1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FM Driver for Connectivity chip of Texas Instruments. 4 * 5 * This sub-module of FM driver is common for FM RX and TX 6 * functionality. This module is responsible for: 7 * 1) Forming group of Channel-8 commands to perform particular 8 * functionality (eg., frequency set require more than 9 * one Channel-8 command to be sent to the chip). 10 * 2) Sending each Channel-8 command to the chip and reading 11 * response back over Shared Transport. 12 * 3) Managing TX and RX Queues and Tasklets. 13 * 4) Handling FM Interrupt packet and taking appropriate action. 14 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX 15 * firmware files based on mode selection) 16 * 17 * Copyright (C) 2011 Texas Instruments 18 * Author: Raja Mani <raja_mani@ti.com> 19 * Author: Manjunatha Halli <manjunatha_halli@ti.com> 20 */ 21 22 #include <linux/delay.h> 23 #include <linux/firmware.h> 24 #include <linux/module.h> 25 #include <linux/nospec.h> 26 27 #include "fmdrv.h" 28 #include "fmdrv_v4l2.h" 29 #include "fmdrv_common.h" 30 #include <linux/ti_wilink_st.h> 31 #include "fmdrv_rx.h" 32 #include "fmdrv_tx.h" 33 34 /* Region info */ 35 static struct region_info region_configs[] = { 36 /* Europe/US */ 37 { 38 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 39 .bot_freq = 87500, /* 87.5 MHz */ 40 .top_freq = 108000, /* 108 MHz */ 41 .fm_band = 0, 42 }, 43 /* Japan */ 44 { 45 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 46 .bot_freq = 76000, /* 76 MHz */ 47 .top_freq = 90000, /* 90 MHz */ 48 .fm_band = 1, 49 }, 50 }; 51 52 /* Band selection */ 53 static u8 default_radio_region; /* Europe/US */ 54 module_param(default_radio_region, byte, 0); 55 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan"); 56 57 /* RDS buffer blocks */ 58 static u32 default_rds_buf = 300; 59 module_param(default_rds_buf, uint, 0444); 60 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries"); 61 62 /* Radio Nr */ 63 static u32 radio_nr = -1; 64 module_param(radio_nr, int, 0444); 65 MODULE_PARM_DESC(radio_nr, "Radio Nr"); 66 67 /* FM irq handlers forward declaration */ 68 static void fm_irq_send_flag_getcmd(struct fmdev *); 69 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *); 70 static void fm_irq_handle_hw_malfunction(struct fmdev *); 71 static void fm_irq_handle_rds_start(struct fmdev *); 72 static void fm_irq_send_rdsdata_getcmd(struct fmdev *); 73 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *); 74 static void fm_irq_handle_rds_finish(struct fmdev *); 75 static void fm_irq_handle_tune_op_ended(struct fmdev *); 76 static void fm_irq_handle_power_enb(struct fmdev *); 77 static void fm_irq_handle_low_rssi_start(struct fmdev *); 78 static void fm_irq_afjump_set_pi(struct fmdev *); 79 static void fm_irq_handle_set_pi_resp(struct fmdev *); 80 static void fm_irq_afjump_set_pimask(struct fmdev *); 81 static void fm_irq_handle_set_pimask_resp(struct fmdev *); 82 static void fm_irq_afjump_setfreq(struct fmdev *); 83 static void fm_irq_handle_setfreq_resp(struct fmdev *); 84 static void fm_irq_afjump_enableint(struct fmdev *); 85 static void fm_irq_afjump_enableint_resp(struct fmdev *); 86 static void fm_irq_start_afjump(struct fmdev *); 87 static void fm_irq_handle_start_afjump_resp(struct fmdev *); 88 static void fm_irq_afjump_rd_freq(struct fmdev *); 89 static void fm_irq_afjump_rd_freq_resp(struct fmdev *); 90 static void fm_irq_handle_low_rssi_finish(struct fmdev *); 91 static void fm_irq_send_intmsk_cmd(struct fmdev *); 92 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *); 93 94 /* 95 * When FM common module receives interrupt packet, following handlers 96 * will be executed one after another to service the interrupt(s) 97 */ 98 enum fmc_irq_handler_index { 99 FM_SEND_FLAG_GETCMD_IDX, 100 FM_HANDLE_FLAG_GETCMD_RESP_IDX, 101 102 /* HW malfunction irq handler */ 103 FM_HW_MAL_FUNC_IDX, 104 105 /* RDS threshold reached irq handler */ 106 FM_RDS_START_IDX, 107 FM_RDS_SEND_RDS_GETCMD_IDX, 108 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX, 109 FM_RDS_FINISH_IDX, 110 111 /* Tune operation ended irq handler */ 112 FM_HW_TUNE_OP_ENDED_IDX, 113 114 /* TX power enable irq handler */ 115 FM_HW_POWER_ENB_IDX, 116 117 /* Low RSSI irq handler */ 118 FM_LOW_RSSI_START_IDX, 119 FM_AF_JUMP_SETPI_IDX, 120 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX, 121 FM_AF_JUMP_SETPI_MASK_IDX, 122 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX, 123 FM_AF_JUMP_SET_AF_FREQ_IDX, 124 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX, 125 FM_AF_JUMP_ENABLE_INT_IDX, 126 FM_AF_JUMP_ENABLE_INT_RESP_IDX, 127 FM_AF_JUMP_START_AFJUMP_IDX, 128 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX, 129 FM_AF_JUMP_RD_FREQ_IDX, 130 FM_AF_JUMP_RD_FREQ_RESP_IDX, 131 FM_LOW_RSSI_FINISH_IDX, 132 133 /* Interrupt process post action */ 134 FM_SEND_INTMSK_CMD_IDX, 135 FM_HANDLE_INTMSK_CMD_RESP_IDX, 136 }; 137 138 /* FM interrupt handler table */ 139 static int_handler_prototype int_handler_table[] = { 140 fm_irq_send_flag_getcmd, 141 fm_irq_handle_flag_getcmd_resp, 142 fm_irq_handle_hw_malfunction, 143 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */ 144 fm_irq_send_rdsdata_getcmd, 145 fm_irq_handle_rdsdata_getcmd_resp, 146 fm_irq_handle_rds_finish, 147 fm_irq_handle_tune_op_ended, 148 fm_irq_handle_power_enb, /* TX power enable irq handler */ 149 fm_irq_handle_low_rssi_start, 150 fm_irq_afjump_set_pi, 151 fm_irq_handle_set_pi_resp, 152 fm_irq_afjump_set_pimask, 153 fm_irq_handle_set_pimask_resp, 154 fm_irq_afjump_setfreq, 155 fm_irq_handle_setfreq_resp, 156 fm_irq_afjump_enableint, 157 fm_irq_afjump_enableint_resp, 158 fm_irq_start_afjump, 159 fm_irq_handle_start_afjump_resp, 160 fm_irq_afjump_rd_freq, 161 fm_irq_afjump_rd_freq_resp, 162 fm_irq_handle_low_rssi_finish, 163 fm_irq_send_intmsk_cmd, /* Interrupt process post action */ 164 fm_irq_handle_intmsk_cmd_resp 165 }; 166 167 static long (*g_st_write) (struct sk_buff *skb); 168 static struct completion wait_for_fmdrv_reg_comp; 169 170 static inline void fm_irq_call(struct fmdev *fmdev) 171 { 172 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 173 } 174 175 /* Continue next function in interrupt handler table */ 176 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage) 