1 /* 2 * driver for ENE KB3926 B/C/D/E/F CIR (pnp id: ENE0XXX) 3 * 4 * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 19 * USA 20 * 21 * Special thanks to: 22 * Sami R. <maesesami@gmail.com> for lot of help in debugging and therefore 23 * bringing to life support for transmission & learning mode. 24 * 25 * Charlie Andrews <charliethepilot@googlemail.com> for lots of help in 26 * bringing up the support of new firmware buffer that is popular 27 * on latest notebooks 28 * 29 * ENE for partial device documentation 30 * 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pnp.h> 38 #include <linux/io.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/slab.h> 42 #include <media/rc-core.h> 43 #include "ene_ir.h" 44 45 static int sample_period; 46 static bool learning_mode_force; 47 static int debug; 48 static bool txsim; 49 50 static void ene_set_reg_addr(struct ene_device *dev, u16 reg) 51 { 52 outb(reg >> 8, dev->hw_io + ENE_ADDR_HI); 53 outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO); 54 } 55 56 /* read a hardware register */ 57 static u8 ene_read_reg(struct ene_device *dev, u16 reg) 58 { 59 u8 retval; 60 ene_set_reg_addr(dev, reg); 61 retval = inb(dev->hw_io + ENE_IO); 62 dbg_regs("reg %04x == %02x", reg, retval); 63 return retval; 64 } 65 66 /* write a hardware register */ 67 static void ene_write_reg(struct ene_device *dev, u16 reg, u8 value) 68 { 69 dbg_regs("reg %04x <- %02x", reg, value); 70 ene_set_reg_addr(dev, reg); 71 outb(value, dev->hw_io + ENE_IO); 72 } 73 74 /* Set bits in hardware register */ 75 static void ene_set_reg_mask(struct ene_device *dev, u16 reg, u8 mask) 76 { 77 dbg_regs("reg %04x |= %02x", reg, mask); 78 ene_set_reg_addr(dev, reg); 79 outb(inb(dev->hw_io + ENE_IO) | mask, dev->hw_io + ENE_IO); 80 } 81 82 /* Clear bits in hardware register */ 83 static void ene_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask) 84 { 85 dbg_regs("reg %04x &= ~%02x ", reg, mask); 86 ene_set_reg_addr(dev, reg); 87 outb(inb(dev->hw_io + ENE_IO) & ~mask, dev->hw_io + ENE_IO); 88 } 89 90 /* A helper to set/clear a bit in register according to boolean variable */ 91 static void ene_set_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask, 92 bool set) 93 { 94 if (set) 95 ene_set_reg_mask(dev, reg, mask); 96 else 97 ene_clear_reg_mask(dev, reg, mask); 98 } 99 100 /* detect hardware features */ 101 static int ene_hw_detect(struct ene_device *dev) 102 { 103 u8 chip_major, chip_minor; 104 u8 hw_revision, old_ver; 105 u8 fw_reg2, fw_reg1; 106 107 ene_clear_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD); 108 chip_major = ene_read_reg(dev, ENE_ECVER_MAJOR); 109 chip_minor = ene_read_reg(dev, ENE_ECVER_MINOR); 110 ene_set_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD); 111 112 hw_revision = ene_read_reg(dev, ENE_ECHV); 113 old_ver = ene_read_reg(dev, ENE_HW_VER_OLD); 114 115 dev->pll_freq = (ene_read_reg(dev, ENE_PLLFRH) << 4) + 116 (ene_read_reg(dev, ENE_PLLFRL) >> 4); 117 118 if (sample_period != ENE_DEFAULT_SAMPLE_PERIOD) 119 dev->rx_period_adjust = 120 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 2 : 4; 121 122 if (hw_revision == 0xFF) { 123 pr_warn("device seems to be disabled\n"); 124 pr_warn("send a mail to lirc-list@lists.sourceforge.net\n"); 125 pr_warn("please attach output of acpidump and dmidecode\n"); 126 return -ENODEV; 127 } 128 129 pr_notice("chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n", 130 chip_major, chip_minor, old_ver, hw_revision); 131 132 pr_notice("PLL freq = %d\n", dev->pll_freq); 133 134 if (chip_major == 0x33) { 135 pr_warn("chips 0x33xx aren't supported\n"); 136 return -ENODEV; 137 } 138 139 if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) { 140 dev->hw_revision = ENE_HW_C; 141 pr_notice("KB3926C detected\n"); 142 } else if (old_ver == 0x24 && hw_revision == 0xC0) { 143 dev->hw_revision = ENE_HW_B; 144 pr_notice("KB3926B detected\n"); 145 } else { 146 dev->hw_revision = ENE_HW_D; 147 pr_notice("KB3926D or higher detected\n"); 148 } 149 150 /* detect features hardware supports */ 151 if (dev->hw_revision < ENE_HW_C) 152 return 0; 153 154 fw_reg1 = ene_read_reg(dev, ENE_FW1); 155 fw_reg2 = ene_read_reg(dev, ENE_FW2); 156 157 pr_notice("Firmware regs: %02x %02x\n", fw_reg1, fw_reg2); 158 159 dev->hw_use_gpio_0a = !!(fw_reg2 & ENE_FW2_GP0A); 160 dev->hw_learning_and_tx_capable = !!(fw_reg2 & ENE_FW2_LEARNING); 161 dev->hw_extra_buffer = !!