xref: /openbmc/linux/drivers/media/radio/wl128x/fmdrv_common.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  FM Driver for Connectivity chip of Texas Instruments.
3  *
4  *  This sub-module of FM driver is common for FM RX and TX
5  *  functionality. This module is responsible for:
6  *  1) Forming group of Channel-8 commands to perform particular
7  *     functionality (eg., frequency set require more than
8  *     one Channel-8 command to be sent to the chip).
9  *  2) Sending each Channel-8 command to the chip and reading
10  *     response back over Shared Transport.
11  *  3) Managing TX and RX Queues and Tasklets.
12  *  4) Handling FM Interrupt packet and taking appropriate action.
13  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
14  *     firmware files based on mode selection)
15  *
16  *  Copyright (C) 2011 Texas Instruments
17  *  Author: Raja Mani <raja_mani@ti.com>
18  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
19  *
20  *  This program is free software; you can redistribute it and/or modify
21  *  it under the terms of the GNU General Public License version 2 as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope that it will be useful,
25  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
26  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  *  GNU General Public License for more details.
28  *
29  *  You should have received a copy of the GNU General Public License
30  *  along with this program; if not, write to the Free Software
31  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44 
45 /* Region info */
46 static struct region_info region_configs[] = {
47 	/* Europe/US */
48 	{
49 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 	 .bot_freq = 87500,	/* 87.5 MHz */
51 	 .top_freq = 108000,	/* 108 MHz */
52 	 .fm_band = 0,
53 	 },
54 	/* Japan */
55 	{
56 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 	 .bot_freq = 76000,	/* 76 MHz */
58 	 .top_freq = 90000,	/* 90 MHz */
59 	 .fm_band = 1,
60 	 },
61 };
62 
63 /* Band selection */
64 static u8 default_radio_region;	/* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67 
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72 
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77 
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104 
105 /*
106  * When FM common module receives interrupt packet, following handlers
107  * will be executed one after another to service the interrupt(s)
108  */
109 enum fmc_irq_handler_index {
110 	FM_SEND_FLAG_GETCMD_IDX,
111 	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112 
113 	/* HW malfunction irq handler */
114 	FM_HW_MAL_FUNC_IDX,
115 
116 	/* RDS threshold reached irq handler */
117 	FM_RDS_START_IDX,
118 	FM_RDS_SEND_RDS_GETCMD_IDX,
119 	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 	FM_RDS_FINISH_IDX,
121 
122 	/* Tune operation ended irq handler */
123 	FM_HW_TUNE_OP_ENDED_IDX,
124 
125 	/* TX power enable irq handler */
126 	FM_HW_POWER_ENB_IDX,
127 
128 	/* Low RSSI irq handler */
129 	FM_LOW_RSSI_START_IDX,
130 	FM_AF_JUMP_SETPI_IDX,
131 	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 	FM_AF_JUMP_SETPI_MASK_IDX,
133 	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 	FM_AF_JUMP_SET_AF_FREQ_IDX,
135 	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 	FM_AF_JUMP_ENABLE_INT_IDX,
137 	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 	FM_AF_JUMP_START_AFJUMP_IDX,
139 	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 	FM_AF_JUMP_RD_FREQ_IDX,
141 	FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 	FM_LOW_RSSI_FINISH_IDX,
143 
144 	/* Interrupt process post action */
145 	FM_SEND_INTMSK_CMD_IDX,
146 	FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 };
148 
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151 	fm_irq_send_flag_getcmd,
152 	fm_irq_handle_flag_getcmd_resp,
153 	fm_irq_handle_hw_malfunction,
154 	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 	fm_irq_send_rdsdata_getcmd,
156 	fm_irq_handle_rdsdata_getcmd_resp,
157 	fm_irq_handle_rds_finish,
158 	fm_irq_handle_tune_op_ended,
159 	fm_irq_handle_power_enb, /* TX power enable irq handler */
160 	fm_irq_handle_low_rssi_start,
161 	fm_irq_afjump_set_pi,
162 	fm_irq_handle_set_pi_resp,
163 	fm_irq_afjump_set_pimask,
164 	fm_irq_handle_set_pimask_resp,
165 	fm_irq_afjump_setfreq,
166 	fm_irq_handle_setfreq_resp,
167 	fm_irq_afjump_enableint,
168 	fm_irq_afjump_enableint_resp,
169 	fm_irq_start_afjump,
170 	fm_irq_handle_start_afjump_resp,
171 	fm_irq_afjump_rd_freq,
172 	fm_irq_afjump_rd_freq_resp,
173 	fm_irq_handle_low_rssi_finish,
174 	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 	fm_irq_handle_intmsk_cmd_resp
176 };
177 
178 static long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180 
181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183 	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185 
186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189 	fmdev->irq_info.stage = stage;
190 	fm_irq_call(fmdev);
191 }
192 
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195 	fmdev->irq_info.stage = stage;
196 	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198 
199 #ifdef FM_DUMP_TXRX_PKT
200  /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203 	int len, len_org;
204 	u8 index;
205 	struct fm_cmd_msg_hdr *cmd_hdr;
206 
207 	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 	       cmd_hdr->len, cmd_hdr->op,
211 	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212 
213 	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 	if (len_org > 0) {
215 		printk("\n   data(%d): ", cmd_hdr->dlen);
216 		len = min(len_org, 14);
217 		for (index = 0; index < len; index++)
218 			printk("%x ",
219 			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 		printk("%s", (len_org > 14) ? ".." : "");
221 	}
222 	printk("\n");
223 }
224 
225  /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228 	int len, len_org;
229 	u8 index;
230 	struct fm_event_msg_hdr *evt_hdr;
231 
232 	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234 	    "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235 	    evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 	    (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237 
238 	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 	if (len_org > 0) {
240 		printk("\n   data(%d): ", evt_hdr->dlen);
241 		len = min(len_org, 14);
242 		for (index = 0; index < len; index++)
243 			printk("%x ",
244 			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 		printk("%s", (len_org > 14) ? ".." : "");
246 	}
247 	printk("\n");
248 }
249 #endif
250 
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253 	fmdev->rx.region = region_configs[region_to_set];
254 }
255 
256 /*
257  * FM common sub-module will schedule this tasklet whenever it receives
258  * FM packet from ST driver.
