1 /* 2 * FM Driver for Connectivity chip of Texas Instruments. 3 * 4 * This sub-module of FM driver is common for FM RX and TX 5 * functionality. This module is responsible for: 6 * 1) Forming group of Channel-8 commands to perform particular 7 * functionality (eg., frequency set require more than 8 * one Channel-8 command to be sent to the chip). 9 * 2) Sending each Channel-8 command to the chip and reading 10 * response back over Shared Transport. 11 * 3) Managing TX and RX Queues and Tasklets. 12 * 4) Handling FM Interrupt packet and taking appropriate action. 13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX 14 * firmware files based on mode selection) 15 * 16 * Copyright (C) 2011 Texas Instruments 17 * Author: Raja Mani <raja_mani@ti.com> 18 * Author: Manjunatha Halli <manjunatha_halli@ti.com> 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License version 2 as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/firmware.h> 37 #include <linux/delay.h> 38 #include "fmdrv.h" 39 #include "fmdrv_v4l2.h" 40 #include "fmdrv_common.h" 41 #include <linux/ti_wilink_st.h> 42 #include "fmdrv_rx.h" 43 #include "fmdrv_tx.h" 44 45 /* Region info */ 46 static struct region_info region_configs[] = { 47 /* Europe/US */ 48 { 49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 50 .bot_freq = 87500, /* 87.5 MHz */ 51 .top_freq = 108000, /* 108 MHz */ 52 .fm_band = 0, 53 }, 54 /* Japan */ 55 { 56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 57 .bot_freq = 76000, /* 76 MHz */ 58 .top_freq = 90000, /* 90 MHz */ 59 .fm_band = 1, 60 }, 61 }; 62 63 /* Band selection */ 64 static u8 default_radio_region; /* Europe/US */ 65 module_param(default_radio_region, byte, 0); 66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan"); 67 68 /* RDS buffer blocks */ 69 static u32 default_rds_buf = 300; 70 module_param(default_rds_buf, uint, 0444); 71 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries"); 72 73 /* Radio Nr */ 74 static u32 radio_nr = -1; 75 module_param(radio_nr, int, 0444); 76 MODULE_PARM_DESC(radio_nr, "Radio Nr"); 77 78 /* FM irq handlers forward declaration */ 79 static void fm_irq_send_flag_getcmd(struct fmdev *); 80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *); 81 static void fm_irq_handle_hw_malfunction(struct fmdev *); 82 static void fm_irq_handle_rds_start(struct fmdev *); 83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *); 84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *); 85 static void fm_irq_handle_rds_finish(struct fmdev *); 86 static void fm_irq_handle_tune_op_ended(struct fmdev *); 87 static void fm_irq_handle_power_enb(struct fmdev *); 88 static void fm_irq_handle_low_rssi_start(struct fmdev *); 89 static void fm_irq_afjump_set_pi(struct fmdev *); 90 static void fm_irq_handle_set_pi_resp(struct fmdev *); 91 static void fm_irq_afjump_set_pimask(struct fmdev *); 92 static void fm_irq_handle_set_pimask_resp(struct fmdev *); 93 static void fm_irq_afjump_setfreq(struct fmdev *); 94 static void fm_irq_handle_setfreq_resp(struct fmdev *); 95 static void fm_irq_afjump_enableint(struct fmdev *); 96 static void fm_irq_afjump_enableint_resp(struct fmdev *); 97 static void fm_irq_start_afjump(struct fmdev *); 98 static void fm_irq_handle_start_afjump_resp(struct fmdev *); 99 static void fm_irq_afjump_rd_freq(struct fmdev *); 100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *); 101 static void fm_irq_handle_low_rssi_finish(struct fmdev *); 102 static void fm_irq_send_intmsk_cmd(struct fmdev *); 103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *); 104 105 /* 106 * When FM common module receives interrupt packet, following handlers 107 * will be executed one after another to service the interrupt(s) 108 */ 109 enum fmc_irq_handler_index { 110 FM_SEND_FLAG_GETCMD_IDX, 111 FM_HANDLE_FLAG_GETCMD_RESP_IDX, 112 113 /* HW malfunction irq handler */ 114 FM_HW_MAL_FUNC_IDX, 115 116 /* RDS threshold reached irq handler */ 117 FM_RDS_START_IDX, 118 FM_RDS_SEND_RDS_GETCMD_IDX, 119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX, 120 FM_RDS_FINISH_IDX, 121 122 /* Tune operation ended irq handler */ 123 FM_HW_TUNE_OP_ENDED_IDX, 124 125 /* TX power enable irq handler */ 126 FM_HW_POWER_ENB_IDX, 127 128 /* Low RSSI irq handler */ 129 FM_LOW_RSSI_START_IDX, 130 FM_AF_JUMP_SETPI_IDX, 131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX, 132 FM_AF_JUMP_SETPI_MASK_IDX, 133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX, 134 FM_AF_JUMP_SET_AF_FREQ_IDX, 135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX, 136 FM_AF_JUMP_ENABLE_INT_IDX, 137 FM_AF_JUMP_ENABLE_INT_RESP_IDX, 138 FM_AF_JUMP_START_AFJUMP_IDX, 139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX, 140 FM_AF_JUMP_RD_FREQ_IDX, 141 FM_AF_JUMP_RD_FREQ_RESP_IDX, 142 FM_LOW_RSSI_FINISH_IDX, 143 144 /* Interrupt process post action */ 145 FM_SEND_INTMSK_CMD_IDX, 146 FM_HANDLE_INTMSK_CMD_RESP_IDX, 147 }; 148 149 /* FM interrupt handler table */ 150 static int_handler_prototype int_handler_table[] = { 151 fm_irq_send_flag_getcmd, 152 fm_irq_handle_flag_getcmd_resp, 153 fm_irq_handle_hw_malfunction, 154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */ 155 fm_irq_send_rdsdata_getcmd, 156 fm_irq_handle_rdsdata_getcmd_resp, 157 fm_irq_handle_rds_finish, 158 fm_irq_handle_tune_op_ended, 159 fm_irq_handle_power_enb, /* TX power enable irq handler */ 160 fm_irq_handle_low_rssi_start, 161 fm_irq_afjump_set_pi, 162 fm_irq_handle_set_pi_resp, 163 fm_irq_afjump_set_pimask, 164 fm_irq_handle_set_pimask_resp, 165 fm_irq_afjump_setfreq, 166 fm_irq_handle_setfreq_resp, 167 fm_irq_afjump_enableint, 168 fm_irq_afjump_enableint_resp, 169 fm_irq_start_afjump, 170 fm_irq_handle_start_afjump_resp, 171 fm_irq_afjump_rd_freq, 172 fm_irq_afjump_rd_freq_resp, 173 fm_irq_handle_low_rssi_finish, 174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */ 175 fm_irq_handle_intmsk_cmd_resp 176 }; 177 178 static long (*g_st_write) (struct sk_buff *skb); 179 static struct completion wait_for_fmdrv_reg_comp; 180 181 static inline void fm_irq_call(struct fmdev *fmdev) 182 { 183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 184 } 185 186 /* Continue next function in interrupt handler table */ 187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage) 