(fw_reg1 & ENE_FW1_HAS_EXTRA_BUF); 162 163 if (dev->hw_learning_and_tx_capable) 164 dev->hw_fan_input = !!(fw_reg2 & ENE_FW2_FAN_INPUT); 165 166 pr_notice("Hardware features:\n"); 167 168 if (dev->hw_learning_and_tx_capable) { 169 pr_notice("* Supports transmitting & learning mode\n"); 170 pr_notice(" This feature is rare and therefore,\n"); 171 pr_notice(" you are welcome to test it,\n"); 172 pr_notice(" and/or contact the author via:\n"); 173 pr_notice(" lirc-list@lists.sourceforge.net\n"); 174 pr_notice(" or maximlevitsky@gmail.com\n"); 175 176 pr_notice("* Uses GPIO %s for IR raw input\n", 177 dev->hw_use_gpio_0a ? "40" : "0A"); 178 179 if (dev->hw_fan_input) 180 pr_notice("* Uses unused fan feedback input as source of demodulated IR data\n"); 181 } 182 183 if (!dev->hw_fan_input) 184 pr_notice("* Uses GPIO %s for IR demodulated input\n", 185 dev->hw_use_gpio_0a ? "0A" : "40"); 186 187 if (dev->hw_extra_buffer) 188 pr_notice("* Uses new style input buffer\n"); 189 return 0; 190 } 191 192 /* Read properities of hw sample buffer */ 193 static void ene_rx_setup_hw_buffer(struct ene_device *dev) 194 { 195 u16 tmp; 196 197 ene_rx_read_hw_pointer(dev); 198 dev->r_pointer = dev->w_pointer; 199 200 if (!dev->hw_extra_buffer) { 201 dev->buffer_len = ENE_FW_PACKET_SIZE * 2; 202 return; 203 } 204 205 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER); 206 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER+1) << 8; 207 dev->extra_buf1_address = tmp; 208 209 dev->extra_buf1_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 2); 210 211 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 3); 212 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 4) << 8; 213 dev->extra_buf2_address = tmp; 214 215 dev->extra_buf2_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 5); 216 217 dev->buffer_len = dev->extra_buf1_len + dev->extra_buf2_len + 8; 218 219 pr_notice("Hardware uses 2 extended buffers:\n"); 220 pr_notice(" 0x%04x - len : %d\n", 221 dev->extra_buf1_address, dev->extra_buf1_len); 222 pr_notice(" 0x%04x - len : %d\n", 223 dev->extra_buf2_address, dev->extra_buf2_len); 224 225 pr_notice("Total buffer len = %d\n", dev->buffer_len); 226 227 if (dev->buffer_len > 64 || dev->buffer_len < 16) 228 goto error; 229 230 if (dev->extra_buf1_address > 0xFBFC || 231 dev->extra_buf1_address < 0xEC00) 232 goto error; 233 234 if (dev->extra_buf2_address > 0xFBFC || 235 dev->extra_buf2_address < 0xEC00) 236 goto error; 237 238 if (dev->r_pointer > dev->buffer_len) 239 goto error; 240 241 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 242 return; 243 error: 244 pr_warn("Error validating extra buffers, device probably won't work\n"); 245 dev->hw_extra_buffer = false; 246 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 247 } 248 249 250 /* Restore the pointers to extra buffers - to make module reload work*/ 251 static void ene_rx_restore_hw_buffer(struct ene_device *dev) 252 { 253 if (!dev->hw_extra_buffer) 254 return; 255 256 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 0, 257 dev->extra_buf1_address & 0xFF); 258 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 1, 259 dev->extra_buf1_address >> 8); 260 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 2, dev->extra_buf1_len); 261 262 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 3, 263 dev->extra_buf2_address & 0xFF); 264 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 4, 265 dev->extra_buf2_address >> 8); 266 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 5, 267 dev->extra_buf2_len); 268 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 269 } 270 271 /* Read hardware write pointer */ 272 static void ene_rx_read_hw_pointer(struct ene_device *dev) 273 { 274 if (dev->hw_extra_buffer) 275 dev->w_pointer = ene_read_reg(dev, ENE_FW_RX_POINTER); 276 else 277 dev->w_pointer = ene_read_reg(dev, ENE_FW2) 278 & ENE_FW2_BUF_WPTR ? 