1 /* 2 * driver for ENE KB3926 B/C/D/E/F CIR (pnp id: ENE0XXX) 3 * 4 * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation; either version 2 of the 9 * License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 19 * USA 20 * 21 * Special thanks to: 22 * Sami R. <maesesami@gmail.com> for lot of help in debugging and therefore 23 * bringing to life support for transmission & learning mode. 24 * 25 * Charlie Andrews <charliethepilot@googlemail.com> for lots of help in 26 * bringing up the support of new firmware buffer that is popular 27 * on latest notebooks 28 * 29 * ENE for partial device documentation 30 * 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/pnp.h> 38 #include <linux/io.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/slab.h> 42 #include <media/rc-core.h> 43 #include "ene_ir.h" 44 45 static int sample_period; 46 static bool learning_mode_force; 47 static int debug; 48 static bool txsim; 49 50 static void ene_set_reg_addr(struct ene_device *dev, u16 reg) 51 { 52 outb(reg >> 8, dev->hw_io + ENE_ADDR_HI); 53 outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO); 54 } 55 56 /* read a hardware register */ 57 static u8 ene_read_reg(struct ene_device *dev, u16 reg) 58 { 59 u8 retval; 60 ene_set_reg_addr(dev, reg); 61 retval = inb(dev->hw_io + ENE_IO); 62 dbg_regs("reg %04x == %02x", reg, retval); 63 return retval; 64 } 65 66 /* write a hardware register */ 67 static void ene_write_reg(struct ene_device *dev, u16 reg, u8 value) 68 { 69 dbg_regs("reg %04x <- %02x", reg, value); 70 ene_set_reg_addr(dev, reg); 71 outb(value, dev->hw_io + ENE_IO); 72 } 73 74 /* Set bits in hardware register */ 75 static void ene_set_reg_mask(struct ene_device *dev, u16 reg, u8 mask) 76 { 77 dbg_regs("reg %04x |= %02x", reg, mask); 78 ene_set_reg_addr(dev, reg); 79 outb(inb(dev->hw_io + ENE_IO) | mask, dev->hw_io + ENE_IO); 80 } 81 82 /* Clear bits in hardware register */ 83 static void ene_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask) 84 { 85 dbg_regs("reg %04x &= ~%02x ", reg, mask); 86 ene_set_reg_addr(dev, reg); 87 outb(inb(dev->hw_io + ENE_IO) & ~mask, dev->hw_io + ENE_IO); 88 } 89 90 /* A helper to set/clear a bit in register according to boolean variable */ 91 static void ene_set_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask, 92 bool set) 93 { 94 if (set) 95 ene_set_reg_mask(dev, reg, mask); 96 else 97 ene_clear_reg_mask(dev, reg, mask); 98 } 99 100 /* detect hardware features */ 101 static int ene_hw_detect(struct ene_device *dev) 102 { 103 u8 chip_major, chip_minor; 104 u8 hw_revision, old_ver; 105 u8 fw_reg2, fw_reg1; 106 107 ene_clear_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD); 108 chip_major = ene_read_reg(dev, ENE_ECVER_MAJOR); 109 chip_minor = ene_read_reg(dev, ENE_ECVER_MINOR); 110 ene_set_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD); 111 112 hw_revision = ene_read_reg(dev, ENE_ECHV); 113 old_ver = ene_read_reg(dev, ENE_HW_VER_OLD); 114 115 dev->pll_freq = (ene_read_reg(dev, ENE_PLLFRH) << 4) + 116 (ene_read_reg(dev, ENE_PLLFRL) >> 4); 117 118 if (sample_period != ENE_DEFAULT_SAMPLE_PERIOD) 119 dev->rx_period_adjust = 120 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 2 : 4; 121 122 if (hw_revision == 0xFF) { 123 pr_warn("device seems to be disabled\n"); 124 pr_warn("send a mail to lirc-list@lists.sourceforge.net\n"); 125 pr_warn("please attach output of acpidump and dmidecode\n"); 126 return -ENODEV; 127 } 128 129 pr_notice("chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n", 130 chip_major, chip_minor, old_ver, hw_revision); 131 132 pr_notice("PLL freq = %d\n", dev->pll_freq); 133 134 if (chip_major == 0x33) { 135 pr_warn("chips 0x33xx aren't supported\n"); 136 return -ENODEV; 137 } 138 139 if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) { 140 dev->hw_revision = ENE_HW_C; 141 pr_notice("KB3926C detected\n"); 142 } else if (old_ver == 0x24 && hw_revision == 0xC0) { 143 dev->hw_revision = ENE_HW_B; 144 pr_notice("KB3926B detected\n"); 145 } else { 146 dev->hw_revision = ENE_HW_D; 147 pr_notice("KB3926D or higher detected\n"); 148 } 149 150 /* detect features hardware supports */ 151 if (dev->hw_revision < ENE_HW_C) 152 return 0; 153 154 fw_reg1 = ene_read_reg(dev, ENE_FW1); 155 fw_reg2 = ene_read_reg(dev, ENE_FW2); 156 157 pr_notice("Firmware regs: %02x %02x\n", fw_reg1, fw_reg2); 158 159 dev->hw_use_gpio_0a = !!