xref: /openbmc/linux/drivers/media/rc/nuvoton-cir.c (revision 05bcf503)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 	outb(reg, nvt->cr_efir);
46 	outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 	outb(reg, nvt->cr_efir);
53 	return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	u8 tmp = nvt_cr_read(nvt, reg) | val;
60 	nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 	nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 	/* Enabling Extended Function Mode explicitly requires writing 2x */
74 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 	outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 	outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 	u8 val;
105 
106 	val = inb(nvt->cir_addr + offset);
107 
108 	return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 					  u8 val, u8 offset)
114 {
115 	outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 	u8 val;
122 
123 	val = inb(nvt->cir_wake_addr + offset);
124 
125 	return val;
126 }
127 
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131 	nvt_efm_enable(nvt);
132 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133 
134 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
136 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 
143 	nvt_efm_disable(nvt);
144 
145 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163 
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167 	u8 i, fifo_len;
168 
169 	nvt_efm_enable(nvt);
170 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171 
172 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 		NVT_DRIVER_NAME);
174 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 
182 	nvt_efm_disable(nvt);
183 
184 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 	pr_info(" * IRCON:          0x%x\n",
186 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 	pr_info(" * IRSTS:          0x%x\n",
188 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 	pr_info(" * IREN:           0x%x\n",
190 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
192 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 	pr_info(" * FIFO CMP TOL:   0x%x\n",
194 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 	pr_info(" * FIFO COUNT:     0x%x\n",
196 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 	pr_info(" * SLCH:           0x%x\n",
198 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 	pr_info(" * SLCL:           0x%x\n",
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 	pr_info(" * FIFOCON:        0x%x\n",
202 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 	pr_info(" * SRXFSTS:        0x%x\n",
204 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 	pr_info(" * WR FIFO DATA:   0x%x\n",
208 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 	pr_info(" * RD FIFO ONLY:   0x%x\n",
210 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 	pr_info(" * FIFO IGNORE:    0x%x\n",
214 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 	pr_info(" * IRFSM:          0x%x\n",
216 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 
218 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 	pr_info("* Contents =");
221 	for (i = 0; i < fifo_len; i++)
222 		pr_cont(" %02x",
223 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 	pr_cont("\n");
225 }
226 
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230 	unsigned long flags;
231 	u8 chip_major, chip_minor;
232 	int ret = 0;
233 	char chip_id[12];
234 	bool chip_unknown = false;
235 
236 	nvt_efm_enable(nvt);
237 
238 	/* Check if we're wired for the alternate EFER setup */
239 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240 	if (chip_major == 0xff) {
241 		nvt->cr_efir = CR_EFIR2;
242 		nvt->cr_efdr = CR_EFDR2;
243 		nvt_efm_enable(nvt);
244 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
245 	}
246 
247 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
248 
249 	/* these are the known working chip revisions... */
250 	switch (chip_major) {
251 	case CHIP_ID_HIGH_667:
252 		strcpy(chip_id, "w83667hg\0");
253 		if (chip_minor != CHIP_ID_LOW_667)
254 			chip_unknown = true;
255 		break;
256 	case CHIP_ID_HIGH_677B:
257 		strcpy(chip_id, "w83677hg\0");
258 		if (chip_minor != CHIP_ID_LOW_677B2 &&
259 		    chip_minor != CHIP_ID_LOW_677B3)
260 			chip_unknown = true;
261 		break;
262 	case CHIP_ID_HIGH_677C:
263 		strcpy(chip_id, "w83677hg-c\0");
264 		if (chip_minor != CHIP_ID_LOW_677C)
265 			chip_unknown = true;
266 		break;
267 	default:
268 		strcpy(chip_id, "w836x7hg\0");
269 		chip_unknown = true;
270 		break;
271 	}
272 
273 	/* warn, but still let the driver load, if we don't know this chip */
274 	if (chip_unknown)
275 		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276 		       "it may not work...", chip_id, chip_major, chip_minor);
277 	else
278 		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279 			chip_id, chip_major, chip_minor);
280 
281 	nvt_efm_disable(nvt);
282 
283 	spin_lock_irqsave(&nvt->nvt_lock, flags);
284 	nvt->chip_major = chip_major;
285 	nvt->chip_minor = chip_minor;
286 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
287 
288 	return ret;
