766 
767 	/* now disable all interrupts, save TFU & TTR */
768 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
769 
770 	nvt->tx.tx_state = ST_TX_REPLY;
771 
772 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
773 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
774 
775 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
776 	for (i = 0; i < 9; i++)
777 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
778 
779 	spin_unlock_irqrestore(&nvt->lock, flags);
780 
781 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
782 
783 	spin_lock_irqsave(&nvt->lock, flags);
784 	nvt->tx.tx_state = ST_TX_NONE;
785 	spin_unlock_irqrestore(&nvt->lock, flags);
786 
787 	/* restore enabled interrupts to prior state */
788 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
789 
790 	return ret;
791 }
792 
793 /* dump contents of the last rx buffer we got from the hw rx fifo */
794 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
795 {
796 	int i;
797 
798 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
799 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
800 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
801 	printk(KERN_CONT "\n");
802 }
803 
804 /*
805  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
806  * trigger decode when appropriate.
807  *
808  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
809  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
810  * (default 50us) intervals for that pulse/space. A discrete signal is
811  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
812  * to signal more IR coming (repeats) or end of IR, respectively. We store
813  * sample data in the raw event kfifo until we see 0x7<something> (except f)
814  * or 0x80, at which time, we trigger a decode operation.
815  */
816 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
817 {
818 	DEFINE_IR_RAW_EVENT(rawir);
819 	u8 sample;
820 	int i;
821 
822 	nvt_dbg_verbose("%s firing", __func__);
823 
824 	if (debug)
825 		nvt_dump_rx_buf(nvt);
826 
827 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
828 
829 	for (i = 0; i < nvt->pkts; i++) {
830 		sample = nvt->buf[i];
831 
832 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
833 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
834 					  * SAMPLE_PERIOD);
835 
836 		nvt_dbg("Storing %s with duration %d",
837 			rawir.pulse ? "pulse" : "space", rawir.duration);
838 
839 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
840 	}
841 
842 	nvt->pkts = 0;
843 
844 	nvt_dbg("Calling ir_raw_event_handle\n");
845 	ir_raw_event_handle(nvt->rdev);
846 
847 	nvt_dbg_verbose("%s done", __func__);
848 }
849 
850 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
851 {
852 	dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!");
853 
854 	nvt->pkts = 0;
855 	nvt_clear_cir_fifo(nvt);
856 	ir_raw_event_reset(nvt->rdev);
857 }
858 
859 /* copy data from hardware rx fifo into driver buffer */
860 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
861 {
862 	u8 fifocount;
863 	int i;
864 
865 	/* Get count of how many bytes to read from RX FIFO */
866 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
867 
868 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
869 
870 	/* Read fifocount bytes from CIR Sample RX FIFO register */
871 	for (i = 0; i < fifocount; i++)
872 		nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
873 
874 	nvt->pkts = fifocount;
875 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
876 
877 	nvt_process_rx_ir_data(nvt);
878 }
879 
880 static void nvt_cir_log_irqs(u8 status, u8 iren)
881 {
882 	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
883 		status, iren,
884 		status & CIR_IRSTS_RDR	? " RDR"	: "",
885 		status & CIR_IRSTS_RTR	? " RTR"	: "",
886 		status & CIR_IRSTS_PE	? " PE"		: "",
887 		status & CIR_IRSTS_RFO	? " RFO"	: "",
888 		status & CIR_IRSTS_TE	? " TE"		: "",
889 		status & CIR_IRSTS_TTR	? " TTR"	: "",
890 		status & CIR_IRSTS_TFU	? " TFU"	: "",
891 		status & CIR_IRSTS_GH	? " GH"		: "",
892 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
893 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
894 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
895 }
896 
897 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
898 {
899 	return nvt->tx.tx_state == ST_TX_NONE;
900 }
901 
902 /* interrupt service routine for incoming and outgoing CIR data */
903 static irqreturn_t nvt_cir_isr(int irq, void *data)
904 {
905 	struct nvt_dev *nvt = data;
906 	u8 status, iren;
907 
908 	nvt_dbg_verbose("%s firing", __func__);
909 
910 	spin_lock(&nvt->lock);
911 
912 	/*
913 	 * Get IR Status register contents. Write 1 to ack/clear
914 	 *
915 	 * bit: reg name      - description
916 	 *   7: CIR_IRSTS_RDR - RX Data Ready
917 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
918 	 *   5: CIR_IRSTS_PE  - Packet End
919 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
920 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
921 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
922 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
923 	 *   0: CIR_IRSTS_GH  - Min Length Detected
924 	 */
925 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
926 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
927 
928 	/* At least NCT6779D creates a spurious interrupt when the
929 	 * logical device is being disabled.