0 : ENE_FW_PACKET_SIZE; 279 280 dbg_verbose("RB: HW write pointer: %02x, driver read pointer: %02x", 281 dev->w_pointer, dev->r_pointer); 282 } 283 284 /* Gets address of next sample from HW ring buffer */ 285 static int ene_rx_get_sample_reg(struct ene_device *dev) 286 { 287 int r_pointer; 288 289 if (dev->r_pointer == dev->w_pointer) { 290 dbg_verbose("RB: hit end, try update w_pointer"); 291 ene_rx_read_hw_pointer(dev); 292 } 293 294 if (dev->r_pointer == dev->w_pointer) { 295 dbg_verbose("RB: end of data at %d", dev->r_pointer); 296 return 0; 297 } 298 299 dbg_verbose("RB: reading at offset %d", dev->r_pointer); 300 r_pointer = dev->r_pointer; 301 302 dev->r_pointer++; 303 if (dev->r_pointer == dev->buffer_len) 304 dev->r_pointer = 0; 305 306 dbg_verbose("RB: next read will be from offset %d", dev->r_pointer); 307 308 if (r_pointer < 8) { 309 dbg_verbose("RB: read at main buffer at %d", r_pointer); 310 return ENE_FW_SAMPLE_BUFFER + r_pointer; 311 } 312 313 r_pointer -= 8; 314 315 if (r_pointer < dev->extra_buf1_len) { 316 dbg_verbose("RB: read at 1st extra buffer at %d", r_pointer); 317 return dev->extra_buf1_address + r_pointer; 318 } 319 320 r_pointer -= dev->extra_buf1_len; 321 322 if (r_pointer < dev->extra_buf2_len) { 323 dbg_verbose("RB: read at 2nd extra buffer at %d", r_pointer); 324 return dev->extra_buf2_address + r_pointer; 325 } 326 327 dbg("attempt to read beyond ring buffer end"); 328 return 0; 329 } 330 331 /* Sense current received carrier */ 332 static void ene_rx_sense_carrier(struct ene_device *dev) 333 { 334 DEFINE_IR_RAW_EVENT(ev); 335 336 int carrier, duty_cycle; 337 int period = ene_read_reg(dev, ENE_CIRCAR_PRD); 338 int hperiod = ene_read_reg(dev, ENE_CIRCAR_HPRD); 339 340 if (!(period & ENE_CIRCAR_PRD_VALID)) 341 return; 342 343 period &= ~ENE_CIRCAR_PRD_VALID; 344 345 if (!period) 346 return; 347 348 dbg("RX: hardware carrier period = %02x", period); 349 dbg("RX: hardware carrier pulse period = %02x", hperiod); 350 351 carrier = 2000000 / period; 352 duty_cycle = (hperiod * 100) / period; 353 dbg("RX: sensed carrier = %d Hz, duty cycle %d%%", 354 carrier, duty_cycle); 355 if (dev->carrier_detect_enabled) { 356 ev.carrier_report = true; 357 ev.carrier = carrier; 358 ev.duty_cycle = duty_cycle; 359 ir_raw_event_store(dev->rdev, &ev); 360 } 361 } 362 363 /* this enables/disables the CIR RX engine */ 364 static void ene_rx_enable_cir_engine(struct ene_device *dev, bool enable) 365 { 366 ene_set_clear_reg_mask(dev, ENE_CIRCFG, 367 ENE_CIRCFG_RX_EN | ENE_CIRCFG_RX_IRQ, enable); 368 } 369 370 /* this selects input for CIR engine. Ether GPIO 0A or GPIO40*/ 371 static void ene_rx_select_input(struct ene_device *dev, bool gpio_0a) 372 { 373 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_GPIO0A, gpio_0a); 374 } 375 376 /* 377 * this enables alternative input via fan tachometer sensor and bypasses 378 * the hw CIR engine 379 */ 380 static void ene_rx_enable_fan_input(struct ene_device *dev, bool enable) 381 { 382 if (!dev->hw_fan_input) 383 return; 384 385 if (!enable) 386 ene_write_reg(dev, ENE_FAN_AS_IN1, 0); 387 else { 388 ene_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN); 389 ene_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN); 390 } 391 } 392 393 /* setup the receiver for RX*/ 394 static void ene_rx_setup(struct ene_device *dev) 395 { 396 bool learning_mode = dev->learning_mode_enabled || 397 dev->carrier_detect_enabled; 398 int sample_period_adjust = 0; 399 400 dbg("RX: setup receiver, learning mode = %d", learning_mode); 401 402 403 /* This selects RLC input and clears CFG2 settings */ 404 ene_write_reg(dev, ENE_CIRCFG2, 0x00); 405 406 /* set sample period*/ 407 if (sample_period == ENE_DEFAULT_SAMPLE_PERIOD) 408 sample_period_adjust = 409 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 1 : 2; 410 411 ene_write_reg(dev, ENE_CIRRLC_CFG, 412 (sample_period + sample_period_adjust) | 413 ENE_CIRRLC_CFG_OVERFLOW); 414 /* revB doesn't support inputs */ 415 if (dev->hw_revision < ENE_HW_C) 416 goto select_timeout; 417 418 if (learning_mode) { 419 420 WARN_ON(!dev->hw_learning_and_tx_capable); 421 422 /* Enable the opposite of the normal input 423 That means that if GPIO40 is normally used, use GPIO0A 424 and vice versa. 