289 }
290 
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
292 {
293 	u8 val, psreg, psmask, psval;
294 
295 	if (nvt->chip_major == CHIP_ID_HIGH_667) {
296 		psreg = CR_MULTIFUNC_PIN_SEL;
297 		psmask = MULTIFUNC_PIN_SEL_MASK;
298 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299 	} else {
300 		psreg = CR_OUTPUT_PIN_SEL;
301 		psmask = OUTPUT_PIN_SEL_MASK;
302 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
303 	}
304 
305 	/* output pin selection: enable CIR, with WB sensor enabled */
306 	val = nvt_cr_read(nvt, psreg);
307 	val &= psmask;
308 	val |= psval;
309 	nvt_cr_write(nvt, val, psreg);
310 
311 	/* Select CIR logical device and enable */
312 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
314 
315 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
317 
318 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
319 
320 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321 		nvt->cir_addr, nvt->cir_irq);
322 }
323 
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
325 {
326 	/* Select ACPI logical device, enable it and CIR Wake */
327 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
329 
330 	/* Enable CIR Wake via PSOUT# (Pin60) */
331 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
332 
333 	/* enable cir interrupt of mouse/keyboard IRQ event */
334 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
335 
336 	/* enable pme interrupt of cir wakeup event */
337 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
338 
339 	/* Select CIR Wake logical device and enable */
340 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
341 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
342 
343 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
344 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
345 
346 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
347 
348 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
349 		nvt->cir_wake_addr, nvt->cir_wake_irq);
350 }
351 
352 /* clear out the hardware's cir rx fifo */
353 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
354 {
355 	u8 val;
356 
357 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
358 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
359 }
360 
361 /* clear out the hardware's cir wake rx fifo */
362 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
363 {
364 	u8 val;
365 
366 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
367 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
368 			       CIR_WAKE_FIFOCON);
369 }
370 
371 /* clear out the hardware's cir tx fifo */
372 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
373 {
374 	u8 val;
375 
376 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
377 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
378 }
379 
380 /* enable RX Trigger Level Reach and Packet End interrupts */
381 static void nvt_set_cir_iren(struct nvt_dev *nvt)
382 {
383 	u8 iren;
384 
385 	iren = CIR_IREN_RTR | CIR_IREN_PE;
386 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
387 }
388 
389 static void nvt_cir_regs_init(struct nvt_dev *nvt)
390 {
391 	/* set sample limit count (PE interrupt raised when reached) */
392 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
393 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
394 
395 	/* set fifo irq trigger levels */
396 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
397 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
398 
399 	/*
400 	 * Enable TX and RX, specify carrier on = low, off = high, and set
401 	 * sample period (currently 50us)
402 	 */
403 	nvt_cir_reg_write(nvt,
404 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
405 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
406 			  CIR_IRCON);
407 
408 	/* clear hardware rx and tx fifos */
409 	nvt_clear_cir_fifo(nvt);
410 	nvt_clear_tx_fifo(nvt);
411 
412 	/* clear any and all stray interrupts */
413 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
414 
415 	/* and finally, enable interrupts */
416 	nvt_set_cir_iren(nvt);
417 }
418 
419 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
420 {
421 	/* set number of bytes needed for wake from s3 (default 65) */
422 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
423 			       CIR_WAKE_FIFO_CMP_DEEP);
424 
425 	/* set tolerance/variance allowed per byte during wake compare */
426 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
427 			       CIR_WAKE_FIFO_CMP_TOL);
428 
429 	/* set sample limit count (PE interrupt raised when reached) */
430 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
431 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
432 
433 	/* set cir wake fifo rx trigger level (currently 67) */
434 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
435 			       CIR_WAKE_FIFOCON);
436 
437 	/*
438 	 * Enable TX and RX, specific carrier on = low, off = high, and set
439 	 * sample period (currently 50us)
440 	 */
441 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
442 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
443 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
444 			       CIR_WAKE_IRCON);