(fw_reg2 & ENE_FW2_GP0A); 160 dev->hw_learning_and_tx_capable = !!(fw_reg2 & ENE_FW2_LEARNING); 161 dev->hw_extra_buffer = !!(fw_reg1 & ENE_FW1_HAS_EXTRA_BUF); 162 163 if (dev->hw_learning_and_tx_capable) 164 dev->hw_fan_input = !!(fw_reg2 & ENE_FW2_FAN_INPUT); 165 166 pr_notice("Hardware features:\n"); 167 168 if (dev->hw_learning_and_tx_capable) { 169 pr_notice("* Supports transmitting & learning mode\n"); 170 pr_notice(" This feature is rare and therefore,\n"); 171 pr_notice(" you are welcome to test it,\n"); 172 pr_notice(" and/or contact the author via:\n"); 173 pr_notice(" lirc-list@lists.sourceforge.net\n"); 174 pr_notice(" or maximlevitsky@gmail.com\n"); 175 176 pr_notice("* Uses GPIO %s for IR raw input\n", 177 dev->hw_use_gpio_0a ? "40" : "0A"); 178 179 if (dev->hw_fan_input) 180 pr_notice("* Uses unused fan feedback input as source of demodulated IR data\n"); 181 } 182 183 if (!dev->hw_fan_input) 184 pr_notice("* Uses GPIO %s for IR demodulated input\n", 185 dev->hw_use_gpio_0a ? "0A" : "40"); 186 187 if (dev->hw_extra_buffer) 188 pr_notice("* Uses new style input buffer\n"); 189 return 0; 190 } 191 192 /* Read properities of hw sample buffer */ 193 static void ene_rx_setup_hw_buffer(struct ene_device *dev) 194 { 195 u16 tmp; 196 197 ene_rx_read_hw_pointer(dev); 198 dev->r_pointer = dev->w_pointer; 199 200 if (!dev->hw_extra_buffer) { 201 dev->buffer_len = ENE_FW_PACKET_SIZE * 2; 202 return; 203 } 204 205 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER); 206 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER+1) << 8; 207 dev->extra_buf1_address = tmp; 208 209 dev->extra_buf1_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 2); 210 211 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 3); 212 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 4) << 8; 213 dev->extra_buf2_address = tmp; 214 215 dev->extra_buf2_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 5); 216 217 dev->buffer_len = dev->extra_buf1_len + dev->extra_buf2_len + 8; 218 219 pr_notice("Hardware uses 2 extended buffers:\n"); 220 pr_notice(" 0x%04x - len : %d\n", 221 dev->extra_buf1_address, dev->extra_buf1_len); 222 pr_notice(" 0x%04x - len : %d\n", 223 dev->extra_buf2_address, dev->extra_buf2_len); 224 225 pr_notice("Total buffer len = %d\n", dev->buffer_len); 226 227 if (dev->buffer_len > 64 || dev->buffer_len < 16) 228 goto error; 229 230 if (dev->extra_buf1_address > 0xFBFC || 231 dev->extra_buf1_address < 0xEC00) 232 goto error; 233 234 if (dev->extra_buf2_address > 0xFBFC || 235 dev->extra_buf2_address < 0xEC00) 236 goto error; 237 238 if (dev->r_pointer > dev->buffer_len) 239 goto error; 240 241 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 242 return; 243 error: 244 pr_warn("Error validating extra buffers, device probably won't work\n"); 245 dev->hw_extra_buffer = false; 246 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 247 } 248 249 250 /* Restore the pointers to extra buffers - to make module reload work*/ 251 static void ene_rx_restore_hw_buffer(struct ene_device *dev) 252 { 253 if (!dev->hw_extra_buffer) 254 return; 255 256 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 0, 257 dev->extra_buf1_address & 0xFF); 258 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 1, 259 dev->extra_buf1_address >> 8); 260 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 2, dev->extra_buf1_len); 261 262 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 3, 263 dev->extra_buf2_address & 0xFF); 264 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 4, 265 dev->extra_buf2_address >> 8); 266 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 5, 267 dev->extra_buf2_len); 268 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND); 269 } 270 271 /* Read hardware write pointer */ 272 static void ene_rx_read_hw_pointer(struct ene_device *dev) 273 { 274 if (dev->hw_extra_buffer) 275 dev->w_pointer = ene_read_reg(dev, ENE_FW_RX_POINTER); 276 else 277 dev->w_pointer = ene_read_reg(dev, ENE_FW2) 278 & ENE_FW2_BUF_WPTR ? 