259  */
260 static void recv_tasklet(unsigned long arg)
261 {
262 	struct fmdev *fmdev;
263 	struct fm_irq *irq_info;
264 	struct fm_event_msg_hdr *evt_hdr;
265 	struct sk_buff *skb;
266 	u8 num_fm_hci_cmds;
267 	unsigned long flags;
268 
269 	fmdev = (struct fmdev *)arg;
270 	irq_info = &fmdev->irq_info;
271 	/* Process all packets in the RX queue */
272 	while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 			fmerr("skb(%p) has only %d bytes, "
275 				"at least need %zu bytes to decode\n", skb,
276 				skb->len, sizeof(struct fm_event_msg_hdr));
277 			kfree_skb(skb);
278 			continue;
279 		}
280 
281 		evt_hdr = (void *)skb->data;
282 		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283 
284 		/* FM interrupt packet? */
285 		if (evt_hdr->op == FM_INTERRUPT) {
286 			/* FM interrupt handler started already? */
287 			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 				if (irq_info->stage != 0) {
290 					fmerr("Inval stage resetting to zero\n");
291 					irq_info->stage = 0;
292 				}
293 
294 				/*
295 				 * Execute first function in interrupt handler
296 				 * table.
297 				 */
298 				irq_info->handlers[irq_info->stage](fmdev);
299 			} else {
300 				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301 			}
302 			kfree_skb(skb);
303 		}
304 		/* Anyone waiting for this with completion handler? */
305 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306 
307 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 			fmdev->resp_skb = skb;
309 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 			complete(fmdev->resp_comp);
311 
312 			fmdev->resp_comp = NULL;
313 			atomic_set(&fmdev->tx_cnt, 1);
314 		}
315 		/* Is this for interrupt handler? */
316 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 			if (fmdev->resp_skb != NULL)
318 				fmerr("Response SKB ptr not NULL\n");
319 
320 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 			fmdev->resp_skb = skb;
322 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323 
324 			/* Execute interrupt handler where state index points */
325 			irq_info->handlers[irq_info->stage](fmdev);
326 
327 			kfree_skb(skb);
328 			atomic_set(&fmdev->tx_cnt, 1);
329 		} else {
330 			fmerr("Nobody claimed SKB(%p),purging\n", skb);
331 		}
332 
333 		/*
334 		 * Check flow control field. If Num_FM_HCI_Commands field is
335 		 * not zero, schedule FM TX tasklet.
336 		 */
337 		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 			if (!skb_queue_empty(&fmdev->tx_q))
339 				tasklet_schedule(&fmdev->tx_task);
340 	}
341 }
342 
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg)
345 {
346 	struct fmdev *fmdev;
347 	struct sk_buff *skb;
348 	int len;
349 
350 	fmdev = (struct fmdev *)arg;
351 
352 	if (!atomic_read(&fmdev->tx_cnt))
353 		return;
354 
355 	/* Check, is there any timeout happened to last transmitted packet */
356 	if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 		fmerr("TX timeout occurred\n");
358 		atomic_set(&fmdev->tx_cnt, 1);
359 	}
360 
361 	/* Send queued FM TX packets */
362 	skb = skb_dequeue(&fmdev->tx_q);
363 	if (!skb)
364 		return;
365 
366 	atomic_dec(&fmdev->tx_cnt);
367 	fmdev->pre_op = fm_cb(skb)->fm_op;
368 
369 	if (fmdev->resp_comp != NULL)
370 		fmerr("Response completion handler is not NULL\n");
371 
372 	fmdev->resp_comp = fm_cb(skb)->completion;
373 
374 	/* Write FM packet to ST driver */
375 	len = g_st_write(skb);
376 	if (len < 0) {
377 		kfree_skb(skb);
378 		fmdev->resp_comp = NULL;
379 		fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 		atomic_set(&fmdev->tx_cnt, 1);
381 	} else {
382 		fmdev->last_tx_jiffies = jiffies;
383 	}
384 }
385 
386 /*
387  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388  * transmission
389  */
390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
391 		int payload_len, struct completion *wait_completion)
392 {
393 	struct sk_buff *skb;
394 	struct fm_cmd_msg_hdr *hdr;
395 	int size;
396 
397 	if (fm_op >= FM_INTERRUPT) {
398 		fmerr("Invalid fm opcode - %d\n", fm_op);
399 		return -EINVAL;
400 	}
401 	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 		fmerr("Payload data is NULL during fw download\n");
403 		return -EINVAL;
404 	}
405 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 		size =
407 		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 	else
409 		size = payload_len;
410 
411 	skb = alloc_skb(size, GFP_ATOMIC);
412 	if (!skb) {
413 		fmerr("No memory to create new SKB\n");
414 		return -ENOMEM;
415 	}
416 	/*
417 	 * Don't fill FM header info for the commands which come from
418 	 * FM firmware file.