445 
446 	/* clear cir wake rx fifo */
447 	nvt_clear_cir_wake_fifo(nvt);
448 
449 	/* clear any and all stray interrupts */
450 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
451 }
452 
453 static void nvt_enable_wake(struct nvt_dev *nvt)
454 {
455 	nvt_efm_enable(nvt);
456 
457 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
458 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
459 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
460 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
461 
462 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
463 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
464 
465 	nvt_efm_disable(nvt);
466 
467 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
468 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
469 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
470 			       CIR_WAKE_IRCON);
471 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
472 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
473 }
474 
475 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
476 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
477 {
478 	u32 count, carrier, duration = 0;
479 	int i;
480 
481 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
482 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
483 
484 	for (i = 0; i < nvt->pkts; i++) {
485 		if (nvt->buf[i] & BUF_PULSE_BIT)
486 			duration += nvt->buf[i] & BUF_LEN_MASK;
487 	}
488 
489 	duration *= SAMPLE_PERIOD;
490 
491 	if (!count || !duration) {
492 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
493 		       count, duration);
494 		return 0;
495 	}
496 
497 	carrier = MS_TO_NS(count) / duration;
498 
499 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
500 		nvt_dbg("WTF? Carrier frequency out of range!");
501 
502 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
503 		carrier, count, duration);
504 
505 	return carrier;
506 }
507 
508 /*
509  * set carrier frequency
510  *
511  * set carrier on 2 registers: CP & CC
512  * always set CP as 0x81
513  * set CC by SPEC, CC = 3MHz/carrier - 1
514  */
515 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
516 {
517 	struct nvt_dev *nvt = dev->priv;
518 	u16 val;
519 
520 	if (carrier == 0)
521 		return -EINVAL;
522 
523 	nvt_cir_reg_write(nvt, 1, CIR_CP);
524 	val = 3000000 / (carrier) - 1;
525 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
526 
527 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
528 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
529 
530 	return 0;
531 }
532 
533 /*
534  * nvt_tx_ir
535  *
536  * 1) clean TX fifo first (handled by AP)
537  * 2) copy data from user space
538  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
539  * 4) send 9 packets to TX FIFO to open TTR
540  * in interrupt_handler:
541  * 5) send all data out
542  * go back to write():
543  * 6) disable TX interrupts, re-enable RX interupts
544  *
545  * The key problem of this function is user space data may larger than
546  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
547  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
548  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
549  * set TXFCONT as 0xff, until buf_count less than 0xff.
550  */
551 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
552 {
553 	struct nvt_dev *nvt = dev->priv;
554 	unsigned long flags;
555 	unsigned int i;
556 	u8 iren;
557 	int ret;
558 
559 	spin_lock_irqsave(&nvt->tx.lock, flags);
560 
561 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
562 	nvt->tx.buf_count = (ret * sizeof(unsigned));
563 
564 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
565 
566 	nvt->tx.cur_buf_num = 0;
567 
568 	/* save currently enabled interrupts */
569 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
570 
571 	/* now disable all interrupts, save TFU & TTR */
572 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
573 
574 	nvt->tx.tx_state = ST_TX_REPLY;
575 
576 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
577 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
578 
579 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
580 	for (i = 0; i < 9; i++)
581 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
582 
583 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
584 
585 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
586 
587 	spin_lock_irqsave(&nvt->tx.lock, flags);
588 	nvt->tx.tx_state = ST_TX_NONE;
589 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
590 
591 	/* restore enabled interrupts to prior state */
592 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
593 
594 	return ret;
595 }
596 
597 /* dump contents of the last rx buffer we got from the hw rx fifo */
598 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
599 {
600 	int i;
601 
602 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
603 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
604 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
605 	printk(KERN_CONT "\n");
606 }
607 
608 /*
609  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
610  * trigger decode when appropriate.