0 : ENE_FW_PACKET_SIZE; 279 280 dbg_verbose("RB: HW write pointer: %02x, driver read pointer: %02x", 281 dev->w_pointer, dev->r_pointer); 282 } 283 284 /* Gets address of next sample from HW ring buffer */ 285 static int ene_rx_get_sample_reg(struct ene_device *dev) 286 { 287 int r_pointer; 288 289 if (dev->r_pointer == dev->w_pointer) { 290 dbg_verbose("RB: hit end, try update w_pointer"); 291 ene_rx_read_hw_pointer(dev); 292 } 293 294 if (dev->r_pointer == dev->w_pointer) { 295 dbg_verbose("RB: end of data at %d", dev->r_pointer); 296 return 0; 297 } 298 299 dbg_verbose("RB: reading at offset %d", dev->r_pointer); 300 r_pointer = dev->r_pointer; 301 302 dev->r_pointer++; 303 if (dev->r_pointer == dev->buffer_len) 304 dev->r_pointer = 0; 305 306 dbg_verbose("RB: next read will be from offset %d", dev->r_pointer); 307 308 if (r_pointer < 8) { 309 dbg_verbose("RB: read at main buffer at %d", r_pointer); 310 return ENE_FW_SAMPLE_BUFFER + r_pointer; 311 } 312 313 r_pointer -= 8; 314 315 if (r_pointer < dev->extra_buf1_len) { 316 dbg_verbose("RB: read at 1st extra buffer at %d", r_pointer); 317 return dev->extra_buf1_address + r_pointer; 318 } 319 320 r_pointer -= dev->extra_buf1_len; 321 322 if (r_pointer < dev->extra_buf2_len) { 323 dbg_verbose("RB: read at 2nd extra buffer at %d", r_pointer); 324 return dev->extra_buf2_address + r_pointer; 325 } 326 327 dbg("attempt to read beyond ring buffer end"); 328 return 0; 329 } 330 331 /* Sense current received carrier */ 332 static void ene_rx_sense_carrier(struct ene_device *dev) 333 { 334 DEFINE_IR_RAW_EVENT(ev); 335 336 int carrier, duty_cycle; 337 int period = ene_read_reg(dev, ENE_CIRCAR_PRD); 338 int hperiod = ene_read_reg(dev, ENE_CIRCAR_HPRD); 339 340 if (!(period & ENE_CIRCAR_PRD_VALID)) 341 return; 342 343 period &= ~ENE_CIRCAR_PRD_VALID; 344 345 if (!period) 346 return; 347 348 dbg("RX: hardware carrier period = %02x", period); 349 dbg("RX: hardware carrier pulse period = %02x", hperiod); 350 351 carrier = 2000000 / period; 352 duty_cycle = (hperiod * 100) / period; 353 dbg("RX: sensed carrier = %d Hz, duty cycle %d%%", 354 carrier, duty_cycle); 355 if (dev->carrier_detect_enabled) { 356 ev.carrier_report = true; 357 ev.carrier = carrier; 358 ev.duty_cycle = duty_cycle; 359 ir_raw_event_store(dev->rdev, &ev); 360 } 361 } 362 363 /* this enables/disables the CIR RX engine */ 364 static void ene_rx_enable_cir_engine(struct ene_device *dev, bool enable) 365 { 366 ene_set_clear_reg_mask(dev, ENE_CIRCFG, 367 ENE_CIRCFG_RX_EN | ENE_CIRCFG_RX_IRQ, enable); 368 } 369 370 /* this selects input for CIR engine. Ether GPIO 0A or GPIO40*/ 371 static void ene_rx_select_input(struct ene_device *dev, bool gpio_0a) 372 { 373 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_GPIO0A, gpio_0a); 374 } 375 376 /* 377 * this enables alternative input via fan tachometer sensor and bypasses 378 * the hw CIR engine 379 */ 380 static void ene_rx_enable_fan_input(struct ene_device *dev, bool enable) 381 { 382 if (!dev->hw_fan_input) 383 return; 384 385 if (!enable) 386 ene_write_reg(dev, ENE_FAN_AS_IN1, 0); 387 else { 388 ene_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN); 389 ene_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN); 390 } 391 } 392 393 /* setup the receiver for RX*/ 394 static void ene_rx_setup(struct ene_device *dev) 395 { 396 bool learning_mode = dev->learning_mode_enabled || 397 dev->carrier_detect_enabled; 398 int sample_period_adjust = 0; 399 400 dbg("RX: setup receiver, learning mode = %d", learning_mode); 401 402 403 /* This selects RLC input and clears CFG2 settings */ 404 ene_write_reg(dev, ENE_CIRCFG2, 0x00); 405 406 /* set sample period*/ 407 if (sample_period == ENE_DEFAULT_SAMPLE_PERIOD) 408 sample_period_adjust = 409 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 1 : 2; 410 411 ene_write_reg(dev, ENE_CIRRLC_CFG, 412 (sample_period + sample_period_adjust) | 413 ENE_CIRRLC_CFG_OVERFLOW); 414 /* revB doesn't support inputs */ 415 if (dev->hw_revision < ENE_HW_C) 416 goto select_timeout; 417 418 if (learning_mode) { 419 420 WARN_ON(!dev->hw_learning_and_tx_capable); 421 422 /* Enable the opposite of the normal input 423 That means that if GPIO40 is normally used, use GPIO0A 424 and vice versa. 