419 	 */
420 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 		/* Fill command header info */
423 		hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
425 
426 		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428 
429 		/* FM opcode */
430 		hdr->op = fm_op;
431 
432 		/* read/write type */
433 		hdr->rd_wr = type;
434 		hdr->dlen = payload_len;
435 		fm_cb(skb)->fm_op = fm_op;
436 
437 		/*
438 		 * If firmware download has finished and the command is
439 		 * not a read command then payload is != NULL - a write
440 		 * command with u16 payload - convert to be16
441 		 */
442 		if (payload != NULL)
443 			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
444 
445 	} else if (payload != NULL) {
446 		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447 	}
448 	if (payload != NULL)
449 		memcpy(skb_put(skb, payload_len), payload, payload_len);
450 
451 	fm_cb(skb)->completion = wait_completion;
452 	skb_queue_tail(&fmdev->tx_q, skb);
453 	tasklet_schedule(&fmdev->tx_task);
454 
455 	return 0;
456 }
457 
458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 		unsigned int payload_len, void *response, int *response_len)
461 {
462 	struct sk_buff *skb;
463 	struct fm_event_msg_hdr *evt_hdr;
464 	unsigned long flags;
465 	int ret;
466 
467 	init_completion(&fmdev->maintask_comp);
468 	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 			    &fmdev->maintask_comp);
470 	if (ret)
471 		return ret;
472 
473 	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474 					 FM_DRV_TX_TIMEOUT)) {
475 		fmerr("Timeout(%d sec),didn't get reg"
476 			   "completion signal from RX tasklet\n",
477 			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478 		return -ETIMEDOUT;
479 	}
480 	if (!fmdev->resp_skb) {
481 		fmerr("Response SKB is missing\n");
482 		return -EFAULT;
483 	}
484 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485 	skb = fmdev->resp_skb;
486 	fmdev->resp_skb = NULL;
487 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488 
489 	evt_hdr = (void *)skb->data;
490 	if (evt_hdr->status != 0) {
491 		fmerr("Received event pkt status(%d) is not zero\n",
492 			   evt_hdr->status);
493 		kfree_skb(skb);
494 		return -EIO;
495 	}
496 	/* Send response data to caller */
497 	if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498 		/* Skip header info and copy only response data */
499 		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500 		memcpy(response, skb->data, evt_hdr->dlen);
501 		*response_len = evt_hdr->dlen;
502 	} else if (response_len != NULL && evt_hdr->dlen == 0) {
503 		*response_len = 0;
504 	}
505 	kfree_skb(skb);
506 
507 	return 0;
508 }
509 
510 /* --- Helper functions used in FM interrupt handlers ---*/
511 static inline int check_cmdresp_status(struct fmdev *fmdev,
512 		struct sk_buff **skb)
513 {
514 	struct fm_event_msg_hdr *fm_evt_hdr;
515 	unsigned long flags;
516 
517 	del_timer(&fmdev->irq_info.timer);
518 
519 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520 	*skb = fmdev->resp_skb;
521 	fmdev->resp_skb = NULL;
522 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523 
524 	fm_evt_hdr = (void *)(*skb)->data;
525 	if (fm_evt_hdr->status != 0) {
526 		fmerr("irq: opcode %x response status is not zero "
527 				"Initiating irq recovery process\n",
528 				fm_evt_hdr->op);
529 
530 		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531 		return -1;
532 	}
533 
534 	return 0;
535 }
536 
537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538 {
539 	struct sk_buff *skb;
540 
541 	if (!check_cmdresp_status(fmdev, &skb))
542 		fm_irq_call_stage(fmdev, stage);
543 }
544 
545 /*
546  * Interrupt process timeout handler.
547  * One of the irq handler did not get proper response from the chip. So take
548  * recovery action here. FM interrupts are disabled in the beginning of
549  * interrupt process. Therefore reset stage index to re-enable default
550  * interrupts. So that next interrupt will be processed as usual.
551  */
552 static void int_timeout_handler(unsigned long data)
553 {
554 	struct fmdev *fmdev;
555 	struct fm_irq *fmirq;
556 
557 	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558 	fmdev = (struct fmdev *)data;
559 	fmirq = &fmdev->irq_info;
560 	fmirq->retry++;
561 
562 	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563 		/* Stop recovery action (interrupt reenable process) and
564 		 * reset stage index & retry count values */
565 		fmirq->stage = 0;
566 		fmirq->retry = 0;
567 		fmerr("Recovery action failed during"
568 				"irq processing, max retry reached\n");
569 		return;
570 	}
571 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572 }
573 
574 /* --------- FM interrupt handlers ------------*/
575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576 {
577 	u16 flag;
578 
579 	/* Send FLAG_GET command , to know the source of interrupt */
580 	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581 		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582 }
583 
584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585 {
586 	struct sk_buff *skb;
587 	struct fm_event_msg_hdr *fm_evt_hdr;
588 
589 	if (check_cmdresp_status(fmdev, &skb))
590 		return;
591 
592 	fm_evt_hdr = (void *)skb->data;
593 
594 	/* Skip header info and copy only response data */
595 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596 	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597 
598 	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
599 	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600 
601 	/* Continue next function in interrupt handler table */
602 	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603 }
604 
605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606 {
607 	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608 		fmerr("irq: HW MAL int received - do nothing\n");
609 
610 	/* Continue next function in interrupt handler table */
611 	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612 }
613 
614 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615 {
616 	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617 		fmdbg("irq: rds threshold reached\n");
618 		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619 	} else {
620 		/* Continue next function in interrupt handler table */
621 		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622 	}
623 
624 	fm_irq_call(fmdev);
625 }
626 
627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628 {
629 	/* Send the command to read RDS data from the chip */
630 	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631 			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632 		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633 }
634 
635 /* Keeps track of current RX channel AF (Alternate Frequency) */
636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637 {
638 	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639 	u8 reg_idx = fmdev->rx.region.fm_band;
640 	u8 index;
641 	u32 freq;
642 
643 	/* First AF indicates the number of AF follows. Reset the list */
644 	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645 		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646 		fmdev->rx.stat_info.afcache_size = 0;
647 		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648 		return;
649 	}
650 
651 	if (af < FM_RDS_MIN_AF)
652 		return;
653 	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654 		return;
655 	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656 		return;
657 
658 	freq = fmdev->rx.region.bot_freq + (af * 100);
659 	if (freq == fmdev->rx.freq) {
660 		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661 				fmdev->rx.freq, freq);
662 		return;
663 	}
664 	/* Do check in AF cache */
665 	for (index = 0; index < stat_info->afcache_size; index++) {
666 		if (stat_info->af_cache[index] == freq)
667 			break;
668 	}
669 	/* Reached the limit of the list - ignore the next AF */
670 	if (index == stat_info->af_list_max) {
671 		fmdbg("AF cache is full\n");
672 		return;
673 	}
674 	/*
675 	 * If we reached the end of the list then this AF is not
676 	 * in the list - add it.