611  *
612  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
613  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
614  * (default 50us) intervals for that pulse/space. A discrete signal is
615  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
616  * to signal more IR coming (repeats) or end of IR, respectively. We store
617  * sample data in the raw event kfifo until we see 0x7<something> (except f)
618  * or 0x80, at which time, we trigger a decode operation.
619  */
620 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
621 {
622 	DEFINE_IR_RAW_EVENT(rawir);
623 	u32 carrier;
624 	u8 sample;
625 	int i;
626 
627 	nvt_dbg_verbose("%s firing", __func__);
628 
629 	if (debug)
630 		nvt_dump_rx_buf(nvt);
631 
632 	if (nvt->carrier_detect_enabled)
633 		carrier = nvt_rx_carrier_detect(nvt);
634 
635 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
636 
637 	init_ir_raw_event(&rawir);
638 
639 	for (i = 0; i < nvt->pkts; i++) {
640 		sample = nvt->buf[i];
641 
642 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
643 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
644 					  * SAMPLE_PERIOD);
645 
646 		nvt_dbg("Storing %s with duration %d",
647 			rawir.pulse ? "pulse" : "space", rawir.duration);
648 
649 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
650 
651 		/*
652 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
653 		 * indicates end of IR signal, but new data incoming. In both
654 		 * cases, it means we're ready to call ir_raw_event_handle
655 		 */
656 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
657 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
658 			ir_raw_event_handle(nvt->rdev);
659 		}
660 	}
661 
662 	nvt->pkts = 0;
663 
664 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
665 	ir_raw_event_handle(nvt->rdev);
666 
667 	nvt_dbg_verbose("%s done", __func__);
668 }
669 
670 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
671 {
672 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
673 
674 	nvt->pkts = 0;
675 	nvt_clear_cir_fifo(nvt);
676 	ir_raw_event_reset(nvt->rdev);
677 }
678 
679 /* copy data from hardware rx fifo into driver buffer */
680 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
681 {
682 	unsigned long flags;
683 	u8 fifocount, val;
684 	unsigned int b_idx;
685 	bool overrun = false;
686 	int i;
687 
688 	/* Get count of how many bytes to read from RX FIFO */
689 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
690 	/* if we get 0xff, probably means the logical dev is disabled */
691 	if (fifocount == 0xff)
692 		return;
693 	/* watch out for a fifo overrun condition */
694 	else if (fifocount > RX_BUF_LEN) {
695 		overrun = true;
696 		fifocount = RX_BUF_LEN;
697 	}
698 
699 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
700 
701 	spin_lock_irqsave(&nvt->nvt_lock, flags);
702 
703 	b_idx = nvt->pkts;
704 
705 	/* This should never happen, but lets check anyway... */
706 	if (b_idx + fifocount > RX_BUF_LEN) {
707 		nvt_process_rx_ir_data(nvt);
708 		b_idx = 0;
709 	}
710 
711 	/* Read fifocount bytes from CIR Sample RX FIFO register */
712 	for (i = 0; i < fifocount; i++) {
713 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
714 		nvt->buf[b_idx + i] = val;
715 	}
716 
717 	nvt->pkts += fifocount;
718 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
719 
720 	nvt_process_rx_ir_data(nvt);
721 
722 	if (overrun)
723 		nvt_handle_rx_fifo_overrun(nvt);
724 
725 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
726 }
727 
728 static void nvt_cir_log_irqs(u8 status, u8 iren)
729 {
730 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
731 		status, iren,
732 		status & CIR_IRSTS_RDR	? " RDR"	: "",
733 		status & CIR_IRSTS_RTR	? " RTR"	: "",
734 		status & CIR_IRSTS_PE	? " PE"		: "",