425 This input will carry non demodulated 426 signal, and we will tell the hw to demodulate it itself */ 427 ene_rx_select_input(dev, !dev->hw_use_gpio_0a); 428 dev->rx_fan_input_inuse = false; 429 430 /* Enable carrier demodulation */ 431 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD); 432 433 /* Enable carrier detection */ 434 ene_write_reg(dev, ENE_CIRCAR_PULS, 0x63); 435 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT, 436 dev->carrier_detect_enabled || debug); 437 } else { 438 if (dev->hw_fan_input) 439 dev->rx_fan_input_inuse = true; 440 else 441 ene_rx_select_input(dev, dev->hw_use_gpio_0a); 442 443 /* Disable carrier detection & demodulation */ 444 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD); 445 ene_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT); 446 } 447 448 select_timeout: 449 if (dev->rx_fan_input_inuse) { 450 dev->rdev->rx_resolution = US_TO_NS(ENE_FW_SAMPLE_PERIOD_FAN); 451 452 /* Fan input doesn't support timeouts, it just ends the 453 input with a maximum sample */ 454 dev->rdev->min_timeout = dev->rdev->max_timeout = 455 US_TO_NS(ENE_FW_SMPL_BUF_FAN_MSK * 456 ENE_FW_SAMPLE_PERIOD_FAN); 457 } else { 458 dev->rdev->rx_resolution = US_TO_NS(sample_period); 459 460 /* Theoreticly timeout is unlimited, but we cap it 461 * because it was seen that on one device, it 462 * would stop sending spaces after around 250 msec. 463 * Besides, this is close to 2^32 anyway and timeout is u32. 464 */ 465 dev->rdev->min_timeout = US_TO_NS(127 * sample_period); 466 dev->rdev->max_timeout = US_TO_NS(200000); 467 } 468 469 if (dev->hw_learning_and_tx_capable) 470 dev->rdev->tx_resolution = US_TO_NS(sample_period); 471 472 if (dev->rdev->timeout > dev->rdev->max_timeout) 473 dev->rdev->timeout = dev->rdev->max_timeout; 474 if (dev->rdev->timeout < dev->rdev->min_timeout) 475 dev->rdev->timeout = dev->rdev->min_timeout; 476 } 477 478 /* Enable the device for receive */ 479 static void ene_rx_enable_hw(struct ene_device *dev) 480 { 481 u8 reg_value; 482 483 /* Enable system interrupt */ 484 if (dev->hw_revision < ENE_HW_C) { 485 ene_write_reg(dev, ENEB_IRQ, dev->irq << 1); 486 ene_write_reg(dev, ENEB_IRQ_UNK1, 0x01); 487 } else { 488 reg_value = ene_read_reg(dev, ENE_IRQ) & 0xF0; 489 reg_value |= ENE_IRQ_UNK_EN; 490 reg_value &= ~ENE_IRQ_STATUS; 491 reg_value |= (dev->irq & ENE_IRQ_MASK); 492 ene_write_reg(dev, ENE_IRQ, reg_value); 493 } 494 495 /* Enable inputs */ 496 ene_rx_enable_fan_input(dev, dev->rx_fan_input_inuse); 497 ene_rx_enable_cir_engine(dev, !dev->rx_fan_input_inuse); 498 499 /* ack any pending irqs - just in case */ 500 ene_irq_status(dev); 501 502 /* enable firmware bits */ 503 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ); 504 505 /* enter idle mode */ 506 ir_raw_event_set_idle(dev->rdev, true); 507 } 508 509 /* Enable the device for receive - wrapper to track the state*/ 510 static void ene_rx_enable(struct ene_device *dev) 511 { 512 ene_rx_enable_hw(dev); 513 dev->rx_enabled = true; 514 } 515 516 /* Disable the device receiver */ 517 static void ene_rx_disable_hw(struct ene_device *dev) 518 { 519 /* disable inputs */ 520 ene_rx_enable_cir_engine(dev, false); 521 ene_rx_enable_fan_input(dev, false); 522 523 /* disable hardware IRQ and firmware flag */ 524 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ); 525 ir_raw_event_set_idle(dev->rdev, true); 526 } 527 528 /* Disable the device receiver - wrapper to track the state */ 529 static void ene_rx_disable(struct ene_device *dev) 530 { 531 ene_rx_disable_hw(dev); 532 dev->rx_enabled = false; 533 } 534 535 /* This resets the receiver. Useful to stop stream of spaces at end of 536 * transmission 537 */ 538 static void ene_rx_reset(struct ene_device *dev) 539 { 540 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN); 541 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN); 542 } 543 544 /* Set up the TX carrier frequency and duty cycle */ 545 static void ene_tx_set_carrier(struct ene_device *dev) 546 { 547 u8 tx_puls_width; 548 unsigned long flags; 549 550 spin_lock_irqsave(&dev->hw_lock, flags); 551 552 ene_set_clear_reg_mask(dev, ENE_CIRCFG, 553 ENE_CIRCFG_TX_CARR, dev->tx_period > 0); 554 555 if (!dev->tx_period) 556 goto unlock; 557 558 BUG_ON(dev->tx_duty_cycle >= 100 || dev->tx_duty_cycle <= 0); 559 560 tx_puls_width = dev->tx_period / (100 / dev->tx_duty_cycle); 561 562 if (!tx_puls_width) 563 tx_puls_width = 1; 564 565 dbg("TX: pulse distance = %d * 500 ns", dev->tx_period); 566 dbg("TX: pulse width = %d * 500 ns", tx_puls_width); 567 568 ene_write_reg(dev, ENE_CIRMOD_PRD, dev->tx_period | ENE_CIRMOD_PRD_POL); 569 ene_write_reg(dev, ENE_CIRMOD_HPRD, tx_puls_width); 570 unlock: 571 spin_unlock_irqrestore(&dev->hw_lock, flags); 572 } 573 574 /* Enable/disable transmitters */ 575 static void ene_tx_set_transmitters(struct ene_device *dev) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&dev->hw_lock, flags); 580 ene_set_clear_reg_mask(dev, ENE_GPIOFS8, ENE_GPIOFS8_GPIO41, 581 !!(dev->transmitter_mask & 0x01)); 582 ene_set_clear_reg_mask(dev, ENE_GPIOFS1, ENE_GPIOFS1_GPIO0D, 583 !!