677 	 */
678 	if (index == stat_info->afcache_size) {
679 		fmdbg("Storing AF %d to cache index %d\n", freq, index);
680 		stat_info->af_cache[index] = freq;
681 		stat_info->afcache_size++;
682 	}
683 }
684 
685 /*
686  * Converts RDS buffer data from big endian format
687  * to little endian format.
688  */
689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690 		struct fm_rdsdata_format *rds_format)
691 {
692 	u8 index = 0;
693 	u8 *rds_buff;
694 
695 	/*
696 	 * Since in Orca the 2 RDS Data bytes are in little endian and
697 	 * in Dolphin they are in big endian, the parsing of the RDS data
698 	 * is chip dependent
699 	 */
700 	if (fmdev->asci_id != 0x6350) {
701 		rds_buff = &rds_format->data.groupdatabuff.buff[0];
702 		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
703 			swap(rds_buff[index], rds_buff[index + 1]);
704 			index += 2;
705 		}
706 	}
707 }
708 
709 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
710 {
711 	struct sk_buff *skb;
712 	struct fm_rdsdata_format rds_fmt;
713 	struct fm_rds *rds = &fmdev->rx.rds;
714 	unsigned long group_idx, flags;
715 	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
716 	u8 type, blk_idx;
717 	u16 cur_picode;
718 	u32 rds_len;
719 
720 	if (check_cmdresp_status(fmdev, &skb))
721 		return;
722 
723 	/* Skip header info */
724 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
725 	rds_data = skb->data;
726 	rds_len = skb->len;
727 
728 	/* Parse the RDS data */
729 	while (rds_len >= FM_RDS_BLK_SIZE) {
730 		meta_data = rds_data[2];
731 		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
732 		type = (meta_data & 0x07);
733 
734 		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
735 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
736 		fmdbg("Block index:%d(%s)\n", blk_idx,
737 			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
738 
739 		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
740 			break;
741 
742 		if (blk_idx > FM_RDS_BLK_IDX_D) {
743 			fmdbg("Block sequence mismatch\n");
744 			rds->last_blk_idx = -1;
745 			break;
746 		}
747 
748 		/* Skip checkword (control) byte and copy only data byte */
749 		memcpy(&rds_fmt.data.groupdatabuff.
750 				buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
751 				rds_data, (FM_RDS_BLK_SIZE - 1));
752 
753 		rds->last_blk_idx = blk_idx;
754 
755 		/* If completed a whole group then handle it */
756 		if (blk_idx == FM_RDS_BLK_IDX_D) {
757 			fmdbg("Good block received\n");
758 			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
759 
760 			/*
761 			 * Extract PI code and store in local cache.
762 			 * We need this during AF switch processing.
763 			 */
764 			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
765 			if (fmdev->rx.stat_info.picode != cur_picode)
766 				fmdev->rx.stat_info.picode = cur_picode;
767 
768 			fmdbg("picode:%d\n", cur_picode);
769 
770 			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
771 			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
772 					(group_idx % 2) ? "B" : "A");
773 
774 			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
775 			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
776 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
777 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
778 			}
779 		}
780 		rds_len -= FM_RDS_BLK_SIZE;
781 		rds_data += FM_RDS_BLK_SIZE;
782 	}
783 
784 	/* Copy raw rds data to internal rds buffer */
785 	rds_data = skb->data;
786 	rds_len = skb->len;
787 
788 	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
789 	while (rds_len > 0) {
790 		/*
791 		 * Fill RDS buffer as per V4L2 specification.
792 		 * Store control byte
793 		 */
794 		type = (rds_data[2] & 0x07);
795 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
796 		tmpbuf[2] = blk_idx;	/* Offset name */
797 		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
798 
799 		/* Store data byte */
800 		tmpbuf[0] = rds_data[0];
801 		tmpbuf[1] = rds_data[1];
802 
803 		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
804 		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
805 
806 		/* Check for overflow & start over */
807 		if (rds->wr_idx == rds->rd_idx) {
808 			fmdbg("RDS buffer overflow\n");
809 			rds->wr_idx = 0;
810 			rds->rd_idx = 0;
811 			break;
812 		}
813 		rds_len -= FM_RDS_BLK_SIZE;
814 		rds_data += FM_RDS_BLK_SIZE;
815 	}
816 	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
817 
818 	/* Wakeup read queue */
819 	if (rds->wr_idx != rds->rd_idx)
820 		wake_up_interruptible(&rds->read_queue);
821 
822 	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
823 }
824 
825 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
826 {
827 	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
828 }
829 
830 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
831 {
832 	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
833 	    irq_info.mask) {
834 		fmdbg("irq: tune ended/bandlimit reached\n");
835 		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
836 			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
837 		} else {
838 			complete(&fmdev->maintask_comp);
839 			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
840 		}
841 	} else
842 		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843 
844 	fm_irq_call(fmdev);
845 }
846 
847 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
848 {
849 	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
850 		fmdbg("irq: Power Enabled/Disabled\n");
851 		complete(&fmdev->maintask_comp);
852 	}
853 
854 	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
855 }
856 
857 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
858 {
859 	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
860 	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
861 	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
862 	    (fmdev->rx.stat_info.afcache_size != 0)) {
863 		fmdbg("irq: rssi level has fallen below threshold level\n");
864 
865 		/* Disable further low RSSI interrupts */
866 		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
867 
868 		fmdev->rx.afjump_idx = 0;
869 		fmdev->rx.freq_before_jump = fmdev->rx.freq;
870 		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
871 	} else {
872 		/* Continue next function in interrupt handler table */
873 		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
874 	}
875 
876 	fm_irq_call(fmdev);
877 }
878 
879 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
880 {
881 	u16 payload;
882 
883 	/* Set PI code - must be updated if the AF list is not empty */
884 	payload = fmdev->rx.stat_info.picode;
885 	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
886 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
887 }
888 
889 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
890 {
891 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
892 }
893 
894 /*
895  * Set PI mask.