177 { 178 fmdev->irq_info.stage = stage; 179 fm_irq_call(fmdev); 180 } 181 182 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage) 183 { 184 fmdev->irq_info.stage = stage; 185 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 186 } 187 188 #ifdef FM_DUMP_TXRX_PKT 189 /* To dump outgoing FM Channel-8 packets */ 190 inline void dump_tx_skb_data(struct sk_buff *skb) 191 { 192 int len, len_org; 193 u8 index; 194 struct fm_cmd_msg_hdr *cmd_hdr; 195 196 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data; 197 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x", 198 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr, 199 cmd_hdr->len, cmd_hdr->op, 200 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen); 201 202 len_org = skb->len - FM_CMD_MSG_HDR_SIZE; 203 if (len_org > 0) { 204 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen); 205 len = min(len_org, 14); 206 for (index = 0; index < len; index++) 207 printk(KERN_CONT "%x ", 208 skb->data[FM_CMD_MSG_HDR_SIZE + index]); 209 printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); 210 } 211 printk(KERN_CONT "\n"); 212 } 213 214 /* To dump incoming FM Channel-8 packets */ 215 inline void dump_rx_skb_data(struct sk_buff *skb) 216 { 217 int len, len_org; 218 u8 index; 219 struct fm_event_msg_hdr *evt_hdr; 220 221 evt_hdr = (struct fm_event_msg_hdr *)skb->data; 222 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x", 223 evt_hdr->hdr, evt_hdr->len, 224 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op, 225 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen); 226 227 len_org = skb->len - FM_EVT_MSG_HDR_SIZE; 228 if (len_org > 0) { 229 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen); 230 len = min(len_org, 14); 231 for (index = 0; index < len; index++) 232 printk(KERN_CONT "%x ", 233 skb->data[FM_EVT_MSG_HDR_SIZE + index]); 234 printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); 235 } 236 printk(KERN_CONT "\n"); 237 } 238 #endif 239 240 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set) 241 { 242 fmdev->rx.region = region_configs[region_to_set]; 243 } 244 245 /* 246 * FM common sub-module will schedule this tasklet whenever it receives 247 * FM packet from ST driver. 248 */ 249 static void recv_tasklet(struct tasklet_struct *t) 250 { 251 struct fmdev *fmdev; 252 struct fm_irq *irq_info; 253 struct fm_event_msg_hdr *evt_hdr; 254 struct sk_buff *skb; 255 u8 num_fm_hci_cmds; 256 unsigned long flags; 257 258 fmdev = from_tasklet(fmdev, t, tx_task); 259 irq_info = &fmdev->irq_info; 260 /* Process all packets in the RX queue */ 261 while ((skb = skb_dequeue(&fmdev->rx_q))) { 262 if (skb->len < sizeof(struct fm_event_msg_hdr)) { 263 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n", 264 skb, 265 skb->len, sizeof(struct fm_event_msg_hdr)); 266 kfree_skb(skb); 267 continue; 268 } 269 270 evt_hdr = (void *)skb->data; 271 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; 272 273 /* FM interrupt packet? */ 274 if (evt_hdr->op == FM_INTERRUPT) { 275 /* FM interrupt handler started already? */ 276 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 277 set_bit(FM_INTTASK_RUNNING, &fmdev->flag); 278 if (irq_info->stage != 0) { 279 fmerr("Inval stage resetting to zero\n"); 280 irq_info->stage = 0; 281 } 282 283 /* 284 * Execute first function in interrupt handler 285 * table. 286 */ 287 irq_info->handlers[irq_info->stage](fmdev); 288 } else { 289 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag); 290 } 291 kfree_skb(skb); 292 } 293 /* Anyone waiting for this with completion handler? */ 294 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) { 295 296 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 297 fmdev->resp_skb = skb; 298 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 299 complete(fmdev->resp_comp); 300 301 fmdev->resp_comp = NULL; 302 atomic_set(&fmdev->tx_cnt, 1); 303 } 304 /* Is this for interrupt handler? */ 305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) { 306 if (fmdev->resp_skb != NULL) 307 fmerr("Response SKB ptr not NULL\n"); 308 309 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 310 fmdev->resp_skb = skb; 311 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 312 313 /* Execute interrupt handler where state index points */ 314 irq_info->handlers[irq_info->stage](fmdev); 315 316 kfree_skb(skb); 317 atomic_set(&fmdev->tx_cnt, 1); 318 } else { 319 fmerr("Nobody claimed SKB(%p),purging\n", skb); 320 } 321 322 /* 323 * Check flow control field. If Num_FM_HCI_Commands field is 324 * not zero, schedule FM TX tasklet. 325 */ 326 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt)) 327 if (!skb_queue_empty(&fmdev->tx_q)) 328 tasklet_schedule(&fmdev->tx_task); 329 } 330 } 331 332 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */ 333 static void send_tasklet(struct tasklet_struct *t) 334 { 335 struct fmdev *fmdev; 336 struct sk_buff *skb; 337 int len; 338 339 fmdev = from_tasklet(fmdev, t, tx_task); 340 341 if (!atomic_read(&fmdev->tx_cnt)) 342 return; 343 344 /* Check, is there any timeout happened to last transmitted packet */ 345 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) { 346 fmerr("TX timeout occurred\n"); 347 atomic_set(&fmdev->tx_cnt, 1); 348 } 349 350 /* Send queued FM TX packets */ 351 skb = skb_dequeue(&fmdev->tx_q); 352 if (!skb) 353 return; 354 355 atomic_dec(&fmdev->tx_cnt); 356 fmdev->pre_op = fm_cb(skb)->fm_op; 357 358 if (fmdev->resp_comp != NULL) 359 fmerr("Response completion handler is not NULL\n"); 360 361 fmdev->resp_comp = fm_cb(skb)->completion; 362 363 /* Write FM packet to ST driver */ 364 len = g_st_write(skb); 365 if (len < 0) { 366 kfree_skb(skb); 367 fmdev->resp_comp = NULL; 368 fmerr("TX tasklet failed to send skb(%p)\n", skb); 369 atomic_set(&fmdev->tx_cnt, 1); 370 } else { 371 fmdev->last_tx_jiffies = jiffies; 372 } 373 } 374 375 /* 376 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for 377 * transmission 378 */ 379 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 380 int payload_len, struct completion *wait_completion) 381 { 382 struct sk_buff *skb; 383 struct fm_cmd_msg_hdr *hdr; 384 int size; 385 386 if (fm_op >= FM_INTERRUPT) { 387 fmerr("Invalid fm opcode - %d\n", fm_op); 388 return -EINVAL; 389 } 390 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) { 