1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ImgTec IR Hardware Decoder found in PowerDown Controller. 4 * 5 * Copyright 2010-2014 Imagination Technologies Ltd. 6 * 7 * This ties into the input subsystem using the RC-core. Protocol support is 8 * provided in separate modules which provide the parameters and scancode 9 * translation functions to set up the hardware decoder and interpret the 10 * resulting input. 11 */ 12 13 #include <linux/bitops.h> 14 #include <linux/clk.h> 15 #include <linux/interrupt.h> 16 #include <linux/spinlock.h> 17 #include <linux/timer.h> 18 #include <media/rc-core.h> 19 #include "img-ir.h" 20 21 /* Decoders lock (only modified to preprocess them) */ 22 static DEFINE_SPINLOCK(img_ir_decoders_lock); 23 24 static bool img_ir_decoders_preprocessed; 25 static struct img_ir_decoder *img_ir_decoders[] = { 26 #ifdef CONFIG_IR_IMG_NEC 27 &img_ir_nec, 28 #endif 29 #ifdef CONFIG_IR_IMG_JVC 30 &img_ir_jvc, 31 #endif 32 #ifdef CONFIG_IR_IMG_SONY 33 &img_ir_sony, 34 #endif 35 #ifdef CONFIG_IR_IMG_SHARP 36 &img_ir_sharp, 37 #endif 38 #ifdef CONFIG_IR_IMG_SANYO 39 &img_ir_sanyo, 40 #endif 41 #ifdef CONFIG_IR_IMG_RC5 42 &img_ir_rc5, 43 #endif 44 #ifdef CONFIG_IR_IMG_RC6 45 &img_ir_rc6, 46 #endif 47 NULL 48 }; 49 50 #define IMG_IR_F_FILTER BIT(RC_FILTER_NORMAL) /* enable filtering */ 51 #define IMG_IR_F_WAKE BIT(RC_FILTER_WAKEUP) /* enable waking */ 52 53 /* code type quirks */ 54 55 #define IMG_IR_QUIRK_CODE_BROKEN 0x1 /* Decode is broken */ 56 #define IMG_IR_QUIRK_CODE_LEN_INCR 0x2 /* Bit length needs increment */ 57 /* 58 * The decoder generates rapid interrupts without actually having 59 * received any new data after an incomplete IR code is decoded. 60 */ 61 #define IMG_IR_QUIRK_CODE_IRQ 0x4 62 63 /* functions for preprocessing timings, ensuring max is set */ 64 65 static void img_ir_timing_preprocess(struct img_ir_timing_range *range, 66 unsigned int unit) 67 { 68 if (range->max < range->min) 69 range->max = range->min; 70 if (unit) { 71 /* multiply by unit and convert to microseconds */ 72 range->min = (range->min*unit)/1000; 73 range->max = (range->max*unit + 999)/1000; /* round up */ 74 } 75 } 76 77 static void img_ir_symbol_timing_preprocess(struct img_ir_symbol_timing *timing, 78 unsigned int unit) 79 { 80 img_ir_timing_preprocess(&timing->pulse, unit); 81 img_ir_timing_preprocess(&timing->space, unit); 82 } 83 84 static void img_ir_timings_preprocess(struct img_ir_timings *timings, 85 unsigned int unit) 86 { 87 img_ir_symbol_timing_preprocess(&timings->ldr, unit); 88 img_ir_symbol_timing_preprocess(&timings->s00, unit); 89 img_ir_symbol_timing_preprocess(&timings->s01, unit); 90 img_ir_symbol_timing_preprocess(&timings->s10, unit); 91 img_ir_symbol_timing_preprocess(&timings->s11, unit); 92 /* default s10 and s11 to s00 and s01 if no leader */ 93 if (unit) 94 /* multiply by unit and convert to microseconds (round up) */ 95 timings->ft.ft_min = (timings->ft.ft_min*unit + 999)/1000; 96 } 97 98 /* functions for filling empty fields with defaults */ 99 100 static void img_ir_timing_defaults(struct img_ir_timing_range *range, 101 struct img_ir_timing_range *defaults) 102 { 103 if (!range->min) 104 range->min = defaults->min; 105 if (!range->max) 106 range->max = defaults->max; 107 } 108 109 static void img_ir_symbol_timing_defaults(struct img_ir_symbol_timing *timing, 110 struct img_ir_symbol_timing *defaults) 111 { 112 img_ir_timing_defaults(&timing->pulse, &defaults->pulse); 113 img_ir_timing_defaults(&timing->space, &defaults->space); 114 } 115 116 static void img_ir_timings_defaults(struct img_ir_timings *timings, 117 struct img_ir_timings *defaults) 118 { 119 img_ir_symbol_timing_defaults(&timings->ldr, &defaults->ldr); 120 img_ir_symbol_timing_defaults(&timings->s00, &defaults->s00); 121 img_ir_symbol_timing_defaults(&timings->s01, &defaults->s01); 122 img_ir_symbol_timing_defaults(&timings->s10, &defaults->s10); 123 img_ir_symbol_timing_defaults(&timings->s11, &defaults->s11); 124 if (!timings->ft.ft_min) 125 timings->ft.ft_min = defaults->ft.ft_min; 126 } 127 128 /* functions for converting timings to register values */ 129 130 /** 131 * img_ir_control() - Convert control struct to control register value. 132 * @control: Control data 133 * 134 * Returns: The control register value equivalent of @control. 