1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * meson-ir-tx.c - Amlogic Meson IR TX driver
4 *
5 * Copyright (c) 2021, SberDevices. All Rights Reserved.
6 *
7 * Author: Viktor Prutyanov <viktor.prutyanov@phystech.edu>
8 */
9
10 #include <linux/device.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/of.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/of_irq.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <media/rc-core.h>
21
22 #define DEVICE_NAME "Meson IR TX"
23 #define DRIVER_NAME "meson-ir-tx"
24
25 #define MIRTX_DEFAULT_CARRIER 38000
26 #define MIRTX_DEFAULT_DUTY_CYCLE 50
27 #define MIRTX_FIFO_THD 32
28
29 #define IRB_MOD_1US_CLK_RATE 1000000
30
31 #define IRB_FIFO_LEN 128
32
33 #define IRB_ADDR0 0x0
34 #define IRB_ADDR1 0x4
35 #define IRB_ADDR2 0x8
36 #define IRB_ADDR3 0xc
37
38 #define IRB_MAX_DELAY (1 << 10)
39 #define IRB_DELAY_MASK (IRB_MAX_DELAY - 1)
40
41 /* IRCTRL_IR_BLASTER_ADDR0 */
42 #define IRB_MOD_CLK(x) ((x) << 12)
43 #define IRB_MOD_SYS_CLK 0
44 #define IRB_MOD_XTAL3_CLK 1
45 #define IRB_MOD_1US_CLK 2
46 #define IRB_MOD_10US_CLK 3
47 #define IRB_INIT_HIGH BIT(2)
48 #define IRB_ENABLE BIT(0)
49
50 /* IRCTRL_IR_BLASTER_ADDR2 */
51 #define IRB_MOD_COUNT(lo, hi) ((((lo) - 1) << 16) | ((hi) - 1))
52
53 /* IRCTRL_IR_BLASTER_ADDR2 */
54 #define IRB_WRITE_FIFO BIT(16)
55 #define IRB_MOD_ENABLE BIT(12)
56 #define IRB_TB_1US (0x0 << 10)
57 #define IRB_TB_10US (0x1 << 10)
58 #define IRB_TB_100US (0x2 << 10)
59 #define IRB_TB_MOD_CLK (0x3 << 10)
60
61 /* IRCTRL_IR_BLASTER_ADDR3 */
62 #define IRB_FIFO_THD_PENDING BIT(16)
63 #define IRB_FIFO_IRQ_ENABLE BIT(8)
64
65 struct meson_irtx {
66 struct device *dev;
67 void __iomem *reg_base;
68 u32 *buf;
69 unsigned int buf_len;
70 unsigned int buf_head;
71 unsigned int carrier;
72 unsigned int duty_cycle;
73 /* Locks buf */
74 spinlock_t lock;
75 struct completion completion;
76 unsigned long clk_rate;
77 };
78
meson_irtx_set_mod(struct meson_irtx * ir)79 static void meson_irtx_set_mod(struct meson_irtx *ir)
80 {
81 unsigned int cnt = DIV_ROUND_CLOSEST(ir->clk_rate, ir->carrier);
82 unsigned int pulse_cnt = DIV_ROUND_CLOSEST(cnt * ir->duty_cycle, 100);
83 unsigned int space_cnt = cnt - pulse_cnt;
84
85 dev_dbg(ir->dev, "F_mod = %uHz, T_mod = %luns, duty_cycle = %u%%\n",
86 ir->carrier, NSEC_PER_SEC / ir->clk_rate * cnt,
87 100 * pulse_cnt / cnt);
88
89 writel(IRB_MOD_COUNT(pulse_cnt, space_cnt),
90 ir->reg_base + IRB_ADDR1);
91 }
92
meson_irtx_setup(struct meson_irtx * ir,unsigned int clk_nr)93 static void meson_irtx_setup(struct meson_irtx *ir, unsigned int clk_nr)
94 {
95 /*
96 * Disable the TX, set modulator clock tick and set initialize
97 * output to be high. Set up carrier frequency and duty cycle. Then
98 * unset initialize output. Enable FIFO interrupt, set FIFO interrupt
99 * threshold. Finally, enable the transmitter back.
