1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * FM Driver for Connectivity chip of Texas Instruments. 4 * 5 * This sub-module of FM driver is common for FM RX and TX 6 * functionality. This module is responsible for: 7 * 1) Forming group of Channel-8 commands to perform particular 8 * functionality (eg., frequency set require more than 9 * one Channel-8 command to be sent to the chip). 10 * 2) Sending each Channel-8 command to the chip and reading 11 * response back over Shared Transport. 12 * 3) Managing TX and RX Queues and Tasklets. 13 * 4) Handling FM Interrupt packet and taking appropriate action. 14 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX 15 * firmware files based on mode selection) 16 * 17 * Copyright (C) 2011 Texas Instruments 18 * Author: Raja Mani <raja_mani@ti.com> 19 * Author: Manjunatha Halli <manjunatha_halli@ti.com> 20 */ 21 22 #include <linux/module.h> 23 #include <linux/firmware.h> 24 #include <linux/delay.h> 25 #include "fmdrv.h" 26 #include "fmdrv_v4l2.h" 27 #include "fmdrv_common.h" 28 #include <linux/ti_wilink_st.h> 29 #include "fmdrv_rx.h" 30 #include "fmdrv_tx.h" 31 32 /* Region info */ 33 static struct region_info region_configs[] = { 34 /* Europe/US */ 35 { 36 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 37 .bot_freq = 87500, /* 87.5 MHz */ 38 .top_freq = 108000, /* 108 MHz */ 39 .fm_band = 0, 40 }, 41 /* Japan */ 42 { 43 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 44 .bot_freq = 76000, /* 76 MHz */ 45 .top_freq = 90000, /* 90 MHz */ 46 .fm_band = 1, 47 }, 48 }; 49 50 /* Band selection */ 51 static u8 default_radio_region; /* Europe/US */ 52 module_param(default_radio_region, byte, 0); 53 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan"); 54 55 /* RDS buffer blocks */ 56 static u32 default_rds_buf = 300; 57 module_param(default_rds_buf, uint, 0444); 58 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries"); 59 60 /* Radio Nr */ 61 static u32 radio_nr = -1; 62 module_param(radio_nr, int, 0444); 63 MODULE_PARM_DESC(radio_nr, "Radio Nr"); 64 65 /* FM irq handlers forward declaration */ 66 static void fm_irq_send_flag_getcmd(struct fmdev *); 67 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *); 68 static void fm_irq_handle_hw_malfunction(struct fmdev *); 69 static void fm_irq_handle_rds_start(struct fmdev *); 70 static void fm_irq_send_rdsdata_getcmd(struct fmdev *); 71 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *); 72 static void fm_irq_handle_rds_finish(struct fmdev *); 73 static void fm_irq_handle_tune_op_ended(struct fmdev *); 74 static void fm_irq_handle_power_enb(struct fmdev *); 75 static void fm_irq_handle_low_rssi_start(struct fmdev *); 76 static void fm_irq_afjump_set_pi(struct fmdev *); 77 static void fm_irq_handle_set_pi_resp(struct fmdev *); 78 static void fm_irq_afjump_set_pimask(struct fmdev *); 79 static void fm_irq_handle_set_pimask_resp(struct fmdev *); 80 static void fm_irq_afjump_setfreq(struct fmdev *); 81 static void fm_irq_handle_setfreq_resp(struct fmdev *); 82 static void fm_irq_afjump_enableint(struct fmdev *); 83 static void fm_irq_afjump_enableint_resp(struct fmdev *); 84 static void fm_irq_start_afjump(struct fmdev *); 85 static void fm_irq_handle_start_afjump_resp(struct fmdev *); 86 static void fm_irq_afjump_rd_freq(struct fmdev *); 87 static void fm_irq_afjump_rd_freq_resp(struct fmdev *); 88 static void fm_irq_handle_low_rssi_finish(struct fmdev *); 89 static void fm_irq_send_intmsk_cmd(struct fmdev *); 90 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *); 91 92 /* 93 * When FM common module receives interrupt packet, following handlers 94 * will be executed one after another to service the interrupt(s) 95 */ 96 enum fmc_irq_handler_index { 97 FM_SEND_FLAG_GETCMD_IDX, 98 FM_HANDLE_FLAG_GETCMD_RESP_IDX, 99 100 /* HW malfunction irq handler */ 101 FM_HW_MAL_FUNC_IDX, 102 103 /* RDS threshold reached irq handler */ 104 FM_RDS_START_IDX, 105 FM_RDS_SEND_RDS_GETCMD_IDX, 106 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX, 107 FM_RDS_FINISH_IDX, 108 109 /* Tune operation