391 fmerr("Payload data is NULL during fw download\n"); 392 return -EINVAL; 393 } 394 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag)) 395 size = 396 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len); 397 else 398 size = payload_len; 399 400 skb = alloc_skb(size, GFP_ATOMIC); 401 if (!skb) { 402 fmerr("No memory to create new SKB\n"); 403 return -ENOMEM; 404 } 405 /* 406 * Don't fill FM header info for the commands which come from 407 * FM firmware file. 408 */ 409 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) || 410 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 411 /* Fill command header info */ 412 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE); 413 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */ 414 415 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */ 416 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3; 417 418 /* FM opcode */ 419 hdr->op = fm_op; 420 421 /* read/write type */ 422 hdr->rd_wr = type; 423 hdr->dlen = payload_len; 424 fm_cb(skb)->fm_op = fm_op; 425 426 /* 427 * If firmware download has finished and the command is 428 * not a read command then payload is != NULL - a write 429 * command with u16 payload - convert to be16 430 */ 431 if (payload != NULL) 432 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload); 433 434 } else if (payload != NULL) { 435 fm_cb(skb)->fm_op = *((u8 *)payload + 2); 436 } 437 if (payload != NULL) 438 skb_put_data(skb, payload, payload_len); 439 440 fm_cb(skb)->completion = wait_completion; 441 skb_queue_tail(&fmdev->tx_q, skb); 442 tasklet_schedule(&fmdev->tx_task); 443 444 return 0; 445 } 446 447 /* Sends FM Channel-8 command to the chip and waits for the response */ 448 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 449 unsigned int payload_len, void *response, int *response_len) 450 { 451 struct sk_buff *skb; 452 struct fm_event_msg_hdr *evt_hdr; 453 unsigned long flags; 454 int ret; 455 456 init_completion(&fmdev->maintask_comp); 457 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len, 458 &fmdev->maintask_comp); 459 if (ret) 460 return ret; 461 462 if (!wait_for_completion_timeout(&fmdev->maintask_comp, 463 FM_DRV_TX_TIMEOUT)) { 464 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n", 465 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000); 466 return -ETIMEDOUT; 467 } 468 if (!fmdev->resp_skb) { 469 fmerr("Response SKB is missing\n"); 470 return -EFAULT; 471 } 472 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 473 skb = fmdev->resp_skb; 474 fmdev->resp_skb = NULL; 475 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 476 477 evt_hdr = (void *)skb->data; 478 if (evt_hdr->status != 0) { 479 fmerr("Received event pkt status(%d) is not zero\n", 480 evt_hdr->status); 481 kfree_skb(skb); 482 return -EIO; 483 } 484 /* Send response data to caller */ 485 if (response != NULL && response_len != NULL && evt_hdr->dlen && 486 evt_hdr->dlen <= payload_len) { 487 /* Skip header info and copy only response data */ 488 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 489 memcpy(response, skb->data, evt_hdr->dlen); 490 *response_len = evt_hdr->dlen; 491 } else if (response_len != NULL && evt_hdr->dlen == 0) { 492 *response_len = 0; 493 } 494 kfree_skb(skb); 495 496 return 0; 497 } 498 499 /* --- Helper functions used in FM interrupt handlers ---*/ 500 static inline int check_cmdresp_status(struct fmdev *fmdev, 501 struct sk_buff **skb) 502 { 503 struct fm_event_msg_hdr *fm_evt_hdr; 504 unsigned long flags; 505 506 del_timer(&fmdev->irq_info.timer); 507 508 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 509 *skb = fmdev->resp_skb; 510 fmdev->resp_skb = NULL; 511 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 512 513 fm_evt_hdr = (void *)(*skb)->data; 514 if (fm_evt_hdr->status != 0) { 515 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n", 516 fm_evt_hdr->op); 517 518 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 519 return -1; 520 } 521 522 return 0; 523 } 524 525 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage) 526 { 527 struct sk_buff *skb; 528 529 if (!check_cmdresp_status(fmdev, &skb)) 530 fm_irq_call_stage(fmdev, stage); 531 } 532 533 /* 534 * Interrupt process timeout handler. 535 * One of the irq handler did not get proper response from the chip. So take 536 * recovery action here. FM interrupts are disabled in the beginning of 537 * interrupt process. Therefore reset stage index to re-enable default 538 * interrupts. So that next interrupt will be processed as usual. 539 */ 540 static void int_timeout_handler(struct timer_list *t) 541 { 542 struct fmdev *fmdev; 543 struct fm_irq *fmirq; 544 545 fmdbg("irq: timeout,trying to re-enable fm interrupts\n"); 546 fmdev = from_timer(fmdev, t, irq_info.timer); 547 fmirq = &fmdev->irq_info; 548 fmirq->retry++; 549 550 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) { 551 /* Stop recovery action (interrupt reenable process) and 552 * reset stage index & retry count values */ 553 fmirq->stage = 0; 554 fmirq->retry = 0; 555 fmerr("Recovery action failed duringirq processing, max retry reached\n"); 556 return; 557 } 558 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 559 } 560 561 /* --------- FM interrupt handlers ------------*/ 562 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev) 563 { 564 u16 flag; 565 566 /* Send FLAG_GET command , to know the source of interrupt */ 567 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL)) 568 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX); 569 } 570 571 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev) 572 { 573 struct sk_buff *skb; 574 struct fm_event_msg_hdr *fm_evt_hdr; 575 576 if (check_cmdresp_status(fmdev, &skb)) 577 return; 578 579 fm_evt_hdr = (void *)skb->data; 580 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag)) 581 return; 582 583 /* Skip header info and copy only response data */ 584 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 585 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen); 586 587 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag); 588 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag); 589 590 /* Continue next function in interrupt handler table */ 591 