100 */
101 writel(~IRB_ENABLE & (IRB_MOD_CLK(clk_nr) | IRB_INIT_HIGH),
102 ir->reg_base + IRB_ADDR0);
103 meson_irtx_set_mod(ir);
104 writel(readl(ir->reg_base + IRB_ADDR0) & ~IRB_INIT_HIGH,
105 ir->reg_base + IRB_ADDR0);
106 writel(IRB_FIFO_IRQ_ENABLE | MIRTX_FIFO_THD,
107 ir->reg_base + IRB_ADDR3);
108 writel(readl(ir->reg_base + IRB_ADDR0) | IRB_ENABLE,
109 ir->reg_base + IRB_ADDR0);
110 }
111
meson_irtx_prepare_pulse(struct meson_irtx * ir,unsigned int time)112 static u32 meson_irtx_prepare_pulse(struct meson_irtx *ir, unsigned int time)
113 {
114 unsigned int delay;
115 unsigned int tb = IRB_TB_MOD_CLK;
116 unsigned int tb_us = DIV_ROUND_CLOSEST(USEC_PER_SEC, ir->carrier);
117
118 delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK;
119
120 return ((IRB_WRITE_FIFO | IRB_MOD_ENABLE) | tb | delay);
121 }
122
meson_irtx_prepare_space(struct meson_irtx * ir,unsigned int time)123 static u32 meson_irtx_prepare_space(struct meson_irtx *ir, unsigned int time)
124 {
125 unsigned int delay;
126 unsigned int tb = IRB_TB_100US;
127 unsigned int tb_us = 100;
128
129 if (time <= IRB_MAX_DELAY) {
130 tb = IRB_TB_1US;
131 tb_us = 1;
132 } else if (time <= 10 * IRB_MAX_DELAY) {
133 tb = IRB_TB_10US;
134 tb_us = 10;
135 } else if (time <= 100 * IRB_MAX_DELAY) {
136 tb = IRB_TB_100US;
137 tb_us = 100;
138 }
139
140 delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK;
141
142 return ((IRB_WRITE_FIFO & ~IRB_MOD_ENABLE) | tb | delay);
143 }
144
meson_irtx_send_buffer(struct meson_irtx * ir)145 static void meson_irtx_send_buffer(struct meson_irtx *ir)
146 {
147 unsigned int nr = 0;
148 unsigned int max_fifo_level = IRB_FIFO_LEN - MIRTX_FIFO_THD;
149
150 while (ir->buf_head < ir->buf_len && nr < max_fifo_level) {
151 writel(ir->buf[ir->buf_head], ir->reg_base + IRB_ADDR2);
152
153 ir->buf_head++;
154 nr++;
155 }
156 }
157
meson_irtx_check_buf(struct meson_irtx * ir,unsigned int * buf,unsigned int len)158 static bool meson_irtx_check_buf(struct meson_irtx *ir,
159 unsigned int *buf, unsigned int len)
160 {
161 unsigned int i;
162
163 for (i = 0; i < len; i++) {
164 unsigned int max_tb_us;
165 /*
166 * Max space timebase is 100 us.
167 * Pulse timebase equals to carrier period.