896  * 0xFFFF = Enable PI code matching
897  * 0x0000 = Disable PI code matching
898  */
899 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
900 {
901 	u16 payload;
902 
903 	payload = 0x0000;
904 	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
905 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
906 }
907 
908 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
909 {
910 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
911 }
912 
913 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
914 {
915 	u16 frq_index;
916 	u16 payload;
917 
918 	fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
919 	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
920 	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
921 
922 	payload = frq_index;
923 	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
924 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
925 }
926 
927 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
928 {
929 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
930 }
931 
932 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
933 {
934 	u16 payload;
935 
936 	/* Enable FR (tuning operation ended) interrupt */
937 	payload = FM_FR_EVENT;
938 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
939 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
940 }
941 
942 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
943 {
944 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
945 }
946 
947 static void fm_irq_start_afjump(struct fmdev *fmdev)
948 {
949 	u16 payload;
950 
951 	payload = FM_TUNER_AF_JUMP_MODE;
952 	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
953 			sizeof(payload), NULL))
954 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
955 }
956 
957 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
958 {
959 	struct sk_buff *skb;
960 
961 	if (check_cmdresp_status(fmdev, &skb))
962 		return;
963 
964 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
965 	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
966 	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
967 }
968 
969 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
970 {
971 	u16 payload;
972 
973 	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
974 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
975 }
976 
977 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
978 {
979 	struct sk_buff *skb;
980 	u16 read_freq;
981 	u32 curr_freq, jumped_freq;
982 
983 	if (check_cmdresp_status(fmdev, &skb))
984 		return;
985 
986 	/* Skip header info and copy only response data */
987 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
988 	memcpy(&read_freq, skb->data, sizeof(read_freq));
989 	read_freq = be16_to_cpu((__force __be16)read_freq);
990 	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
991 
992 	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
993 
994 	/* If the frequency was changed the jump succeeded */
995 	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
996 		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
997 		fmdev->rx.freq = curr_freq;
998 		fm_rx_reset_rds_cache(fmdev);
999 
1000 		/* AF feature is on, enable low level RSSI interrupt */
1001 		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1002 			fmdev->irq_info.mask |= FM_LEV_EVENT;
1003 
1004 		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1005 	} else {		/* jump to the next freq in the AF list */
1006 		fmdev->rx.afjump_idx++;
1007 
1008 		/* If we reached the end of the list - stop searching */
1009 		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1010 			fmdbg("AF switch processing failed\n");
1011 			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1012 		} else {	/* AF List is not over - try next one */
1013 
1014 			fmdbg("Trying next freq in AF cache\n");
1015 			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1016 		}
1017 	}
1018 	fm_irq_call(fmdev);
1019 }
1020 
1021 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1022 {
1023 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1024 }
1025 
1026 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1027 {
1028 	u16 payload;
1029 
1030 	/* Re-enable FM interrupts */
1031 	payload = fmdev->irq_info.mask;
1032 
1033 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1034 			sizeof(payload), NULL))
1035 		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1036 }
1037 
1038 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1039 {
1040 	struct sk_buff *skb;
1041 
1042 	if (check_cmdresp_status(fmdev, &skb))
1043 		return;
1044 	/*
1045 	 * This is last function in interrupt table to be executed.
1046 	 * So, reset stage index to 0.
1047 	 */
1048 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1049 
1050 	/* Start processing any pending interrupt */
1051 	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1052 		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1053 	else
1054 		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1055 }
1056 
1057 /* Returns availability of RDS data in internel buffer */
1058 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1059 				struct poll_table_struct *pts)
1060 {
1061 	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1062 	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1063 		return 0;
1064 
1065 	return -EAGAIN;
1066 }
1067 
1068 /* Copies RDS data from internal buffer to user buffer */
1069 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1070 		u8 __user *buf, size_t count)
1071 {
1072 	u32 block_count;
1073 	u8 tmpbuf[FM_RDS_BLK_SIZE];
1074 	unsigned long flags;
1075 	int ret;
1076 
1077 	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1078 		if (file->f_flags & O_NONBLOCK)
1079 			return -EWOULDBLOCK;
1080 
1081 		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1082 				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1083 		if (ret)
1084 			return -EINTR;
1085 	}
1086 
1087 	/* Calculate block count from byte count */
1088 	count /= FM_RDS_BLK_SIZE;
1089 	block_count = 0;
1090 	ret = 0;
1091 
1092 	while (block_count < count) {
1093 		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1094 
1095 		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1096 			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1097 			break;