188 { 189 fmdev->irq_info.stage = stage; 190 fm_irq_call(fmdev); 191 } 192 193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage) 194 { 195 fmdev->irq_info.stage = stage; 196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 197 } 198 199 #ifdef FM_DUMP_TXRX_PKT 200 /* To dump outgoing FM Channel-8 packets */ 201 inline void dump_tx_skb_data(struct sk_buff *skb) 202 { 203 int len, len_org; 204 u8 index; 205 struct fm_cmd_msg_hdr *cmd_hdr; 206 207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data; 208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x", 209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr, 210 cmd_hdr->len, cmd_hdr->op, 211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen); 212 213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE; 214 if (len_org > 0) { 215 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen); 216 len = min(len_org, 14); 217 for (index = 0; index < len; index++) 218 printk(KERN_CONT "%x ", 219 skb->data[FM_CMD_MSG_HDR_SIZE + index]); 220 printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); 221 } 222 printk(KERN_CONT "\n"); 223 } 224 225 /* To dump incoming FM Channel-8 packets */ 226 inline void dump_rx_skb_data(struct sk_buff *skb) 227 { 228 int len, len_org; 229 u8 index; 230 struct fm_event_msg_hdr *evt_hdr; 231 232 evt_hdr = (struct fm_event_msg_hdr *)skb->data; 233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x", 234 evt_hdr->hdr, evt_hdr->len, 235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op, 236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen); 237 238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE; 239 if (len_org > 0) { 240 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen); 241 len = min(len_org, 14); 242 for (index = 0; index < len; index++) 243 printk(KERN_CONT "%x ", 244 skb->data[FM_EVT_MSG_HDR_SIZE + index]); 245 printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); 246 } 247 printk(KERN_CONT "\n"); 248 } 249 #endif 250 251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set) 252 { 253 fmdev->rx.region = region_configs[region_to_set]; 254 } 255 256 /* 257 * FM common sub-module will schedule this tasklet whenever it receives 258 * FM packet from ST driver. 259 */ 260 static void recv_tasklet(unsigned long arg) 261 { 262 struct fmdev *fmdev; 263 struct fm_irq *irq_info; 264 struct fm_event_msg_hdr *evt_hdr; 265 struct sk_buff *skb; 266 u8 num_fm_hci_cmds; 267 unsigned long flags; 268 269 fmdev = (struct fmdev *)arg; 270 irq_info = &fmdev->irq_info; 271 /* Process all packets in the RX queue */ 272 while ((skb = skb_dequeue(&fmdev->rx_q))) { 273 if (skb->len < sizeof(struct fm_event_msg_hdr)) { 274 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n", 275 skb, 276 skb->len, sizeof(struct fm_event_msg_hdr)); 277 kfree_skb(skb); 278 continue; 279 } 280 281 evt_hdr = (void *)skb->data; 282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; 283 284 /* FM interrupt packet? */ 285 if (evt_hdr->op == FM_INTERRUPT) { 286 /* FM interrupt handler started already? */ 287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag); 289 if (irq_info->stage != 0) { 290 fmerr("Inval stage resetting to zero\n"); 291 irq_info->stage = 0; 292 } 293 294 /* 295 * Execute first function in interrupt handler 296 * table. 297 */ 298 irq_info->handlers[irq_info->stage](fmdev); 299 } else { 300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag); 301 } 302 kfree_skb(skb); 303 } 304 /* Anyone waiting for this with completion handler? */ 305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) { 306 307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 308 fmdev->resp_skb = skb; 309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 310 complete(fmdev->resp_comp); 311 312 fmdev->resp_comp = NULL; 313 atomic_set(&fmdev->tx_cnt, 1); 314 } 315 /* Is this for interrupt handler? */ 316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) { 317 if (fmdev->resp_skb != NULL) 318 fmerr("Response SKB ptr not NULL\n"); 319 320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 321 fmdev->resp_skb = skb; 322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 323 324 /* Execute interrupt handler where state index points */ 325 irq_info->handlers[irq_info->stage](fmdev); 326 327 kfree_skb(skb); 328 atomic_set(&fmdev->tx_cnt, 1); 329 } else { 330 fmerr("Nobody claimed SKB(%p),purging\n", skb); 331 } 332 333 /* 334 * Check flow control field. If Num_FM_HCI_Commands field is 335 * not zero, schedule FM TX tasklet. 336 */ 337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt)) 338 if (!skb_queue_empty(&fmdev->tx_q)) 339 tasklet_schedule(&fmdev->tx_task); 340 } 341 } 342 343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */ 344 static void send_tasklet(unsigned long arg) 345 { 346 struct fmdev *fmdev; 347 struct sk_buff *skb; 348 int len; 349 350 fmdev = (struct fmdev *)arg; 351 352 if (!atomic_read(&fmdev->tx_cnt)) 353 return; 354 355 /* Check, is there any timeout happened to last transmitted packet */ 356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) { 357 fmerr("TX timeout occurred\n"); 358 atomic_set(&fmdev->tx_cnt, 1); 359 } 360 361 /* Send queued FM TX packets */ 362 skb = skb_dequeue(&fmdev->tx_q); 363 if (!skb) 364 return; 365 366 atomic_dec(&fmdev->tx_cnt); 367 fmdev->pre_op = fm_cb(skb)->fm_op; 368 369 if (fmdev->resp_comp != NULL) 370 fmerr("Response completion handler is not NULL\n"); 371 372 fmdev->resp_comp = fm_cb(skb)->completion; 373 374 /* Write FM packet to ST driver */ 375 len = g_st_write(skb); 376 if (len < 0) { 377 kfree_skb(skb); 378 fmdev->resp_comp = NULL; 379 fmerr("TX tasklet failed to send skb(%p)\n", skb); 380 atomic_set(&fmdev->tx_cnt, 1); 381 } else { 382 fmdev->last_tx_jiffies = jiffies; 383 } 384 } 385 386 /* 387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for 388 * transmission 389 */ 390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 391 int payload_len, struct completion *wait_completion) 392 { 393 struct sk_buff *skb; 394 struct fm_cmd_msg_hdr *hdr; 395 int size; 396 397 if (fm_op >= FM_INTERRUPT) { 398 fmerr("Invalid fm opcode - %d\n", fm_op); 399 return -EINVAL; 400 } 401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) { 402 fmerr("Payload