1 /*
2  *  FM Driver for Connectivity chip of Texas Instruments.
3  *
4  *  This sub-module of FM driver is common for FM RX and TX
5  *  functionality. This module is responsible for:
6  *  1) Forming group of Channel-8 commands to perform particular
7  *     functionality (eg., frequency set require more than
8  *     one Channel-8 command to be sent to the chip).
9  *  2) Sending each Channel-8 command to the chip and reading
10  *     response back over Shared Transport.
11  *  3) Managing TX and RX Queues and Tasklets.
12  *  4) Handling FM Interrupt packet and taking appropriate action.
13  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
14  *     firmware files based on mode selection)
15  *
16  *  Copyright (C) 2011 Texas Instruments
17  *  Author: Raja Mani <raja_mani@ti.com>
18  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
19  *
20  *  This program is free software; you can redistribute it and/or modify
21  *  it under the terms of the GNU General Public License version 2 as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope that it will be useful,
25  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
26  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  *  GNU General Public License for more details.
28  *
29  *  You should have received a copy of the GNU General Public License
30  *  along with this program; if not, write to the Free Software
31  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44 
45 /* Region info */
46 static struct region_info region_configs[] = {
47 	/* Europe/US */
48 	{
49 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 	 .bot_freq = 87500,	/* 87.5 MHz */
51 	 .top_freq = 108000,	/* 108 MHz */
52 	 .fm_band = 0,
53 	 },
54 	/* Japan */
55 	{
56 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 	 .bot_freq = 76000,	/* 76 MHz */
58 	 .top_freq = 90000,	/* 90 MHz */
59 	 .fm_band = 1,
60 	 },
61 };
62 
63 /* Band selection */
64 static u8 default_radio_region;	/* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67 
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
72 
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77 
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104 
105 /*
106  * When FM common module receives interrupt packet, following handlers
107  * will be executed one after another to service the interrupt(s)
108  */
109 enum fmc_irq_handler_index {
110 	FM_SEND_FLAG_GETCMD_IDX,
111 	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112 
113 	/* HW malfunction irq handler */
114 	FM_HW_MAL_FUNC_IDX,
115 
116 	/* RDS threshold reached irq handler */
117 	FM_RDS_START_IDX,
118 	FM_RDS_SEND_RDS_GETCMD_IDX,
119 	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 	FM_RDS_FINISH_IDX,
121 
122 	/* Tune operation ended irq handler */
123 	FM_HW_TUNE_OP_ENDED_IDX,
124 
125 	/* TX power enable irq handler */
126 	FM_HW_POWER_ENB_IDX,
127 
128 	/* Low RSSI irq handler */
129 	FM_LOW_RSSI_START_IDX,
130 	FM_AF_JUMP_SETPI_IDX,
131 	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 	FM_AF_JUMP_SETPI_MASK_IDX,
133 	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 	FM_AF_JUMP_SET_AF_FREQ_IDX,
135 	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 	FM_AF_JUMP_ENABLE_INT_IDX,
137 	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 	FM_AF_JUMP_START_AFJUMP_IDX,
139 	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 	FM_AF_JUMP_RD_FREQ_IDX,
141 	FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 	FM_LOW_RSSI_FINISH_IDX,
143 
144 	/* Interrupt process post action */
145 	FM_SEND_INTMSK_CMD_IDX,
146 	FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 };
148 
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151 	fm_irq_send_flag_getcmd,
152 	fm_irq_handle_flag_getcmd_resp,
153 	fm_irq_handle_hw_malfunction,
154 	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 	fm_irq_send_rdsdata_getcmd,
156 	fm_irq_handle_rdsdata_getcmd_resp,
157 	fm_irq_handle_rds_finish,
158 	fm_irq_handle_tune_op_ended,
159 	fm_irq_handle_power_enb, /* TX power enable irq handler */
160 	fm_irq_handle_low_rssi_start,
161 	fm_irq_afjump_set_pi,
162 	fm_irq_handle_set_pi_resp,
163 	fm_irq_afjump_set_pimask,
164 	fm_irq_handle_set_pimask_resp,
165 	fm_irq_afjump_setfreq,
166 	fm_irq_handle_setfreq_resp,
167 	fm_irq_afjump_enableint,
168 	fm_irq_afjump_enableint_resp,
169 	fm_irq_start_afjump,
170 	fm_irq_handle_start_afjump_resp,
171 	fm_irq_afjump_rd_freq,
172 	fm_irq_afjump_rd_freq_resp,
173 	fm_irq_handle_low_rssi_finish,
174 	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 	fm_irq_handle_intmsk_cmd_resp
176 };
177 
178 static long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180 
181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183 	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185 
186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189 	fmdev->irq_info.stage = stage;
190 	fm_irq_call(fmdev);
191 }
192 
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195 	fmdev->irq_info.stage = stage;
196 	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198 
199 #ifdef FM_DUMP_TXRX_PKT
200  /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203 	int len, len_org;
204 	u8 index;
205 	struct fm_cmd_msg_hdr *cmd_hdr;
206 
207 	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 	       cmd_hdr->len, cmd_hdr->op,
211 	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212 
213 	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 	if (len_org > 0) {
215 		printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
216 		len = min(len_org, 14);
217 		for (index = 0; index < len; index++)
218 			printk(KERN_CONT "%x ",
219 			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
221 	}
222 	printk(KERN_CONT "\n");
223 }
224 
225  /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228 	int len, len_org;
229 	u8 index;
230 	struct fm_event_msg_hdr *evt_hdr;
231 
232 	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
234 	       evt_hdr->hdr, evt_hdr->len,
235 	       evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 	       (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237 
238 	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 	if (len_org > 0) {
240 		printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
241 		len = min(len_org, 14);
242 		for (index = 0; index < len; index++)
243 			printk(KERN_CONT "%x ",
244 			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
246 	}
247 	printk(KERN_CONT "\n");
248 }
249 #endif
250 
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253 	fmdev->rx.region = region_configs[region_to_set];
254 }
255 
256 /*
257  * FM common sub-module will schedule this tasklet whenever it receives
258  * FM packet from ST driver.