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX); 592 } 593 594 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev) 595 { 596 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask) 597 fmerr("irq: HW MAL int received - do nothing\n"); 598 599 /* Continue next function in interrupt handler table */ 600 fm_irq_call_stage(fmdev, FM_RDS_START_IDX); 601 } 602 603 static void fm_irq_handle_rds_start(struct fmdev *fmdev) 604 { 605 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) { 606 fmdbg("irq: rds threshold reached\n"); 607 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX; 608 } else { 609 /* Continue next function in interrupt handler table */ 610 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX; 611 } 612 613 fm_irq_call(fmdev); 614 } 615 616 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev) 617 { 618 /* Send the command to read RDS data from the chip */ 619 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL, 620 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL)) 621 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX); 622 } 623 624 /* Keeps track of current RX channel AF (Alternate Frequency) */ 625 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af) 626 { 627 struct tuned_station_info *stat_info = &fmdev->rx.stat_info; 628 u8 reg_idx = fmdev->rx.region.fm_band; 629 u8 index; 630 u32 freq; 631 632 /* First AF indicates the number of AF follows. Reset the list */ 633 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) { 634 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1); 635 fmdev->rx.stat_info.afcache_size = 0; 636 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max); 637 return; 638 } 639 640 if (af < FM_RDS_MIN_AF) 641 return; 642 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF) 643 return; 644 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN) 645 return; 646 647 freq = fmdev->rx.region.bot_freq + (af * 100); 648 if (freq == fmdev->rx.freq) { 649 fmdbg("Current freq(%d) is matching with received AF(%d)\n", 650 fmdev->rx.freq, freq); 651 return; 652 } 653 /* Do check in AF cache */ 654 for (index = 0; index < stat_info->afcache_size; index++) { 655 if (stat_info->af_cache[index] == freq) 656 break; 657 } 658 /* Reached the limit of the list - ignore the next AF */ 659 if (index == stat_info->af_list_max) { 660 fmdbg("AF cache is full\n"); 661 return; 662 } 663 /* 664 * If we reached the end of the list then this AF is not 665 * in the list - add it. 666 */ 667 if (index == stat_info->afcache_size) { 668 fmdbg("Storing AF %d to cache index %d\n", freq, index); 669 stat_info->af_cache[index] = freq; 670 stat_info->afcache_size++; 671 } 672 } 673 674 /* 675 * Converts RDS buffer data from big endian format 676 * to little endian format. 677 */ 678 static void fm_rdsparse_swapbytes(struct fmdev *fmdev, 679 struct fm_rdsdata_format *rds_format) 680 { 681 u8 index = 0; 682 u8 *rds_buff; 683 684 /* 685 * Since in Orca the 2 RDS Data bytes are in little endian and 686 * in Dolphin they are in big endian, the parsing of the RDS data 687 * is chip dependent 688 */ 689 if (fmdev->asci_id != 0x6350) { 690 rds_buff = &rds_format->data.groupdatabuff.buff[0]; 691 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) { 692 swap(rds_buff[index], rds_buff[index + 1]); 693 index += 2; 694 } 695 } 696 } 697 698 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev) 699 { 700 struct sk_buff *skb; 701 struct fm_rdsdata_format rds_fmt; 702 struct fm_rds *rds = &fmdev->rx.rds; 703 unsigned long group_idx, flags; 704 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE]; 705 u8 type, blk_idx, idx; 706 u16 cur_picode; 707 u32 rds_len; 708 709 if (check_cmdresp_status(fmdev, &skb)) 710 return; 711 712 /* Skip header info */ 713 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 714 rds_data = skb->data; 715 rds_len = skb->len; 716 717 /* Parse the RDS data */ 718 while (rds_len >= FM_RDS_BLK_SIZE) { 719 meta_data = rds_data[2]; 720 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */ 721 type = (meta_data & 0x07); 722 723 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */ 724 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 725 fmdbg("Block index:%d(%s)\n", blk_idx, 726 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok"); 727 728 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0) 729 break; 730 731 if (blk_idx > FM_RDS_BLK_IDX_D) { 732 fmdbg("Block sequence mismatch\n"); 733 rds->last_blk_idx = -1; 734 break; 735 } 736 737 /* Skip checkword (control) byte and copy only data byte */ 738 idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1), 739 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1)); 740 741 memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data, 742 FM_RDS_BLK_SIZE - 1); 743 744 rds->last_blk_idx = blk_idx; 745 746 /* If completed a whole group then handle it */ 747 if (blk_idx == FM_RDS_BLK_IDX_D) { 748 fmdbg("Good block received\n"); 749 fm_rdsparse_swapbytes(fmdev, &rds_fmt); 750 751 /* 752 * Extract PI code and store in local cache. 753 * We need this during AF switch processing. 754 */ 755 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata); 756 if (fmdev->rx.stat_info.picode != cur_picode) 757 fmdev->rx.stat_info.picode = cur_picode; 758 759 fmdbg("picode:%d\n", cur_picode); 760 761 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 762 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2, 763 (group_idx % 2) ? "B" : "A"); 764 765 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 766 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) { 767 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]); 768 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]); 769 } 770 } 771 rds_len -= FM_RDS_BLK_SIZE; 772 rds_data += FM_RDS_BLK_SIZE; 773 } 774 775 /* Copy raw rds data to internal rds buffer */ 776 rds_data = skb->data; 777 rds_len = skb->len; 778 779 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 780 while (rds_len > 0) { 781 /* 782 * Fill RDS buffer as per V4L2 specification. 