ended irq handler */ 110 FM_HW_TUNE_OP_ENDED_IDX, 111 112 /* TX power enable irq handler */ 113 FM_HW_POWER_ENB_IDX, 114 115 /* Low RSSI irq handler */ 116 FM_LOW_RSSI_START_IDX, 117 FM_AF_JUMP_SETPI_IDX, 118 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX, 119 FM_AF_JUMP_SETPI_MASK_IDX, 120 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX, 121 FM_AF_JUMP_SET_AF_FREQ_IDX, 122 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX, 123 FM_AF_JUMP_ENABLE_INT_IDX, 124 FM_AF_JUMP_ENABLE_INT_RESP_IDX, 125 FM_AF_JUMP_START_AFJUMP_IDX, 126 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX, 127 FM_AF_JUMP_RD_FREQ_IDX, 128 FM_AF_JUMP_RD_FREQ_RESP_IDX, 129 FM_LOW_RSSI_FINISH_IDX, 130 131 /* Interrupt process post action */ 132 FM_SEND_INTMSK_CMD_IDX, 133 FM_HANDLE_INTMSK_CMD_RESP_IDX, 134 }; 135 136 /* FM interrupt handler table */ 137 static int_handler_prototype int_handler_table[] = { 138 fm_irq_send_flag_getcmd, 139 fm_irq_handle_flag_getcmd_resp, 140 fm_irq_handle_hw_malfunction, 141 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */ 142 fm_irq_send_rdsdata_getcmd, 143 fm_irq_handle_rdsdata_getcmd_resp, 144 fm_irq_handle_rds_finish, 145 fm_irq_handle_tune_op_ended, 146 fm_irq_handle_power_enb, /* TX power enable irq handler */ 147 fm_irq_handle_low_rssi_start, 148 fm_irq_afjump_set_pi, 149 fm_irq_handle_set_pi_resp, 150 fm_irq_afjump_set_pimask, 151 fm_irq_handle_set_pimask_resp, 152 fm_irq_afjump_setfreq, 153 fm_irq_handle_setfreq_resp, 154 fm_irq_afjump_enableint, 155 fm_irq_afjump_enableint_resp, 156 fm_irq_start_afjump, 157 fm_irq_handle_start_afjump_resp, 158 fm_irq_afjump_rd_freq, 159 fm_irq_afjump_rd_freq_resp, 160 fm_irq_handle_low_rssi_finish, 161 fm_irq_send_intmsk_cmd, /* Interrupt process post action */ 162 fm_irq_handle_intmsk_cmd_resp 163 }; 164 165 static long (*g_st_write) (struct sk_buff *skb); 166 static struct completion wait_for_fmdrv_reg_comp; 167 168 static inline void fm_irq_call(struct fmdev *fmdev) 169 { 170 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 171 } 172 173 /* Continue next function in interrupt handler table */ 174 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage) 175 { 176 fmdev->irq_info.stage = stage; 177 fm_irq_call(fmdev); 178 } 179 180 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage) 181 { 182 fmdev->irq_info.stage = stage; 183 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 184 } 185 186 #ifdef FM_DUMP_TXRX_PKT 187 /* To dump outgoing FM Channel-8 packets */ 188 inline void dump_tx_skb_data(struct sk_buff *skb) 189 { 190 int len, len_org; 191 u8 index; 192 struct fm_cmd_msg_hdr *cmd_hdr; 193 194 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data; 195 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x", 196 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr, 197 cmd_hdr->len, cmd_hdr->op, 198 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen); 199 200 len_org = skb->len - FM_CMD_MSG_HDR_SIZE; 201 if (len_org > 0) { 202 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen); 203 len = min(len_org, 14); 204 for (index = 0; index < len; index++) 205 printk(KERN_CONT "%x ", 206 skb->data[FM_CMD_MSG_HDR_SIZE + index]); 207 printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); 208 } 209 printk(KERN_CONT "\n"); 210 } 211 212 /* To dump incoming FM Channel-8 packets */ 213 inline void dump_rx_skb_data(struct sk_buff *skb) 214 { 215 int len, len_org; 216 u8 index; 217 struct fm_event_msg_hdr *evt_hdr; 218 219 evt_hdr = (struct fm_event_msg_hdr *)skb->data; 220 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x", 221 evt_hdr->hdr, evt_hdr->len, 222 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op, 223 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen); 224 225 len_org = skb->len - FM_EVT_MSG_HDR_SIZE; 226 if (len_org > 0) { 227 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen); 228 len = min(len_org, 14); 229 for (index = 0; index < len; index++) 230 printk(KERN_CONT "%x ", 231 skb->data[FM_EVT_MSG_HDR_SIZE + index]); 232 printk(KERN_CONT "%s", (len_org > 14) ? ".." : ""); 233 } 234 printk(KERN_CONT "\n"); 235 } 236 #endif 237 238 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set) 239 { 240 fmdev->rx.region = region_configs[region_to_set]; 241 } 242 243 /* 244 * FM common sub-module will schedule this tasklet whenever it receives 245 * FM packet from ST driver. 