259  */
260 static void recv_tasklet(unsigned long arg)
261 {
262 	struct fmdev *fmdev;
263 	struct fm_irq *irq_info;
264 	struct fm_event_msg_hdr *evt_hdr;
265 	struct sk_buff *skb;
266 	u8 num_fm_hci_cmds;
267 	unsigned long flags;
268 
269 	fmdev = (struct fmdev *)arg;
270 	irq_info = &fmdev->irq_info;
271 	/* Process all packets in the RX queue */
272 	while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 			fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
275 			      skb,
276 			      skb->len, sizeof(struct fm_event_msg_hdr));
277 			kfree_skb(skb);
278 			continue;
279 		}
280 
281 		evt_hdr = (void *)skb->data;
282 		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283 
284 		/* FM interrupt packet? */
285 		if (evt_hdr->op == FM_INTERRUPT) {
286 			/* FM interrupt handler started already? */
287 			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 				if (irq_info->stage != 0) {
290 					fmerr("Inval stage resetting to zero\n");
291 					irq_info->stage = 0;
292 				}
293 
294 				/*
295 				 * Execute first function in interrupt handler
296 				 * table.
297 				 */
298 				irq_info->handlers[irq_info->stage](fmdev);
299 			} else {
300 				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301 			}
302 			kfree_skb(skb);
303 		}
304 		/* Anyone waiting for this with completion handler? */
305 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306 
307 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 			fmdev->resp_skb = skb;
309 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 			complete(fmdev->resp_comp);
311 
312 			fmdev->resp_comp = NULL;
313 			atomic_set(&fmdev->tx_cnt, 1);
314 		}
315 		/* Is this for interrupt handler? */
316 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 			if (fmdev->resp_skb != NULL)
318 				fmerr("Response SKB ptr not NULL\n");
319 
320 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 			fmdev->resp_skb = skb;
322 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323 
324 			/* Execute interrupt handler where state index points */
325 			irq_info->handlers[irq_info->stage](fmdev);
326 
327 			kfree_skb(skb);
328 			atomic_set(&fmdev->tx_cnt, 1);
329 		} else {
330 			fmerr("Nobody claimed SKB(%p),purging\n", skb);
331 		}
332 
333 		/*
334 		 * Check flow control field. If Num_FM_HCI_Commands field is
335 		 * not zero, schedule FM TX tasklet.
336 		 */
337 		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 			if (!skb_queue_empty(&fmdev->tx_q))
339 				tasklet_schedule(&fmdev->tx_task);
340 	}
341 }
342 
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg)
345 {
346 	struct fmdev *fmdev;
347 	struct sk_buff *skb;
348 	int len;
349 
350 	fmdev = (struct fmdev *)arg;
351 
352 	if (!atomic_read(&fmdev->tx_cnt))
353 		return;
354 
355 	/* Check, is there any timeout happened to last transmitted packet */
356 	if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 		fmerr("TX timeout occurred\n");
358 		atomic_set(&fmdev->tx_cnt, 1);
359 	}
360 
361 	/* Send queued FM TX packets */
362 	skb = skb_dequeue(&fmdev->tx_q);
363 	if (!skb)
364 		return;
365 
366 	atomic_dec(&fmdev->tx_cnt);
367 	fmdev->pre_op = fm_cb(skb)->fm_op;
368 
369 	if (fmdev->resp_comp != NULL)
370 		fmerr("Response completion handler is not NULL\n");
371 
372 	fmdev->resp_comp = fm_cb(skb)->completion;
373 
374 	/* Write FM packet to ST driver */
375 	len = g_st_write(skb);
376 	if (len < 0) {
377 		kfree_skb(skb);
378 		fmdev->resp_comp = NULL;
379 		fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 		atomic_set(&fmdev->tx_cnt, 1);
381 	} else {
382 		fmdev->last_tx_jiffies = jiffies;
383 	}
384 }
385 
386 /*
387  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388  * transmission
389  */
390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
391 		int payload_len, struct completion *wait_completion)
392 {
393 	struct sk_buff *skb;
394 	struct fm_cmd_msg_hdr *hdr;
395 	int size;
396 
397 	if (fm_op >= FM_INTERRUPT) {
398 		fmerr("Invalid fm opcode - %d\n", fm_op);
399 		return -EINVAL;
400 	}
401 	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 		fmerr("Payload data is NULL during fw download\n");
403 		return -EINVAL;
404 	}
405 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 		size =
407 		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 	else
409 		size = payload_len;
410 
411 	skb = alloc_skb(size, GFP_ATOMIC);
412 	if (!skb) {
413 		fmerr("No memory to create new SKB\n");
414 		return -ENOMEM;
415 	}
416 	/*
417 	 * Don't fill FM header info for the commands which come from
418 	 * FM firmware file.