930 	 */
931 	if (status == 0xff && iren == 0xff) {
932 		spin_unlock(&nvt->lock);
933 		nvt_dbg_verbose("Spurious interrupt detected");
934 		return IRQ_HANDLED;
935 	}
936 
937 	/* IRQ may be shared with CIR WAKE, therefore check for each
938 	 * status bit whether the related interrupt source is enabled
939 	 */
940 	if (!(status & iren)) {
941 		spin_unlock(&nvt->lock);
942 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
943 		return IRQ_NONE;
944 	}
945 
946 	/* ack/clear all irq flags we've got */
947 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
948 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
949 
950 	nvt_cir_log_irqs(status, iren);
951 
952 	if (status & CIR_IRSTS_RFO)
953 		nvt_handle_rx_fifo_overrun(nvt);
954 
955 	else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE)) {
956 		/* We only do rx if not tx'ing */
957 		if (nvt_cir_tx_inactive(nvt))
958 			nvt_get_rx_ir_data(nvt);
959 	}
960 
961 	if (status & CIR_IRSTS_TE)
962 		nvt_clear_tx_fifo(nvt);
963 
964 	if (status & CIR_IRSTS_TTR) {
965 		unsigned int pos, count;
966 		u8 tmp;
967 
968 		pos = nvt->tx.cur_buf_num;
969 		count = nvt->tx.buf_count;
970 
971 		/* Write data into the hardware tx fifo while pos < count */
972 		if (pos < count) {
973 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
974 			nvt->tx.cur_buf_num++;
975 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
976 		} else {
977 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
978 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
979 		}
980 	}
981 
982 	if (status & CIR_IRSTS_TFU) {
983 		if (nvt->tx.tx_state == ST_TX_REPLY) {
984 			nvt->tx.tx_state = ST_TX_REQUEST;
985 			wake_up(&nvt->tx.queue);
986 		}
987 	}
988 
989 	spin_unlock(&nvt->lock);
990 
991 	nvt_dbg_verbose("%s done", __func__);
992 	return IRQ_HANDLED;
993 }
994 
995 static void nvt_disable_cir(struct nvt_dev *nvt)
996 {
997 	unsigned long flags;
998 
999 	spin_lock_irqsave(&nvt->lock, flags);
1000 
1001 	/* disable CIR interrupts */
1002 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1003 
1004 	/* clear any and all pending interrupts */
1005 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1006 
1007 	/* clear all function enable flags */
1008 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
1009 
1010 	/* clear hardware rx and tx fifos */
1011 	nvt_clear_cir_fifo(nvt);
1012 	nvt_clear_tx_fifo(nvt);
1013 
1014 	spin_unlock_irqrestore(&nvt->lock, flags);
1015 
1016 	/* disable the CIR logical device */
1017 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1018 }
1019 
1020 static int nvt_open(struct rc_dev *dev)
1021 {
1022 	struct nvt_dev *nvt = dev->priv;
1023 	unsigned long flags;
1024 
1025 	spin_lock_irqsave(&nvt->lock, flags);
1026 
1027 	/* set function enable flags */
1028 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
1029 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
1030 			  CIR_IRCON);
1031 
1032 	/* clear all pending interrupts */
1033 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
1034 
1035 	/* enable interrupts */
1036 	nvt_set_cir_iren(nvt);
1037 
1038 	spin_unlock_irqrestore(&nvt->lock, flags);
1039 
1040 	/* enable the CIR logical device */
1041 	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
1042 
1043 	return 0;
1044 }
1045 
1046 static void nvt_close(struct rc_dev *dev)
1047 {
1048 	struct nvt_dev *nvt = dev->priv;
1049 
1050 	nvt_disable_cir(nvt);
1051 }
1052 
1053 /* Allocate memory, probe hardware, and initialize everything */
1054 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
1055 {
1056 	struct nvt_dev *nvt;
1057 	struct rc_dev *rdev;
1058 	int ret;
1059 
1060 	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
1061 	if (!nvt)
1062 		return -ENOMEM;
1063 
1064 	/* input device for IR remote (and tx) */
1065 	nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW);
1066 	if (!nvt->rdev)
1067 		return -ENOMEM;
1068 	rdev = nvt->rdev;
1069 
1070 	/* activate pnp device */
1071 	ret = pnp_activate_dev(pdev);
1072 	if (ret) {
1073 		dev_err(&pdev->dev, "Could not activate PNP device!\n");
1074 		return ret;
1075 	}
1076 
1077 	/* validate pnp resources */
1078 	if (!pnp_port_valid(pdev, 0) ||
1079 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
1080 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1081 		return -EINVAL;
1082 	}
1083 
1084 	if (!pnp_irq_valid(pdev, 0)) {
1085 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1086 		return -EINVAL;
1087 	}
1088 
1089 	if (!pnp_port_valid(pdev, 1) ||
1090 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1091 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1092 		return -EINVAL;
1093 	}
1094 
1095 	nvt->cir_addr = pnp_port_start(pdev, 0);
1096 	nvt->cir_irq  = pnp_irq(pdev, 0);
1097 
1098 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1099 
1100 	nvt->cr_efir = CR_EFIR;