135 */ 136 static u32 img_ir_control(const struct img_ir_control *control) 137 { 138 u32 ctrl = control->code_type << IMG_IR_CODETYPE_SHIFT; 139 if (control->decoden) 140 ctrl |= IMG_IR_DECODEN; 141 if (control->hdrtog) 142 ctrl |= IMG_IR_HDRTOG; 143 if (control->ldrdec) 144 ctrl |= IMG_IR_LDRDEC; 145 if (control->decodinpol) 146 ctrl |= IMG_IR_DECODINPOL; 147 if (control->bitorien) 148 ctrl |= IMG_IR_BITORIEN; 149 if (control->d1validsel) 150 ctrl |= IMG_IR_D1VALIDSEL; 151 if (control->bitinv) 152 ctrl |= IMG_IR_BITINV; 153 if (control->decodend2) 154 ctrl |= IMG_IR_DECODEND2; 155 if (control->bitoriend2) 156 ctrl |= IMG_IR_BITORIEND2; 157 if (control->bitinvd2) 158 ctrl |= IMG_IR_BITINVD2; 159 return ctrl; 160 } 161 162 /** 163 * img_ir_timing_range_convert() - Convert microsecond range. 164 * @out: Output timing range in clock cycles with a shift. 165 * @in: Input timing range in microseconds. 166 * @tolerance: Tolerance as a fraction of 128 (roughly percent). 167 * @clock_hz: IR clock rate in Hz. 168 * @shift: Shift of output units. 169 * 170 * Converts min and max from microseconds to IR clock cycles, applies a 171 * tolerance, and shifts for the register, rounding in the right direction. 172 * Note that in and out can safely be the same object. 173 */ 174 static void img_ir_timing_range_convert(struct img_ir_timing_range *out, 175 const struct img_ir_timing_range *in, 176 unsigned int tolerance, 177 unsigned long clock_hz, 178 unsigned int shift) 179 { 180 unsigned int min = in->min; 181 unsigned int max = in->max; 182 /* add a tolerance */ 183 min = min - (min*tolerance >> 7); 184 max = max + (max*tolerance >> 7); 185 /* convert from microseconds into clock cycles */ 186 min = min*clock_hz / 1000000; 187 max = (max*clock_hz + 999999) / 1000000; /* round up */ 188 /* apply shift and copy to output */ 189 out->min = min >> shift; 190 out->max = (max + ((1 << shift) - 1)) >> shift; /* round up */ 191 } 192 193 /** 194 * img_ir_symbol_timing() - Convert symbol timing struct to register value. 195 * @timing: Symbol timing data 196 * @tolerance: Timing tolerance where 0-128 represents 0-100% 197 * @clock_hz: Frequency of source clock in Hz 198 * @pd_shift: Shift to apply to symbol period 199 * @w_shift: Shift to apply to symbol width 200 * 201 * Returns: Symbol timing register value based on arguments. 202 */ 203 static u32 img_ir_symbol_timing(const struct img_ir_symbol_timing *timing, 204 unsigned int tolerance, 205 unsigned long clock_hz, 206 unsigned int pd_shift, 207 unsigned int w_shift) 208 { 209 struct img_ir_timing_range hw_pulse, hw_period; 210 /* we calculate period in hw_period, then convert in place */ 211 hw_period.min = timing->pulse.min + timing->space.min; 212 hw_period.max = timing->pulse.max + timing->space.max; 213 img_ir_timing_range_convert(&hw_period, &hw_period, 214 tolerance, clock_hz, pd_shift); 215 img_ir_timing_range_convert(&hw_pulse, &timing->pulse, 216 tolerance, clock_hz, w_shift); 217 /* construct register value */ 218 return (hw_period.max << IMG_IR_PD_MAX_SHIFT) | 219 (hw_period.min << IMG_IR_PD_MIN_SHIFT) | 220 (hw_pulse.max << IMG_IR_W_MAX_SHIFT) | 221 (hw_pulse.min << IMG_IR_W_MIN_SHIFT); 222 } 223 224 /** 225 * img_ir_free_timing() - Convert free time timing struct to register value. 226 * @timing: Free symbol timing data 227 * @clock_hz: Source clock frequency in Hz 228 * 229 * Returns: Free symbol timing register value. 230 */ 231 static u32 img_ir_free_timing(const struct img_ir_free_timing *timing, 232 unsigned long clock_hz) 233 { 234 unsigned int minlen, maxlen, ft_min; 235 /* minlen is only 5 bits, and round minlen to multiple of 2 */ 236 if (timing->minlen < 30) 237 minlen = timing->minlen & -2; 238 else 239 minlen = 30; 240 /* maxlen has maximum value of 48, and round maxlen to multiple of 2 */ 241 if (timing->maxlen < 48) 242 maxlen = (timing->maxlen + 1) & -2; 243 else 244 maxlen = 48; 245 /* convert and shift ft_min, rounding upwards */ 246 ft_min = (timing->ft_min*clock_hz + 999999) / 1000000; 247 ft_min = (ft_min + 7) >> 3; 248 /* construct register value */ 249 return (maxlen << IMG_IR_MAXLEN_SHIFT) | 250 (minlen << IMG_IR_MINLEN_SHIFT) | 251 (ft_min << IMG_IR_FT_MIN_SHIFT); 252 } 253 254 /** 255 * img_ir_free_timing_dynamic() - Update free time register value. 256 * @st_ft: Static free time register value from img_ir_free_timing. 257 * @filter: Current filter which may additionally restrict min/max len. 258 * 259 * Returns: Updated free time register value based on the current filter. 