168 */
169 if (i % 2 == 0)
170 max_tb_us = USEC_PER_SEC / ir->carrier;
171 else
172 max_tb_us = 100;
173
174 if (buf[i] >= max_tb_us * IRB_MAX_DELAY)
175 return false;
176 }
177
178 return true;
179 }
180
meson_irtx_fill_buf(struct meson_irtx * ir,u32 * dst_buf,unsigned int * src_buf,unsigned int len)181 static void meson_irtx_fill_buf(struct meson_irtx *ir, u32 *dst_buf,
182 unsigned int *src_buf, unsigned int len)
183 {
184 unsigned int i;
185
186 for (i = 0; i < len; i++) {
187 if (i % 2 == 0)
188 dst_buf[i] = meson_irtx_prepare_pulse(ir, src_buf[i]);
189 else
190 dst_buf[i] = meson_irtx_prepare_space(ir, src_buf[i]);
191 }
192 }
193
meson_irtx_irqhandler(int irq,void * data)194 static irqreturn_t meson_irtx_irqhandler(int irq, void *data)
195 {
196 unsigned long flags;
197 struct meson_irtx *ir = data;
198
199 writel(readl(ir->reg_base + IRB_ADDR3) & ~IRB_FIFO_THD_PENDING,
200 ir->reg_base + IRB_ADDR3);
201
202 if (completion_done(&ir->completion))
203 return IRQ_HANDLED;
204
205 spin_lock_irqsave(&ir->lock, flags);
206 if (ir->buf_head < ir->buf_len)
207 meson_irtx_send_buffer(ir);
208 else
209 complete(&ir->completion);
210 spin_unlock_irqrestore(&ir->lock, flags);
211
212 return IRQ_HANDLED;
213 }
214
meson_irtx_set_carrier(struct rc_dev * rc,u32 carrier)215 static int meson_irtx_set_carrier(struct rc_dev *rc, u32 carrier)
216 {
217 struct meson_irtx *ir = rc->priv;
218
219 if (carrier == 0)
220 return -EINVAL;
221
222 ir->carrier = carrier;
223 meson_irtx_set_mod(ir);
224
225 return 0;
226 }
227
meson_irtx_set_duty_cycle(struct rc_dev * rc,u32 duty_cycle)228 static int meson_irtx_set_duty_cycle(struct rc_dev *rc, u32 duty_cycle)
229 {
230 struct meson_irtx *ir = rc->priv;
231
232 ir->duty_cycle = duty_cycle;
233 meson_irtx_set_mod(ir);
234
235 return 0;
236 }
237
meson_irtx_update_buf(struct meson_irtx * ir,u32 * buf,unsigned int len,unsigned int head)238 static void meson_irtx_update_buf(struct meson_irtx *ir, u32 *buf,
239 unsigned int len, unsigned int head)
240 {
241 ir->buf = buf;
242 ir->buf_len = len;
243 ir->buf_head = head;
244 }
245
meson_irtx_transmit(struct rc_dev * rc,unsigned int * buf,unsigned int len)246 static int meson_irtx_transmit(struct rc_dev *rc, unsigned int *buf,
247 unsigned int len)
248 {
249 unsigned long flags;
250 struct meson_irtx *ir = rc->priv;
251 u32 *tx_buf;
252 int ret = len;
253
254 if (!meson_irtx_check_buf(ir, buf, len))
255 return -EINVAL;
256
257 tx_buf = kmalloc_array(len, sizeof(u32), GFP_KERNEL);
258 if (!tx_buf)
259 return -ENOMEM;
260
261 meson_irtx_fill_buf(ir, tx_buf, buf, len);
262 dev_dbg(ir->dev, "TX buffer filled, length = %u\n", len);
263
264 spin_lock_irqsave(&ir->lock, flags);
265 meson_irtx_update_buf(ir, tx_buf, len, 0);
266 reinit_completion(&ir->completion);
267 meson_irtx_send_buffer(ir);
268 spin_unlock_irqrestore(&ir->lock, flags);
269
270 if (!wait_for_completion_timeout(&ir->completion,
271 usecs_to_jiffies(IR_MAX_DURATION)))
272 ret = -ETIMEDOUT;
273
274 spin_lock_irqsave(&ir->lock, flags);
275 kfree(ir->buf);
276 meson_irtx_update_buf(ir, NULL, 0, 0);
277 spin_unlock_irqrestore(&ir->lock, flags);
278
279 return ret;
280 }
281