1101 	nvt->cr_efdr = CR_EFDR;
1102 
1103 	spin_lock_init(&nvt->lock);
1104 
1105 	pnp_set_drvdata(pdev, nvt);
1106 
1107 	init_waitqueue_head(&nvt->tx.queue);
1108 
1109 	ret = nvt_hw_detect(nvt);
1110 	if (ret)
1111 		return ret;
1112 
1113 	/* Initialize CIR & CIR Wake Logical Devices */
1114 	nvt_efm_enable(nvt);
1115 	nvt_cir_ldev_init(nvt);
1116 	nvt_cir_wake_ldev_init(nvt);
1117 	nvt_efm_disable(nvt);
1118 
1119 	/*
1120 	 * Initialize CIR & CIR Wake Config Registers
1121 	 * and enable logical devices
1122 	 */
1123 	nvt_cir_regs_init(nvt);
1124 	nvt_cir_wake_regs_init(nvt);
1125 
1126 	/* Set up the rc device */
1127 	rdev->priv = nvt;
1128 	rdev->allowed_protocols = RC_BIT_ALL_IR_DECODER;
1129 	rdev->allowed_wakeup_protocols = RC_BIT_ALL_IR_ENCODER;
1130 	rdev->encode_wakeup = true;
1131 	rdev->open = nvt_open;
1132 	rdev->close = nvt_close;
1133 	rdev->tx_ir = nvt_tx_ir;
1134 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1135 	rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter;
1136 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1137 	rdev->input_phys = "nuvoton/cir0";
1138 	rdev->input_id.bustype = BUS_HOST;
1139 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1140 	rdev->input_id.product = nvt->chip_major;
1141 	rdev->input_id.version = nvt->chip_minor;
1142 	rdev->driver_name = NVT_DRIVER_NAME;
1143 	rdev->map_name = RC_MAP_RC6_MCE;
1144 	rdev->timeout = MS_TO_NS(100);
1145 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1146 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1147 #if 0
1148 	rdev->min_timeout = XYZ;
1149 	rdev->max_timeout = XYZ;
1150 	/* tx bits */
1151 	rdev->tx_resolution = XYZ;
1152 #endif
1153 	ret = devm_rc_register_device(&pdev->dev, rdev);
1154 	if (ret)
1155 		return ret;
1156 
1157 	/* now claim resources */
1158 	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1159 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1160 		return -EBUSY;
1161 
1162 	ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
1163 			       IRQF_SHARED, NVT_DRIVER_NAME, nvt);
1164 	if (ret)
1165 		return ret;
1166 
1167 	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1168 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1169 		return -EBUSY;
1170 
1171 	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1172 	if (ret)
1173 		return ret;
1174 
1175 	device_init_wakeup(&pdev->dev, true);
1176 
1177 	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1178 	if (debug) {
1179 		cir_dump_regs(nvt);
1180 		cir_wake_dump_regs(nvt);
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static void nvt_remove(struct pnp_dev *pdev)
1187 {
1188 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1189 
1190 	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1191 
1192 	nvt_disable_cir(nvt);
1193 
1194 	/* enable CIR Wake (for IR power-on) */
1195 	nvt_enable_wake(nvt);
1196 }
1197 
1198 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1199 {
1200 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1201 	unsigned long flags;
1202 
1203 	nvt_dbg("%s called", __func__);
1204 
1205 	spin_lock_irqsave(&nvt->lock, flags);
1206 
1207 	nvt->tx.tx_state = ST_TX_NONE;
1208 
1209 	/* disable all CIR interrupts */
1210 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1211 
1212 	spin_unlock_irqrestore(&nvt->lock, flags);
1213 
1214 	/* disable cir logical dev */
1215 	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1216 
1217 	/* make sure wake is enabled */
1218 	nvt_enable_wake(nvt);
1219 
1220 	return 0;
1221 }
1222 
1223 static int nvt_resume(struct pnp_dev *pdev)
1224 {
1225 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1226 
1227 	nvt_dbg("%s called", __func__);
1228 
1229 	nvt_cir_regs_init(nvt);
1230 	nvt_cir_wake_regs_init(nvt);
1231 
1232 	return 0;
1233 }
1234 
1235 static void nvt_shutdown(struct pnp_dev *pdev)
1236 {
1237 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1238 
1239 	nvt_enable_wake(nvt);
1240 }
1241 
1242 static const struct pnp_device_id nvt_ids[] = {
1243 	{ "WEC0530", 0 },   /* CIR */
1244 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1245 	{ "", 0 },
1246 };
1247 
1248 static struct pnp_driver nvt_driver = {
1249 	.name		= NVT_DRIVER_NAME,
1250 	.id_table	= nvt_ids,
1251 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1252 	.probe		= nvt_probe,
1253 	.remove		= nvt_remove,
1254 	.suspend	= nvt_suspend,
1255 	.resume		= nvt_resume,
1256 	.shutdown	= nvt_shutdown,
1257 };
1258 
1259 module_param(debug, int, S_IRUGO | S_IWUSR);
1260 MODULE_PARM_DESC(debug, "Enable debugging output");
1261 
1262 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1263 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1264 
1265 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1266 MODULE_LICENSE("GPL");
1267 
1268 module_pnp_driver(nvt_driver);
1269