735 		status & CIR_IRSTS_RFO	? " RFO"	: "",
736 		status & CIR_IRSTS_TE	? " TE"		: "",
737 		status & CIR_IRSTS_TTR	? " TTR"	: "",
738 		status & CIR_IRSTS_TFU	? " TFU"	: "",
739 		status & CIR_IRSTS_GH	? " GH"		: "",
740 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
741 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
742 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
743 }
744 
745 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
746 {
747 	unsigned long flags;
748 	bool tx_inactive;
749 	u8 tx_state;
750 
751 	spin_lock_irqsave(&nvt->tx.lock, flags);
752 	tx_state = nvt->tx.tx_state;
753 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
754 
755 	tx_inactive = (tx_state == ST_TX_NONE);
756 
757 	return tx_inactive;
758 }
759 
760 /* interrupt service routine for incoming and outgoing CIR data */
761 static irqreturn_t nvt_cir_isr(int irq, void *data)
762 {
763 	struct nvt_dev *nvt = data;
764 	u8 status, iren, cur_state;
765 	unsigned long flags;
766 
767 	nvt_dbg_verbose("%s firing", __func__);
768 
769 	nvt_efm_enable(nvt);
770 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
771 	nvt_efm_disable(nvt);
772 
773 	/*
774 	 * Get IR Status register contents. Write 1 to ack/clear
775 	 *
776 	 * bit: reg name      - description
777 	 *   7: CIR_IRSTS_RDR - RX Data Ready
778 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
779 	 *   5: CIR_IRSTS_PE  - Packet End
780 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
781 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
782 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
783 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
784 	 *   0: CIR_IRSTS_GH  - Min Length Detected
785 	 */
786 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
787 	if (!status) {
788 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
789 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
790 		return IRQ_RETVAL(IRQ_NONE);
791 	}
792 
793 	/* ack/clear all irq flags we've got */
794 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
795 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
796 
797 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
798 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
799 	if (!iren) {
800 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
801 		return IRQ_RETVAL(IRQ_NONE);
802 	}
803 
804 	if (debug)
805 		nvt_cir_log_irqs(status, iren);
806 
807 	if (status & CIR_IRSTS_RTR) {
808 		/* FIXME: add code for study/learn mode */
809 		/* We only do rx if not tx'ing */
810 		if (nvt_cir_tx_inactive(nvt))
811 			nvt_get_rx_ir_data(nvt);
812 	}
813 
814 	if (status & CIR_IRSTS_PE) {
815 		if (nvt_cir_tx_inactive(nvt))
816 			nvt_get_rx_ir_data(nvt);
817 
818 		spin_lock_irqsave(&nvt->nvt_lock, flags);
819 
820 		cur_state = nvt->study_state;
821 
822 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
823 
824 		if (cur_state == ST_STUDY_NONE)
825 			nvt_clear_cir_fifo(nvt);
826 	}
827 
828 	if (status & CIR_IRSTS_TE)
829 		nvt_clear_tx_fifo(nvt);
830 
831 	if (status & CIR_IRSTS_TTR) {
832 		unsigned int pos, count;
833 		u8 tmp;
834 
835 		spin_lock_irqsave(&nvt->tx.lock, flags);
836 
837 		pos = nvt->tx.cur_buf_num;
838 		count = nvt->tx.buf_count;
839 
840 		/* Write data into the hardware tx fifo while pos < count */
841 		if (pos < count) {
842 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
843 			nvt->tx.cur_buf_num++;
844 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
845 		} else {
846 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
847 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
848 		}
849 
850 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
851 
852 	}
853 
854 	if (status & CIR_IRSTS_TFU) {