419 	 */
420 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 		/* Fill command header info */
423 		hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
425 
426 		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428 
429 		/* FM opcode */
430 		hdr->op = fm_op;
431 
432 		/* read/write type */
433 		hdr->rd_wr = type;
434 		hdr->dlen = payload_len;
435 		fm_cb(skb)->fm_op = fm_op;
436 
437 		/*
438 		 * If firmware download has finished and the command is
439 		 * not a read command then payload is != NULL - a write
440 		 * command with u16 payload - convert to be16
441 		 */
442 		if (payload != NULL)
443 			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
444 
445 	} else if (payload != NULL) {
446 		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447 	}
448 	if (payload != NULL)
449 		memcpy(skb_put(skb, payload_len), payload, payload_len);
450 
451 	fm_cb(skb)->completion = wait_completion;
452 	skb_queue_tail(&fmdev->tx_q, skb);
453 	tasklet_schedule(&fmdev->tx_task);
454 
455 	return 0;
456 }
457 
458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 		unsigned int payload_len, void *response, int *response_len)
461 {
462 	struct sk_buff *skb;
463 	struct fm_event_msg_hdr *evt_hdr;
464 	unsigned long flags;
465 	int ret;
466 
467 	init_completion(&fmdev->maintask_comp);
468 	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 			    &fmdev->maintask_comp);
470 	if (ret)
471 		return ret;
472 
473 	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474 					 FM_DRV_TX_TIMEOUT)) {
475 		fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
476 			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
477 		return -ETIMEDOUT;
478 	}
479 	if (!fmdev->resp_skb) {
480 		fmerr("Response SKB is missing\n");
481 		return -EFAULT;
482 	}
483 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
484 	skb = fmdev->resp_skb;
485 	fmdev->resp_skb = NULL;
486 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
487 
488 	evt_hdr = (void *)skb->data;
489 	if (evt_hdr->status != 0) {
490 		fmerr("Received event pkt status(%d) is not zero\n",
491 			   evt_hdr->status);
492 		kfree_skb(skb);
493 		return -EIO;
494 	}
495 	/* Send response data to caller */
496 	if (response != NULL && response_len != NULL && evt_hdr->dlen) {
497 		/* Skip header info and copy only response data */
498 		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
499 		memcpy(response, skb->data, evt_hdr->dlen);
500 		*response_len = evt_hdr->dlen;
501 	} else if (response_len != NULL && evt_hdr->dlen == 0) {
502 		*response_len = 0;
503 	}
504 	kfree_skb(skb);
505 
506 	return 0;
507 }
508 
509 /* --- Helper functions used in FM interrupt handlers ---*/
510 static inline int check_cmdresp_status(struct fmdev *fmdev,
511 		struct sk_buff **skb)
512 {
513 	struct fm_event_msg_hdr *fm_evt_hdr;
514 	unsigned long flags;
515 
516 	del_timer(&fmdev->irq_info.timer);
517 
518 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
519 	*skb = fmdev->resp_skb;
520 	fmdev->resp_skb = NULL;
521 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
522 
523 	fm_evt_hdr = (void *)(*skb)->data;
524 	if (fm_evt_hdr->status != 0) {
525 		fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
526 				fm_evt_hdr->op);
527 
528 		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
529 		return -1;
530 	}
531 
532 	return 0;
533 }
534 
535 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
536 {
537 	struct sk_buff *skb;
538 
539 	if (!check_cmdresp_status(fmdev, &skb))
540 		fm_irq_call_stage(fmdev, stage);
541 }
542 
543 /*
544  * Interrupt process timeout handler.
545  * One of the irq handler did not get proper response from the chip. So take
546  * recovery action here. FM interrupts are disabled in the beginning of
547  * interrupt process. Therefore reset stage index to re-enable default
548  * interrupts. So that next interrupt will be processed as usual.
549  */
550 static void int_timeout_handler(unsigned long data)
551 {
552 	struct fmdev *fmdev;
553 	struct fm_irq *fmirq;
554 
555 	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
556 	fmdev = (struct fmdev *)data;
557 	fmirq = &fmdev->irq_info;
558 	fmirq->retry++;
559 
560 	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
561 		/* Stop recovery action (interrupt reenable process) and
562 		 * reset stage index & retry count values */
563 		fmirq->stage = 0;
564 		fmirq->retry = 0;
565 		fmerr("Recovery action failed duringirq processing, max retry reached\n");
566 		return;
567 	}
568 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
569 }
570 
571 /* --------- FM interrupt handlers ------------*/
572 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
573 {
574 	u16 flag;
575 
576 	/* Send FLAG_GET command , to know the source of interrupt */
577 	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
578 		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
579 }
580 
581 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
582 {
583 	struct sk_buff *skb;
584 	struct fm_event_msg_hdr *fm_evt_hdr;
585 
586 	if (check_cmdresp_status(fmdev, &skb))
587 		return;
588 
589 	fm_evt_hdr = (void *)skb->data;
590 
591 	/* Skip header info and copy only response data */
592 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
593 	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
594 
595 	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
596 	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
597 
598 	/* Continue next function in interrupt handler table */
599 	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
600 }
601 
602 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
603 {
604 	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
605 		fmerr("irq: HW MAL int received - do nothing\n");
606 
607 	/* Continue next function in interrupt handler table */
608 	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
609 }
610 
611 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
612 {
613 	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
614 		fmdbg("irq: rds threshold reached\n");
615 		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
616 	} else {
617 		/* Continue next function in interrupt handler table */
618 		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
619 	}
620 
621 	fm_irq_call(fmdev);
622 }
623 
624 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
625 {
626 	/* Send the command to read RDS data from the chip */
627 	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
628 			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
629 		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
630 }
631 
632 /* Keeps track of current RX channel AF (Alternate Frequency) */
633 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
634 {
635 	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
636 	u8 reg_idx = fmdev->rx.region.fm_band;
637 	u8 index;
638 	u32 freq;
639 
640 	/* First AF indicates the number of AF follows. Reset the list */
641 	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
642 		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
643 		fmdev->rx.stat_info.afcache_size = 0;
644 		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
645 		return;
646 	}
647 
648 	if (af < FM_RDS_MIN_AF)
649 		return;
650 	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
651 		return;
652 	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
653 		return;
654 
655 	freq = fmdev->rx.region.bot_freq + (af * 100);
656 	if (freq == fmdev->rx.freq) {
657 		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
658 				fmdev->rx.freq, freq);
659 		return;
660 	}
661 	/* Do check in AF cache */
662 	for (index = 0; index < stat_info->afcache_size; index++) {
663 		if (stat_info->af_cache[index] == freq)
664 			break;
665 	}
666 	/* Reached the limit of the list - ignore the next AF */
667 	if (index == stat_info->af_list_max) {
668 		fmdbg("AF cache is full\n");
669 		return;
670 	}
671 	/*
672 	 * If we reached the end of the list then this AF is not
673 	 * in the list - add it.