425 This input will carry non demodulated 426 signal, and we will tell the hw to demodulate it itself */ 427 ene_rx_select_input(dev, !dev->hw_use_gpio_0a); 428 dev->rx_fan_input_inuse = false; 429 430 /* Enable carrier demodulation */ 431 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD); 432 433 /* Enable carrier detection */ 434 ene_write_reg(dev, ENE_CIRCAR_PULS, 0x63); 435 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT, 436 dev->carrier_detect_enabled || debug); 437 } else { 438 if (dev->hw_fan_input) 439 dev->rx_fan_input_inuse = true; 440 else 441 ene_rx_select_input(dev, dev->hw_use_gpio_0a); 442 443 /* Disable carrier detection & demodulation */ 444 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD); 445 ene_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT); 446 } 447 448 select_timeout: 449 if (dev->rx_fan_input_inuse) { 450 dev->rdev->rx_resolution = US_TO_NS(ENE_FW_SAMPLE_PERIOD_FAN); 451 452 /* Fan input doesn't support timeouts, it just ends the 453 input with a maximum sample */ 454 dev->rdev->min_timeout = dev->rdev->max_timeout = 455 US_TO_NS(ENE_FW_SMPL_BUF_FAN_MSK * 456 ENE_FW_SAMPLE_PERIOD_FAN); 457 } else { 458 dev->rdev->rx_resolution = US_TO_NS(sample_period); 459 460 /* Theoreticly timeout is unlimited, but we cap it 461 * because it was seen that on one device, it 462 * would stop sending spaces after around 250 msec. 463 * Besides, this is close to 2^32 anyway and timeout is u32. 464 */ 465 dev->rdev->min_timeout = US_TO_NS(127 * sample_period); 466 dev->rdev->max_timeout = US_TO_NS(200000); 467 } 468 469 if (dev->hw_learning_and_tx_capable) 470 dev->rdev->tx_resolution = US_TO_NS(sample_period); 471 472 if (dev->rdev->timeout > dev->rdev->max_timeout) 473 dev->rdev->timeout = dev->rdev->max_timeout; 474 if (dev->rdev->timeout < dev->rdev->min_timeout) 475 dev->rdev->timeout = dev->rdev->min_timeout; 476 } 477 478 /* Enable the device for receive */ 479 static void ene_rx_enable(struct ene_device *dev) 480 { 481 u8 reg_value; 482 483 /* Enable system interrupt */ 484 if (dev->hw_revision < ENE_HW_C) { 485 ene_write_reg(dev, ENEB_IRQ, dev->irq << 1); 486 ene_write_reg(dev, ENEB_IRQ_UNK1, 0x01); 487 } else { 488 reg_value = ene_read_reg(dev, ENE_IRQ) & 0xF0; 489 reg_value |= ENE_IRQ_UNK_EN; 490 reg_value &= ~ENE_IRQ_STATUS; 491 reg_value |= (dev->irq & ENE_IRQ_MASK); 492 ene_write_reg(dev, ENE_IRQ, reg_value); 493 } 494 495 /* Enable inputs */ 496 ene_rx_enable_fan_input(dev, dev->rx_fan_input_inuse); 497 ene_rx_enable_cir_engine(dev, !dev->rx_fan_input_inuse); 498 499 /* ack any pending irqs - just in case */ 500 ene_irq_status(dev); 501 502 /* enable firmware bits */ 503 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ); 504 505 /* enter idle mode */ 506 ir_raw_event_set_idle(dev->rdev, true); 507 dev->rx_enabled = true; 508 } 509 510 /* Disable the device receiver */ 511 static void ene_rx_disable(struct ene_device *dev) 512 { 513 /* disable inputs */ 514 ene_rx_enable_cir_engine(dev, false); 515 ene_rx_enable_fan_input(dev, false); 516 517 /* disable hardware IRQ and firmware flag */ 518 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ); 519 520 ir_raw_event_set_idle(dev->rdev, true); 521 dev->rx_enabled = false; 522 } 523 524 /* This resets the receiver. Useful to stop stream of spaces at end of 525 * transmission 526 */ 527 static void ene_rx_reset(struct ene_device *dev) 528 { 529 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN); 530 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN); 531 } 532 533 /* Set up the TX carrier frequency and duty cycle */ 534 static void ene_tx_set_carrier(struct ene_device *dev) 535 { 536 u8 tx_puls_width; 537 unsigned long flags; 538 539 spin_lock_irqsave(&dev->hw_lock, flags); 540 541 ene_set_clear_reg_mask(dev, ENE_CIRCFG, 542 ENE_CIRCFG_TX_CARR, dev->tx_period > 0); 543 544 if (!dev->tx_period) 545 goto unlock; 546 547 BUG_ON(dev->tx_duty_cycle >= 100 || dev->tx_duty_cycle <= 0); 548 549 tx_puls_width = dev->tx_period / (100 / dev->tx_duty_cycle); 550 551 if (!tx_puls_width) 552 tx_puls_width = 1; 553 554 dbg("TX: pulse distance = %d * 500 ns", dev->tx_period); 555 dbg("TX: pulse width = %d * 500 ns", tx_puls_width); 556 557 ene_write_reg(dev, ENE_CIRMOD_PRD, dev->tx_period | ENE_CIRMOD_PRD_POL); 558 ene_write_reg(dev, ENE_CIRMOD_HPRD, tx_puls_width); 559 unlock: 560 spin_unlock_irqrestore(&dev->hw_lock, flags); 561 } 562 563 /* Enable/disable transmitters */ 564 static void ene_tx_set_transmitters(struct ene_device *dev) 565 { 566 unsigned long flags; 567 568 spin_lock_irqsave(&dev->hw_lock, flags); 569 ene_set_clear_reg_mask(dev, ENE_GPIOFS8, ENE_GPIOFS8_GPIO41, 570 !!(dev->transmitter_mask & 0x01)); 571 ene_set_clear_reg_mask(dev, ENE_GPIOFS1, ENE_GPIOFS1_GPIO0D, 572 !!