855 		spin_lock_irqsave(&nvt->tx.lock, flags);
856 		if (nvt->tx.tx_state == ST_TX_REPLY) {
857 			nvt->tx.tx_state = ST_TX_REQUEST;
858 			wake_up(&nvt->tx.queue);
859 		}
860 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
861 	}
862 
863 	nvt_dbg_verbose("%s done", __func__);
864 	return IRQ_RETVAL(IRQ_HANDLED);
865 }
866 
867 /* Interrupt service routine for CIR Wake */
868 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
869 {
870 	u8 status, iren, val;
871 	struct nvt_dev *nvt = data;
872 	unsigned long flags;
873 
874 	nvt_dbg_wake("%s firing", __func__);
875 
876 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
877 	if (!status)
878 		return IRQ_RETVAL(IRQ_NONE);
879 
880 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
881 		nvt_clear_cir_wake_fifo(nvt);
882 
883 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
884 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
885 
886 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
887 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
888 	if (!iren) {
889 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
890 		return IRQ_RETVAL(IRQ_HANDLED);
891 	}
892 
893 	if ((status & CIR_WAKE_IRSTS_PE) &&
894 	    (nvt->wake_state == ST_WAKE_START)) {
895 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
896 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
897 			nvt_dbg("setting wake up key: 0x%x", val);
898 		}
899 
900 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
901 		spin_lock_irqsave(&nvt->nvt_lock, flags);
902 		nvt->wake_state = ST_WAKE_FINISH;
903 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
904 	}
905 
906 	nvt_dbg_wake("%s done", __func__);
907 	return IRQ_RETVAL(IRQ_HANDLED);
908 }
909 
910 static void nvt_enable_cir(struct nvt_dev *nvt)
911 {
912 	/* set function enable flags */
913 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
914 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
915 			  CIR_IRCON);
916 
917 	nvt_efm_enable(nvt);
918 
919 	/* enable the CIR logical device */
920 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
921 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
922 
923 	nvt_efm_disable(nvt);
924 
925 	/* clear all pending interrupts */
926 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
927 
928 	/* enable interrupts */
929 	nvt_set_cir_iren(nvt);
930 }
931 
932 static void nvt_disable_cir(struct nvt_dev *nvt)
933 {
934 	/* disable CIR interrupts */
935 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
936 
937 	/* clear any and all pending interrupts */
938 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
939 
940 	/* clear all function enable flags */
941 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
942 
943 	/* clear hardware rx and tx fifos */
944 	nvt_clear_cir_fifo(nvt);
945 	nvt_clear_tx_fifo(nvt);
946 
947 	nvt_efm_enable(nvt);
948 
949 	/* disable the CIR logical device */
950 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
951 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
952 
953 	nvt_efm_disable(nvt);
954 }
955 
956 static int nvt_open(struct rc_dev *dev)
957 {
958 	struct nvt_dev *nvt = dev->priv;
959 	unsigned long flags;
960 
961 	spin_lock_irqsave(&nvt->nvt_lock, flags);
962 	nvt_enable_cir(nvt);
963 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
964 
965 	return 0;
966 }
967 
968 static void nvt_close(struct rc_dev *dev)
969 {
970 	struct nvt_dev *nvt = dev->priv;
971 	unsigned long flags;
972 
973 	spin_lock_irqsave(&nvt->nvt_lock, flags);
974 	nvt_disable_cir(nvt);
975 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
976 }
977 
978 /* Allocate memory, probe hardware, and initialize everything */
979 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
980 {
981 	struct nvt_dev *nvt;