1098 		}
1099 		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1100 					FM_RDS_BLK_SIZE);
1101 		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1102 		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1103 			fmdev->rx.rds.rd_idx = 0;
1104 
1105 		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1106 
1107 		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1108 			break;
1109 
1110 		block_count++;
1111 		buf += FM_RDS_BLK_SIZE;
1112 		ret += FM_RDS_BLK_SIZE;
1113 	}
1114 	return ret;
1115 }
1116 
1117 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1118 {
1119 	switch (fmdev->curr_fmmode) {
1120 	case FM_MODE_RX:
1121 		return fm_rx_set_freq(fmdev, freq_to_set);
1122 
1123 	case FM_MODE_TX:
1124 		return fm_tx_set_freq(fmdev, freq_to_set);
1125 
1126 	default:
1127 		return -EINVAL;
1128 	}
1129 }
1130 
1131 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1132 {
1133 	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1134 		fmerr("RX frequency is not set\n");
1135 		return -EPERM;
1136 	}
1137 	if (cur_tuned_frq == NULL) {
1138 		fmerr("Invalid memory\n");
1139 		return -ENOMEM;
1140 	}
1141 
1142 	switch (fmdev->curr_fmmode) {
1143 	case FM_MODE_RX:
1144 		*cur_tuned_frq = fmdev->rx.freq;
1145 		return 0;
1146 
1147 	case FM_MODE_TX:
1148 		*cur_tuned_frq = 0;	/* TODO : Change this later */
1149 		return 0;
1150 
1151 	default:
1152 		return -EINVAL;
1153 	}
1154 
1155 }
1156 
1157 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1158 {
1159 	switch (fmdev->curr_fmmode) {
1160 	case FM_MODE_RX:
1161 		return fm_rx_set_region(fmdev, region_to_set);
1162 
1163 	case FM_MODE_TX:
1164 		return fm_tx_set_region(fmdev, region_to_set);
1165 
1166 	default:
1167 		return -EINVAL;
1168 	}
1169 }
1170 
1171 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1172 {
1173 	switch (fmdev->curr_fmmode) {
1174 	case FM_MODE_RX:
1175 		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1176 
1177 	case FM_MODE_TX:
1178 		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1179 
1180 	default:
1181 		return -EINVAL;
1182 	}
1183 }
1184 
1185 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1186 {
1187 	switch (fmdev->curr_fmmode) {
1188 	case FM_MODE_RX:
1189 		return fm_rx_set_stereo_mono(fmdev, mode);
1190 
1191 	case FM_MODE_TX:
1192 		return fm_tx_set_stereo_mono(fmdev, mode);
1193 
1194 	default:
1195 		return -EINVAL;
1196 	}
1197 }
1198 
1199 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1200 {
1201 	switch (fmdev->curr_fmmode) {
1202 	case FM_MODE_RX:
1203 		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1204 
1205 	case FM_MODE_TX:
1206 		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1207 
1208 	default:
1209 		return -EINVAL;
1210 	}
1211 }
1212 
1213 /* Sends power off command to the chip */
1214 static int fm_power_down(struct fmdev *fmdev)
1215 {
1216 	u16 payload;
1217 	int ret;
1218 
1219 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1220 		fmerr("FM core is not ready\n");
1221 		return -EPERM;
1222 	}
1223 	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1224 		fmdbg("FM chip is already in OFF state\n");
1225 		return 0;
1226 	}
1227 
1228 	payload = 0x0;
1229 	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1230 		sizeof(payload), NULL, NULL);
1231 	if (ret < 0)
1232 		return ret;
1233 
1234 	return fmc_release(fmdev);
1235 }
1236 
1237 /* Reads init command from FM firmware file and loads to the chip */
1238 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1239 {
1240 	const struct firmware *fw_entry;
1241 	struct bts_header *fw_header;
1242 	struct bts_action *action;
1243 	struct bts_action_delay *delay;
1244 	u8 *fw_data;
1245 	int ret, fw_len, cmd_cnt;
1246 
1247 	cmd_cnt = 0;
1248 	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1249 
1250 	ret = request_firmware(&fw_entry, fw_name,
1251 				&fmdev->radio_dev->dev);
1252 	if (ret < 0) {
1253 		fmerr("Unable to read firmware(%s) content\n", fw_name);
1254 		return ret;
1255 	}
1256 	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1257 
1258 	fw_data = (void *)fw_entry->data;
1259 	fw_len = fw_entry->size;
1260 
1261 	fw_header = (struct bts_header *)fw_data;
1262 	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1263 		fmerr("%s not a legal TI firmware file\n", fw_name);
1264 		ret = -EINVAL;
1265 		goto rel_fw;
1266 	}
1267 	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1268 
1269 	/* Skip file header info , we already verified it */
1270 	fw_data += sizeof(struct bts_header);
1271 	fw_len -= sizeof(struct bts_header);
1272 
1273 	while (fw_data && fw_len > 0) {
1274 		action = (struct bts_action *)fw_data;
1275 
1276 		switch (action->type) {
1277 		case ACTION_SEND_COMMAND:	/* Send */
1278 			if (fmc_send_cmd(fmdev, 0, 0, action->data,
1279 						action->size, NULL, NULL))
1280 				goto rel_fw;
1281 
1282 			cmd_cnt++;
1283 			break;
1284 
1285 		case ACTION_DELAY:	/* Delay */
1286 			delay = (struct bts_action_delay *)action->data;
1287 			mdelay(delay->msec);
1288 			break;
1289 		}
1290 
1291 		fw_data += (sizeof(struct bts_action) + (action->size));
1292 		fw_len -= (sizeof(struct bts_action) + (action->size));
1293 	}
1294 	fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1295 rel_fw:
1296 	release_firmware(fw_entry);
1297 	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1298 
1299 	return ret;
1300 }
1301 
1302 /* Loads default RX configuration to the chip */
1303 static int load_default_rx_configuration(struct fmdev *fmdev)
1304 {
1305 	int ret;
1306 
1307 	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1308 	if (ret < 0)
1309 		return ret;
1310 
1311 	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1312 }
1313 
1314 /* Does FM power on sequence */
1315 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1316 {
1317 	u16 payload;
1318 	__be16 asic_id, asic_ver;
1319 	int resp_len, ret;
1320 	u8 fw_name[50];
1321 
1322 	if (mode >= FM_MODE_ENTRY_MAX) {
1323 		fmerr("Invalid firmware download option\n");
1324 		return -EINVAL;
1325 	}
1326 
1327 	/*
1328 	 * Initialize FM common module. FM GPIO toggling is
1329 	 * taken care in Shared Transport driver.