(dev->transmitter_mask & 0x02)); 584 spin_unlock_irqrestore(&dev->hw_lock, flags); 585 } 586 587 /* prepare transmission */ 588 static void ene_tx_enable(struct ene_device *dev) 589 { 590 u8 conf1 = ene_read_reg(dev, ENE_CIRCFG); 591 u8 fwreg2 = ene_read_reg(dev, ENE_FW2); 592 593 dev->saved_conf1 = conf1; 594 595 /* Show information about currently connected transmitter jacks */ 596 if (fwreg2 & ENE_FW2_EMMITER1_CONN) 597 dbg("TX: Transmitter #1 is connected"); 598 599 if (fwreg2 & ENE_FW2_EMMITER2_CONN) 600 dbg("TX: Transmitter #2 is connected"); 601 602 if (!(fwreg2 & (ENE_FW2_EMMITER1_CONN | ENE_FW2_EMMITER2_CONN))) 603 pr_warn("TX: transmitter cable isn't connected!\n"); 604 605 /* disable receive on revc */ 606 if (dev->hw_revision == ENE_HW_C) 607 conf1 &= ~ENE_CIRCFG_RX_EN; 608 609 /* Enable TX engine */ 610 conf1 |= ENE_CIRCFG_TX_EN | ENE_CIRCFG_TX_IRQ; 611 ene_write_reg(dev, ENE_CIRCFG, conf1); 612 } 613 614 /* end transmission */ 615 static void ene_tx_disable(struct ene_device *dev) 616 { 617 ene_write_reg(dev, ENE_CIRCFG, dev->saved_conf1); 618 dev->tx_buffer = NULL; 619 } 620 621 622 /* TX one sample - must be called with dev->hw_lock*/ 623 static void ene_tx_sample(struct ene_device *dev) 624 { 625 u8 raw_tx; 626 u32 sample; 627 bool pulse = dev->tx_sample_pulse; 628 629 if (!dev->tx_buffer) { 630 pr_warn("TX: BUG: attempt to transmit NULL buffer\n"); 631 return; 632 } 633 634 /* Grab next TX sample */ 635 if (!dev->tx_sample) { 636 637 if (dev->tx_pos == dev->tx_len) { 638 if (!dev->tx_done) { 639 dbg("TX: no more data to send"); 640 dev->tx_done = true; 641 goto exit; 642 } else { 643 dbg("TX: last sample sent by hardware"); 644 ene_tx_disable(dev); 645 complete(&dev->tx_complete); 646 return; 647 } 648 } 649 650 sample = dev->tx_buffer[dev->tx_pos++]; 651 dev->tx_sample_pulse = !dev->tx_sample_pulse; 652 653 dev->tx_sample = DIV_ROUND_CLOSEST(sample, sample_period); 654 655 if (!dev->tx_sample) 656 dev->tx_sample = 1; 657 } 658 659 raw_tx = min(dev->tx_sample , (unsigned int)ENE_CIRRLC_OUT_MASK); 660 dev->tx_sample -= raw_tx; 661 662 dbg("TX: sample %8d (%s)", raw_tx * sample_period, 663 pulse ? "pulse" : "space"); 664 if (pulse) 665 raw_tx |= ENE_CIRRLC_OUT_PULSE; 666 667 ene_write_reg(dev, 668 dev->tx_reg ? ENE_CIRRLC_OUT1 : ENE_CIRRLC_OUT0, raw_tx); 669 670 dev->tx_reg = !dev->tx_reg; 671 exit: 672 /* simulate TX done interrupt */ 673 if (txsim) 674 mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500); 675 } 676 677 /* timer to simulate tx done interrupt */ 678 static void ene_tx_irqsim(unsigned long data) 679 { 680 struct ene_device *dev = (struct ene_device *)data; 681 unsigned long flags; 682 683 spin_lock_irqsave(&dev->hw_lock, flags); 684 ene_tx_sample(dev); 685 spin_unlock_irqrestore(&dev->hw_lock, flags); 686 } 687 688 689 /* read irq status and ack it */ 690 static int ene_irq_status(struct ene_device *dev) 691 { 692 u8 irq_status; 693 u8 fw_flags1, fw_flags2; 694 int retval = 0; 695 696 fw_flags2 = ene_read_reg(dev, ENE_FW2); 697 698 if (dev->hw_revision < ENE_HW_C) { 699 irq_status = ene_read_reg(dev, ENEB_IRQ_STATUS); 700 701 if (!(irq_status & ENEB_IRQ_STATUS_IR)) 702 return 0; 703 704 ene_clear_reg_mask(dev, ENEB_IRQ_STATUS, ENEB_IRQ_STATUS_IR); 705 return ENE_IRQ_RX; 706 } 707 708 irq_status = ene_read_reg(dev, ENE_IRQ); 709 if (!(irq_status & ENE_IRQ_STATUS)) 710 return 0; 711 712 /* original driver does that twice - a workaround ? */ 713 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS); 714 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS); 715 716 /* check RX interrupt */ 717 if (fw_flags2 & ENE_FW2_RXIRQ) { 718 retval |= ENE_IRQ_RX; 719 ene_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_RXIRQ); 720 } 721 722 /* check TX interrupt */ 723 fw_flags1 = ene_read_reg(dev, ENE_FW1); 724 if (fw_flags1 & ENE_FW1_TXIRQ) { 725 ene_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ); 726 retval |= ENE_IRQ_TX; 727 } 728 729 return retval; 730 } 731 732 /* interrupt handler */ 733 static irqreturn_t ene_isr(int irq, void *data) 734 { 735 u16 hw_value, reg; 736 int hw_sample, irq_status; 737 bool pulse; 738 unsigned long flags; 739 irqreturn_t retval = IRQ_NONE; 740 struct ene_device *dev = (struct ene_device *)data; 741 DEFINE_IR_RAW_EVENT(ev); 742 743 spin_lock_irqsave(&dev->hw_lock, flags); 744 745 dbg_verbose("ISR called"); 746 ene_rx_read_hw_pointer(dev); 747 irq_status = ene_irq_status(dev); 748 749 if (!irq_status) 750 goto unlock; 751 752 retval = IRQ_HANDLED; 753 754 if (irq_status & ENE_IRQ_TX) { 755 dbg_verbose("TX interrupt"); 756 if (!dev->hw_learning_and_tx_capable) { 757 dbg("TX interrupt on unsupported device!"); 758 goto unlock; 759 } 760 ene_tx_sample(dev); 761 } 762 763 if (!