674 	 */
675 	if (index == stat_info->afcache_size) {
676 		fmdbg("Storing AF %d to cache index %d\n", freq, index);
677 		stat_info->af_cache[index] = freq;
678 		stat_info->afcache_size++;
679 	}
680 }
681 
682 /*
683  * Converts RDS buffer data from big endian format
684  * to little endian format.
685  */
686 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
687 		struct fm_rdsdata_format *rds_format)
688 {
689 	u8 index = 0;
690 	u8 *rds_buff;
691 
692 	/*
693 	 * Since in Orca the 2 RDS Data bytes are in little endian and
694 	 * in Dolphin they are in big endian, the parsing of the RDS data
695 	 * is chip dependent
696 	 */
697 	if (fmdev->asci_id != 0x6350) {
698 		rds_buff = &rds_format->data.groupdatabuff.buff[0];
699 		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
700 			swap(rds_buff[index], rds_buff[index + 1]);
701 			index += 2;
702 		}
703 	}
704 }
705 
706 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
707 {
708 	struct sk_buff *skb;
709 	struct fm_rdsdata_format rds_fmt;
710 	struct fm_rds *rds = &fmdev->rx.rds;
711 	unsigned long group_idx, flags;
712 	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
713 	u8 type, blk_idx;
714 	u16 cur_picode;
715 	u32 rds_len;
716 
717 	if (check_cmdresp_status(fmdev, &skb))
718 		return;
719 
720 	/* Skip header info */
721 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
722 	rds_data = skb->data;
723 	rds_len = skb->len;
724 
725 	/* Parse the RDS data */
726 	while (rds_len >= FM_RDS_BLK_SIZE) {
727 		meta_data = rds_data[2];
728 		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
729 		type = (meta_data & 0x07);
730 
731 		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
732 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
733 		fmdbg("Block index:%d(%s)\n", blk_idx,
734 			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
735 
736 		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
737 			break;
738 
739 		if (blk_idx > FM_RDS_BLK_IDX_D) {
740 			fmdbg("Block sequence mismatch\n");
741 			rds->last_blk_idx = -1;
742 			break;
743 		}
744 
745 		/* Skip checkword (control) byte and copy only data byte */
746 		memcpy(&rds_fmt.data.groupdatabuff.
747 				buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
748 				rds_data, (FM_RDS_BLK_SIZE - 1));
749 
750 		rds->last_blk_idx = blk_idx;
751 
752 		/* If completed a whole group then handle it */
753 		if (blk_idx == FM_RDS_BLK_IDX_D) {
754 			fmdbg("Good block received\n");
755 			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
756 
757 			/*
758 			 * Extract PI code and store in local cache.
759 			 * We need this during AF switch processing.
760 			 */
761 			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
762 			if (fmdev->rx.stat_info.picode != cur_picode)
763 				fmdev->rx.stat_info.picode = cur_picode;
764 
765 			fmdbg("picode:%d\n", cur_picode);
766 
767 			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
768 			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
769 					(group_idx % 2) ? "B" : "A");
770 
771 			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
772 			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
773 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
774 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
775 			}
776 		}
777 		rds_len -= FM_RDS_BLK_SIZE;
778 		rds_data += FM_RDS_BLK_SIZE;
779 	}
780 
781 	/* Copy raw rds data to internal rds buffer */
782 	rds_data = skb->data;
783 	rds_len = skb->len;
784 
785 	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
786 	while (rds_len > 0) {
787 		/*
788 		 * Fill RDS buffer as per V4L2 specification.
789 		 * Store control byte
790 		 */
791 		type = (rds_data[2] & 0x07);
792 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
793 		tmpbuf[2] = blk_idx;	/* Offset name */
794 		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
795 
796 		/* Store data byte */
797 		tmpbuf[0] = rds_data[0];
798 		tmpbuf[1] = rds_data[1];
799 
800 		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
801 		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
802 
803 		/* Check for overflow & start over */
804 		if (rds->wr_idx == rds->rd_idx) {
805 			fmdbg("RDS buffer overflow\n");
806 			rds->wr_idx = 0;
807 			rds->rd_idx = 0;
808 			break;
809 		}
810 		rds_len -= FM_RDS_BLK_SIZE;
811 		rds_data += FM_RDS_BLK_SIZE;
812 	}
813 	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
814 
815 	/* Wakeup read queue */
816 	if (rds->wr_idx != rds->rd_idx)
817 		wake_up_interruptible(&rds->read_queue);
818 
819 	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
820 }
821 
822 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
823 {
824 	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
825 }
826 
827 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
828 {
829 	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
830 	    irq_info.mask) {
831 		fmdbg("irq: tune ended/bandlimit reached\n");
832 		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
833 			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
834 		} else {
835 			complete(&fmdev->maintask_comp);
836 			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
837 		}
838 	} else
839 		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
840 
841 	fm_irq_call(fmdev);
842 }
843 
844 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
845 {
846 	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
847 		fmdbg("irq: Power Enabled/Disabled\n");
848 		complete(&fmdev->maintask_comp);
849 	}
850 
851 	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
852 }
853 
854 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
855 {
856 	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
857 	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
858 	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
859 	    (fmdev->rx.stat_info.afcache_size != 0)) {
860 		fmdbg("irq: rssi level has fallen below threshold level\n");
861 
862 		/* Disable further low RSSI interrupts */
863 		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
864 
865 		fmdev->rx.afjump_idx = 0;
866 		fmdev->rx.freq_before_jump = fmdev->rx.freq;
867 		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
868 	} else {
869 		/* Continue next function in interrupt handler table */
870 		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
871 	}
872 
873 	fm_irq_call(fmdev);
874 }
875 
876 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
877 {
878 	u16 payload;
879 
880 	/* Set PI code - must be updated if the AF list is not empty */
881 	payload = fmdev->rx.stat_info.picode;
882 	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
883 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
884 }
885 
886 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
887 {
888 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
889 }
890 
891 /*
892  * Set PI mask.