260 */ 261 static u32 img_ir_free_timing_dynamic(u32 st_ft, struct img_ir_filter *filter) 262 { 263 unsigned int minlen, maxlen, newminlen, newmaxlen; 264 265 /* round minlen, maxlen to multiple of 2 */ 266 newminlen = filter->minlen & -2; 267 newmaxlen = (filter->maxlen + 1) & -2; 268 /* extract min/max len from register */ 269 minlen = (st_ft & IMG_IR_MINLEN) >> IMG_IR_MINLEN_SHIFT; 270 maxlen = (st_ft & IMG_IR_MAXLEN) >> IMG_IR_MAXLEN_SHIFT; 271 /* if the new values are more restrictive, update the register value */ 272 if (newminlen > minlen) { 273 st_ft &= ~IMG_IR_MINLEN; 274 st_ft |= newminlen << IMG_IR_MINLEN_SHIFT; 275 } 276 if (newmaxlen < maxlen) { 277 st_ft &= ~IMG_IR_MAXLEN; 278 st_ft |= newmaxlen << IMG_IR_MAXLEN_SHIFT; 279 } 280 return st_ft; 281 } 282 283 /** 284 * img_ir_timings_convert() - Convert timings to register values 285 * @regs: Output timing register values 286 * @timings: Input timing data 287 * @tolerance: Timing tolerance where 0-128 represents 0-100% 288 * @clock_hz: Source clock frequency in Hz 289 */ 290 static void img_ir_timings_convert(struct img_ir_timing_regvals *regs, 291 const struct img_ir_timings *timings, 292 unsigned int tolerance, 293 unsigned int clock_hz) 294 { 295 /* leader symbol timings are divided by 16 */ 296 regs->ldr = img_ir_symbol_timing(&timings->ldr, tolerance, clock_hz, 297 4, 4); 298 /* other symbol timings, pd fields only are divided by 2 */ 299 regs->s00 = img_ir_symbol_timing(&timings->s00, tolerance, clock_hz, 300 1, 0); 301 regs->s01 = img_ir_symbol_timing(&timings->s01, tolerance, clock_hz, 302 1, 0); 303 regs->s10 = img_ir_symbol_timing(&timings->s10, tolerance, clock_hz, 304 1, 0); 305 regs->s11 = img_ir_symbol_timing(&timings->s11, tolerance, clock_hz, 306 1, 0); 307 regs->ft = img_ir_free_timing(&timings->ft, clock_hz); 308 } 309 310 /** 311 * img_ir_decoder_preprocess() - Preprocess timings in decoder. 312 * @decoder: Decoder to be preprocessed. 313 * 314 * Ensures that the symbol timing ranges are valid with respect to ordering, and 315 * does some fixed conversion on them. 316 */ 317 static void img_ir_decoder_preprocess(struct img_ir_decoder *decoder) 318 { 319 /* default tolerance */ 320 if (!decoder->tolerance) 321 decoder->tolerance = 10; /* percent */ 322 /* and convert tolerance to fraction out of 128 */ 323 decoder->tolerance = decoder->tolerance * 128 / 100; 324 325 /* fill in implicit fields */ 326 img_ir_timings_preprocess(&decoder->timings, decoder->unit); 327 328 /* do the same for repeat timings if applicable */ 329 if (decoder->repeat) { 330 img_ir_timings_preprocess(&decoder->rtimings, decoder->unit); 331 img_ir_timings_defaults(&decoder->rtimings, &decoder->timings); 332 } 333 } 334 335 /** 336 * img_ir_decoder_convert() - Generate internal timings in decoder. 337 * @decoder: Decoder to be converted to internal timings. 338 * @reg_timings: Timing register values. 339 * @clock_hz: IR clock rate in Hz. 340 * 341 * Fills out the repeat timings and timing register values for a specific clock 342 * rate. 343 */ 344 static void img_ir_decoder_convert(const struct img_ir_decoder *decoder, 345 struct img_ir_reg_timings *reg_timings, 346 unsigned int clock_hz) 347 { 348 /* calculate control value */ 349 reg_timings->ctrl = img_ir_control(&decoder->control); 350 351 /* fill in implicit fields and calculate register values */ 352 img_ir_timings_convert(®_timings->timings, &decoder->timings, 353 decoder->tolerance, clock_hz); 354 355 /* do the same for repeat timings if applicable */ 356 if (decoder->repeat) 357 img_ir_timings_convert(®_timings->rtimings, 358 &decoder->rtimings, decoder->tolerance, 359 clock_hz); 360 } 361 362 /** 363 * img_ir_write_timings() - Write timings to the hardware now 364 * @priv: IR private data 365 * @regs: Timing register values to write 366 * @type: RC filter type (RC_FILTER_*) 367 * 368 * Write timing register values @regs to the hardware, taking into account the 369 * current filter which may impose restrictions on the length of the expected 370 * data. 371 */ 372 static void img_ir_write_timings(struct img_ir_priv *priv, 373 struct img_ir_timing_regvals *regs, 374 enum rc_filter_type type) 375 { 376 struct img_ir_priv_hw *hw = &priv->hw; 377 378 /* filter may be more restrictive to minlen, maxlen */ 379 u32 ft = regs->ft; 380 if (hw->flags & BIT(type)) 381 ft = img_ir_free_timing_dynamic(regs->ft, &hw->filters[type]); 382 /* write to registers */ 383 img_ir_write(priv, IMG_IR_LEAD_SYMB_TIMING, regs->ldr); 384 img_ir_write(priv, IMG_IR_S00_SYMB_TIMING, regs->s00); 385 img_ir_write(priv, IMG_IR_S01_SYMB_TIMING, regs->s01); 386 img_ir_write(priv, IMG_IR_S10_SYMB_TIMING, regs->s10); 387 img_ir_write(priv, IMG_IR_S11_SYMB_TIMING, regs->s11); 388 img_ir_write(priv, IMG_IR_FREE_SYMB_TIMING, ft); 389 dev_dbg(priv->dev, "timings: ldr=%#x, s=[%#x, %#x, %#x, %#x], ft=%#x\n", 