(irq_status & ENE_IRQ_RX)) 764 goto unlock; 765 766 dbg_verbose("RX interrupt"); 767 768 if (dev->hw_learning_and_tx_capable) 769 ene_rx_sense_carrier(dev); 770 771 /* On hardware that don't support extra buffer we need to trust 772 the interrupt and not track the read pointer */ 773 if (!dev->hw_extra_buffer) 774 dev->r_pointer = dev->w_pointer == 0 ? ENE_FW_PACKET_SIZE : 0; 775 776 while (1) { 777 778 reg = ene_rx_get_sample_reg(dev); 779 780 dbg_verbose("next sample to read at: %04x", reg); 781 if (!reg) 782 break; 783 784 hw_value = ene_read_reg(dev, reg); 785 786 if (dev->rx_fan_input_inuse) { 787 788 int offset = ENE_FW_SMPL_BUF_FAN - ENE_FW_SAMPLE_BUFFER; 789 790 /* read high part of the sample */ 791 hw_value |= ene_read_reg(dev, reg + offset) << 8; 792 pulse = hw_value & ENE_FW_SMPL_BUF_FAN_PLS; 793 794 /* clear space bit, and other unused bits */ 795 hw_value &= ENE_FW_SMPL_BUF_FAN_MSK; 796 hw_sample = hw_value * ENE_FW_SAMPLE_PERIOD_FAN; 797 798 } else { 799 pulse = !(hw_value & ENE_FW_SAMPLE_SPACE); 800 hw_value &= ~ENE_FW_SAMPLE_SPACE; 801 hw_sample = hw_value * sample_period; 802 803 if (dev->rx_period_adjust) { 804 hw_sample *= 100; 805 hw_sample /= (100 + dev->rx_period_adjust); 806 } 807 } 808 809 if (!dev->hw_extra_buffer && !hw_sample) { 810 dev->r_pointer = dev->w_pointer; 811 continue; 812 } 813 814 dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space"); 815 816 ev.duration = US_TO_NS(hw_sample); 817 ev.pulse = pulse; 818 ir_raw_event_store_with_filter(dev->rdev, &ev); 819 } 820 821 ir_raw_event_handle(dev->rdev); 822 unlock: 823 spin_unlock_irqrestore(&dev->hw_lock, flags); 824 return retval; 825 } 826 827 /* Initialize default settings */ 828 static void ene_setup_default_settings(struct ene_device *dev) 829 { 830 dev->tx_period = 32; 831 dev->tx_duty_cycle = 50; /*%*/ 832 dev->transmitter_mask = 0x03; 833 dev->learning_mode_enabled = learning_mode_force; 834 835 /* Set reasonable default timeout */ 836 dev->rdev->timeout = US_TO_NS(150000); 837 } 838 839 /* Upload all hardware settings at once. Used at load and resume time */ 840 static void ene_setup_hw_settings(struct ene_device *dev) 841 { 842 if (dev->hw_learning_and_tx_capable) { 843 ene_tx_set_carrier(dev); 844 ene_tx_set_transmitters(dev); 845 } 846 847 ene_rx_setup(dev); 848 } 849 850 /* outside interface: called on first open*/ 851 static int ene_open(struct rc_dev *rdev) 852 { 853 struct ene_device *dev = rdev->priv; 854 unsigned long flags; 855 856 spin_lock_irqsave(&dev->hw_lock, flags); 857 ene_rx_enable(dev); 858 spin_unlock_irqrestore(&dev->hw_lock, flags); 859 return 0; 860 } 861 862 /* outside interface: called on device close*/ 863 static void ene_close(struct rc_dev *rdev) 864 { 865 struct ene_device *dev = rdev->priv; 866 unsigned long flags; 867 spin_lock_irqsave(&dev->hw_lock, flags); 868 869 ene_rx_disable(dev); 870 spin_unlock_irqrestore(&dev->hw_lock, flags); 871 } 872 873 /* outside interface: set transmitter mask */ 874 static int ene_set_tx_mask(struct rc_dev *rdev, u32 tx_mask) 875 { 876 struct ene_device *dev = rdev->priv; 877 dbg("TX: attempt to set transmitter mask %02x", tx_mask); 878 879 /* invalid txmask */ 880 if (!tx_mask || tx_mask & ~0x03) { 881 dbg("TX: invalid mask"); 882 /* return count of transmitters */ 883 return 2; 884 } 885 886 dev->transmitter_mask = tx_mask; 887 ene_tx_set_transmitters(dev); 888 return 0; 889 } 890 891 /* outside interface : set tx carrier */ 892 static int ene_set_tx_carrier(struct rc_dev *rdev, u32 carrier) 893 { 894 struct ene_device *dev = rdev->priv; 895 u32 period; 896 897 dbg("TX: attempt to set tx carrier to %d kHz", carrier); 898 if (carrier == 0) 899 return -EINVAL; 900 901 period = 2000000 / carrier; 902 if (period && (period > ENE_CIRMOD_PRD_MAX || 903 period < ENE_CIRMOD_PRD_MIN)) { 904 905 dbg("TX: out of range %d-%d kHz carrier", 906 2000 / ENE_CIRMOD_PRD_MIN, 2000 / ENE_CIRMOD_PRD_MAX); 907 return -1; 908 } 909 910 dev->tx_period = period; 911 ene_tx_set_carrier(dev); 912 return 0; 