893  * 0xFFFF = Enable PI code matching
894  * 0x0000 = Disable PI code matching
895  */
896 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
897 {
898 	u16 payload;
899 
900 	payload = 0x0000;
901 	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
902 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
903 }
904 
905 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
906 {
907 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
908 }
909 
910 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
911 {
912 	u16 frq_index;
913 	u16 payload;
914 
915 	fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
916 	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
917 	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
918 
919 	payload = frq_index;
920 	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
921 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
922 }
923 
924 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
925 {
926 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
927 }
928 
929 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
930 {
931 	u16 payload;
932 
933 	/* Enable FR (tuning operation ended) interrupt */
934 	payload = FM_FR_EVENT;
935 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
936 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
937 }
938 
939 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
940 {
941 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
942 }
943 
944 static void fm_irq_start_afjump(struct fmdev *fmdev)
945 {
946 	u16 payload;
947 
948 	payload = FM_TUNER_AF_JUMP_MODE;
949 	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
950 			sizeof(payload), NULL))
951 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
952 }
953 
954 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
955 {
956 	struct sk_buff *skb;
957 
958 	if (check_cmdresp_status(fmdev, &skb))
959 		return;
960 
961 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
962 	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
963 	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
964 }
965 
966 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
967 {
968 	u16 payload;
969 
970 	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
971 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
972 }
973 
974 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
975 {
976 	struct sk_buff *skb;
977 	u16 read_freq;
978 	u32 curr_freq, jumped_freq;
979 
980 	if (check_cmdresp_status(fmdev, &skb))
981 		return;
982 
983 	/* Skip header info and copy only response data */
984 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
985 	memcpy(&read_freq, skb->data, sizeof(read_freq));
986 	read_freq = be16_to_cpu((__force __be16)read_freq);
987 	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
988 
989 	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
990 
991 	/* If the frequency was changed the jump succeeded */
992 	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
993 		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
994 		fmdev->rx.freq = curr_freq;
995 		fm_rx_reset_rds_cache(fmdev);
996 
997 		/* AF feature is on, enable low level RSSI interrupt */
998 		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
999 			fmdev->irq_info.mask |= FM_LEV_EVENT;
1000 
1001 		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1002 	} else {		/* jump to the next freq in the AF list */
1003 		fmdev->rx.afjump_idx++;
1004 
1005 		/* If we reached the end of the list - stop searching */
1006 		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1007 			fmdbg("AF switch processing failed\n");
1008 			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1009 		} else {	/* AF List is not over - try next one */
1010 
1011 			fmdbg("Trying next freq in AF cache\n");
1012 			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1013 		}
1014 	}
1015 	fm_irq_call(fmdev);
1016 }
1017 
1018 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1019 {
1020 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1021 }
1022 
1023 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1024 {
1025 	u16 payload;
1026 
1027 	/* Re-enable FM interrupts */
1028 	payload = fmdev->irq_info.mask;
1029 
1030 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1031 			sizeof(payload), NULL))
1032 		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1033 }
1034 
1035 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1036 {
1037 	struct sk_buff *skb;
1038 
1039 	if (check_cmdresp_status(fmdev, &skb))
1040 		return;
1041 	/*
1042 	 * This is last function in interrupt table to be executed.
1043 	 * So, reset stage index to 0.
1044 	 */
1045 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1046 
1047 	/* Start processing any pending interrupt */
1048 	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1049 		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1050 	else
1051 		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1052 }
1053 
1054 /* Returns availability of RDS data in internel buffer */
1055 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1056 				struct poll_table_struct *pts)
1057 {
1058 	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1059 	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1060 		return 0;
1061 
1062 	return -EAGAIN;
1063 }
1064 
1065 /* Copies RDS data from internal buffer to user buffer */
1066 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1067 		u8 __user *buf, size_t count)
1068 {
1069 	u32 block_count;
1070 	u8 tmpbuf[FM_RDS_BLK_SIZE];
1071 	unsigned long flags;
1072 	int ret;
1073 
1074 	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1075 		if (file->f_flags & O_NONBLOCK)
1076 			return -EWOULDBLOCK;
1077 
1078 		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1079 				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1080 		if (ret)
1081 			return -EINTR;
1082 	}
1083 
1084 	/* Calculate block count from byte count */
1085 	count /= FM_RDS_BLK_SIZE;
1086 	block_count = 0;
1087 	ret = 0;
1088 
1089 	while (block_count < count) {
1090 		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1091 