783 * Store control byte 784 */ 785 type = (rds_data[2] & 0x07); 786 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 787 tmpbuf[2] = blk_idx; /* Offset name */ 788 tmpbuf[2] |= blk_idx << 3; /* Received offset */ 789 790 /* Store data byte */ 791 tmpbuf[0] = rds_data[0]; 792 tmpbuf[1] = rds_data[1]; 793 794 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE); 795 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size; 796 797 /* Check for overflow & start over */ 798 if (rds->wr_idx == rds->rd_idx) { 799 fmdbg("RDS buffer overflow\n"); 800 rds->wr_idx = 0; 801 rds->rd_idx = 0; 802 break; 803 } 804 rds_len -= FM_RDS_BLK_SIZE; 805 rds_data += FM_RDS_BLK_SIZE; 806 } 807 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 808 809 /* Wakeup read queue */ 810 if (rds->wr_idx != rds->rd_idx) 811 wake_up_interruptible(&rds->read_queue); 812 813 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX); 814 } 815 816 static void fm_irq_handle_rds_finish(struct fmdev *fmdev) 817 { 818 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX); 819 } 820 821 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev) 822 { 823 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev-> 824 irq_info.mask) { 825 fmdbg("irq: tune ended/bandlimit reached\n"); 826 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) { 827 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX; 828 } else { 829 complete(&fmdev->maintask_comp); 830 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 831 } 832 } else 833 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 834 835 fm_irq_call(fmdev); 836 } 837 838 static void fm_irq_handle_power_enb(struct fmdev *fmdev) 839 { 840 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) { 841 fmdbg("irq: Power Enabled/Disabled\n"); 842 complete(&fmdev->maintask_comp); 843 } 844 845 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX); 846 } 847 848 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev) 849 { 850 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) && 851 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) && 852 (fmdev->rx.freq != FM_UNDEFINED_FREQ) && 853 (fmdev->rx.stat_info.afcache_size != 0)) { 854 fmdbg("irq: rssi level has fallen below threshold level\n"); 855 856 /* Disable further low RSSI interrupts */ 857 fmdev->irq_info.mask &= ~FM_LEV_EVENT; 858 859 fmdev->rx.afjump_idx = 0; 860 fmdev->rx.freq_before_jump = fmdev->rx.freq; 861 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 862 } else { 863 /* Continue next function in interrupt handler table */ 864 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX; 865 } 866 867 fm_irq_call(fmdev); 868 } 869 870 static void fm_irq_afjump_set_pi(struct fmdev *fmdev) 871 { 872 u16 payload; 873 874 /* Set PI code - must be updated if the AF list is not empty */ 875 payload = fmdev->rx.stat_info.picode; 876 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL)) 877 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX); 878 } 879 880 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev) 881 { 882 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX); 883 } 884 885 /* 886 * Set PI mask. 887 * 0xFFFF = Enable PI code matching 888 * 0x0000 = Disable PI code matching 889 */ 890 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev) 891 { 892 u16 payload; 893 894 payload = 0x0000; 895 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 896 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX); 897 } 898 899 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev) 900 { 901 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX); 902 } 903 904 static void fm_irq_afjump_setfreq(struct fmdev *fmdev) 905 { 906 u16 frq_index; 907 u16 payload; 908 909 fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]); 910 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] - 911 fmdev->rx.region.bot_freq) / FM_FREQ_MUL; 912 913 payload = frq_index; 914 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL)) 915 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX); 916 } 917 918 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev) 919 { 920 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX); 921 } 922 923 static void fm_irq_afjump_enableint(struct fmdev *fmdev) 924 { 925 u16 payload; 926 927 /* Enable FR (tuning operation ended) interrupt */ 928 payload = FM_FR_EVENT; 929 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 930 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX); 931 } 932 933 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev) 934 { 935 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX); 936 } 937 938 static void fm_irq_start_afjump(struct fmdev *fmdev) 939 { 940 u16 payload; 941 942 payload = FM_TUNER_AF_JUMP_MODE; 943 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload, 944 sizeof(payload), NULL)) 945 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX); 946 } 947 948 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev) 949 { 950 struct sk_buff *skb; 951 952 if (check_cmdresp_status(fmdev, &skb)) 953 return; 954 955 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 956 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag); 957 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 958 } 959 960 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev) 961 { 962 u16 payload; 963 964 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL)) 965 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX); 966 } 967 968 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev) 969 { 970 struct sk_buff *skb; 971 u16 read_freq; 972 u32 curr_freq, jumped_freq; 973 974 if (check_cmdresp_status(fmdev, &skb)) 975 return; 976 977 /* Skip header info and copy only response data */ 978 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 979 memcpy(&read_freq, skb->data, sizeof(read_freq)); 980 read_freq = be16_to_cpu((__force __be16)read_freq); 981 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL); 982 983 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]; 984 985 /* If the frequency was changed the jump succeeded */ 986 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) { 987 fmdbg("Successfully switched to alternate freq %d\n", curr_freq); 988 fmdev->rx.freq = curr_freq; 989 fm_rx_reset_rds_cache(fmdev); 990 991 /* AF feature is on, enable low level RSSI interrupt */ 992 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) 993 fmdev->irq_info.mask |= FM_LEV_EVENT; 994 995 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 996 } else { /* jump to the next