(dev->transmitter_mask & 0x02)); 573 spin_unlock_irqrestore(&dev->hw_lock, flags); 574 } 575 576 /* prepare transmission */ 577 static void ene_tx_enable(struct ene_device *dev) 578 { 579 u8 conf1 = ene_read_reg(dev, ENE_CIRCFG); 580 u8 fwreg2 = ene_read_reg(dev, ENE_FW2); 581 582 dev->saved_conf1 = conf1; 583 584 /* Show information about currently connected transmitter jacks */ 585 if (fwreg2 & ENE_FW2_EMMITER1_CONN) 586 dbg("TX: Transmitter #1 is connected"); 587 588 if (fwreg2 & ENE_FW2_EMMITER2_CONN) 589 dbg("TX: Transmitter #2 is connected"); 590 591 if (!(fwreg2 & (ENE_FW2_EMMITER1_CONN | ENE_FW2_EMMITER2_CONN))) 592 pr_warn("TX: transmitter cable isn't connected!\n"); 593 594 /* disable receive on revc */ 595 if (dev->hw_revision == ENE_HW_C) 596 conf1 &= ~ENE_CIRCFG_RX_EN; 597 598 /* Enable TX engine */ 599 conf1 |= ENE_CIRCFG_TX_EN | ENE_CIRCFG_TX_IRQ; 600 ene_write_reg(dev, ENE_CIRCFG, conf1); 601 } 602 603 /* end transmission */ 604 static void ene_tx_disable(struct ene_device *dev) 605 { 606 ene_write_reg(dev, ENE_CIRCFG, dev->saved_conf1); 607 dev->tx_buffer = NULL; 608 } 609 610 611 /* TX one sample - must be called with dev->hw_lock*/ 612 static void ene_tx_sample(struct ene_device *dev) 613 { 614 u8 raw_tx; 615 u32 sample; 616 bool pulse = dev->tx_sample_pulse; 617 618 if (!dev->tx_buffer) { 619 pr_warn("TX: BUG: attempt to transmit NULL buffer\n"); 620 return; 621 } 622 623 /* Grab next TX sample */ 624 if (!dev->tx_sample) { 625 626 if (dev->tx_pos == dev->tx_len) { 627 if (!dev->tx_done) { 628 dbg("TX: no more data to send"); 629 dev->tx_done = true; 630 goto exit; 631 } else { 632 dbg("TX: last sample sent by hardware"); 633 ene_tx_disable(dev); 634 complete(&dev->tx_complete); 635 return; 636 } 637 } 638 639 sample = dev->tx_buffer[dev->tx_pos++]; 640 dev->tx_sample_pulse = !dev->tx_sample_pulse; 641 642 dev->tx_sample = DIV_ROUND_CLOSEST(sample, sample_period); 643 644 if (!dev->tx_sample) 645 dev->tx_sample = 1; 646 } 647 648 raw_tx = min(dev->tx_sample , (unsigned int)ENE_CIRRLC_OUT_MASK); 649 dev->tx_sample -= raw_tx; 650 651 dbg("TX: sample %8d (%s)", raw_tx * sample_period, 652 pulse ? "pulse" : "space"); 653 if (pulse) 654 raw_tx |= ENE_CIRRLC_OUT_PULSE; 655 656 ene_write_reg(dev, 657 dev->tx_reg ? ENE_CIRRLC_OUT1 : ENE_CIRRLC_OUT0, raw_tx); 658 659 dev->tx_reg = !dev->tx_reg; 660 exit: 661 /* simulate TX done interrupt */ 662 if (txsim) 663 mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500); 664 } 665 666 /* timer to simulate tx done interrupt */ 667 static void ene_tx_irqsim(unsigned long data) 668 { 669 struct ene_device *dev = (struct ene_device *)data; 670 unsigned long flags; 671 672 spin_lock_irqsave(&dev->hw_lock, flags); 673 ene_tx_sample(dev); 674 spin_unlock_irqrestore(&dev->hw_lock, flags); 675 } 676 677 678 /* read irq status and ack it */ 679 static int ene_irq_status(struct ene_device *dev) 680 { 681 u8 irq_status; 682 u8 fw_flags1, fw_flags2; 683 int retval = 0; 684 685 fw_flags2 = ene_read_reg(dev, ENE_FW2); 686 687 if (dev->hw_revision < ENE_HW_C) { 688 irq_status = ene_read_reg(dev, ENEB_IRQ_STATUS); 689 690 if (!(irq_status & ENEB_IRQ_STATUS_IR)) 691 return 0; 692 693 ene_clear_reg_mask(dev, ENEB_IRQ_STATUS, ENEB_IRQ_STATUS_IR); 694 return ENE_IRQ_RX; 695 } 696 697 irq_status = ene_read_reg(dev, ENE_IRQ); 698 if (!(irq_status & ENE_IRQ_STATUS)) 699 return 0; 700 701 /* original driver does that twice - a workaround ? */ 702 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS); 703 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS); 704 705 /* check RX interrupt */ 706 if (fw_flags2 & ENE_FW2_RXIRQ) { 707 retval |= ENE_IRQ_RX; 708 ene_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_RXIRQ); 709 } 710 711 /* check TX interrupt */ 712 fw_flags1 = ene_read_reg(dev, ENE_FW1); 713 if (fw_flags1 & ENE_FW1_TXIRQ) { 714 ene_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ); 715 retval |= ENE_IRQ_TX; 716 } 717 718 return retval; 719 } 720 721 /* interrupt handler */ 722 static irqreturn_t ene_isr(int irq, void *data) 723 { 724 u16 hw_value, reg; 725 int hw_sample, irq_status; 726 bool pulse; 727 unsigned long flags; 728 irqreturn_t retval = IRQ_NONE; 729 struct ene_device *dev = (struct ene_device *)data; 730 DEFINE_IR_RAW_EVENT(ev); 731 732 spin_lock_irqsave(&dev->hw_lock, flags); 733 734 dbg_verbose("ISR called"); 735 ene_rx_read_hw_pointer(dev); 736 irq_status = ene_irq_status(dev); 737 738 if (!irq_status) 739 goto unlock; 740 741 retval = IRQ_HANDLED; 742 743 if (irq_status & ENE_IRQ_TX) { 744 dbg_verbose("TX interrupt"); 745 if (!dev->hw_learning_and_tx_capable) { 746 dbg("TX interrupt on unsupported device!"); 747 goto unlock; 748 } 749 ene_tx_sample(dev); 750 } 751 752 if (!