data is NULL during fw download\n"); 403 return -EINVAL; 404 } 405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag)) 406 size = 407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len); 408 else 409 size = payload_len; 410 411 skb = alloc_skb(size, GFP_ATOMIC); 412 if (!skb) { 413 fmerr("No memory to create new SKB\n"); 414 return -ENOMEM; 415 } 416 /* 417 * Don't fill FM header info for the commands which come from 418 * FM firmware file. 419 */ 420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) || 421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 422 /* Fill command header info */ 423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE); 424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */ 425 426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */ 427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3; 428 429 /* FM opcode */ 430 hdr->op = fm_op; 431 432 /* read/write type */ 433 hdr->rd_wr = type; 434 hdr->dlen = payload_len; 435 fm_cb(skb)->fm_op = fm_op; 436 437 /* 438 * If firmware download has finished and the command is 439 * not a read command then payload is != NULL - a write 440 * command with u16 payload - convert to be16 441 */ 442 if (payload != NULL) 443 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload); 444 445 } else if (payload != NULL) { 446 fm_cb(skb)->fm_op = *((u8 *)payload + 2); 447 } 448 if (payload != NULL) 449 memcpy(skb_put(skb, payload_len), payload, payload_len); 450 451 fm_cb(skb)->completion = wait_completion; 452 skb_queue_tail(&fmdev->tx_q, skb); 453 tasklet_schedule(&fmdev->tx_task); 454 455 return 0; 456 } 457 458 /* Sends FM Channel-8 command to the chip and waits for the response */ 459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 460 unsigned int payload_len, void *response, int *response_len) 461 { 462 struct sk_buff *skb; 463 struct fm_event_msg_hdr *evt_hdr; 464 unsigned long flags; 465 int ret; 466 467 init_completion(&fmdev->maintask_comp); 468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len, 469 &fmdev->maintask_comp); 470 if (ret) 471 return ret; 472 473 if (!wait_for_completion_timeout(&fmdev->maintask_comp, 474 FM_DRV_TX_TIMEOUT)) { 475 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n", 476 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000); 477 return -ETIMEDOUT; 478 } 479 if (!fmdev->resp_skb) { 480 fmerr("Response SKB is missing\n"); 481 return -EFAULT; 482 } 483 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 484 skb = fmdev->resp_skb; 485 fmdev->resp_skb = NULL; 486 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 487 488 evt_hdr = (void *)skb->data; 489 if (evt_hdr->status != 0) { 490 fmerr("Received event pkt status(%d) is not zero\n", 491 evt_hdr->status); 492 kfree_skb(skb); 493 return -EIO; 494 } 495 /* Send response data to caller */ 496 if (response != NULL && response_len != NULL && evt_hdr->dlen) { 497 /* Skip header info and copy only response data */ 498 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 499 memcpy(response, skb->data, evt_hdr->dlen); 500 *response_len = evt_hdr->dlen; 501 } else if (response_len != NULL && evt_hdr->dlen == 0) { 502 *response_len = 0; 503 } 504 kfree_skb(skb); 505 506 return 0; 507 } 508 509 /* --- Helper functions used in FM interrupt handlers ---*/ 510 static inline int check_cmdresp_status(struct fmdev *fmdev, 511 struct sk_buff **skb) 512 { 513 struct fm_event_msg_hdr *fm_evt_hdr; 514 unsigned long flags; 515 516 del_timer(&fmdev->irq_info.timer); 517 518 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 519 *skb = fmdev->resp_skb; 520 fmdev->resp_skb = NULL; 521 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 522 523 fm_evt_hdr = (void *)(*skb)->data; 524 if (fm_evt_hdr->status != 0) { 525 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n", 526 fm_evt_hdr->op); 527 528 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 529 return -1; 530 } 531 532 return 0; 533 } 534 535 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage) 536 { 537 struct sk_buff *skb; 538 539 if (!check_cmdresp_status(fmdev, &skb)) 540 fm_irq_call_stage(fmdev, stage); 541 } 542 543 /* 544 * Interrupt process timeout handler. 545 * One of the irq handler did not get proper response from the chip. So take 546 * recovery action here. FM interrupts are disabled in the beginning of 547 * interrupt process. Therefore reset stage index to re-enable default 548 * interrupts. So that next interrupt will be processed as usual. 549 */ 550 static void int_timeout_handler(unsigned long data) 551 { 552 struct fmdev *fmdev; 553 struct fm_irq *fmirq; 554 555 fmdbg("irq: timeout,trying to re-enable fm interrupts\n"); 556 fmdev = (struct fmdev *)data; 557 fmirq = &fmdev->irq_info; 558 fmirq->retry++; 559 560 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) { 561 /* Stop recovery action (interrupt reenable process) and 562 * reset stage index & retry count values */ 563 fmirq->stage = 0; 564 fmirq->retry = 0; 565 fmerr("Recovery action failed duringirq processing, max retry reached\n"); 566 return; 567 } 568 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 569 } 570 571 /* --------- FM interrupt handlers ------------*/ 572 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev) 573 { 574 u16 flag; 575 576 /* Send FLAG_GET command , to know the source of interrupt */ 577 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL)) 578 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX); 579 } 580 581 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev) 582 { 583 struct sk_buff *skb; 584 struct fm_event_msg_hdr *fm_evt_hdr; 585 586 if (check_cmdresp_status(fmdev, &skb)) 587 return; 588 589 fm_evt_hdr = (void *)skb->data; 590 591 /* Skip header info and copy only response data */ 592 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 593 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen); 594 595 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag); 596 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag); 597 598 /* Continue next function in interrupt handler table */ 599 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX); 600 } 601 602 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev) 603 { 604 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask) 