1330 	 */
1331 	ret = fmc_prepare(fmdev);
1332 	if (ret < 0) {
1333 		fmerr("Unable to prepare FM Common\n");
1334 		return ret;
1335 	}
1336 
1337 	payload = FM_ENABLE;
1338 	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1339 			sizeof(payload), NULL, NULL))
1340 		goto rel;
1341 
1342 	/* Allow the chip to settle down in Channel-8 mode */
1343 	msleep(20);
1344 
1345 	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1346 			sizeof(asic_id), &asic_id, &resp_len))
1347 		goto rel;
1348 
1349 	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1350 			sizeof(asic_ver), &asic_ver, &resp_len))
1351 		goto rel;
1352 
1353 	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1354 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355 
1356 	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1357 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1358 
1359 	ret = fm_download_firmware(fmdev, fw_name);
1360 	if (ret < 0) {
1361 		fmdbg("Failed to download firmware file %s\n", fw_name);
1362 		goto rel;
1363 	}
1364 	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1365 			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1366 			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1367 
1368 	ret = fm_download_firmware(fmdev, fw_name);
1369 	if (ret < 0) {
1370 		fmdbg("Failed to download firmware file %s\n", fw_name);
1371 		goto rel;
1372 	} else
1373 		return ret;
1374 rel:
1375 	return fmc_release(fmdev);
1376 }
1377 
1378 /* Set FM Modes(TX, RX, OFF) */
1379 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1380 {
1381 	int ret = 0;
1382 
1383 	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1384 		fmerr("Invalid FM mode\n");
1385 		return -EINVAL;
1386 	}
1387 	if (fmdev->curr_fmmode == fm_mode) {
1388 		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1389 		return ret;
1390 	}
1391 
1392 	switch (fm_mode) {
1393 	case FM_MODE_OFF:	/* OFF Mode */
1394 		ret = fm_power_down(fmdev);
1395 		if (ret < 0) {
1396 			fmerr("Failed to set OFF mode\n");
1397 			return ret;
1398 		}
1399 		break;
1400 
1401 	case FM_MODE_TX:	/* TX Mode */
1402 	case FM_MODE_RX:	/* RX Mode */
1403 		/* Power down before switching to TX or RX mode */
1404 		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1405 			ret = fm_power_down(fmdev);
1406 			if (ret < 0) {
1407 				fmerr("Failed to set OFF mode\n");
1408 				return ret;
1409 			}
1410 			msleep(30);
1411 		}
1412 		ret = fm_power_up(fmdev, fm_mode);
1413 		if (ret < 0) {
1414 			fmerr("Failed to load firmware\n");
1415 			return ret;
1416 		}
1417 	}
1418 	fmdev->curr_fmmode = fm_mode;
1419 
1420 	/* Set default configuration */
1421 	if (fmdev->curr_fmmode == FM_MODE_RX) {
1422 		fmdbg("Loading default rx configuration..\n");
1423 		ret = load_default_rx_configuration(fmdev);
1424 		if (ret < 0)
1425 			fmerr("Failed to load default values\n");
1426 	}
1427 
1428 	return ret;
1429 }
1430 
1431 /* Returns current FM mode (TX, RX, OFF) */
1432 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1433 {
1434 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1435 		fmerr("FM core is not ready\n");
1436 		return -EPERM;
1437 	}
1438 	if (fmmode == NULL) {
1439 		fmerr("Invalid memory\n");
1440 		return -ENOMEM;
1441 	}
1442 
1443 	*fmmode = fmdev->curr_fmmode;
1444 	return 0;
1445 }
1446 
1447 /* Called by ST layer when FM packet is available */
1448 static long fm_st_receive(void *arg, struct sk_buff *skb)
1449 {
1450 	struct fmdev *fmdev;
1451 
1452 	fmdev = (struct fmdev *)arg;
1453 
1454 	if (skb == NULL) {
1455 		fmerr("Invalid SKB received from ST\n");
1456 		return -EFAULT;
1457 	}
1458 
1459 	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1460 		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1461 		return -EINVAL;
1462 	}
1463 
1464 	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1465 	skb_queue_tail(&fmdev->rx_q, skb);
1466 	tasklet_schedule(&fmdev->rx_task);
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Called by ST layer to indicate protocol registration completion
1473  * status.
1474  */
1475 static void fm_st_reg_comp_cb(void *arg, char data)
1476 {
1477 	struct fmdev *fmdev;
1478 
1479 	fmdev = (struct fmdev *)arg;
1480 	fmdev->streg_cbdata = data;
1481 	complete(&wait_for_fmdrv_reg_comp);
1482 }
1483 
1484 /*
1485  * This function will be called from FM V4L2 open function.
1486  * Register with ST driver and initialize driver data.