freq in the AF list */ 997 fmdev->rx.afjump_idx++; 998 999 /* If we reached the end of the list - stop searching */ 1000 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) { 1001 fmdbg("AF switch processing failed\n"); 1002 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1003 } else { /* AF List is not over - try next one */ 1004 1005 fmdbg("Trying next freq in AF cache\n"); 1006 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 1007 } 1008 } 1009 fm_irq_call(fmdev); 1010 } 1011 1012 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev) 1013 { 1014 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 1015 } 1016 1017 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev) 1018 { 1019 u16 payload; 1020 1021 /* Re-enable FM interrupts */ 1022 payload = fmdev->irq_info.mask; 1023 1024 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, 1025 sizeof(payload), NULL)) 1026 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX); 1027 } 1028 1029 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev) 1030 { 1031 struct sk_buff *skb; 1032 1033 if (check_cmdresp_status(fmdev, &skb)) 1034 return; 1035 /* 1036 * This is last function in interrupt table to be executed. 1037 * So, reset stage index to 0. 1038 */ 1039 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 1040 1041 /* Start processing any pending interrupt */ 1042 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag)) 1043 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 1044 else 1045 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 1046 } 1047 1048 /* Returns availability of RDS data in internal buffer */ 1049 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file, 1050 struct poll_table_struct *pts) 1051 { 1052 poll_wait(file, &fmdev->rx.rds.read_queue, pts); 1053 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) 1054 return 0; 1055 1056 return -EAGAIN; 1057 } 1058 1059 /* Copies RDS data from internal buffer to user buffer */ 1060 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file, 1061 u8 __user *buf, size_t count) 1062 { 1063 u32 block_count; 1064 u8 tmpbuf[FM_RDS_BLK_SIZE]; 1065 unsigned long flags; 1066 int ret; 1067 1068 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1069 if (file->f_flags & O_NONBLOCK) 1070 return -EWOULDBLOCK; 1071 1072 ret = wait_event_interruptible(fmdev->rx.rds.read_queue, 1073 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx)); 1074 if (ret) 1075 return -EINTR; 1076 } 1077 1078 /* Calculate block count from byte count */ 1079 count /= FM_RDS_BLK_SIZE; 1080 block_count = 0; 1081 ret = 0; 1082 1083 while (block_count < count) { 1084 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 1085 1086 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1087 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1088 break; 1089 } 1090 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx], 1091 FM_RDS_BLK_SIZE); 1092 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE; 1093 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) 1094 fmdev->rx.rds.rd_idx = 0; 1095 1096 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1097 1098 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE)) 1099 break; 1100 1101 block_count++; 1102 buf += FM_RDS_BLK_SIZE; 1103 ret += FM_RDS_BLK_SIZE; 1104 } 1105 return ret; 1106 } 1107 1108 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set) 1109 { 1110 switch (fmdev->curr_fmmode) { 1111 case FM_MODE_RX: 1112 return fm_rx_set_freq(fmdev, freq_to_set); 1113 1114 case FM_MODE_TX: 1115 return fm_tx_set_freq(fmdev, freq_to_set); 1116 1117 default: 1118 return -EINVAL; 1119 } 1120 } 1121 1122 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq) 1123 { 1124 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) { 1125 fmerr("RX frequency is not set\n"); 1126 return -EPERM; 1127 } 1128 if (cur_tuned_frq == NULL) { 1129 fmerr("Invalid memory\n"); 1130 return -ENOMEM; 1131 } 1132 1133 switch (fmdev->curr_fmmode) { 1134 case FM_MODE_RX: 1135 *cur_tuned_frq = fmdev->rx.freq; 1136 return 0; 1137 1138 case FM_MODE_TX: 1139 *cur_tuned_frq = 0; /* TODO : Change this later */ 1140 return 0; 1141 1142 default: 1143 return -EINVAL; 1144 } 1145 1146 } 1147 1148 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set) 1149 { 1150 switch (fmdev->curr_fmmode) { 1151 case FM_MODE_RX: 1152 return fm_rx_set_region(fmdev, region_to_set); 1153 1154 case FM_MODE_TX: 1155 return fm_tx_set_region(fmdev, region_to_set); 1156 1157 default: 1158 return -EINVAL; 1159 } 1160 } 1161 1162 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset) 1163 { 1164 switch (fmdev->curr_fmmode) { 1165 case FM_MODE_RX: 1166 return fm_rx_set_mute_mode(fmdev, mute_mode_toset); 1167 1168 case FM_MODE_TX: 1169 return fm_tx_set_mute_mode(fmdev, mute_mode_toset); 1170 1171 default: 1172 return -EINVAL; 1173 } 1174 } 1175 1176 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode) 1177 { 1178 switch (fmdev->curr_fmmode) { 1179 case FM_MODE_RX: 1180 return fm_rx_set_stereo_mono(fmdev, mode); 1181 1182 case FM_MODE_TX: 1183 return fm_tx_set_stereo_mono(fmdev, mode); 1184 1185 default: 1186 return -EINVAL; 1187 } 1188 } 1189 1190 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis) 1191 { 1192 switch (fmdev->curr_fmmode) { 1193 case FM_MODE_RX: 1194 return fm_rx_set_rds_mode(fmdev, rds_en_dis); 1195 1196 case FM_MODE_TX: 1197 return fm_tx_set_rds_mode(fmdev, rds_en_dis); 1198 1199 default: 1200 return -EINVAL; 1201 } 1202 } 1203 1204 /* Sends power off command to the chip */ 1205 static int fm_power_down(struct fmdev *fmdev) 1206 { 1207 u16 payload; 1208 int ret; 1209 1210 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1211 fmerr("FM core is not ready\n"); 1212 return -EPERM; 1213 } 1214 if (fmdev->curr_fmmode == FM_MODE_OFF) { 1215 fmdbg("FM chip is already in OFF state\n"); 1216 return 0; 1217 } 1218 1219 payload = 0x0; 1220 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1221 sizeof(payload), NULL, NULL); 1222 if (ret < 0) 1223 return ret; 1224 1225 return fmc_release(fmdev); 1226 } 1227 1228 /* Reads init command from FM firmware file and loads to the chip */ 1229 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name) 1230 { 1231 const struct firmware *fw_entry; 1232 struct bts_header *fw_header; 1233 struct