390 regs->ldr, regs->s00, regs->s01, regs->s10, regs->s11, ft); 391 } 392 393 static void img_ir_write_filter(struct img_ir_priv *priv, 394 struct img_ir_filter *filter) 395 { 396 if (filter) { 397 dev_dbg(priv->dev, "IR filter=%016llx & %016llx\n", 398 (unsigned long long)filter->data, 399 (unsigned long long)filter->mask); 400 img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_LW, (u32)filter->data); 401 img_ir_write(priv, IMG_IR_IRQ_MSG_DATA_UP, (u32)(filter->data 402 >> 32)); 403 img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, (u32)filter->mask); 404 img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, (u32)(filter->mask 405 >> 32)); 406 } else { 407 dev_dbg(priv->dev, "IR clearing filter\n"); 408 img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_LW, 0); 409 img_ir_write(priv, IMG_IR_IRQ_MSG_MASK_UP, 0); 410 } 411 } 412 413 /* caller must have lock */ 414 static void _img_ir_set_filter(struct img_ir_priv *priv, 415 struct img_ir_filter *filter) 416 { 417 struct img_ir_priv_hw *hw = &priv->hw; 418 u32 irq_en, irq_on; 419 420 irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE); 421 if (filter) { 422 /* Only use the match interrupt */ 423 hw->filters[RC_FILTER_NORMAL] = *filter; 424 hw->flags |= IMG_IR_F_FILTER; 425 irq_on = IMG_IR_IRQ_DATA_MATCH; 426 irq_en &= ~(IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID); 427 } else { 428 /* Only use the valid interrupt */ 429 hw->flags &= ~IMG_IR_F_FILTER; 430 irq_en &= ~IMG_IR_IRQ_DATA_MATCH; 431 irq_on = IMG_IR_IRQ_DATA_VALID | IMG_IR_IRQ_DATA2_VALID; 432 } 433 irq_en |= irq_on; 434 435 img_ir_write_filter(priv, filter); 436 /* clear any interrupts we're enabling so we don't handle old ones */ 437 img_ir_write(priv, IMG_IR_IRQ_CLEAR, irq_on); 438 img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en); 439 } 440 441 /* caller must have lock */ 442 static void _img_ir_set_wake_filter(struct img_ir_priv *priv, 443 struct img_ir_filter *filter) 444 { 445 struct img_ir_priv_hw *hw = &priv->hw; 446 if (filter) { 447 /* Enable wake, and copy filter for later */ 448 hw->filters[RC_FILTER_WAKEUP] = *filter; 449 hw->flags |= IMG_IR_F_WAKE; 450 } else { 451 /* Disable wake */ 452 hw->flags &= ~IMG_IR_F_WAKE; 453 } 454 } 455 456 /* Callback for setting scancode filter */ 457 static int img_ir_set_filter(struct rc_dev *dev, enum rc_filter_type type, 458 struct rc_scancode_filter *sc_filter) 459 { 460 struct img_ir_priv *priv = dev->priv; 461 struct img_ir_priv_hw *hw = &priv->hw; 462 struct img_ir_filter filter, *filter_ptr = &filter; 463 int ret = 0; 464 465 dev_dbg(priv->dev, "IR scancode %sfilter=%08x & %08x\n", 466 type == RC_FILTER_WAKEUP ? "wake " : "", 467 sc_filter->data, 468 sc_filter->mask); 469 470 spin_lock_irq(&priv->lock); 471 472 /* filtering can always be disabled */ 473 if (!sc_filter->mask) { 474 filter_ptr = NULL; 475 goto set_unlock; 476 } 477 478 /* current decoder must support scancode filtering */ 479 if (!hw->decoder || !hw->decoder->filter) { 480 ret = -EINVAL; 481 goto unlock; 482 } 483 484 /* convert scancode filter to raw filter */ 485 filter.minlen = 0; 486 filter.maxlen = ~0; 487 if (type == RC_FILTER_NORMAL) { 488 /* guess scancode from protocol */ 489 ret = hw->decoder->filter(sc_filter, &filter, 490 dev->enabled_protocols); 491 } else { 492 /* for wakeup user provided exact protocol variant */ 493 ret = hw->decoder->filter(sc_filter, &filter, 494 1ULL << dev->wakeup_protocol); 495 } 496 if (ret) 497 goto unlock; 498 dev_dbg(priv->dev, "IR raw %sfilter=%016llx & %016llx\n", 499 type == RC_FILTER_WAKEUP ? "wake " : "", 500 (unsigned long long)filter.data, 501 (unsigned long long)filter.mask); 502 503 set_unlock: 504 /* apply raw filters */ 505 switch (type) { 506 case RC_FILTER_NORMAL: 507 _img_ir_set_filter(priv, filter_ptr); 508 break; 509 case RC_FILTER_WAKEUP: 510 _img_ir_set_wake_filter(priv, filter_ptr); 511 break; 512 default: 513 ret = -EINVAL; 514 } 515 516 unlock: 517 spin_unlock_irq(&priv->lock); 518 return ret; 519 } 520 521 static int img_ir_set_normal_filter(struct rc_dev *dev, 522 struct rc_scancode_filter *sc_filter) 523 { 524 return img_ir_set_filter(dev, RC_FILTER_NORMAL, sc_filter); 525 } 526 527 static int img_ir_set_wakeup_filter(struct rc_dev *dev, 528 struct rc_scancode_filter *sc_filter) 529 { 530 return img_ir_set_filter(dev, RC_FILTER_WAKEUP, sc_filter); 531 } 532 533 /** 534 * img_ir_set_decoder() - Set the current decoder. 535 * @priv: IR private data. 536 * @decoder: Decoder to use with immediate effect. 