1092 		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1093 			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1094 			break;
1095 		}
1096 		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1097 					FM_RDS_BLK_SIZE);
1098 		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1099 		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1100 			fmdev->rx.rds.rd_idx = 0;
1101 
1102 		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1103 
1104 		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1105 			break;
1106 
1107 		block_count++;
1108 		buf += FM_RDS_BLK_SIZE;
1109 		ret += FM_RDS_BLK_SIZE;
1110 	}
1111 	return ret;
1112 }
1113 
1114 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1115 {
1116 	switch (fmdev->curr_fmmode) {
1117 	case FM_MODE_RX:
1118 		return fm_rx_set_freq(fmdev, freq_to_set);
1119 
1120 	case FM_MODE_TX:
1121 		return fm_tx_set_freq(fmdev, freq_to_set);
1122 
1123 	default:
1124 		return -EINVAL;
1125 	}
1126 }
1127 
1128 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1129 {
1130 	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1131 		fmerr("RX frequency is not set\n");
1132 		return -EPERM;
1133 	}
1134 	if (cur_tuned_frq == NULL) {
1135 		fmerr("Invalid memory\n");
1136 		return -ENOMEM;
1137 	}
1138 
1139 	switch (fmdev->curr_fmmode) {
1140 	case FM_MODE_RX:
1141 		*cur_tuned_frq = fmdev->rx.freq;
1142 		return 0;
1143 
1144 	case FM_MODE_TX:
1145 		*cur_tuned_frq = 0;	/* TODO : Change this later */
1146 		return 0;
1147 
1148 	default:
1149 		return -EINVAL;
1150 	}
1151 
1152 }
1153 
1154 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1155 {
1156 	switch (fmdev->curr_fmmode) {
1157 	case FM_MODE_RX:
1158 		return fm_rx_set_region(fmdev, region_to_set);
1159 
1160 	case FM_MODE_TX:
1161 		return fm_tx_set_region(fmdev, region_to_set);
1162 
1163 	default:
1164 		return -EINVAL;
1165 	}
1166 }
1167 
1168 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1169 {
1170 	switch (fmdev->curr_fmmode) {
1171 	case FM_MODE_RX:
1172 		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1173 
1174 	case FM_MODE_TX:
1175 		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1176 
1177 	default:
1178 		return -EINVAL;
1179 	}
1180 }
1181 
1182 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1183 {
1184 	switch (fmdev->curr_fmmode) {
1185 	case FM_MODE_RX:
1186 		return fm_rx_set_stereo_mono(fmdev, mode);
1187 
1188 	case FM_MODE_TX:
1189 		return fm_tx_set_stereo_mono(fmdev, mode);
1190 
1191 	default:
1192 		return -EINVAL;
1193 	}
1194 }
1195 
1196 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1197 {
1198 	switch (fmdev->curr_fmmode) {
1199 	case FM_MODE_RX:
1200 		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1201 
1202 	case FM_MODE_TX:
1203 		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1204 
1205 	default:
1206 		return -EINVAL;
1207 	}
1208 }
1209 
1210 /* Sends power off command to the chip */
1211 static int fm_power_down(struct fmdev *fmdev)
1212 {
1213 	u16 payload;
1214 	int ret;
1215 
1216 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1217 		fmerr("FM core is not ready\n");
1218 		return -EPERM;
1219 	}
1220 	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1221 		fmdbg("FM chip is already in OFF state\n");
1222 		return 0;
1223 	}
1224 
1225 	payload = 0x0;
1226 	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1227 		sizeof(payload), NULL, NULL);
1228 	if (ret < 0)
1229 		return ret;
1230 
1231 	return fmc_release(fmdev);
1232 }
1233 
1234 /* Reads init command from FM firmware file and loads to the chip */
1235 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1236 {
1237 	const struct firmware *fw_entry;
1238 	struct bts_header *fw_header;
1239 	struct bts_action *action;
1240 	struct bts_action_delay *delay;
1241 	u8 *fw_data;
1242 	int ret, fw_len, cmd_cnt;
1243 
1244 	cmd_cnt = 0;
1245 	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1246 
1247 	ret = request_firmware(&fw_entry, fw_name,
1248 				&fmdev->radio_dev->dev);
1249 	if (ret < 0) {
1250 		fmerr("Unable to read firmware(%s) content\n", fw_name);
1251 		return ret;
1252 	}
1253 	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1254 
1255 	fw_data = (void *)fw_entry->data;
1256 	fw_len = fw_entry->size;
1257 
1258 	fw_header = (struct bts_header *)fw_data;
1259 	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1260 		fmerr("%s not a legal TI firmware file\n", fw_name);
1261 		ret = -EINVAL;
1262 		goto rel_fw;
1263 	}
1264 	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1265 
1266 	/* Skip file header info , we already verified it */
1267 	fw_data += sizeof(struct bts_header);
1268 	fw_len -= sizeof(struct bts_header);
1269 
1270 	while (fw_data && fw_len > 0) {
1271 		action = (struct bts_action *)fw_data;
1272 
1273 		switch (action->type) {
1274 		case ACTION_SEND_COMMAND:	/* Send */
1275 			if (fmc_send_cmd(fmdev, 0, 0, action->data,
1276 						action->size, NULL, NULL))
1277 				goto rel_fw;
1278 
1279 			cmd_cnt++;
1280 			break;
1281 
1282 		case ACTION_DELAY:	/* Delay */
1283 			delay = (struct bts_action_delay *)action->data;
1284 			mdelay(delay->msec);
1285 			break;
1286 		}
1287 
1288 		fw_data += (sizeof(struct bts_action) + (action->size));
1289 		fw_len -= (sizeof(struct bts_action) + (action->size));
1290 	}
1291 	fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1292 rel_fw:
1293 	release_firmware(fw_entry);
1294 	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1295 
1296 	return ret;
1297 }
1298 
1299 /* Loads default RX configuration to the chip */
1300 static int load_default_rx_configuration(struct fmdev *fmdev)
1301 {
1302 	int ret;
1303 
1304 	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1309 }
1310 
1311 /* Does FM power on sequence */
1312 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1313 {
1314 	u16 payload;
1315 	__be16 asic_id, asic_ver;
1316 	int resp_len, ret;
1317 	u8 fw_name[50];
1318 
1319 	if (mode >= FM_MODE_ENTRY_MAX) {
1320 		fmerr("Invalid firmware download option\n");
1321 		return -EINVAL;
1322 	}
1323 
1324 	/*
1325 	 * Initialize FM common module. FM GPIO toggling is
1326 	 * taken care in Shared Transport driver.