bts_action *action; 1234 struct bts_action_delay *delay; 1235 u8 *fw_data; 1236 int ret, fw_len, cmd_cnt; 1237 1238 cmd_cnt = 0; 1239 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1240 1241 ret = request_firmware(&fw_entry, fw_name, 1242 &fmdev->radio_dev->dev); 1243 if (ret < 0) { 1244 fmerr("Unable to read firmware(%s) content\n", fw_name); 1245 return ret; 1246 } 1247 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size); 1248 1249 fw_data = (void *)fw_entry->data; 1250 fw_len = fw_entry->size; 1251 1252 fw_header = (struct bts_header *)fw_data; 1253 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) { 1254 fmerr("%s not a legal TI firmware file\n", fw_name); 1255 ret = -EINVAL; 1256 goto rel_fw; 1257 } 1258 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic); 1259 1260 /* Skip file header info , we already verified it */ 1261 fw_data += sizeof(struct bts_header); 1262 fw_len -= sizeof(struct bts_header); 1263 1264 while (fw_data && fw_len > 0) { 1265 action = (struct bts_action *)fw_data; 1266 1267 switch (action->type) { 1268 case ACTION_SEND_COMMAND: /* Send */ 1269 ret = fmc_send_cmd(fmdev, 0, 0, action->data, 1270 action->size, NULL, NULL); 1271 if (ret) 1272 goto rel_fw; 1273 1274 cmd_cnt++; 1275 break; 1276 1277 case ACTION_DELAY: /* Delay */ 1278 delay = (struct bts_action_delay *)action->data; 1279 mdelay(delay->msec); 1280 break; 1281 } 1282 1283 fw_data += (sizeof(struct bts_action) + (action->size)); 1284 fw_len -= (sizeof(struct bts_action) + (action->size)); 1285 } 1286 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt); 1287 rel_fw: 1288 release_firmware(fw_entry); 1289 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1290 1291 return ret; 1292 } 1293 1294 /* Loads default RX configuration to the chip */ 1295 static int load_default_rx_configuration(struct fmdev *fmdev) 1296 { 1297 int ret; 1298 1299 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME); 1300 if (ret < 0) 1301 return ret; 1302 1303 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD); 1304 } 1305 1306 /* Does FM power on sequence */ 1307 static int fm_power_up(struct fmdev *fmdev, u8 mode) 1308 { 1309 u16 payload; 1310 __be16 asic_id = 0, asic_ver = 0; 1311 int resp_len, ret; 1312 u8 fw_name[50]; 1313 1314 if (mode >= FM_MODE_ENTRY_MAX) { 1315 fmerr("Invalid firmware download option\n"); 1316 return -EINVAL; 1317 } 1318 1319 /* 1320 * Initialize FM common module. FM GPIO toggling is 1321 * taken care in Shared Transport driver. 1322 */ 1323 ret = fmc_prepare(fmdev); 1324 if (ret < 0) { 1325 fmerr("Unable to prepare FM Common\n"); 1326 return ret; 1327 } 1328 1329 payload = FM_ENABLE; 1330 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1331 sizeof(payload), NULL, NULL)) 1332 goto rel; 1333 1334 /* Allow the chip to settle down in Channel-8 mode */ 1335 msleep(20); 1336 1337 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL, 1338 sizeof(asic_id), &asic_id, &resp_len)) 1339 goto rel; 1340 1341 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL, 1342 sizeof(asic_ver), &asic_ver, &resp_len)) 1343 goto rel; 1344 1345 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n", 1346 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1347 1348 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START, 1349 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1350 1351 ret = fm_download_firmware(fmdev, fw_name); 1352 if (ret < 0) { 1353 fmdbg("Failed to download firmware file %s\n", fw_name); 1354 goto rel; 1355 } 1356 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ? 1357 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START, 1358 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1359 1360 ret = fm_download_firmware(fmdev, fw_name); 1361 if (ret < 0) { 1362 fmdbg("Failed to download firmware file %s\n", fw_name); 1363 goto rel; 1364 } else 1365 return ret; 1366 rel: 1367 return fmc_release(fmdev); 1368 } 1369 1370 /* Set FM Modes(TX, RX, OFF) */ 1371 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode) 1372 { 1373 int ret = 0; 1374 1375 if (fm_mode >= FM_MODE_ENTRY_MAX) { 1376 fmerr("Invalid FM mode\n"); 1377 return -EINVAL; 1378 } 1379 if (fmdev->curr_fmmode == fm_mode) { 1380 fmdbg("Already fm is in mode(%d)\n", fm_mode); 1381 return ret; 1382 } 1383 1384 switch (fm_mode) { 1385 case FM_MODE_OFF: /* OFF Mode */ 1386 ret = fm_power_down(fmdev); 1387 if (ret < 0) { 1388 fmerr("Failed to set OFF mode\n"); 1389 return ret; 1390 } 1391 break; 1392 1393 case FM_MODE_TX: /* TX Mode */ 1394 case FM_MODE_RX: /* RX Mode */ 1395 /* Power down before switching to TX or RX mode */ 1396 if (fmdev->curr_fmmode != FM_MODE_OFF) { 1397 ret = fm_power_down(fmdev); 1398 if (ret < 0) { 1399 fmerr("Failed to set OFF mode\n"); 1400 return ret; 1401 } 1402 msleep(30); 1403 } 1404 ret = fm_power_up(fmdev, fm_mode); 1405 if (ret < 0) { 1406 fmerr("Failed to load firmware\n"); 1407 return ret; 1408 } 1409 } 1410 fmdev->curr_fmmode = fm_mode; 1411 1412 /* Set default configuration */ 1413 if (fmdev->curr_fmmode == FM_MODE_RX) { 1414 fmdbg("Loading default rx configuration..\n"); 1415 ret = load_default_rx_configuration(fmdev); 1416 if (ret < 0) 1417 fmerr("Failed to load default values\n"); 1418 } 1419 1420 return ret; 1421 } 1422 1423 /* Returns current FM mode (TX, RX, OFF) */ 1424 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode) 1425 { 1426 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1427 fmerr("FM core is not ready\n"); 1428 return -EPERM; 1429 } 1430 if (fmmode == NULL) { 1431 fmerr("Invalid memory\n"); 1432 return -ENOMEM; 1433 } 1434 1435 *fmmode = fmdev->curr_fmmode; 1436 return 0; 1437 } 1438 1439 /* Called by ST layer when FM packet is available */ 1440 static long fm_st_receive(void *arg, struct sk_buff *skb) 1441 { 1442 struct fmdev *fmdev; 1443 1444 fmdev = (struct fmdev *)arg; 1445 1446 if (skb == NULL) { 1447 fmerr("Invalid SKB received from ST\n"); 1448 return -EFAULT; 1449 } 1450 1451 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) { 1452 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb); 1453 return -EINVAL; 1454 } 1455 1456 memcpy(skb_push(skb, 1), &skb->cb[0], 1); 1457 skb_queue_tail(&fmdev->rx_q, skb); 1458 tasklet_schedule(&fmdev->rx_task); 1459 1460 return 0; 1461 } 1462 1463 /* 1464 * Called by ST layer to indicate protocol registration completion 1465 * status. 