537 * @proto: Protocol bitmap (or 0 to use decoder->type). 538 */ 539 static void img_ir_set_decoder(struct img_ir_priv *priv, 540 const struct img_ir_decoder *decoder, 541 u64 proto) 542 { 543 struct img_ir_priv_hw *hw = &priv->hw; 544 struct rc_dev *rdev = hw->rdev; 545 u32 ir_status, irq_en; 546 spin_lock_irq(&priv->lock); 547 548 /* 549 * First record that the protocol is being stopped so that the end timer 550 * isn't restarted while we're trying to stop it. 551 */ 552 hw->stopping = true; 553 554 /* 555 * Release the lock to stop the end timer, since the end timer handler 556 * acquires the lock and we don't want to deadlock waiting for it. 557 */ 558 spin_unlock_irq(&priv->lock); 559 del_timer_sync(&hw->end_timer); 560 del_timer_sync(&hw->suspend_timer); 561 spin_lock_irq(&priv->lock); 562 563 hw->stopping = false; 564 565 /* switch off and disable interrupts */ 566 img_ir_write(priv, IMG_IR_CONTROL, 0); 567 irq_en = img_ir_read(priv, IMG_IR_IRQ_ENABLE); 568 img_ir_write(priv, IMG_IR_IRQ_ENABLE, irq_en & IMG_IR_IRQ_EDGE); 569 img_ir_write(priv, IMG_IR_IRQ_CLEAR, IMG_IR_IRQ_ALL & ~IMG_IR_IRQ_EDGE); 570 571 /* ack any data already detected */ 572 ir_status = img_ir_read(priv, IMG_IR_STATUS); 573 if (ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2)) { 574 ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2); 575 img_ir_write(priv, IMG_IR_STATUS, ir_status); 576 } 577 578 /* always read data to clear buffer if IR wakes the device */ 579 img_ir_read(priv, IMG_IR_DATA_LW); 580 img_ir_read(priv, IMG_IR_DATA_UP); 581 582 /* switch back to normal mode */ 583 hw->mode = IMG_IR_M_NORMAL; 584 585 /* clear the wakeup scancode filter */ 586 rdev->scancode_wakeup_filter.data = 0; 587 rdev->scancode_wakeup_filter.mask = 0; 588 rdev->wakeup_protocol = RC_PROTO_UNKNOWN; 589 590 /* clear raw filters */ 591 _img_ir_set_filter(priv, NULL); 592 _img_ir_set_wake_filter(priv, NULL); 593 594 /* clear the enabled protocols */ 595 hw->enabled_protocols = 0; 596 597 /* switch decoder */ 598 hw->decoder = decoder; 599 if (!decoder) 600 goto unlock; 601 602 /* set the enabled protocols */ 603 if (!proto) 604 proto = decoder->type; 605 hw->enabled_protocols = proto; 606 607 /* write the new timings */ 608 img_ir_decoder_convert(decoder, &hw->reg_timings, hw->clk_hz); 609 img_ir_write_timings(priv, &hw->reg_timings.timings, RC_FILTER_NORMAL); 610 611 /* set up and enable */ 612 img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl); 613 614 615 unlock: 616 spin_unlock_irq(&priv->lock); 617 } 618 619 /** 620 * img_ir_decoder_compatable() - Find whether a decoder will work with a device. 621 * @priv: IR private data. 622 * @dec: Decoder to check. 623 * 624 * Returns: true if @dec is compatible with the device @priv refers to. 625 */ 626 static bool img_ir_decoder_compatible(struct img_ir_priv *priv, 627 const struct img_ir_decoder *dec) 628 { 629 unsigned int ct; 630 631 /* don't accept decoders using code types which aren't supported */ 632 ct = dec->control.code_type; 633 if (priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_BROKEN) 634 return false; 635 636 return true; 637 } 638 639 /** 640 * img_ir_allowed_protos() - Get allowed protocols from global decoder list. 641 * @priv: IR private data. 642 * 643 * Returns: Mask of protocols supported by the device @priv refers to. 644 */ 645 static u64 img_ir_allowed_protos(struct img_ir_priv *priv) 646 { 647 u64 protos = 0; 648 struct img_ir_decoder **decp; 649 650 for (decp = img_ir_decoders; *decp; ++decp) { 651 const struct img_ir_decoder *dec = *decp; 652 if (img_ir_decoder_compatible(priv, dec)) 653 protos |= dec->type; 654 } 655 return protos; 656 } 657 658 /* Callback for changing protocol using sysfs */ 659 static int img_ir_change_protocol(struct rc_dev *dev, u64 *ir_type) 660 { 661 struct img_ir_priv *priv = dev->priv; 662 struct img_ir_priv_hw *hw = &priv->hw; 663 struct rc_dev *rdev = hw->rdev; 664 struct img_ir_decoder **decp; 665 u64 wakeup_protocols; 666 667 if (!*ir_type) { 668 /* disable all protocols */ 669 img_ir_set_decoder(priv, NULL, 0); 670 goto success; 671 } 672 for (decp = img_ir_decoders; *decp; ++decp) { 673 const struct img_ir_decoder *dec = *decp; 674 if (!img_ir_decoder_compatible(priv, dec)) 675 continue; 676 if (*ir_type & dec->type) { 677 *ir_type &= dec->type; 678 img_ir_set_decoder(priv, dec, *ir_type); 679 goto success; 680 } 681 } 682 return -EINVAL; 683 684 success: 685 /* 686 * Only allow matching wakeup protocols for now, and only if filtering 687 * is supported. 