meson_irtx_mod_clock_probe(struct meson_irtx * ir,unsigned int * clk_nr)282 static int meson_irtx_mod_clock_probe(struct meson_irtx *ir,
283 unsigned int *clk_nr)
284 {
285 struct device_node *np = ir->dev->of_node;
286 struct clk *clock;
287
288 if (!np)
289 return -ENODEV;
290
291 clock = devm_clk_get(ir->dev, "xtal");
292 if (IS_ERR(clock) || clk_prepare_enable(clock))
293 return -ENODEV;
294
295 *clk_nr = IRB_MOD_XTAL3_CLK;
296 ir->clk_rate = clk_get_rate(clock) / 3;
297
298 if (ir->clk_rate < IRB_MOD_1US_CLK_RATE) {
299 *clk_nr = IRB_MOD_1US_CLK;
300 ir->clk_rate = IRB_MOD_1US_CLK_RATE;
301 }
302
303 dev_info(ir->dev, "F_clk = %luHz\n", ir->clk_rate);
304
305 return 0;
306 }
307
meson_irtx_probe(struct platform_device * pdev)308 static int __init meson_irtx_probe(struct platform_device *pdev)
309 {
310 struct device *dev = &pdev->dev;
311 struct meson_irtx *ir;
312 struct rc_dev *rc;
313 int irq;
314 unsigned int clk_nr;
315 int ret;
316
317 ir = devm_kzalloc(dev, sizeof(*ir), GFP_KERNEL);
318 if (!ir)
319 return -ENOMEM;
320
321 ir->reg_base = devm_platform_ioremap_resource(pdev, 0);
322 if (IS_ERR(ir->reg_base))
323 return PTR_ERR(ir->reg_base);
324
325 irq = platform_get_irq(pdev, 0);
326 if (irq < 0)
327 return -ENODEV;
328
329 ir->dev = dev;
330 ir->carrier = MIRTX_DEFAULT_CARRIER;
331 ir->duty_cycle = MIRTX_DEFAULT_DUTY_CYCLE;
332 init_completion(&ir->completion);
333 spin_lock_init(&ir->lock);
334
335 ret = meson_irtx_mod_clock_probe(ir, &clk_nr);
336 if (ret) {
337 dev_err(dev, "modulator clock setup failed\n");
338 return ret;
339 }
340 meson_irtx_setup(ir, clk_nr);
341
342 ret = devm_request_irq(dev, irq,
343 meson_irtx_irqhandler,
344 IRQF_TRIGGER_RISING,
345 DRIVER_NAME, ir);
346 if (ret) {
347 dev_err(dev, "irq request failed\n");
348 return ret;
349 }
350
351 rc = rc_allocate_device(RC_DRIVER_IR_RAW_TX);
352 if (!rc)
353 return -ENOMEM;
354
355 rc->driver_name = DRIVER_NAME;
356 rc->device_name = DEVICE_NAME;
357 rc->priv = ir;
358
359 rc->tx_ir = meson_irtx_transmit;
360 rc->s_tx_carrier = meson_irtx_set_carrier;
361 rc->s_tx_duty_cycle = meson_irtx_set_duty_cycle;
362
363 ret = rc_register_device(rc);
364 if (ret < 0) {
365 dev_err(dev, "rc_dev registration failed\n");
366 rc_free_device(rc);
367 return ret;
368 }
369
370 platform_set_drvdata(pdev, rc);
371
372 return 0;
373 }
374
meson_irtx_remove(struct platform_device * pdev)375 static void meson_irtx_remove(struct platform_device *pdev)
376 {
377 struct rc_dev *rc = platform_get_drvdata(pdev);
378
379 rc_unregister_device(rc);
380 }
381
382 static const struct of_device_id meson_irtx_dt_match[] = {
383 {
384 .compatible = "amlogic,meson-g12a-ir-tx",
385 },
386 {},
387 };
388 MODULE_DEVICE_TABLE(of, meson_irtx_dt_match);
389
390 static struct platform_driver meson_irtx_pd = {
391 .remove_new = meson_irtx_remove,
392 .driver = {
393 .name = DRIVER_NAME,
394 .of_match_table = meson_irtx_dt_match,
395 },
396 };
397
398 module_platform_driver_probe(meson_irtx_pd, meson_irtx_probe);
399
400 MODULE_DESCRIPTION("Meson IR TX driver");
401 MODULE_AUTHOR("Viktor Prutyanov <viktor.prutyanov@phystech.edu>");
402 MODULE_LICENSE("GPL");
403