1327 	 */
1328 	ret = fmc_prepare(fmdev);
1329 	if (ret < 0) {
1330 		fmerr("Unable to prepare FM Common\n");
1331 		return ret;
1332 	}
1333 
1334 	payload = FM_ENABLE;
1335 	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1336 			sizeof(payload), NULL, NULL))
1337 		goto rel;
1338 
1339 	/* Allow the chip to settle down in Channel-8 mode */
1340 	msleep(20);
1341 
1342 	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1343 			sizeof(asic_id), &asic_id, &resp_len))
1344 		goto rel;
1345 
1346 	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1347 			sizeof(asic_ver), &asic_ver, &resp_len))
1348 		goto rel;
1349 
1350 	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1351 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1352 
1353 	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1354 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355 
1356 	ret = fm_download_firmware(fmdev, fw_name);
1357 	if (ret < 0) {
1358 		fmdbg("Failed to download firmware file %s\n", fw_name);
1359 		goto rel;
1360 	}
1361 	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1362 			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1363 			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1364 
1365 	ret = fm_download_firmware(fmdev, fw_name);
1366 	if (ret < 0) {
1367 		fmdbg("Failed to download firmware file %s\n", fw_name);
1368 		goto rel;
1369 	} else
1370 		return ret;
1371 rel:
1372 	return fmc_release(fmdev);
1373 }
1374 
1375 /* Set FM Modes(TX, RX, OFF) */
1376 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1377 {
1378 	int ret = 0;
1379 
1380 	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1381 		fmerr("Invalid FM mode\n");
1382 		return -EINVAL;
1383 	}
1384 	if (fmdev->curr_fmmode == fm_mode) {
1385 		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1386 		return ret;
1387 	}
1388 
1389 	switch (fm_mode) {
1390 	case FM_MODE_OFF:	/* OFF Mode */
1391 		ret = fm_power_down(fmdev);
1392 		if (ret < 0) {
1393 			fmerr("Failed to set OFF mode\n");
1394 			return ret;
1395 		}
1396 		break;
1397 
1398 	case FM_MODE_TX:	/* TX Mode */
1399 	case FM_MODE_RX:	/* RX Mode */
1400 		/* Power down before switching to TX or RX mode */
1401 		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1402 			ret = fm_power_down(fmdev);
1403 			if (ret < 0) {
1404 				fmerr("Failed to set OFF mode\n");
1405 				return ret;
1406 			}
1407 			msleep(30);
1408 		}
1409 		ret = fm_power_up(fmdev, fm_mode);
1410 		if (ret < 0) {
1411 			fmerr("Failed to load firmware\n");
1412 			return ret;
1413 		}
1414 	}
1415 	fmdev->curr_fmmode = fm_mode;
1416 
1417 	/* Set default configuration */
1418 	if (fmdev->curr_fmmode == FM_MODE_RX) {
1419 		fmdbg("Loading default rx configuration..\n");
1420 		ret = load_default_rx_configuration(fmdev);
1421 		if (ret < 0)
1422 			fmerr("Failed to load default values\n");
1423 	}
1424 
1425 	return ret;
1426 }
1427 
1428 /* Returns current FM mode (TX, RX, OFF) */
1429 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1430 {
1431 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1432 		fmerr("FM core is not ready\n");
1433 		return -EPERM;
1434 	}
1435 	if (fmmode == NULL) {
1436 		fmerr("Invalid memory\n");
1437 		return -ENOMEM;
1438 	}
1439 
1440 	*fmmode = fmdev->curr_fmmode;
1441 	return 0;
1442 }
1443 
1444 /* Called by ST layer when FM packet is available */
1445 static long fm_st_receive(void *arg, struct sk_buff *skb)
1446 {
1447 	struct fmdev *fmdev;
1448 
1449 	fmdev = (struct fmdev *)arg;
1450 
1451 	if (skb == NULL) {
1452 		fmerr("Invalid SKB received from ST\n");
1453 		return -EFAULT;
1454 	}
1455 
1456 	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1457 		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1458 		return -EINVAL;
1459 	}
1460 
1461 	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1462 	skb_queue_tail(&fmdev->rx_q, skb);
1463 	tasklet_schedule(&fmdev->rx_task);
1464 
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Called by ST layer to indicate protocol registration completion
1470  * status.
1471  */
1472 static void fm_st_reg_comp_cb(void *arg, int data)
1473 {
1474 	struct fmdev *fmdev;
1475 
1476 	fmdev = (struct fmdev *)arg;
1477 	fmdev->streg_cbdata = data;
1478 	complete(&wait_for_fmdrv_reg_comp);
1479 }
1480 
1481 /*
1482  * This function will be called from FM V4L2 open function.
1483  * Register with ST driver and initialize driver data.