688 */ 689 wakeup_protocols = *ir_type; 690 if (!hw->decoder || !hw->decoder->filter) 691 wakeup_protocols = 0; 692 rdev->allowed_wakeup_protocols = wakeup_protocols; 693 return 0; 694 } 695 696 /* Changes ir-core protocol device attribute */ 697 static void img_ir_set_protocol(struct img_ir_priv *priv, u64 proto) 698 { 699 struct rc_dev *rdev = priv->hw.rdev; 700 701 mutex_lock(&rdev->lock); 702 rdev->enabled_protocols = proto; 703 rdev->allowed_wakeup_protocols = proto; 704 mutex_unlock(&rdev->lock); 705 } 706 707 /* Set up IR decoders */ 708 static void img_ir_init_decoders(void) 709 { 710 struct img_ir_decoder **decp; 711 712 spin_lock(&img_ir_decoders_lock); 713 if (!img_ir_decoders_preprocessed) { 714 for (decp = img_ir_decoders; *decp; ++decp) 715 img_ir_decoder_preprocess(*decp); 716 img_ir_decoders_preprocessed = true; 717 } 718 spin_unlock(&img_ir_decoders_lock); 719 } 720 721 #ifdef CONFIG_PM_SLEEP 722 /** 723 * img_ir_enable_wake() - Switch to wake mode. 724 * @priv: IR private data. 725 * 726 * Returns: non-zero if the IR can wake the system. 727 */ 728 static int img_ir_enable_wake(struct img_ir_priv *priv) 729 { 730 struct img_ir_priv_hw *hw = &priv->hw; 731 int ret = 0; 732 733 spin_lock_irq(&priv->lock); 734 if (hw->flags & IMG_IR_F_WAKE) { 735 /* interrupt only on a match */ 736 hw->suspend_irqen = img_ir_read(priv, IMG_IR_IRQ_ENABLE); 737 img_ir_write(priv, IMG_IR_IRQ_ENABLE, IMG_IR_IRQ_DATA_MATCH); 738 img_ir_write_filter(priv, &hw->filters[RC_FILTER_WAKEUP]); 739 img_ir_write_timings(priv, &hw->reg_timings.timings, 740 RC_FILTER_WAKEUP); 741 hw->mode = IMG_IR_M_WAKE; 742 ret = 1; 743 } 744 spin_unlock_irq(&priv->lock); 745 return ret; 746 } 747 748 /** 749 * img_ir_disable_wake() - Switch out of wake mode. 750 * @priv: IR private data 751 * 752 * Returns: 1 if the hardware should be allowed to wake from a sleep state. 753 * 0 otherwise. 754 */ 755 static int img_ir_disable_wake(struct img_ir_priv *priv) 756 { 757 struct img_ir_priv_hw *hw = &priv->hw; 758 int ret = 0; 759 760 spin_lock_irq(&priv->lock); 761 if (hw->flags & IMG_IR_F_WAKE) { 762 /* restore normal filtering */ 763 if (hw->flags & IMG_IR_F_FILTER) { 764 img_ir_write(priv, IMG_IR_IRQ_ENABLE, 765 (hw->suspend_irqen & IMG_IR_IRQ_EDGE) | 766 IMG_IR_IRQ_DATA_MATCH); 767 img_ir_write_filter(priv, 768 &hw->filters[RC_FILTER_NORMAL]); 769 } else { 770 img_ir_write(priv, IMG_IR_IRQ_ENABLE, 771 (hw->suspend_irqen & IMG_IR_IRQ_EDGE) | 772 IMG_IR_IRQ_DATA_VALID | 773 IMG_IR_IRQ_DATA2_VALID); 774 img_ir_write_filter(priv, NULL); 775 } 776 img_ir_write_timings(priv, &hw->reg_timings.timings, 777 RC_FILTER_NORMAL); 778 hw->mode = IMG_IR_M_NORMAL; 779 ret = 1; 780 } 781 spin_unlock_irq(&priv->lock); 782 return ret; 783 } 784 #endif /* CONFIG_PM_SLEEP */ 785 786 /* lock must be held */ 787 static void img_ir_begin_repeat(struct img_ir_priv *priv) 788 { 789 struct img_ir_priv_hw *hw = &priv->hw; 790 if (hw->mode == IMG_IR_M_NORMAL) { 791 /* switch to repeat timings */ 792 img_ir_write(priv, IMG_IR_CONTROL, 0); 793 hw->mode = IMG_IR_M_REPEATING; 794 img_ir_write_timings(priv, &hw->reg_timings.rtimings, 795 RC_FILTER_NORMAL); 796 img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl); 797 } 798 } 799 800 /* lock must be held */ 801 static void img_ir_end_repeat(struct img_ir_priv *priv) 802 { 803 struct img_ir_priv_hw *hw = &priv->hw; 804 if (hw->mode == IMG_IR_M_REPEATING) { 805 /* switch to normal timings */ 806 img_ir_write(priv, IMG_IR_CONTROL, 0); 807 hw->mode = IMG_IR_M_NORMAL; 808 img_ir_write_timings(priv, &hw->reg_timings.timings, 809 RC_FILTER_NORMAL); 810 img_ir_write(priv, IMG_IR_CONTROL, hw->reg_timings.ctrl); 811 } 812 } 813 814 /* lock must be held */ 815 static void img_ir_handle_data(struct img_ir_priv *priv, u32 len, u64 raw) 816 { 817 struct img_ir_priv_hw *hw = &priv->hw; 818 const struct img_ir_decoder *dec = hw->decoder; 819 int ret = IMG_IR_SCANCODE; 820 struct img_ir_scancode_req request; 821 822 request.protocol = RC_PROTO_UNKNOWN; 823 request.toggle = 0; 824 825 if (dec->scancode) 826 ret = dec->scancode(len, raw, hw->enabled_protocols, &request); 827 else if (len >= 32) 828 request.scancode = (u32)raw; 829 else if (len < 32) 830 request.scancode = (u32)raw & ((1 << len)-1); 831 dev_dbg(priv->dev, "data (%u bits) = %#llx\n", 832 len, (unsigned long long)raw); 833 if (ret == IMG_IR_SCANCODE) { 834 dev_dbg(priv->dev, "decoded scan code %#x, toggle %u\n", 835 request.scancode, request.toggle); 836 rc_keydown(hw->rdev, request.protocol, request.scancode, 837 request.toggle); 838 img_ir_end_repeat(priv); 839 } else if (ret == IMG_IR_REPEATCODE) { 840 if (hw->mode == IMG_IR_M_REPEATING) { 841 dev_dbg(priv->dev, "decoded repeat code\n"); 842 rc_repeat(hw->rdev); 843 } else { 844 dev_dbg(priv->dev, "decoded unexpected repeat code, ignoring\n"); 845 } 846 } else { 847 dev_dbg(priv->dev, "decode failed (%d)\n", ret); 848 return; 849 } 850 851 852 /* we mustn't update the end timer while trying to stop it */ 853 if (dec->repeat && !hw->stopping) { 854 unsigned long interval; 855 856 img_ir_begin_repeat(priv); 857 858 /* update timer, but allowing for 1/8th tolerance */ 859 interval = dec->repeat + (dec->repeat >> 3); 860 mod_timer(&hw->end_timer, 861 jiffies + msecs_to_jiffies(interval)); 862 } 863 } 864 865 /* timer function to end waiting for repeat. */ 866 static void img_ir_end_timer(struct timer_list *t) 867 { 868 struct img_ir_priv *priv = from_timer(priv, t, hw.end_timer); 869 870 spin_lock_irq(&priv->lock); 871 img_ir_end_repeat(priv); 872 spin_unlock_irq(&priv->lock); 873 } 874 875 /* 876 * Timer function to re-enable the current protocol after it had been 877 * cleared when invalid interrupts were generated due to a quirk in the 878 * img-ir decoder. 879 */ 880 static void img_ir_suspend_timer(struct timer_list *t) 881 { 882 struct img_ir_priv *priv = from_timer(priv, t, hw.suspend_timer); 883 884 spin_lock_irq(&priv->lock); 885 /* 886 * Don't overwrite enabled valid/match IRQs if they have already been 887 * changed by e.g. a filter change. 888 */ 889 if ((priv->hw.quirk_suspend_irq & IMG_IR_IRQ_EDGE) == 890 img_ir_read(priv, IMG_IR_IRQ_ENABLE)) 891 img_ir_write(priv, IMG_IR_IRQ_ENABLE, 892 priv->hw.quirk_suspend_irq); 893 /* enable */ 894 img_ir_write(priv, IMG_IR_CONTROL, priv->hw.reg_timings.ctrl); 895 spin_unlock_irq(&priv->lock); 896 } 897 898 #ifdef CONFIG_COMMON_CLK 899 static void img_ir_change_frequency(struct img_ir_priv *priv, 900 struct clk_notifier_data *change) 901 { 902 struct img_ir_priv_hw *hw = &priv->hw; 903 904 dev_dbg(priv->dev, "clk changed %lu HZ -> %lu HZ\n", 905 change->old_rate, change->new_rate); 906 907 spin_lock_irq(&priv->lock); 908 if (hw->clk_hz == change->new_rate) 909 goto unlock; 910 hw->clk_hz = change->new_rate; 911 /* refresh current timings */ 912 if (hw->decoder) { 913 img_ir_decoder_convert(hw->decoder, &hw->reg_timings, 914 hw->clk_hz); 915 switch (hw->mode) { 916 case IMG_IR_M_NORMAL: 917 img_ir_write_timings(priv, &hw->reg_timings.timings, 918 RC_FILTER_NORMAL); 919 break; 920 case IMG_IR_M_REPEATING: 921 img_ir_write_timings(priv, &hw->reg_timings.rtimings, 922 RC_FILTER_NORMAL); 923 break; 924 #ifdef CONFIG_PM_SLEEP 925 case IMG_IR_M_WAKE: 926 img_ir_write_timings(priv, &hw->reg_timings.timings, 927 RC_FILTER_WAKEUP); 928 break; 929 #endif 930 } 931 } 932 unlock: 933 spin_unlock_irq(&priv->lock); 934 } 935 936 static int img_ir_clk_notify(struct notifier_block *self, unsigned long action, 937 void *data) 938 { 939 struct img_ir_priv *priv = container_of(self, struct img_ir_priv, 940 hw.clk_nb); 941 switch (action) { 942 case POST_RATE_CHANGE: 943 img_ir_change_frequency(priv, data); 944 break; 945 default: 946 break; 947 } 948 return NOTIFY_OK; 949 } 950 #endif /* CONFIG_COMMON_CLK */ 951 952 /* called with priv->lock held */ 953 void img_ir_isr_hw(struct img_ir_priv *priv, u32 irq_status) 954 { 955 struct img_ir_priv_hw *hw = &priv->hw; 956 u32 ir_status, len, lw, up; 957 unsigned int ct; 958 959 /* use the current decoder */ 960 if (!hw->decoder) 961 return; 962 963 ct = hw->decoder->control.code_type; 964 965 ir_status = img_ir_read(priv, IMG_IR_STATUS); 966 if (!(ir_status & (IMG_IR_RXDVAL | IMG_IR_RXDVALD2))) { 967 if (!(priv->hw.ct_quirks[ct] & IMG_IR_QUIRK_CODE_IRQ) || 968 hw->stopping) 969 return; 970 /* 971 * The below functionality is added as a work around to stop 972 * multiple Interrupts generated when an incomplete IR code is 973 * received by the decoder. 974 * The decoder generates rapid interrupts without actually 975 * having received any new data. After a single interrupt it's 976 * expected to clear up, but instead multiple interrupts are 977 * rapidly generated. only way to get out of this loop is to 978 * reset the control register after a short delay. 