982 	struct rc_dev *rdev;
983 	int ret = -ENOMEM;
984 
985 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
986 	if (!nvt)
987 		return ret;
988 
989 	/* input device for IR remote (and tx) */
990 	rdev = rc_allocate_device();
991 	if (!rdev)
992 		goto failure;
993 
994 	ret = -ENODEV;
995 	/* validate pnp resources */
996 	if (!pnp_port_valid(pdev, 0) ||
997 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
998 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
999 		goto failure;
1000 	}
1001 
1002 	if (!pnp_irq_valid(pdev, 0)) {
1003 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1004 		goto failure;
1005 	}
1006 
1007 	if (!pnp_port_valid(pdev, 1) ||
1008 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1009 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1010 		goto failure;
1011 	}
1012 
1013 	nvt->cir_addr = pnp_port_start(pdev, 0);
1014 	nvt->cir_irq  = pnp_irq(pdev, 0);
1015 
1016 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1017 	/* irq is always shared between cir and cir wake */
1018 	nvt->cir_wake_irq  = nvt->cir_irq;
1019 
1020 	nvt->cr_efir = CR_EFIR;
1021 	nvt->cr_efdr = CR_EFDR;
1022 
1023 	spin_lock_init(&nvt->nvt_lock);
1024 	spin_lock_init(&nvt->tx.lock);
1025 
1026 	pnp_set_drvdata(pdev, nvt);
1027 	nvt->pdev = pdev;
1028 
1029 	init_waitqueue_head(&nvt->tx.queue);
1030 
1031 	ret = nvt_hw_detect(nvt);
1032 	if (ret)
1033 		goto failure;
1034 
1035 	/* Initialize CIR & CIR Wake Logical Devices */
1036 	nvt_efm_enable(nvt);
1037 	nvt_cir_ldev_init(nvt);
1038 	nvt_cir_wake_ldev_init(nvt);
1039 	nvt_efm_disable(nvt);
1040 
1041 	/* Initialize CIR & CIR Wake Config Registers */
1042 	nvt_cir_regs_init(nvt);
1043 	nvt_cir_wake_regs_init(nvt);
1044 
1045 	/* Set up the rc device */
1046 	rdev->priv = nvt;
1047 	rdev->driver_type = RC_DRIVER_IR_RAW;
1048 	rdev->allowed_protos = RC_TYPE_ALL;
1049 	rdev->open = nvt_open;
1050 	rdev->close = nvt_close;
1051 	rdev->tx_ir = nvt_tx_ir;
1052 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1053 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1054 	rdev->input_phys = "nuvoton/cir0";
1055 	rdev->input_id.bustype = BUS_HOST;
1056 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1057 	rdev->input_id.product = nvt->chip_major;
1058 	rdev->input_id.version = nvt->chip_minor;
1059 	rdev->dev.parent = &pdev->dev;
1060 	rdev->driver_name = NVT_DRIVER_NAME;
1061 	rdev->map_name = RC_MAP_RC6_MCE;
1062 	rdev->timeout = MS_TO_NS(100);
1063 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1064 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1065 #if 0
1066 	rdev->min_timeout = XYZ;
1067 	rdev->max_timeout = XYZ;
1068 	/* tx bits */
1069 	rdev->tx_resolution = XYZ;
1070 #endif
1071 
1072 	ret = -EBUSY;
1073 	/* now claim resources */
1074 	if (!request_region(nvt->cir_addr,
1075 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1076 		goto failure;
1077 
1078 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1079 			NVT_DRIVER_NAME, (void *)nvt))
1080 		goto failure2;
1081 
1082 	if (!request_region(nvt->cir_wake_addr,
1083 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1084 		goto failure3;
1085 
1086 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1087 			NVT_DRIVER_NAME, (void *)nvt))
1088 		goto failure4;
1089 
1090 	ret = rc_register_device(rdev);
1091 	if (ret)
1092 		goto failure5;
1093 
1094 	device_init_wakeup(&pdev->dev, true);
1095 	nvt->rdev = rdev;
1096 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1097 	if (debug) {
1098 		cir_dump_regs(nvt);
1099 		cir_wake_dump_regs(nvt);
1100 	}
1101 
1102 	return 0;
1103 
1104 failure5:
1105 	free_irq(nvt->cir_wake_irq, nvt);
1106 failure4:
1107 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1108 failure3:
1109 	free_irq(nvt->cir_irq, nvt);