1484  */
1485 int fmc_prepare(struct fmdev *fmdev)
1486 {
1487 	static struct st_proto_s fm_st_proto;
1488 	int ret;
1489 
1490 	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1491 		fmdbg("FM Core is already up\n");
1492 		return 0;
1493 	}
1494 
1495 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1496 	fm_st_proto.recv = fm_st_receive;
1497 	fm_st_proto.match_packet = NULL;
1498 	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1499 	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1500 	fm_st_proto.priv_data = fmdev;
1501 	fm_st_proto.chnl_id = 0x08;
1502 	fm_st_proto.max_frame_size = 0xff;
1503 	fm_st_proto.hdr_len = 1;
1504 	fm_st_proto.offset_len_in_hdr = 0;
1505 	fm_st_proto.len_size = 1;
1506 	fm_st_proto.reserve = 1;
1507 
1508 	ret = st_register(&fm_st_proto);
1509 	if (ret == -EINPROGRESS) {
1510 		init_completion(&wait_for_fmdrv_reg_comp);
1511 		fmdev->streg_cbdata = -EINPROGRESS;
1512 		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1513 
1514 		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1515 						 FM_ST_REG_TIMEOUT)) {
1516 			fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1517 					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1518 			return -ETIMEDOUT;
1519 		}
1520 		if (fmdev->streg_cbdata != 0) {
1521 			fmerr("ST reg comp CB called with error status %d\n",
1522 			      fmdev->streg_cbdata);
1523 			return -EAGAIN;
1524 		}
1525 
1526 		ret = 0;
1527 	} else if (ret == -1) {
1528 		fmerr("st_register failed %d\n", ret);
1529 		return -EAGAIN;
1530 	}
1531 
1532 	if (fm_st_proto.write != NULL) {
1533 		g_st_write = fm_st_proto.write;
1534 	} else {
1535 		fmerr("Failed to get ST write func pointer\n");
1536 		ret = st_unregister(&fm_st_proto);
1537 		if (ret < 0)
1538 			fmerr("st_unregister failed %d\n", ret);
1539 		return -EAGAIN;
1540 	}
1541 
1542 	spin_lock_init(&fmdev->rds_buff_lock);
1543 	spin_lock_init(&fmdev->resp_skb_lock);
1544 
1545 	/* Initialize TX queue and TX tasklet */
1546 	skb_queue_head_init(&fmdev->tx_q);
1547 	tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1548 
1549 	/* Initialize RX Queue and RX tasklet */
1550 	skb_queue_head_init(&fmdev->rx_q);
1551 	tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1552 
1553 	fmdev->irq_info.stage = 0;
1554 	atomic_set(&fmdev->tx_cnt, 1);
1555 	fmdev->resp_comp = NULL;
1556 
1557 	init_timer(&fmdev->irq_info.timer);
1558 	fmdev->irq_info.timer.function = &int_timeout_handler;
1559 	fmdev->irq_info.timer.data = (unsigned long)fmdev;
1560 	/*TODO: add FM_STIC_EVENT later */
1561 	fmdev->irq_info.mask = FM_MAL_EVENT;
1562 
1563 	/* Region info */
1564 	fmdev->rx.region = region_configs[default_radio_region];
1565 
1566 	fmdev->rx.mute_mode = FM_MUTE_OFF;
1567 	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1568 	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1569 	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1570 	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1571 	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1572 	fmdev->irq_info.retry = 0;
1573 
1574 	fm_rx_reset_rds_cache(fmdev);
1575 	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1576 
1577 	fm_rx_reset_station_info(fmdev);
1578 	set_bit(FM_CORE_READY, &fmdev->flag);
1579 
1580 	return ret;
1581 }
1582 
1583 /*
1584  * This function will be called from FM V4L2 release function.
1585  * Unregister from ST driver.
1586  */
1587 int fmc_release(struct fmdev *fmdev)
1588 {
1589 	static struct st_proto_s fm_st_proto;
1590 	int ret;
1591 
1592 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1593 		fmdbg("FM Core is already down\n");
1594 		return 0;
1595 	}
1596 	/* Service pending read */
1597 	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1598 
1599 	tasklet_kill(&fmdev->tx_task);
1600 	tasklet_kill(&fmdev->rx_task);
1601 
1602 	skb_queue_purge(&fmdev->tx_q);
1603 	skb_queue_purge(&fmdev->rx_q);
1604 
1605 	fmdev->resp_comp = NULL;
1606 	fmdev->rx.freq = 0;
1607 
1608 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1609 	fm_st_proto.chnl_id = 0x08;
1610 
1611 	ret = st_unregister(&fm_st_proto);
1612 
1613 	if (ret < 0)
1614 		fmerr("Failed to de-register FM from ST %d\n", ret);
1615 	else
1616 		fmdbg("Successfully unregistered from ST\n");
1617 
1618 	clear_bit(FM_CORE_READY, &fmdev->flag);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * Module init function. Ask FM V4L module to register video device.
1624  * Allocate memory for FM driver context and RX RDS buffer.
1625  */
1626 static int __init fm_drv_init(void)
1627 {
1628 	struct fmdev *fmdev = NULL;
1629 	int ret = -ENOMEM;
1630 
1631 	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1632 
1633 	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1634 	if (NULL == fmdev) {
1635 		fmerr("Can't allocate operation structure memory\n");
1636 		return ret;
1637 	}
1638 	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1639 	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1640 	if (NULL == fmdev->rx.rds.buff) {
1641 		fmerr("Can't allocate rds ring buffer\n");
1642 		goto rel_dev;
1643 	}
1644 
1645 	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1646 	if (ret < 0)
1647 		goto rel_rdsbuf;
1648 
1649 	fmdev->irq_info.handlers = int_handler_table;
1650 	fmdev->curr_fmmode = FM_MODE_OFF;
1651 	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1652 	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1653 	return ret;
1654 
1655 rel_rdsbuf:
1656 	kfree(fmdev->rx.rds.buff);
1657 rel_dev:
1658 	kfree(fmdev);
1659 
1660 	return ret;
1661 }
1662 
1663 /* Module exit function. Ask FM V4L module to unregister video device */
1664 static void __exit fm_drv_exit(void)
1665 {
1666 	struct fmdev *fmdev = NULL;
1667 
1668 	fmdev = fm_v4l2_deinit_video_device();
1669 	if (fmdev != NULL) {
1670 		kfree(fmdev->rx.rds.buff);
1671 		kfree(fmdev);
1672 	}
1673 }
1674 
1675 module_init(fm_drv_init);
1676 module_exit(fm_drv_exit);
1677 
1678 /* ------------- Module Info ------------- */
1679 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1680 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1681 MODULE_VERSION(FM_DRV_VERSION);
1682 MODULE_LICENSE("GPL");
1683