913 } 914 915 /*outside interface : set tx duty cycle */ 916 static int ene_set_tx_duty_cycle(struct rc_dev *rdev, u32 duty_cycle) 917 { 918 struct ene_device *dev = rdev->priv; 919 dbg("TX: setting duty cycle to %d%%", duty_cycle); 920 dev->tx_duty_cycle = duty_cycle; 921 ene_tx_set_carrier(dev); 922 return 0; 923 } 924 925 /* outside interface: enable learning mode */ 926 static int ene_set_learning_mode(struct rc_dev *rdev, int enable) 927 { 928 struct ene_device *dev = rdev->priv; 929 unsigned long flags; 930 if (enable == dev->learning_mode_enabled) 931 return 0; 932 933 spin_lock_irqsave(&dev->hw_lock, flags); 934 dev->learning_mode_enabled = enable; 935 ene_rx_disable(dev); 936 ene_rx_setup(dev); 937 ene_rx_enable(dev); 938 spin_unlock_irqrestore(&dev->hw_lock, flags); 939 return 0; 940 } 941 942 static int ene_set_carrier_report(struct rc_dev *rdev, int enable) 943 { 944 struct ene_device *dev = rdev->priv; 945 unsigned long flags; 946 947 if (enable == dev->carrier_detect_enabled) 948 return 0; 949 950 spin_lock_irqsave(&dev->hw_lock, flags); 951 dev->carrier_detect_enabled = enable; 952 ene_rx_disable(dev); 953 ene_rx_setup(dev); 954 ene_rx_enable(dev); 955 spin_unlock_irqrestore(&dev->hw_lock, flags); 956 return 0; 957 } 958 959 /* outside interface: enable or disable idle mode */ 960 static void ene_set_idle(struct rc_dev *rdev, bool idle) 961 { 962 struct ene_device *dev = rdev->priv; 963 964 if (idle) { 965 ene_rx_reset(dev); 966 dbg("RX: end of data"); 967 } 968 } 969 970 /* outside interface: transmit */ 971 static int ene_transmit(struct rc_dev *rdev, unsigned *buf, unsigned n) 972 { 973 struct ene_device *dev = rdev->priv; 974 unsigned long flags; 975 976 dev->tx_buffer = buf; 977 dev->tx_len = n; 978 dev->tx_pos = 0; 979 dev->tx_reg = 0; 980 dev->tx_done = 0; 981 dev->tx_sample = 0; 982 dev->tx_sample_pulse = false; 983 984 dbg("TX: %d samples", dev->tx_len); 985 986 spin_lock_irqsave(&dev->hw_lock, flags); 987 988 ene_tx_enable(dev); 989 990 /* Transmit first two samples */ 991 ene_tx_sample(dev); 992 ene_tx_sample(dev); 993 994 spin_unlock_irqrestore(&dev->hw_lock, flags); 995 996 if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) { 997 dbg("TX: timeout"); 998 spin_lock_irqsave(&dev->hw_lock, flags); 999 ene_tx_disable(dev); 1000 spin_unlock_irqrestore(&dev->hw_lock, flags); 1001 } else 1002 dbg("TX: done"); 1003 return n; 1004 } 1005 1006 /* probe entry */ 1007 static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id) 1008 { 1009 int error = -ENOMEM; 1010 struct rc_dev *rdev; 1011 struct ene_device *dev; 1012 1013 /* allocate memory */ 1014 dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL); 1015 rdev = rc_allocate_device(); 1016 if (!dev || !rdev) 1017 goto exit_free_dev_rdev; 1018 1019 /* validate resources */ 1020 error = -ENODEV; 1021 1022 /* init these to -1, as 0 is valid for both */ 1023 dev->hw_io = -1; 1024 dev->irq = -1; 1025 1026 if (!pnp_port_valid(pnp_dev, 0) || 1027 pnp_port_len(pnp_dev, 0) < ENE_IO_SIZE) 1028 goto exit_free_dev_rdev; 1029 1030 if (!pnp_irq_valid(pnp_dev, 0)) 1031 goto exit_free_dev_rdev; 1032 1033 spin_lock_init(&dev->hw_lock); 1034 1035 dev->hw_io = pnp_port_start(pnp_dev, 0); 1036 dev->irq = pnp_irq(pnp_dev, 0); 1037 1038 1039 pnp_set_drvdata(pnp_dev, dev); 1040 dev->pnp_dev = pnp_dev; 1041 1042 /* don't allow too short/long sample periods */ 1043 if (sample_period < 5 || sample_period > 0x7F) 1044 sample_period = ENE_DEFAULT_SAMPLE_PERIOD; 1045 1046 /* detect hardware version and features */ 1047 error = ene_hw_detect(dev); 1048 if (error) 1049 goto exit_free_dev_rdev; 1050 1051 if (!dev->hw_learning_and_tx_capable && txsim) { 1052 dev->hw_learning_and_tx_capable = true; 1053 setup_timer(&dev->tx_sim_timer, ene_tx_irqsim, 1054 (long unsigned int)dev); 1055 pr_warn("Simulation of TX activated\n"); 1056 } 1057 1058 if (!dev->hw_learning_and_tx_capable) 1059 learning_mode_force = false; 1060 1061 rdev->driver_type = RC_DRIVER_IR_RAW; 1062 rdev->allowed_protocols = RC_BIT_ALL; 1063 rdev->priv = dev; 1064 rdev->open = ene_open; 1065 rdev->close = ene_close; 1066 rdev->s_idle = ene_set_idle; 1067 rdev->driver_name = ENE_DRIVER_NAME; 1068 rdev->map_name = RC_MAP_RC6_MCE; 1069 rdev->input_name = "ENE eHome Infrared Remote Receiver"; 1070 1071 if (dev->hw_learning_and_tx_capable) { 1072 rdev->s_learning_mode = ene_set_learning_mode; 1073 init_completion(&dev->tx_complete); 