1110 failure2:
1111 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1112 failure:
1113 	rc_free_device(rdev);
1114 	kfree(nvt);
1115 
1116 	return ret;
1117 }
1118 
1119 static void __devexit nvt_remove(struct pnp_dev *pdev)
1120 {
1121 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1122 	unsigned long flags;
1123 
1124 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1125 	/* disable CIR */
1126 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1127 	nvt_disable_cir(nvt);
1128 	/* enable CIR Wake (for IR power-on) */
1129 	nvt_enable_wake(nvt);
1130 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1131 
1132 	/* free resources */
1133 	free_irq(nvt->cir_irq, nvt);
1134 	free_irq(nvt->cir_wake_irq, nvt);
1135 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1136 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1137 
1138 	rc_unregister_device(nvt->rdev);
1139 
1140 	kfree(nvt);
1141 }
1142 
1143 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1144 {
1145 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1146 	unsigned long flags;
1147 
1148 	nvt_dbg("%s called", __func__);
1149 
1150 	/* zero out misc state tracking */
1151 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1152 	nvt->study_state = ST_STUDY_NONE;
1153 	nvt->wake_state = ST_WAKE_NONE;
1154 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1155 
1156 	spin_lock_irqsave(&nvt->tx.lock, flags);
1157 	nvt->tx.tx_state = ST_TX_NONE;
1158 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1159 
1160 	/* disable all CIR interrupts */
1161 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162 
1163 	nvt_efm_enable(nvt);
1164 
1165 	/* disable cir logical dev */
1166 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1167 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1168 
1169 	nvt_efm_disable(nvt);
1170 
1171 	/* make sure wake is enabled */
1172 	nvt_enable_wake(nvt);
1173 
1174 	return 0;
1175 }
1176 
1177 static int nvt_resume(struct pnp_dev *pdev)
1178 {
1179 	int ret = 0;
1180 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1181 
1182 	nvt_dbg("%s called", __func__);
1183 
1184 	/* open interrupt */
1185 	nvt_set_cir_iren(nvt);
1186 
1187 	/* Enable CIR logical device */
1188 	nvt_efm_enable(nvt);
1189 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1190 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1191 
1192 	nvt_efm_disable(nvt);
1193 
1194 	nvt_cir_regs_init(nvt);
1195 	nvt_cir_wake_regs_init(nvt);
1196 
1197 	return ret;
1198 }
1199 
1200 static void nvt_shutdown(struct pnp_dev *pdev)
1201 {
1202 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1203 	nvt_enable_wake(nvt);
1204 }
1205 
1206 static const struct pnp_device_id nvt_ids[] = {
1207 	{ "WEC0530", 0 },   /* CIR */
1208 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1209 	{ "", 0 },
1210 };
1211 
1212 static struct pnp_driver nvt_driver = {
1213 	.name		= NVT_DRIVER_NAME,
1214 	.id_table	= nvt_ids,
1215 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1216 	.probe		= nvt_probe,
1217 	.remove		= __devexit_p(nvt_remove),
1218 	.suspend	= nvt_suspend,
1219 	.resume		= nvt_resume,
1220 	.shutdown	= nvt_shutdown,
1221 };
1222 
1223 int nvt_init(void)
1224 {
1225 	return pnp_register_driver(&nvt_driver);
1226 }
1227 
1228 void nvt_exit(void)
1229 {
1230 	pnp_unregister_driver(&nvt_driver);
1231 }
1232 
1233 module_param(debug, int, S_IRUGO | S_IWUSR);
1234 MODULE_PARM_DESC(debug, "Enable debugging output");
1235 
1236 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1237 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1238 
1239 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1240 MODULE_LICENSE("GPL");
1241 
1242 module_init(nvt_init);
1243 module_exit(nvt_exit);
1244