605 fmerr("irq: HW MAL int received - do nothing\n"); 606 607 /* Continue next function in interrupt handler table */ 608 fm_irq_call_stage(fmdev, FM_RDS_START_IDX); 609 } 610 611 static void fm_irq_handle_rds_start(struct fmdev *fmdev) 612 { 613 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) { 614 fmdbg("irq: rds threshold reached\n"); 615 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX; 616 } else { 617 /* Continue next function in interrupt handler table */ 618 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX; 619 } 620 621 fm_irq_call(fmdev); 622 } 623 624 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev) 625 { 626 /* Send the command to read RDS data from the chip */ 627 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL, 628 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL)) 629 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX); 630 } 631 632 /* Keeps track of current RX channel AF (Alternate Frequency) */ 633 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af) 634 { 635 struct tuned_station_info *stat_info = &fmdev->rx.stat_info; 636 u8 reg_idx = fmdev->rx.region.fm_band; 637 u8 index; 638 u32 freq; 639 640 /* First AF indicates the number of AF follows. Reset the list */ 641 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) { 642 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1); 643 fmdev->rx.stat_info.afcache_size = 0; 644 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max); 645 return; 646 } 647 648 if (af < FM_RDS_MIN_AF) 649 return; 650 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF) 651 return; 652 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN) 653 return; 654 655 freq = fmdev->rx.region.bot_freq + (af * 100); 656 if (freq == fmdev->rx.freq) { 657 fmdbg("Current freq(%d) is matching with received AF(%d)\n", 658 fmdev->rx.freq, freq); 659 return; 660 } 661 /* Do check in AF cache */ 662 for (index = 0; index < stat_info->afcache_size; index++) { 663 if (stat_info->af_cache[index] == freq) 664 break; 665 } 666 /* Reached the limit of the list - ignore the next AF */ 667 if (index == stat_info->af_list_max) { 668 fmdbg("AF cache is full\n"); 669 return; 670 } 671 /* 672 * If we reached the end of the list then this AF is not 673 * in the list - add it. 674 */ 675 if (index == stat_info->afcache_size) { 676 fmdbg("Storing AF %d to cache index %d\n", freq, index); 677 stat_info->af_cache[index] = freq; 678 stat_info->afcache_size++; 679 } 680 } 681 682 /* 683 * Converts RDS buffer data from big endian format 684 * to little endian format. 685 */ 686 static void fm_rdsparse_swapbytes(struct fmdev *fmdev, 687 struct fm_rdsdata_format *rds_format) 688 { 689 u8 index = 0; 690 u8 *rds_buff; 691 692 /* 693 * Since in Orca the 2 RDS Data bytes are in little endian and 694 * in Dolphin they are in big endian, the parsing of the RDS data 695 * is chip dependent 696 */ 697 if (fmdev->asci_id != 0x6350) { 698 rds_buff = &rds_format->data.groupdatabuff.buff[0]; 699 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) { 700 swap(rds_buff[index], rds_buff[index + 1]); 701 index += 2; 702 } 703 } 704 } 705 706 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev) 707 { 708 struct sk_buff *skb; 709 struct fm_rdsdata_format rds_fmt; 710 struct fm_rds *rds = &fmdev->rx.rds; 711 unsigned long group_idx, flags; 712 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE]; 713 u8 type, blk_idx; 714 u16 cur_picode; 715 u32 rds_len; 716 717 if (check_cmdresp_status(fmdev, &skb)) 718 return; 719 720 /* Skip header info */ 721 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 722 rds_data = skb->data; 723 rds_len = skb->len; 724 725 /* Parse the RDS data */ 726 while (rds_len >= FM_RDS_BLK_SIZE) { 727 meta_data = rds_data[2]; 728 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */ 729 type = (meta_data & 0x07); 730 731 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */ 732 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 733 fmdbg("Block index:%d(%s)\n", blk_idx, 734 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok"); 735 736 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0) 737 break; 738 739 if (blk_idx > FM_RDS_BLK_IDX_D) { 740 fmdbg("Block sequence mismatch\n"); 741 rds->last_blk_idx = -1; 742 break; 743 } 744 745 /* Skip checkword (control) byte and copy only data byte */ 746 memcpy(&rds_fmt.data.groupdatabuff. 747 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)], 748 rds_data, (FM_RDS_BLK_SIZE - 1)); 749 750 rds->last_blk_idx = blk_idx; 751 752 /* If completed a whole group then handle it */ 753 if (blk_idx == FM_RDS_BLK_IDX_D) { 754 fmdbg("Good block received\n"); 755 fm_rdsparse_swapbytes(fmdev, &rds_fmt); 756 757 /* 758 * Extract PI code and store in local cache. 759 * We need this during AF switch processing. 760 */ 761 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata); 762 if (fmdev->rx.stat_info.picode != cur_picode) 763 fmdev->rx.stat_info.picode = cur_picode; 764 765 fmdbg("picode:%d\n", cur_picode); 766 767 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 768 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2, 769 (group_idx % 2) ? "B" : "A"); 770 771 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 772 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) { 773 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]); 774 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]); 775 } 776 } 777 rds_len -= FM_RDS_BLK_SIZE; 778 rds_data += FM_RDS_BLK_SIZE; 779 } 780 781 /* Copy raw rds data to internal rds buffer */ 782 rds_data = skb->data; 783 rds_len = skb->len; 784 785 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 786 while (rds_len > 0) { 787 /* 788 * Fill RDS buffer as per V4L2 specification. 