1074 rdev->tx_ir = ene_transmit; 1075 rdev->s_tx_mask = ene_set_tx_mask; 1076 rdev->s_tx_carrier = ene_set_tx_carrier; 1077 rdev->s_tx_duty_cycle = ene_set_tx_duty_cycle; 1078 rdev->s_carrier_report = ene_set_carrier_report; 1079 rdev->input_name = "ENE eHome Infrared Remote Transceiver"; 1080 } 1081 1082 dev->rdev = rdev; 1083 1084 ene_rx_setup_hw_buffer(dev); 1085 ene_setup_default_settings(dev); 1086 ene_setup_hw_settings(dev); 1087 1088 device_set_wakeup_capable(&pnp_dev->dev, true); 1089 device_set_wakeup_enable(&pnp_dev->dev, true); 1090 1091 error = rc_register_device(rdev); 1092 if (error < 0) 1093 goto exit_free_dev_rdev; 1094 1095 /* claim the resources */ 1096 error = -EBUSY; 1097 if (!request_region(dev->hw_io, ENE_IO_SIZE, ENE_DRIVER_NAME)) { 1098 goto exit_unregister_device; 1099 } 1100 1101 if (request_irq(dev->irq, ene_isr, 1102 IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) { 1103 goto exit_release_hw_io; 1104 } 1105 1106 pr_notice("driver has been successfully loaded\n"); 1107 return 0; 1108 1109 exit_release_hw_io: 1110 release_region(dev->hw_io, ENE_IO_SIZE); 1111 exit_unregister_device: 1112 rc_unregister_device(rdev); 1113 rdev = NULL; 1114 exit_free_dev_rdev: 1115 rc_free_device(rdev); 1116 kfree(dev); 1117 return error; 1118 } 1119 1120 /* main unload function */ 1121 static void ene_remove(struct pnp_dev *pnp_dev) 1122 { 1123 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1124 unsigned long flags; 1125 1126 spin_lock_irqsave(&dev->hw_lock, flags); 1127 ene_rx_disable(dev); 1128 ene_rx_restore_hw_buffer(dev); 1129 spin_unlock_irqrestore(&dev->hw_lock, flags); 1130 1131 free_irq(dev->irq, dev); 1132 release_region(dev->hw_io, ENE_IO_SIZE); 1133 rc_unregister_device(dev->rdev); 1134 kfree(dev); 1135 } 1136 1137 /* enable wake on IR (wakes on specific button on original remote) */ 1138 static void ene_enable_wake(struct ene_device *dev, bool enable) 1139 { 1140 dbg("wake on IR %s", enable ? "enabled" : "disabled"); 1141 ene_set_clear_reg_mask(dev, ENE_FW1, ENE_FW1_WAKE, enable); 1142 } 1143 1144 #ifdef CONFIG_PM 1145 static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state) 1146 { 1147 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1148 bool wake = device_may_wakeup(&dev->pnp_dev->dev); 1149 1150 if (!wake && dev->rx_enabled) 1151 ene_rx_disable_hw(dev); 1152 1153 ene_enable_wake(dev, wake); 1154 return 0; 1155 } 1156 1157 static int ene_resume(struct pnp_dev *pnp_dev) 1158 { 1159 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1160 ene_setup_hw_settings(dev); 1161 1162 if (dev->rx_enabled) 1163 ene_rx_enable(dev); 1164 1165 ene_enable_wake(dev, false); 1166 return 0; 1167 } 1168 #endif 1169 1170 static void ene_shutdown(struct pnp_dev *pnp_dev) 1171 { 1172 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1173 ene_enable_wake(dev, true); 1174 } 1175 1176 static const struct pnp_device_id ene_ids[] = { 1177 {.id = "ENE0100",}, 1178 {.id = "ENE0200",}, 1179 {.id = "ENE0201",}, 1180 {.id = "ENE0202",}, 1181 {}, 1182 }; 1183 1184 static struct pnp_driver ene_driver = { 1185 .name = ENE_DRIVER_NAME, 1186 .id_table = ene_ids, 1187 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1188 1189 .probe = ene_probe, 1190 .remove = ene_remove, 1191 #ifdef CONFIG_PM 1192 .suspend = ene_suspend, 1193 .resume = ene_resume, 1194 #endif 1195 .shutdown = ene_shutdown, 1196 }; 1197 1198 static int __init ene_init(void) 1199 { 1200 return pnp_register_driver(&ene_driver); 1201 } 1202 1203 static void ene_exit(void) 1204 { 1205 pnp_unregister_driver(&ene_driver); 1206 } 1207 1208 module_param(sample_period, int, S_IRUGO); 1209 MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)"); 1210 1211 module_param(learning_mode_force, bool, S_IRUGO); 1212 MODULE_PARM_DESC(learning_mode_force, "Enable learning mode by default"); 1213 1214 module_param(debug, int, S_IRUGO | S_IWUSR); 1215 MODULE_PARM_DESC(debug, "Debug level"); 1216 1217 module_param(txsim, bool, S_IRUGO); 1218 MODULE_PARM_DESC(txsim, 1219 "Simulate TX features on unsupported hardware (dangerous)"); 1220 1221 MODULE_DEVICE_TABLE(pnp, ene_ids); 1222 MODULE_DESCRIPTION 1223 ("Infrared input driver for KB3926B/C/D/E/F " 1224 "(aka ENE0100/ENE0200/ENE0201/ENE0202) CIR port"); 1225 1226 MODULE_AUTHOR("Maxim Levitsky"); 1227 MODULE_LICENSE("GPL"); 1228 1229 module_init(ene_init); 1230 module_exit(ene_exit); 1231