979 */ 980 img_ir_write(priv, IMG_IR_CONTROL, 0); 981 hw->quirk_suspend_irq = img_ir_read(priv, IMG_IR_IRQ_ENABLE); 982 img_ir_write(priv, IMG_IR_IRQ_ENABLE, 983 hw->quirk_suspend_irq & IMG_IR_IRQ_EDGE); 984 985 /* Timer activated to re-enable the protocol. */ 986 mod_timer(&hw->suspend_timer, 987 jiffies + msecs_to_jiffies(5)); 988 return; 989 } 990 ir_status &= ~(IMG_IR_RXDVAL | IMG_IR_RXDVALD2); 991 img_ir_write(priv, IMG_IR_STATUS, ir_status); 992 993 len = (ir_status & IMG_IR_RXDLEN) >> IMG_IR_RXDLEN_SHIFT; 994 /* some versions report wrong length for certain code types */ 995 if (hw->ct_quirks[ct] & IMG_IR_QUIRK_CODE_LEN_INCR) 996 ++len; 997 998 lw = img_ir_read(priv, IMG_IR_DATA_LW); 999 up = img_ir_read(priv, IMG_IR_DATA_UP); 1000 img_ir_handle_data(priv, len, (u64)up << 32 | lw); 1001 } 1002 1003 void img_ir_setup_hw(struct img_ir_priv *priv) 1004 { 1005 struct img_ir_decoder **decp; 1006 1007 if (!priv->hw.rdev) 1008 return; 1009 1010 /* Use the first available decoder (or disable stuff if NULL) */ 1011 for (decp = img_ir_decoders; *decp; ++decp) { 1012 const struct img_ir_decoder *dec = *decp; 1013 if (img_ir_decoder_compatible(priv, dec)) { 1014 img_ir_set_protocol(priv, dec->type); 1015 img_ir_set_decoder(priv, dec, 0); 1016 return; 1017 } 1018 } 1019 img_ir_set_decoder(priv, NULL, 0); 1020 } 1021 1022 /** 1023 * img_ir_probe_hw_caps() - Probe capabilities of the hardware. 1024 * @priv: IR private data. 1025 */ 1026 static void img_ir_probe_hw_caps(struct img_ir_priv *priv) 1027 { 1028 struct img_ir_priv_hw *hw = &priv->hw; 1029 /* 1030 * When a version of the block becomes available without these quirks, 1031 * they'll have to depend on the core revision. 1032 */ 1033 hw->ct_quirks[IMG_IR_CODETYPE_PULSELEN] 1034 |= IMG_IR_QUIRK_CODE_LEN_INCR; 1035 hw->ct_quirks[IMG_IR_CODETYPE_BIPHASE] 1036 |= IMG_IR_QUIRK_CODE_IRQ; 1037 hw->ct_quirks[IMG_IR_CODETYPE_2BITPULSEPOS] 1038 |= IMG_IR_QUIRK_CODE_BROKEN; 1039 } 1040 1041 int img_ir_probe_hw(struct img_ir_priv *priv) 1042 { 1043 struct img_ir_priv_hw *hw = &priv->hw; 1044 struct rc_dev *rdev; 1045 int error; 1046 1047 /* Ensure hardware decoders have been preprocessed */ 1048 img_ir_init_decoders(); 1049 1050 /* Probe hardware capabilities */ 1051 img_ir_probe_hw_caps(priv); 1052 1053 /* Set up the end timer */ 1054 timer_setup(&hw->end_timer, img_ir_end_timer, 0); 1055 timer_setup(&hw->suspend_timer, img_ir_suspend_timer, 0); 1056 1057 /* Register a clock notifier */ 1058 if (!IS_ERR(priv->clk)) { 1059 hw->clk_hz = clk_get_rate(priv->clk); 1060 #ifdef CONFIG_COMMON_CLK 1061 hw->clk_nb.notifier_call = img_ir_clk_notify; 1062 error = clk_notifier_register(priv->clk, &hw->clk_nb); 1063 if (error) 1064 dev_warn(priv->dev, 1065 "failed to register clock notifier\n"); 1066 #endif 1067 } else { 1068 hw->clk_hz = 32768; 1069 } 1070 1071 /* Allocate hardware decoder */ 1072 hw->rdev = rdev = rc_allocate_device(RC_DRIVER_SCANCODE); 1073 if (!rdev) { 1074 dev_err(priv->dev, "cannot allocate input device\n"); 1075 error = -ENOMEM; 1076 goto err_alloc_rc; 1077 } 1078 rdev->priv = priv; 1079 rdev->map_name = RC_MAP_EMPTY; 1080 rdev->allowed_protocols = img_ir_allowed_protos(priv); 1081 rdev->device_name = "IMG Infrared Decoder"; 1082 rdev->s_filter = img_ir_set_normal_filter; 1083 rdev->s_wakeup_filter = img_ir_set_wakeup_filter; 1084 1085 /* Register hardware decoder */ 1086 error = rc_register_device(rdev); 1087 if (error) { 1088 dev_err(priv->dev, "failed to register IR input device\n"); 1089 goto err_register_rc; 1090 } 1091 1092 /* 1093 * Set this after rc_register_device as no protocols have been 1094 * registered yet. 1095 */ 1096 rdev->change_protocol = img_ir_change_protocol; 1097 1098 device_init_wakeup(priv->dev, 1); 1099 1100 return 0; 1101 1102 err_register_rc: 1103 img_ir_set_decoder(priv, NULL, 0); 1104 hw->rdev = NULL; 1105 rc_free_device(rdev); 1106 err_alloc_rc: 1107 #ifdef CONFIG_COMMON_CLK 1108 if (!IS_ERR(priv->clk)) 1109 clk_notifier_unregister(priv->clk, &hw->clk_nb); 1110 #endif 1111 return error; 1112 } 1113 1114 void img_ir_remove_hw(struct img_ir_priv *priv) 1115 { 1116 struct img_ir_priv_hw *hw = &priv->hw; 1117 struct rc_dev *rdev = hw->rdev; 1118 if (!rdev) 1119 return; 1120 img_ir_set_decoder(priv, NULL, 0); 1121 hw->rdev = NULL; 1122 rc_unregister_device(rdev); 1123 #ifdef CONFIG_COMMON_CLK 1124 if (!IS_ERR(priv->clk)) 1125 clk_notifier_unregister(priv->clk, &hw->clk_nb); 1126 #endif 1127 } 1128 1129 #ifdef CONFIG_PM_SLEEP 1130 int img_ir_suspend(struct device *dev) 1131 { 1132 struct img_ir_priv *priv = dev_get_drvdata(dev); 1133 1134 if (device_may_wakeup(dev) && img_ir_enable_wake(priv)) 1135 enable_irq_wake(priv->irq); 1136 return 0; 1137 } 1138 1139 int img_ir_resume(struct device *dev) 1140 { 1141 struct img_ir_priv *priv = dev_get_drvdata(dev); 1142 1143 if (device_may_wakeup(dev) && img_ir_disable_wake(priv)) 1144 disable_irq_wake(priv->irq); 1145 return 0; 1146 } 1147 #endif /* CONFIG_PM_SLEEP */ 1148