246 */ 247 static void recv_tasklet(unsigned long arg) 248 { 249 struct fmdev *fmdev; 250 struct fm_irq *irq_info; 251 struct fm_event_msg_hdr *evt_hdr; 252 struct sk_buff *skb; 253 u8 num_fm_hci_cmds; 254 unsigned long flags; 255 256 fmdev = (struct fmdev *)arg; 257 irq_info = &fmdev->irq_info; 258 /* Process all packets in the RX queue */ 259 while ((skb = skb_dequeue(&fmdev->rx_q))) { 260 if (skb->len < sizeof(struct fm_event_msg_hdr)) { 261 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n", 262 skb, 263 skb->len, sizeof(struct fm_event_msg_hdr)); 264 kfree_skb(skb); 265 continue; 266 } 267 268 evt_hdr = (void *)skb->data; 269 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; 270 271 /* FM interrupt packet? */ 272 if (evt_hdr->op == FM_INTERRUPT) { 273 /* FM interrupt handler started already? */ 274 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 275 set_bit(FM_INTTASK_RUNNING, &fmdev->flag); 276 if (irq_info->stage != 0) { 277 fmerr("Inval stage resetting to zero\n"); 278 irq_info->stage = 0; 279 } 280 281 /* 282 * Execute first function in interrupt handler 283 * table. 284 */ 285 irq_info->handlers[irq_info->stage](fmdev); 286 } else { 287 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag); 288 } 289 kfree_skb(skb); 290 } 291 /* Anyone waiting for this with completion handler? */ 292 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) { 293 294 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 295 fmdev->resp_skb = skb; 296 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 297 complete(fmdev->resp_comp); 298 299 fmdev->resp_comp = NULL; 300 atomic_set(&fmdev->tx_cnt, 1); 301 } 302 /* Is this for interrupt handler? */ 303 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) { 304 if (fmdev->resp_skb != NULL) 305 fmerr("Response SKB ptr not NULL\n"); 306 307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 308 fmdev->resp_skb = skb; 309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 310 311 /* Execute interrupt handler where state index points */ 312 irq_info->handlers[irq_info->stage](fmdev); 313 314 kfree_skb(skb); 315 atomic_set(&fmdev->tx_cnt, 1); 316 } else { 317 fmerr("Nobody claimed SKB(%p),purging\n", skb); 318 } 319 320 /* 321 * Check flow control field. If Num_FM_HCI_Commands field is 322 * not zero, schedule FM TX tasklet. 323 */ 324 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt)) 325 if (!skb_queue_empty(&fmdev->tx_q)) 326 tasklet_schedule(&fmdev->tx_task); 327 } 328 } 329 330 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */ 331 static void send_tasklet(unsigned long arg) 332 { 333 struct fmdev *fmdev; 334 struct sk_buff *skb; 335 int len; 336 337 fmdev = (struct fmdev *)arg; 338 339 if (!atomic_read(&fmdev->tx_cnt)) 340 return; 341 342 /* Check, is there any timeout happened to last transmitted packet */ 343 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) { 344 fmerr("TX timeout occurred\n"); 345 atomic_set(&fmdev->tx_cnt, 1); 346 } 347 348 /* Send queued FM TX packets */ 349 skb = skb_dequeue(&fmdev->tx_q); 350 if (!skb) 351 return; 352 353 atomic_dec(&fmdev->tx_cnt); 354 fmdev->pre_op = fm_cb(skb)->fm_op; 355 356 if (fmdev->resp_comp != NULL) 357 fmerr("Response completion handler is not NULL\n"); 358 359 fmdev->resp_comp = fm_cb(skb)->completion; 360 361 /* Write FM packet to ST driver */ 362 len = g_st_write(skb); 363 if (len < 0) { 364 kfree_skb(skb); 365 fmdev->resp_comp = NULL; 366 fmerr("TX tasklet failed to send skb(%p)\n", skb); 367 atomic_set(&fmdev->tx_cnt, 1); 368 } else { 369 fmdev->last_tx_jiffies = jiffies; 370 } 371 } 372 373 /* 374 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for 375 * transmission 376 */ 377 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 378 int payload_len, struct