789 * Store control byte 790 */ 791 type = (rds_data[2] & 0x07); 792 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 793 tmpbuf[2] = blk_idx; /* Offset name */ 794 tmpbuf[2] |= blk_idx << 3; /* Received offset */ 795 796 /* Store data byte */ 797 tmpbuf[0] = rds_data[0]; 798 tmpbuf[1] = rds_data[1]; 799 800 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE); 801 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size; 802 803 /* Check for overflow & start over */ 804 if (rds->wr_idx == rds->rd_idx) { 805 fmdbg("RDS buffer overflow\n"); 806 rds->wr_idx = 0; 807 rds->rd_idx = 0; 808 break; 809 } 810 rds_len -= FM_RDS_BLK_SIZE; 811 rds_data += FM_RDS_BLK_SIZE; 812 } 813 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 814 815 /* Wakeup read queue */ 816 if (rds->wr_idx != rds->rd_idx) 817 wake_up_interruptible(&rds->read_queue); 818 819 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX); 820 } 821 822 static void fm_irq_handle_rds_finish(struct fmdev *fmdev) 823 { 824 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX); 825 } 826 827 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev) 828 { 829 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev-> 830 irq_info.mask) { 831 fmdbg("irq: tune ended/bandlimit reached\n"); 832 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) { 833 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX; 834 } else { 835 complete(&fmdev->maintask_comp); 836 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 837 } 838 } else 839 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 840 841 fm_irq_call(fmdev); 842 } 843 844 static void fm_irq_handle_power_enb(struct fmdev *fmdev) 845 { 846 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) { 847 fmdbg("irq: Power Enabled/Disabled\n"); 848 complete(&fmdev->maintask_comp); 849 } 850 851 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX); 852 } 853 854 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev) 855 { 856 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) && 857 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) && 858 (fmdev->rx.freq != FM_UNDEFINED_FREQ) && 859 (fmdev->rx.stat_info.afcache_size != 0)) { 860 fmdbg("irq: rssi level has fallen below threshold level\n"); 861 862 /* Disable further low RSSI interrupts */ 863 fmdev->irq_info.mask &= ~FM_LEV_EVENT; 864 865 fmdev->rx.afjump_idx = 0; 866 fmdev->rx.freq_before_jump = fmdev->rx.freq; 867 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 868 } else { 869 /* Continue next function in interrupt handler table */ 870 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX; 871 } 872 873 fm_irq_call(fmdev); 874 } 875 876 static void fm_irq_afjump_set_pi(struct fmdev *fmdev) 877 { 878 u16 payload; 879 880 /* Set PI code - must be updated if the AF list is not empty */ 881 payload = fmdev->rx.stat_info.picode; 882 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL)) 883 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX); 884 } 885 886 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev) 887 { 888 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX); 889 } 890 891 /* 892 * Set PI mask. 893 * 0xFFFF = Enable PI code matching 894 * 0x0000 = Disable PI code matching 895 */ 896 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev) 897 { 898 u16 payload; 899 900 payload = 0x0000; 901 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 902 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX); 903 } 904 905 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev) 906 { 907 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX); 908 } 909 910 static void fm_irq_afjump_setfreq(struct fmdev *fmdev) 911 { 912 u16 frq_index; 913 u16 payload; 914 915 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]); 916 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] - 917 fmdev->rx.region.bot_freq) / FM_FREQ_MUL; 918 919 payload = frq_index; 920 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL)) 921 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX); 922 } 923 924 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev) 925 { 926 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX); 927 } 928 929 static void fm_irq_afjump_enableint(struct fmdev *fmdev) 930 { 931 u16 payload; 932 933 /* Enable FR (tuning operation ended) interrupt */ 934 payload = FM_FR_EVENT; 935 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 936 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX); 937 } 938 939 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev) 940 { 941 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX); 942 } 943 944 static void fm_irq_start_afjump(struct fmdev *fmdev) 945 { 946 u16 payload; 947 948 payload = FM_TUNER_AF_JUMP_MODE; 949 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload, 950 sizeof(payload), NULL)) 951 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX); 952 } 953 954 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev) 955 { 956 struct sk_buff *skb; 957 958 if (check_cmdresp_status(fmdev, &skb)) 959 return; 960 961 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 962 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag); 963 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 964 } 965 966 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev) 967 { 968 u16 payload; 969 970 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL)) 971 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX); 972 } 973 974 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev) 975 { 976 struct sk_buff *skb; 977 u16 read_freq; 978 u32 curr_freq, jumped_freq; 979 980 if (check_cmdresp_status(fmdev, &skb)) 981 return; 982 983 /* Skip header info and copy only response data */ 984 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 985 memcpy(&read_freq, skb->data, sizeof(read_freq)); 986 read_freq = be16_to_cpu((__force __be16)read_freq); 987 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL); 988 989 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]; 990 991 /* If the frequency was changed the jump succeeded */ 992 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) { 993 fmdbg("Successfully switched to alternate freq %d\n", curr_freq); 994 fmdev->rx.freq = curr_freq; 995 fm_rx_reset_rds_cache(fmdev); 996 997 /* AF feature is on, enable low level RSSI interrupt */ 998 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) 999 fmdev->irq_info.mask |= FM_LEV_EVENT; 1000 1001 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1002 } else { /* jump to the next freq in the AF list */ 1003 fmdev->rx.afjump_idx++; 1004 1005 /* If we reached the end of the list - stop searching */ 1006 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) { 