1487  */
1488 int fmc_prepare(struct fmdev *fmdev)
1489 {
1490 	static struct st_proto_s fm_st_proto;
1491 	int ret;
1492 
1493 	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1494 		fmdbg("FM Core is already up\n");
1495 		return 0;
1496 	}
1497 
1498 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1499 	fm_st_proto.recv = fm_st_receive;
1500 	fm_st_proto.match_packet = NULL;
1501 	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1502 	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1503 	fm_st_proto.priv_data = fmdev;
1504 	fm_st_proto.chnl_id = 0x08;
1505 	fm_st_proto.max_frame_size = 0xff;
1506 	fm_st_proto.hdr_len = 1;
1507 	fm_st_proto.offset_len_in_hdr = 0;
1508 	fm_st_proto.len_size = 1;
1509 	fm_st_proto.reserve = 1;
1510 
1511 	ret = st_register(&fm_st_proto);
1512 	if (ret == -EINPROGRESS) {
1513 		init_completion(&wait_for_fmdrv_reg_comp);
1514 		fmdev->streg_cbdata = -EINPROGRESS;
1515 		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1516 
1517 		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1518 						 FM_ST_REG_TIMEOUT)) {
1519 			fmerr("Timeout(%d sec), didn't get reg "
1520 					"completion signal from ST\n",
1521 					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1522 			return -ETIMEDOUT;
1523 		}
1524 		if (fmdev->streg_cbdata != 0) {
1525 			fmerr("ST reg comp CB called with error "
1526 					"status %d\n", fmdev->streg_cbdata);
1527 			return -EAGAIN;
1528 		}
1529 
1530 		ret = 0;
1531 	} else if (ret == -1) {
1532 		fmerr("st_register failed %d\n", ret);
1533 		return -EAGAIN;
1534 	}
1535 
1536 	if (fm_st_proto.write != NULL) {
1537 		g_st_write = fm_st_proto.write;
1538 	} else {
1539 		fmerr("Failed to get ST write func pointer\n");
1540 		ret = st_unregister(&fm_st_proto);
1541 		if (ret < 0)
1542 			fmerr("st_unregister failed %d\n", ret);
1543 		return -EAGAIN;
1544 	}
1545 
1546 	spin_lock_init(&fmdev->rds_buff_lock);
1547 	spin_lock_init(&fmdev->resp_skb_lock);
1548 
1549 	/* Initialize TX queue and TX tasklet */
1550 	skb_queue_head_init(&fmdev->tx_q);
1551 	tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1552 
1553 	/* Initialize RX Queue and RX tasklet */
1554 	skb_queue_head_init(&fmdev->rx_q);
1555 	tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1556 
1557 	fmdev->irq_info.stage = 0;
1558 	atomic_set(&fmdev->tx_cnt, 1);
1559 	fmdev->resp_comp = NULL;
1560 
1561 	init_timer(&fmdev->irq_info.timer);
1562 	fmdev->irq_info.timer.function = &int_timeout_handler;
1563 	fmdev->irq_info.timer.data = (unsigned long)fmdev;
1564 	/*TODO: add FM_STIC_EVENT later */
1565 	fmdev->irq_info.mask = FM_MAL_EVENT;
1566 
1567 	/* Region info */
1568 	fmdev->rx.region = region_configs[default_radio_region];
1569 
1570 	fmdev->rx.mute_mode = FM_MUTE_OFF;
1571 	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1572 	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1573 	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1574 	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1575 	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1576 	fmdev->irq_info.retry = 0;
1577 
1578 	fm_rx_reset_rds_cache(fmdev);
1579 	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1580 
1581 	fm_rx_reset_station_info(fmdev);
1582 	set_bit(FM_CORE_READY, &fmdev->flag);
1583 
1584 	return ret;
1585 }
1586 
1587 /*
1588  * This function will be called from FM V4L2 release function.
1589  * Unregister from ST driver.
1590  */
1591 int fmc_release(struct fmdev *fmdev)
1592 {
1593 	static struct st_proto_s fm_st_proto;
1594 	int ret;
1595 
1596 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1597 		fmdbg("FM Core is already down\n");
1598 		return 0;
1599 	}
1600 	/* Service pending read */
1601 	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1602 
1603 	tasklet_kill(&fmdev->tx_task);
1604 	tasklet_kill(&fmdev->rx_task);
1605 
1606 	skb_queue_purge(&fmdev->tx_q);
1607 	skb_queue_purge(&fmdev->rx_q);
1608 
1609 	fmdev->resp_comp = NULL;
1610 	fmdev->rx.freq = 0;
1611 
1612 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1613 	fm_st_proto.chnl_id = 0x08;
1614 
1615 	ret = st_unregister(&fm_st_proto);
1616 
1617 	if (ret < 0)
1618 		fmerr("Failed to de-register FM from ST %d\n", ret);
1619 	else
1620 		fmdbg("Successfully unregistered from ST\n");
1621 
1622 	clear_bit(FM_CORE_READY, &fmdev->flag);
1623 	return ret;
1624 }
1625 
1626 /*
1627  * Module init function. Ask FM V4L module to register video device.
1628  * Allocate memory for FM driver context and RX RDS buffer.
1629  */
1630 static int __init fm_drv_init(void)
1631 {
1632 	struct fmdev *fmdev = NULL;
1633 	int ret = -ENOMEM;
1634 
1635 	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1636 
1637 	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1638 	if (NULL == fmdev) {
1639 		fmerr("Can't allocate operation structure memory\n");
1640 		return ret;
1641 	}
1642 	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1643 	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1644 	if (NULL == fmdev->rx.rds.buff) {
1645 		fmerr("Can't allocate rds ring buffer\n");
1646 		goto rel_dev;
1647 	}
1648 
1649 	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1650 	if (ret < 0)
1651 		goto rel_rdsbuf;
1652 
1653 	fmdev->irq_info.handlers = int_handler_table;
1654 	fmdev->curr_fmmode = FM_MODE_OFF;
1655 	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1656 	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1657 	return ret;
1658 
1659 rel_rdsbuf:
1660 	kfree(fmdev->rx.rds.buff);
1661 rel_dev:
1662 	kfree(fmdev);
1663 
1664 	return ret;
1665 }
1666 
1667 /* Module exit function. Ask FM V4L module to unregister video device */
1668 static void __exit fm_drv_exit(void)
1669 {
1670 	struct fmdev *fmdev = NULL;
1671 
1672 	fmdev = fm_v4l2_deinit_video_device();
1673 	if (fmdev != NULL) {
1674 		kfree(fmdev->rx.rds.buff);
1675 		kfree(fmdev);
1676 	}
1677 }
1678 
1679 module_init(fm_drv_init);
1680 module_exit(fm_drv_exit);
1681 
1682 /* ------------- Module Info ------------- */
1683 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1684 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1685 MODULE_VERSION(FM_DRV_VERSION);
1686 MODULE_LICENSE("GPL");
1687