(irq_status & ENE_IRQ_RX)) 753 goto unlock; 754 755 dbg_verbose("RX interrupt"); 756 757 if (dev->hw_learning_and_tx_capable) 758 ene_rx_sense_carrier(dev); 759 760 /* On hardware that don't support extra buffer we need to trust 761 the interrupt and not track the read pointer */ 762 if (!dev->hw_extra_buffer) 763 dev->r_pointer = dev->w_pointer == 0 ? ENE_FW_PACKET_SIZE : 0; 764 765 while (1) { 766 767 reg = ene_rx_get_sample_reg(dev); 768 769 dbg_verbose("next sample to read at: %04x", reg); 770 if (!reg) 771 break; 772 773 hw_value = ene_read_reg(dev, reg); 774 775 if (dev->rx_fan_input_inuse) { 776 777 int offset = ENE_FW_SMPL_BUF_FAN - ENE_FW_SAMPLE_BUFFER; 778 779 /* read high part of the sample */ 780 hw_value |= ene_read_reg(dev, reg + offset) << 8; 781 pulse = hw_value & ENE_FW_SMPL_BUF_FAN_PLS; 782 783 /* clear space bit, and other unused bits */ 784 hw_value &= ENE_FW_SMPL_BUF_FAN_MSK; 785 hw_sample = hw_value * ENE_FW_SAMPLE_PERIOD_FAN; 786 787 } else { 788 pulse = !(hw_value & ENE_FW_SAMPLE_SPACE); 789 hw_value &= ~ENE_FW_SAMPLE_SPACE; 790 hw_sample = hw_value * sample_period; 791 792 if (dev->rx_period_adjust) { 793 hw_sample *= 100; 794 hw_sample /= (100 + dev->rx_period_adjust); 795 } 796 } 797 798 if (!dev->hw_extra_buffer && !hw_sample) { 799 dev->r_pointer = dev->w_pointer; 800 continue; 801 } 802 803 dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space"); 804 805 ev.duration = US_TO_NS(hw_sample); 806 ev.pulse = pulse; 807 ir_raw_event_store_with_filter(dev->rdev, &ev); 808 } 809 810 ir_raw_event_handle(dev->rdev); 811 unlock: 812 spin_unlock_irqrestore(&dev->hw_lock, flags); 813 return retval; 814 } 815 816 /* Initialize default settings */ 817 static void ene_setup_default_settings(struct ene_device *dev) 818 { 819 dev->tx_period = 32; 820 dev->tx_duty_cycle = 50; /*%*/ 821 dev->transmitter_mask = 0x03; 822 dev->learning_mode_enabled = learning_mode_force; 823 824 /* Set reasonable default timeout */ 825 dev->rdev->timeout = US_TO_NS(150000); 826 } 827 828 /* Upload all hardware settings at once. Used at load and resume time */ 829 static void ene_setup_hw_settings(struct ene_device *dev) 830 { 831 if (dev->hw_learning_and_tx_capable) { 832 ene_tx_set_carrier(dev); 833 ene_tx_set_transmitters(dev); 834 } 835 836 ene_rx_setup(dev); 837 } 838 839 /* outside interface: called on first open*/ 840 static int ene_open(struct rc_dev *rdev) 841 { 842 struct ene_device *dev = rdev->priv; 843 unsigned long flags; 844 845 spin_lock_irqsave(&dev->hw_lock, flags); 846 ene_rx_enable(dev); 847 spin_unlock_irqrestore(&dev->hw_lock, flags); 848 return 0; 849 } 850 851 /* outside interface: called on device close*/ 852 static void ene_close(struct rc_dev *rdev) 853 { 854 struct ene_device *dev = rdev->priv; 855 unsigned long flags; 856 spin_lock_irqsave(&dev->hw_lock, flags); 857 858 ene_rx_disable(dev); 859 spin_unlock_irqrestore(&dev->hw_lock, flags); 860 } 861 862 /* outside interface: set transmitter mask */ 863 static int ene_set_tx_mask(struct rc_dev *rdev, u32 tx_mask) 864 { 865 struct ene_device *dev = rdev->priv; 866 dbg("TX: attempt to set transmitter mask %02x", tx_mask); 867 868 /* invalid txmask */ 869 if (!tx_mask || tx_mask & ~0x03) { 870 dbg("TX: invalid mask"); 871 /* return count of transmitters */ 872 return 2; 873 } 874 875 dev->transmitter_mask = tx_mask; 876 ene_tx_set_transmitters(dev); 877 return 0; 878 } 879 880 /* outside interface : set tx carrier */ 881 static int ene_set_tx_carrier(struct rc_dev *rdev, u32 carrier) 882 { 883 struct ene_device *dev = rdev->priv; 884 u32 period; 885 886 dbg("TX: attempt to set tx carrier to %d kHz", carrier); 887 if (carrier == 0) 888 return -EINVAL; 889 890 period = 2000000 / carrier; 891 if (period && (period > ENE_CIRMOD_PRD_MAX || 892 period < ENE_CIRMOD_PRD_MIN)) { 893 894 dbg("TX: out of range %d-%d kHz carrier", 895 2000 / ENE_CIRMOD_PRD_MIN, 2000 / ENE_CIRMOD_PRD_MAX); 896 return -1; 897 } 898 899 dev->tx_period = period; 900 ene_tx_set_carrier(dev); 901 return 0; 902 } 903 904 /*outside interface : set tx duty cycle */ 905 static int ene_set_tx_duty_cycle(struct rc_dev *rdev, u32 duty_cycle) 906 { 907 struct ene_device *dev = rdev->priv; 908 dbg("TX: setting duty cycle to %d%%", duty_cycle); 909 dev->tx_duty_cycle = duty_cycle; 910 ene_tx_set_carrier(dev); 911 return 0; 912 } 913 914 /* outside interface: enable learning mode */ 915 static int ene_set_learning_mode(struct rc_dev *rdev, int enable) 916 { 917 struct ene_device *dev = rdev->priv; 918 unsigned long flags; 919 if (enable == dev->learning_mode_enabled) 920 return 0; 921 922 spin_lock_irqsave(&dev->hw_lock, flags); 923 dev->learning_mode_enabled = enable; 924 ene_rx_disable(dev); 925 ene_rx_setup(dev); 926 ene_rx_enable(dev); 927 spin_unlock_irqrestore(&dev->hw_lock, flags); 928 return 0; 929 } 930 931 static int ene_set_carrier_report(struct rc_dev *rdev, int enable) 932 { 933 struct ene_device *dev = rdev->priv; 934 unsigned long flags; 935 936 if (enable == dev->carrier_detect_enabled) 937 return 0; 938 939 spin_lock_irqsave(&dev->hw_lock, flags); 940 dev->carrier_detect_enabled = enable; 941 ene_rx_disable(dev); 942 ene_rx_setup(dev); 943 ene_rx_enable(dev); 944 spin_unlock_irqrestore(&dev->hw_lock, flags); 945 return 0; 946 } 947 948 /* outside interface: enable or disable idle mode */ 949 static void ene_set_idle(struct rc_dev *rdev, bool idle) 950 { 951 struct ene_device *dev = rdev->priv; 952 953 if (idle) { 954 ene_rx_reset(dev); 955 dbg("RX: end of data"); 956 } 957 } 958 959 /* outside interface: transmit */ 960 static int ene_transmit(struct rc_dev *rdev, unsigned *buf, unsigned n) 961 { 962 struct ene_device *dev = rdev->priv; 963 unsigned long flags; 964 965 dev->tx_buffer = buf; 966 dev->tx_len = n; 967 dev->tx_pos = 0; 968 dev->tx_reg = 0; 969 dev->tx_done = 0; 970 dev->tx_sample = 0; 971 dev->tx_sample_pulse = 0; 972 973 dbg("TX: %d samples", dev->tx_len); 974 975 spin_lock_irqsave(&dev->hw_lock, flags); 976 977 ene_tx_enable(dev); 978 979 /* Transmit first two samples */ 980 ene_tx_sample(dev); 981 ene_tx_sample(dev); 982 983 spin_unlock_irqrestore(&dev->hw_lock, flags); 984 985 if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) { 986 dbg("TX: timeout"); 987 spin_lock_irqsave(&dev->hw_lock, flags); 988 ene_tx_disable(dev); 989 spin_unlock_irqrestore(&dev->hw_lock, flags); 990 } else 991 dbg("TX: done"); 992 return n; 993 } 994 995 /* probe entry */ 996 static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id) 997 { 998 int error = -ENOMEM; 999 struct rc_dev *rdev; 1000 struct ene_device *dev; 1001 1002 /* allocate memory */ 1003 dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL); 1004 rdev = rc_allocate_device(); 1005 if (!dev || !rdev) 1006 goto exit_free_dev_rdev; 1007 1008 /* validate resources */ 1009 error = -ENODEV; 1010 1011 /* init these to -1, as 0 is valid for both */ 1012 dev->hw_io = -1; 1013 dev->irq = -1; 1014 1015 if (!pnp_port_valid(pnp_dev, 0) || 1016 pnp_port_len(pnp_dev, 0) < ENE_IO_SIZE) 1017 goto exit_free_dev_rdev; 1018 1019 if (!pnp_irq_valid(pnp_dev, 0)) 1020 goto exit_free_dev_rdev; 1021 1022 spin_lock_init(&dev->hw_lock); 1023 1024 dev->hw_io = pnp_port_start(pnp_dev, 0); 1025 1026 pnp_set_drvdata(pnp_dev, dev); 1027 dev->pnp_dev = pnp_dev; 1028 1029 /* don't allow too short/long sample periods */ 1030 if (sample_period < 5 || sample_period > 0x7F) 1031 sample_period = ENE_DEFAULT_SAMPLE_PERIOD; 1032 1033 /* detect hardware version and features */ 1034 error = ene_hw_detect(dev); 1035 if (error) 1036 goto exit_free_dev_rdev; 1037 1038 if (!dev->hw_learning_and_tx_capable && txsim) { 1039 dev->hw_learning_and_tx_capable = true; 1040 setup_timer(&dev->tx_sim_timer, ene_tx_irqsim, 1041 (long unsigned int)dev); 1042 pr_warn("Simulation of TX activated\n"); 1043 } 1044 1045 if (!dev->hw_learning_and_tx_capable) 1046 learning_mode_force = false; 1047 1048 rdev->driver_type = RC_DRIVER_IR_RAW; 1049 rdev->allowed_protos = RC_BIT_ALL; 1050 rdev->priv = dev; 1051 rdev->open = ene_open; 1052 rdev->close = ene_close; 1053 rdev->s_idle = ene_set_idle; 1054 rdev->driver_name = ENE_DRIVER_NAME; 1055 rdev->map_name = RC_MAP_RC6_MCE; 1056 rdev->input_name = "ENE eHome Infrared Remote Receiver"; 1057 1058 if (dev->hw_learning_and_tx_capable) { 1059 rdev->s_learning_mode = ene_set_learning_mode; 1060 init_completion(&dev->tx_complete); 1061 rdev->tx_ir = ene_transmit; 1062 rdev->s_tx_mask = ene_set_tx_mask; 1063 rdev->s_tx_carrier = ene_set_tx_carrier; 1064 rdev->s_tx_duty_cycle = ene_set_tx_duty_cycle; 1065 rdev->s_carrier_report = ene_set_carrier_report; 1066 rdev->input_name = "ENE eHome Infrared Remote Transceiver"; 1067 } 1068 1069 dev->rdev = rdev; 1070 1071 ene_rx_setup_hw_buffer(dev); 1072 ene_setup_default_settings(dev); 1073 ene_setup_hw_settings(dev); 1074 1075 device_set_wakeup_capable(&pnp_dev->dev, true); 1076 device_set_wakeup_enable(&pnp_dev->dev, true); 1077 1078 error = rc_register_device(rdev); 1079 if (error < 0) 1080 goto exit_free_dev_rdev; 1081 1082 /* claim the resources */ 1083 error = -EBUSY; 1084 if (!request_region(dev->hw_io, ENE_IO_SIZE, ENE_DRIVER_NAME)) { 1085 goto exit_unregister_device; 1086 } 1087 1088 dev->irq = pnp_irq(pnp_dev, 0); 1089 if (request_irq(dev->irq, ene_isr, 1090 IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) { 1091 goto exit_release_hw_io; 1092 } 1093 1094 pr_notice("driver has been successfully loaded\n"); 1095 return 0; 1096 1097 exit_release_hw_io: 1098 release_region(dev->hw_io, ENE_IO_SIZE); 1099 exit_unregister_device: 1100 rc_unregister_device(rdev); 1101 exit_free_dev_rdev: 1102 rc_free_device(rdev); 1103 kfree(dev); 1104 return error; 1105 } 1106 1107 /* main unload function */ 1108 static void ene_remove(struct pnp_dev *pnp_dev) 1109 { 1110 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1111 unsigned long flags; 1112 1113 spin_lock_irqsave(&dev->hw_lock, flags); 1114 ene_rx_disable(dev); 1115 ene_rx_restore_hw_buffer(dev); 1116 spin_unlock_irqrestore(&dev->hw_lock, flags); 1117 1118 free_irq(dev->irq, dev); 1119 release_region(dev->hw_io, ENE_IO_SIZE); 1120 rc_unregister_device(dev->rdev); 1121 kfree(dev); 1122 } 1123 1124 /* enable wake on IR (wakes on specific button on original remote) */ 1125 static void ene_enable_wake(struct ene_device *dev, int enable) 1126 { 1127 enable = enable && device_may_wakeup(&dev->pnp_dev->dev); 1128 dbg("wake on IR %s", enable ? "enabled" : "disabled"); 1129 ene_set_clear_reg_mask(dev, ENE_FW1, ENE_FW1_WAKE, enable); 1130 } 1131 1132 #ifdef CONFIG_PM 1133 static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state) 1134 { 1135 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1136 ene_enable_wake(dev, true); 1137 1138 /* TODO: add support for wake pattern */ 1139 return 0; 1140 } 1141 1142 static int ene_resume(struct pnp_dev *pnp_dev) 1143 { 1144 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1145 ene_setup_hw_settings(dev); 1146 1147 if (dev->rx_enabled) 1148 ene_rx_enable(dev); 1149 1150 ene_enable_wake(dev, false); 1151 return 0; 1152 } 1153 #endif 1154 1155 static void ene_shutdown(struct pnp_dev *pnp_dev) 1156 { 1157 struct ene_device *dev = pnp_get_drvdata(pnp_dev); 1158 ene_enable_wake(dev, true); 1159 } 1160 1161 static const struct pnp_device_id ene_ids[] = { 1162 {.id = "ENE0100",}, 1163 {.id = "ENE0200",}, 1164 {.id = "ENE0201",}, 1165 {.id = "ENE0202",}, 1166 {}, 1167 }; 1168 1169 static struct pnp_driver ene_driver = { 1170 .name = ENE_DRIVER_NAME, 1171 .id_table = ene_ids, 1172 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1173 1174 .probe = ene_probe, 1175 .remove = ene_remove, 1176 #ifdef CONFIG_PM 1177 .suspend = ene_suspend, 1178 .resume = ene_resume, 1179 #endif 1180 .shutdown = ene_shutdown, 1181 }; 1182 1183 static int __init ene_init(void) 1184 { 1185 return pnp_register_driver(&ene_driver); 1186 } 1187 1188 static void ene_exit(void) 1189 { 1190 pnp_unregister_driver(&ene_driver); 1191 } 1192 1193 module_param(sample_period, int, S_IRUGO); 1194 MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)"); 1195 1196 module_param(learning_mode_force, bool, S_IRUGO); 1197 MODULE_PARM_DESC(learning_mode_force, "Enable learning mode by default"); 1198 1199 module_param(debug, int, S_IRUGO | S_IWUSR); 1200 MODULE_PARM_DESC(debug, "Debug level"); 1201 1202 module_param(txsim, bool, S_IRUGO); 1203 MODULE_PARM_DESC(txsim, 1204 "Simulate TX features on unsupported hardware (dangerous)"); 1205 1206 MODULE_DEVICE_TABLE(pnp, ene_ids); 1207 MODULE_DESCRIPTION 1208 ("Infrared input driver for KB3926B/C/D/E/F " 1209 "(aka ENE0100/ENE0200/ENE0201/ENE0202) CIR port"); 1210 1211 MODULE_AUTHOR("Maxim Levitsky"); 1212 MODULE_LICENSE("GPL"); 1213 1214 module_init(ene_init); 1215 module_exit(ene_exit); 1216