1007 fmdbg("AF switch processing failed\n"); 1008 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1009 } else { /* AF List is not over - try next one */ 1010 1011 fmdbg("Trying next freq in AF cache\n"); 1012 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 1013 } 1014 } 1015 fm_irq_call(fmdev); 1016 } 1017 1018 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev) 1019 { 1020 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 1021 } 1022 1023 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev) 1024 { 1025 u16 payload; 1026 1027 /* Re-enable FM interrupts */ 1028 payload = fmdev->irq_info.mask; 1029 1030 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, 1031 sizeof(payload), NULL)) 1032 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX); 1033 } 1034 1035 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev) 1036 { 1037 struct sk_buff *skb; 1038 1039 if (check_cmdresp_status(fmdev, &skb)) 1040 return; 1041 /* 1042 * This is last function in interrupt table to be executed. 1043 * So, reset stage index to 0. 1044 */ 1045 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 1046 1047 /* Start processing any pending interrupt */ 1048 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag)) 1049 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 1050 else 1051 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 1052 } 1053 1054 /* Returns availability of RDS data in internel buffer */ 1055 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file, 1056 struct poll_table_struct *pts) 1057 { 1058 poll_wait(file, &fmdev->rx.rds.read_queue, pts); 1059 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) 1060 return 0; 1061 1062 return -EAGAIN; 1063 } 1064 1065 /* Copies RDS data from internal buffer to user buffer */ 1066 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file, 1067 u8 __user *buf, size_t count) 1068 { 1069 u32 block_count; 1070 u8 tmpbuf[FM_RDS_BLK_SIZE]; 1071 unsigned long flags; 1072 int ret; 1073 1074 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1075 if (file->f_flags & O_NONBLOCK) 1076 return -EWOULDBLOCK; 1077 1078 ret = wait_event_interruptible(fmdev->rx.rds.read_queue, 1079 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx)); 1080 if (ret) 1081 return -EINTR; 1082 } 1083 1084 /* Calculate block count from byte count */ 1085 count /= FM_RDS_BLK_SIZE; 1086 block_count = 0; 1087 ret = 0; 1088 1089 while (block_count < count) { 1090 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 1091 1092 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1093 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1094 break; 1095 } 1096 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx], 1097 FM_RDS_BLK_SIZE); 1098 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE; 1099 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) 1100 fmdev->rx.rds.rd_idx = 0; 1101 1102 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1103 1104 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE)) 1105 break; 1106 1107 block_count++; 1108 buf += FM_RDS_BLK_SIZE; 1109 ret += FM_RDS_BLK_SIZE; 1110 } 1111 return ret; 1112 } 1113 1114 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set) 1115 { 1116 switch (fmdev->curr_fmmode) { 1117 case FM_MODE_RX: 1118 return fm_rx_set_freq(fmdev, freq_to_set); 1119 1120 case FM_MODE_TX: 1121 return fm_tx_set_freq(fmdev, freq_to_set); 1122 1123 default: 1124 return -EINVAL; 1125 } 1126 } 1127 1128 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq) 1129 { 1130 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) { 1131 fmerr("RX frequency is not set\n"); 1132 return -EPERM; 1133 } 1134 if (cur_tuned_frq == NULL) { 1135 fmerr("Invalid memory\n"); 1136 return -ENOMEM; 1137 } 1138 1139 switch (fmdev->curr_fmmode) { 1140 case FM_MODE_RX: 1141 *cur_tuned_frq = fmdev->rx.freq; 1142 return 0; 1143 1144 case FM_MODE_TX: 1145 *cur_tuned_frq = 0; /* TODO : Change this later */ 1146 return 0; 1147 1148 default: 1149 return -EINVAL; 1150 } 1151 1152 } 1153 1154 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set) 1155 { 1156 switch (fmdev->curr_fmmode) { 1157 case FM_MODE_RX: 1158 return fm_rx_set_region(fmdev, region_to_set); 1159 1160 case FM_MODE_TX: 1161 return fm_tx_set_region(fmdev, region_to_set); 1162 1163 default: 1164 return -EINVAL; 1165 } 1166 } 1167 1168 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset) 1169 { 1170 switch (fmdev->curr_fmmode) { 1171 case FM_MODE_RX: 1172 return fm_rx_set_mute_mode(fmdev, mute_mode_toset); 1173 1174 case FM_MODE_TX: 1175 return fm_tx_set_mute_mode(fmdev, mute_mode_toset); 1176 1177 default: 1178 return -EINVAL; 1179 } 1180 } 1181 1182 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode) 1183 { 1184 switch (fmdev->curr_fmmode) { 1185 case FM_MODE_RX: 1186 return fm_rx_set_stereo_mono(fmdev, mode); 1187 1188 case FM_MODE_TX: 1189 return fm_tx_set_stereo_mono(fmdev, mode); 1190 1191 default: 1192 return -EINVAL; 1193 } 1194 } 1195 1196 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis) 1197 { 1198 switch (fmdev->curr_fmmode) { 1199 case FM_MODE_RX: 1200 return fm_rx_set_rds_mode(fmdev, rds_en_dis); 1201 1202 case FM_MODE_TX: 1203 return fm_tx_set_rds_mode(fmdev, rds_en_dis); 1204 1205 default: 1206 return -EINVAL; 1207 } 1208 } 1209 1210 /* Sends power off command to the chip */ 1211 static int fm_power_down(struct fmdev *fmdev) 1212 { 1213 u16 payload; 1214 int ret; 1215 1216 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1217 fmerr("FM core is not ready\n"); 1218 return -EPERM; 1219 } 1220 if (fmdev->curr_fmmode == FM_MODE_OFF) { 1221 fmdbg("FM chip is already in OFF state\n"); 1222 return 0; 1223 } 1224 1225 payload = 0x0; 1226 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1227 sizeof(payload), NULL, NULL); 1228 if (ret < 0) 1229 return ret; 1230 1231 return fmc_release(fmdev); 1232 } 1233 1234 /* Reads init command from FM firmware file and loads to the chip */ 1235 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name) 1236 { 1237 const struct firmware *fw_entry; 1238 struct bts_header *fw_header; 1239 struct bts_action *action; 1240 struct bts_action_delay *delay; 1241 u8 *fw_data; 1242 int ret, fw_len, cmd_cnt; 1243 1244 cmd_cnt = 0; 1245 