1466 */ 1467 static void fm_st_reg_comp_cb(void *arg, int data) 1468 { 1469 struct fmdev *fmdev; 1470 1471 fmdev = (struct fmdev *)arg; 1472 fmdev->streg_cbdata = data; 1473 complete(&wait_for_fmdrv_reg_comp); 1474 } 1475 1476 /* 1477 * This function will be called from FM V4L2 open function. 1478 * Register with ST driver and initialize driver data. 1479 */ 1480 int fmc_prepare(struct fmdev *fmdev) 1481 { 1482 static struct st_proto_s fm_st_proto; 1483 int ret; 1484 1485 if (test_bit(FM_CORE_READY, &fmdev->flag)) { 1486 fmdbg("FM Core is already up\n"); 1487 return 0; 1488 } 1489 1490 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1491 fm_st_proto.recv = fm_st_receive; 1492 fm_st_proto.match_packet = NULL; 1493 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb; 1494 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */ 1495 fm_st_proto.priv_data = fmdev; 1496 fm_st_proto.chnl_id = 0x08; 1497 fm_st_proto.max_frame_size = 0xff; 1498 fm_st_proto.hdr_len = 1; 1499 fm_st_proto.offset_len_in_hdr = 0; 1500 fm_st_proto.len_size = 1; 1501 fm_st_proto.reserve = 1; 1502 1503 ret = st_register(&fm_st_proto); 1504 if (ret == -EINPROGRESS) { 1505 init_completion(&wait_for_fmdrv_reg_comp); 1506 fmdev->streg_cbdata = -EINPROGRESS; 1507 fmdbg("%s waiting for ST reg completion signal\n", __func__); 1508 1509 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp, 1510 FM_ST_REG_TIMEOUT)) { 1511 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n", 1512 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000); 1513 return -ETIMEDOUT; 1514 } 1515 if (fmdev->streg_cbdata != 0) { 1516 fmerr("ST reg comp CB called with error status %d\n", 1517 fmdev->streg_cbdata); 1518 return -EAGAIN; 1519 } 1520 1521 ret = 0; 1522 } else if (ret < 0) { 1523 fmerr("st_register failed %d\n", ret); 1524 return -EAGAIN; 1525 } 1526 1527 if (fm_st_proto.write != NULL) { 1528 g_st_write = fm_st_proto.write; 1529 } else { 1530 fmerr("Failed to get ST write func pointer\n"); 1531 ret = st_unregister(&fm_st_proto); 1532 if (ret < 0) 1533 fmerr("st_unregister failed %d\n", ret); 1534 return -EAGAIN; 1535 } 1536 1537 spin_lock_init(&fmdev->rds_buff_lock); 1538 spin_lock_init(&fmdev->resp_skb_lock); 1539 1540 /* Initialize TX queue and TX tasklet */ 1541 skb_queue_head_init(&fmdev->tx_q); 1542 tasklet_setup(&fmdev->tx_task, send_tasklet); 1543 1544 /* Initialize RX Queue and RX tasklet */ 1545 skb_queue_head_init(&fmdev->rx_q); 1546 tasklet_setup(&fmdev->rx_task, recv_tasklet); 1547 1548 fmdev->irq_info.stage = 0; 1549 atomic_set(&fmdev->tx_cnt, 1); 1550 fmdev->resp_comp = NULL; 1551 1552 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0); 1553 /*TODO: add FM_STIC_EVENT later */ 1554 fmdev->irq_info.mask = FM_MAL_EVENT; 1555 1556 /* Region info */ 1557 fmdev->rx.region = region_configs[default_radio_region]; 1558 1559 fmdev->rx.mute_mode = FM_MUTE_OFF; 1560 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF; 1561 fmdev->rx.rds.flag = FM_RDS_DISABLE; 1562 fmdev->rx.freq = FM_UNDEFINED_FREQ; 1563 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS; 1564 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF; 1565 fmdev->irq_info.retry = 0; 1566 1567 fm_rx_reset_rds_cache(fmdev); 1568 init_waitqueue_head(&fmdev->rx.rds.read_queue); 1569 1570 fm_rx_reset_station_info(fmdev); 1571 set_bit(FM_CORE_READY, &fmdev->flag); 1572 1573 return ret; 1574 } 1575 1576 /* 1577 * This function will be called from FM V4L2 release function. 1578 * Unregister from ST driver. 1579 */ 1580 int fmc_release(struct fmdev *fmdev) 1581 { 1582 static struct st_proto_s fm_st_proto; 1583 int ret; 1584 1585 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1586 fmdbg("FM Core is already down\n"); 1587 return 0; 1588 } 1589 /* Service pending read */ 1590 wake_up_interruptible(&fmdev->rx.rds.read_queue); 1591 1592 tasklet_kill(&fmdev->tx_task); 1593 tasklet_kill(&fmdev->rx_task); 1594 1595 skb_queue_purge(&fmdev->tx_q); 1596 skb_queue_purge(&fmdev->rx_q); 1597 1598 fmdev->resp_comp = NULL; 1599 fmdev->rx.freq = 0; 1600 1601 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1602 fm_st_proto.chnl_id = 0x08; 1603 1604 ret = st_unregister(&fm_st_proto); 1605 1606 if (ret < 0) 1607 fmerr("Failed to de-register FM from ST %d\n", ret); 1608 else 1609 fmdbg("Successfully unregistered from ST\n"); 1610 1611 clear_bit(FM_CORE_READY, &fmdev->flag); 1612 return ret; 1613 } 1614 1615 /* 1616 * Module init function. Ask FM V4L module to register video device. 1617 * Allocate memory for FM driver context and RX RDS buffer. 1618 */ 1619 static int __init fm_drv_init(void) 1620 { 1621 struct fmdev *fmdev = NULL; 1622 int ret = -ENOMEM; 1623 1624 fmdbg("FM driver version %s\n", FM_DRV_VERSION); 1625 1626 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL); 1627 if (NULL == fmdev) { 1628 fmerr("Can't allocate operation structure memory\n"); 1629 return ret; 1630 } 1631 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE; 1632 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL); 1633 if (NULL == fmdev->rx.rds.buff) { 1634 fmerr("Can't allocate rds ring buffer\n"); 1635 goto rel_dev; 1636 } 1637 1638 ret = fm_v4l2_init_video_device(fmdev, radio_nr); 1639 if (ret < 0) 1640 goto rel_rdsbuf; 1641 1642 fmdev->irq_info.handlers = int_handler_table; 1643 fmdev->curr_fmmode = FM_MODE_OFF; 1644 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF; 1645 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US; 1646 return ret; 1647 1648 rel_rdsbuf: 1649 kfree(fmdev->rx.rds.buff); 1650 rel_dev: 1651 kfree(fmdev); 1652 1653 return ret; 1654 } 1655 1656 /* Module exit function. Ask FM V4L module to unregister video device */ 1657 static void __exit fm_drv_exit(void) 1658 { 1659 struct fmdev *fmdev = NULL; 1660 1661 fmdev = fm_v4l2_deinit_video_device(); 1662 if (fmdev != NULL) { 1663 kfree(fmdev->rx.rds.buff); 1664 kfree(fmdev); 1665 } 1666 } 1667 1668 module_init(fm_drv_init); 1669 module_exit(fm_drv_exit); 1670 1671 /* ------------- Module Info ------------- */ 1672 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>"); 1673 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION); 1674 MODULE_VERSION(FM_DRV_VERSION); 1675 MODULE_LICENSE("GPL"); 1676