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1246 1247 ret = request_firmware(&fw_entry, fw_name, 1248 &fmdev->radio_dev->dev); 1249 if (ret < 0) { 1250 fmerr("Unable to read firmware(%s) content\n", fw_name); 1251 return ret; 1252 } 1253 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size); 1254 1255 fw_data = (void *)fw_entry->data; 1256 fw_len = fw_entry->size; 1257 1258 fw_header = (struct bts_header *)fw_data; 1259 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) { 1260 fmerr("%s not a legal TI firmware file\n", fw_name); 1261 ret = -EINVAL; 1262 goto rel_fw; 1263 } 1264 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic); 1265 1266 /* Skip file header info , we already verified it */ 1267 fw_data += sizeof(struct bts_header); 1268 fw_len -= sizeof(struct bts_header); 1269 1270 while (fw_data && fw_len > 0) { 1271 action = (struct bts_action *)fw_data; 1272 1273 switch (action->type) { 1274 case ACTION_SEND_COMMAND: /* Send */ 1275 if (fmc_send_cmd(fmdev, 0, 0, action->data, 1276 action->size, NULL, NULL)) 1277 goto rel_fw; 1278 1279 cmd_cnt++; 1280 break; 1281 1282 case ACTION_DELAY: /* Delay */ 1283 delay = (struct bts_action_delay *)action->data; 1284 mdelay(delay->msec); 1285 break; 1286 } 1287 1288 fw_data += (sizeof(struct bts_action) + (action->size)); 1289 fw_len -= (sizeof(struct bts_action) + (action->size)); 1290 } 1291 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt); 1292 rel_fw: 1293 release_firmware(fw_entry); 1294 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1295 1296 return ret; 1297 } 1298 1299 /* Loads default RX configuration to the chip */ 1300 static int load_default_rx_configuration(struct fmdev *fmdev) 1301 { 1302 int ret; 1303 1304 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME); 1305 if (ret < 0) 1306 return ret; 1307 1308 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD); 1309 } 1310 1311 /* Does FM power on sequence */ 1312 static int fm_power_up(struct fmdev *fmdev, u8 mode) 1313 { 1314 u16 payload; 1315 __be16 asic_id, asic_ver; 1316 int resp_len, ret; 1317 u8 fw_name[50]; 1318 1319 if (mode >= FM_MODE_ENTRY_MAX) { 1320 fmerr("Invalid firmware download option\n"); 1321 return -EINVAL; 1322 } 1323 1324 /* 1325 * Initialize FM common module. FM GPIO toggling is 1326 * taken care in Shared Transport driver. 1327 */ 1328 ret = fmc_prepare(fmdev); 1329 if (ret < 0) { 1330 fmerr("Unable to prepare FM Common\n"); 1331 return ret; 1332 } 1333 1334 payload = FM_ENABLE; 1335 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1336 sizeof(payload), NULL, NULL)) 1337 goto rel; 1338 1339 /* Allow the chip to settle down in Channel-8 mode */ 1340 msleep(20); 1341 1342 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL, 1343 sizeof(asic_id), &asic_id, &resp_len)) 1344 goto rel; 1345 1346 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL, 1347 sizeof(asic_ver), &asic_ver, &resp_len)) 1348 goto rel; 1349 1350 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n", 1351 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1352 1353 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START, 1354 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1355 1356 ret = fm_download_firmware(fmdev, fw_name); 1357 if (ret < 0) { 1358 fmdbg("Failed to download firmware file %s\n", fw_name); 1359 goto rel; 1360 } 1361 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ? 1362 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START, 1363 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1364 1365 ret = fm_download_firmware(fmdev, fw_name); 1366 if (ret < 0) { 1367 fmdbg("Failed to download firmware file %s\n", fw_name); 1368 goto rel; 1369 } else 1370 return ret; 1371 rel: 1372 return fmc_release(fmdev); 1373 } 1374 1375 /* Set FM Modes(TX, RX, OFF) */ 1376 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode) 1377 { 1378 int ret = 0; 1379 1380 if (fm_mode >= FM_MODE_ENTRY_MAX) { 1381 fmerr("Invalid FM mode\n"); 1382 return -EINVAL; 1383 } 1384 if (fmdev->curr_fmmode == fm_mode) { 1385 fmdbg("Already fm is in mode(%d)\n", fm_mode); 1386 return ret; 1387 } 1388 1389 switch (fm_mode) { 1390 case FM_MODE_OFF: /* OFF Mode */ 1391 ret = fm_power_down(fmdev); 1392 if (ret < 0) { 1393 fmerr("Failed to set OFF mode\n"); 1394 return ret; 1395 } 1396 break; 1397 1398 case FM_MODE_TX: /* TX Mode */ 1399 case FM_MODE_RX: /* RX Mode */ 1400 /* Power down before switching to TX or RX mode */ 1401 if (fmdev->curr_fmmode != FM_MODE_OFF) { 1402 ret = fm_power_down(fmdev); 1403 if (ret < 0) { 1404 fmerr("Failed to set OFF mode\n"); 1405 return ret; 1406 } 1407 msleep(30); 1408 } 1409 ret = fm_power_up(fmdev, fm_mode); 1410 if (ret < 0) { 1411 fmerr("Failed to load firmware\n"); 1412 return ret; 1413 } 1414 } 1415 fmdev->curr_fmmode = fm_mode; 1416 1417 /* Set default configuration */ 1418 if (fmdev->curr_fmmode == FM_MODE_RX) { 1419 fmdbg("Loading default rx configuration..\n"); 1420 ret = load_default_rx_configuration(fmdev); 1421 if (ret < 0) 1422 fmerr("Failed to load default values\n"); 1423 } 1424 1425 return ret; 1426 } 1427 1428 /* Returns current FM mode (TX, RX, OFF) */ 1429 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode) 1430 { 1431 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1432 fmerr("FM core is not ready\n"); 1433 return -EPERM; 1434 } 1435 if (fmmode == NULL) { 1436 fmerr("Invalid memory\n"); 1437 return -ENOMEM; 1438 } 1439 1440 *fmmode = fmdev->curr_fmmode; 1441 return 0; 1442 } 1443 1444 /* Called by ST layer when FM packet is available */ 1445 static long fm_st_receive(void *arg, struct sk_buff *skb) 1446 { 1447 struct fmdev *fmdev; 1448 1449 fmdev = (struct fmdev *)arg; 1450 1451 if (skb == NULL) { 1452 fmerr("Invalid SKB received from ST\n"); 1453 return -EFAULT; 1454 } 1455 1456 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) { 1457 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb); 1458 return -EINVAL; 1459 } 1460 1461 memcpy(skb_push(skb, 1), &skb->cb[0], 1); 1462 skb_queue_tail(&fmdev->rx_q, skb); 1463 tasklet_schedule(&fmdev->rx_task); 1464 1465 return 0; 1466 } 1467 1468 /* 1469 * Called by ST layer to indicate protocol registration completion 1470 * status. 1471 */ 1472 static void fm_st_reg_comp_cb(void *arg, int data) 1473 { 1474 struct fmdev *fmdev; 1475 1476 fmdev = (struct fmdev *)arg; 1477 fmdev->streg_cbdata = data; 1478 complete(&wait_for_fmdrv_reg_comp); 1479 } 1480 1481 /* 1482 * This function will be called from FM V4L2 open function. 1483 * Register with ST driver and initialize driver data. 1484 */ 1485 int fmc_prepare(struct fmdev *fmdev) 1486 { 1487 static struct st_proto_s fm_st_proto; 1488 int ret; 1489 1490 if (test_bit(FM_CORE_READY, &fmdev->flag)) { 1491 fmdbg("FM Core is already up\n"); 1492 return 0; 1493 } 1494 1495 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1496 fm_st_proto.recv = fm_st_receive; 1497 fm_st_proto.match_packet = NULL; 1498 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb; 1499 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */ 1500 fm_st_proto.priv_data = fmdev; 1501 fm_st_proto.chnl_id = 0x08; 1502 fm_st_proto.max_frame_size = 0xff; 1503 fm_st_proto.hdr_len = 1; 1504 fm_st_proto.offset_len_in_hdr = 0; 1505 fm_st_proto.len_size = 1; 1506 fm_st_proto.reserve = 1; 1507 1508 ret = st_register(&fm_st_proto); 1509 if (ret == -EINPROGRESS) { 1510 init_completion(&wait_for_fmdrv_reg_comp); 1511 fmdev->streg_cbdata = -EINPROGRESS; 1512 fmdbg("%s waiting for ST reg completion signal\n", __func__); 1513 1514 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp, 1515 FM_ST_REG_TIMEOUT)) { 1516 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n", 1517 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000); 1518 return -ETIMEDOUT; 1519 } 1520 if (fmdev->streg_cbdata != 0) { 1521 fmerr("ST reg comp CB called with error status %d\n", 1522 fmdev->streg_cbdata); 1523 return -EAGAIN; 1524 } 1525 1526 ret = 0; 1527 } else if (ret == -1) { 1528 fmerr("st_register failed %d\n", ret); 1529 return -EAGAIN; 1530 } 1531 1532 if (fm_st_proto.write != NULL) { 1533 g_st_write = fm_st_proto.write; 1534 } else { 1535 fmerr("Failed to get ST write func pointer\n"); 1536 ret = st_unregister(&fm_st_proto); 1537 if (ret < 0) 1538 fmerr("st_unregister failed %d\n", ret); 1539 return -EAGAIN; 1540 } 1541 1542 spin_lock_init(&fmdev->rds_buff_lock); 1543 spin_lock_init(&fmdev->resp_skb_lock); 1544 1545 /* Initialize TX queue and TX tasklet */ 1546 skb_queue_head_init(&fmdev->tx_q); 1547 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev); 1548 1549 /* Initialize RX Queue and RX tasklet */ 1550 skb_queue_head_init(&fmdev->rx_q); 1551 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev); 1552 1553 fmdev->irq_info.stage = 0; 1554 atomic_set(&fmdev->tx_cnt, 1); 1555 fmdev->resp_comp = NULL; 1556 1557 init_timer(&fmdev->irq_info.timer); 1558 fmdev->irq_info.timer.function = &int_timeout_handler; 1559 fmdev->irq_info.timer.data = (unsigned long)fmdev; 1560 /*TODO: add FM_STIC_EVENT later */ 1561 fmdev->irq_info.mask = FM_MAL_EVENT; 1562 1563 /* Region info */ 1564 fmdev->rx.region = region_configs[default_radio_region]; 1565 1566 fmdev->rx.mute_mode = FM_MUTE_OFF; 1567 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF; 1568 fmdev->rx.rds.flag = FM_RDS_DISABLE; 1569 fmdev->rx.freq = FM_UNDEFINED_FREQ; 1570 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS; 1571 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF; 1572 fmdev->irq_info.retry = 0; 1573 1574 fm_rx_reset_rds_cache(fmdev); 1575 init_waitqueue_head(&fmdev->rx.rds.read_queue); 1576 1577 fm_rx_reset_station_info(fmdev); 1578 set_bit(FM_CORE_READY, &fmdev->flag); 1579 1580 return ret; 1581 } 1582 1583 /* 1584 * This function will be called from FM V4L2 release function. 1585 * Unregister from ST driver. 1586 */ 1587 int fmc_release(struct fmdev *fmdev) 1588 { 1589 static struct st_proto_s fm_st_proto; 1590 int ret; 1591 1592 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1593 fmdbg("FM Core is already down\n"); 1594 return 0; 1595 } 1596 /* Service pending read */ 1597 wake_up_interruptible(&fmdev->rx.rds.read_queue); 1598 1599 tasklet_kill(&fmdev->tx_task); 1600 tasklet_kill(&fmdev->rx_task); 1601 1602 skb_queue_purge(&fmdev->tx_q); 1603 skb_queue_purge(&fmdev->rx_q); 1604 1605 fmdev->resp_comp = NULL; 1606 fmdev->rx.freq = 0; 1607 1608 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1609 fm_st_proto.chnl_id = 0x08; 1610 1611 ret = st_unregister(&fm_st_proto); 1612 1613 if (ret < 0) 1614 fmerr("Failed to de-register FM from ST %d\n", ret); 1615 else 1616 fmdbg("Successfully unregistered from ST\n"); 1617 1618 clear_bit(FM_CORE_READY, &fmdev->flag); 1619 return ret; 1620 } 1621 1622 /* 1623 * Module init function. Ask FM V4L module to register video device. 1624 * Allocate memory for FM driver context and RX RDS buffer. 1625 */ 1626 static int __init fm_drv_init(void) 1627 { 1628 struct fmdev *fmdev = NULL; 1629 int ret = -ENOMEM; 1630 1631 fmdbg("FM driver version %s\n", FM_DRV_VERSION); 1632 1633 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL); 1634 if (NULL == fmdev) { 1635 fmerr("Can't allocate operation structure memory\n"); 1636 return ret; 1637 } 1638 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE; 1639 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL); 1640 if (NULL == fmdev->rx.rds.buff) { 1641 fmerr("Can't allocate rds ring buffer\n"); 1642 goto rel_dev; 1643 } 1644 1645 ret = fm_v4l2_init_video_device(fmdev, radio_nr); 1646 if (ret < 0) 1647 goto rel_rdsbuf; 1648 1649 fmdev->irq_info.handlers = int_handler_table; 1650 fmdev->curr_fmmode = FM_MODE_OFF; 1651 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF; 1652 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US; 1653 return ret; 1654 1655 rel_rdsbuf: 1656 kfree(fmdev->rx.rds.buff); 1657 rel_dev: 1658 kfree(fmdev); 1659 1660 return ret; 1661 } 1662 1663 /* Module exit function. Ask FM V4L module to unregister video device */ 1664 static void __exit fm_drv_exit(void) 1665 { 1666 struct fmdev *fmdev = NULL; 1667 1668 fmdev = fm_v4l2_deinit_video_device(); 1669 if (fmdev != NULL) { 1670 kfree(fmdev->rx.rds.buff); 1671 kfree(fmdev); 1672 } 1673 } 1674 1675 module_init(fm_drv_init); 1676 module_exit(fm_drv_exit); 1677 1678 /* ------------- Module Info ------------- */ 1679 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>"); 1680 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION); 1681 MODULE_VERSION(FM_DRV_VERSION); 1682 MODULE_LICENSE("GPL"); 1683