completion *wait_completion) 379 { 380 struct sk_buff *skb; 381 struct fm_cmd_msg_hdr *hdr; 382 int size; 383 384 if (fm_op >= FM_INTERRUPT) { 385 fmerr("Invalid fm opcode - %d\n", fm_op); 386 return -EINVAL; 387 } 388 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) { 389 fmerr("Payload data is NULL during fw download\n"); 390 return -EINVAL; 391 } 392 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag)) 393 size = 394 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len); 395 else 396 size = payload_len; 397 398 skb = alloc_skb(size, GFP_ATOMIC); 399 if (!skb) { 400 fmerr("No memory to create new SKB\n"); 401 return -ENOMEM; 402 } 403 /* 404 * Don't fill FM header info for the commands which come from 405 * FM firmware file. 406 */ 407 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) || 408 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 409 /* Fill command header info */ 410 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE); 411 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */ 412 413 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */ 414 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3; 415 416 /* FM opcode */ 417 hdr->op = fm_op; 418 419 /* read/write type */ 420 hdr->rd_wr = type; 421 hdr->dlen = payload_len; 422 fm_cb(skb)->fm_op = fm_op; 423 424 /* 425 * If firmware download has finished and the command is 426 * not a read command then payload is != NULL - a write 427 * command with u16 payload - convert to be16 428 */ 429 if (payload != NULL) 430 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload); 431 432 } else if (payload != NULL) { 433 fm_cb(skb)->fm_op = *((u8 *)payload + 2); 434 } 435 if (payload != NULL) 436 skb_put_data(skb, payload, payload_len); 437 438 fm_cb(skb)->completion = wait_completion; 439 skb_queue_tail(&fmdev->tx_q, skb); 440 tasklet_schedule(&fmdev->tx_task); 441 442 return 0; 443 } 444 445 /* Sends FM Channel-8 command to the chip and waits for the response */ 446 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 447 unsigned int payload_len, void *response, int *response_len) 448 { 449 struct sk_buff *skb; 450 struct fm_event_msg_hdr *evt_hdr; 451 unsigned long flags; 452 int ret; 453 454 init_completion(&fmdev->maintask_comp); 455 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len, 456 &fmdev->maintask_comp); 457 if (ret) 458 return ret; 459 460 if (!wait_for_completion_timeout(&fmdev->maintask_comp, 461 FM_DRV_TX_TIMEOUT)) { 462 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n", 463 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000); 464 return -ETIMEDOUT; 465 } 466 if (!fmdev->resp_skb) { 467 fmerr("Response SKB is missing\n"); 468 return -EFAULT; 469 } 470 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 471 skb = fmdev->resp_skb; 472 fmdev->resp_skb = NULL; 473 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 474 475 evt_hdr = (void *)skb->data; 476 if (evt_hdr->status != 0) { 477 fmerr("Received event pkt status(%d) is not zero\n", 478 evt_hdr->status); 479 kfree_skb(skb); 480 return -EIO; 481 } 482 /* Send response data to caller */ 483 if (response != NULL && response_len != NULL && evt_hdr->dlen && 484 evt_hdr->dlen <= payload_len) { 485 /* Skip header info and copy only response data */ 486 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 487 memcpy(response, skb->data, evt_hdr->dlen); 488 *response_len = evt_hdr->dlen; 489 } else if (response_len != NULL && evt_hdr->dlen == 0) { 490 *response_len = 0; 491 } 492 kfree_skb(skb); 493 494 return 0; 495 } 496 497 /* --- Helper functions used in FM interrupt handlers ---*/ 498 static inline int check_cmdresp_status(struct fmdev *fmdev, 499 struct sk_buff **skb) 500 { 501 struct fm_event_msg_hdr *fm_evt_hdr; 502 unsigned long flags; 503 504 del_timer(&fmdev->irq_info.timer); 505 506 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 507 *skb = fmdev->resp_skb; 508 fmdev->resp_skb = NULL; 509 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 510 511 fm_evt_hdr = (void *)(*skb)->data; 512 if (fm_evt_hdr->status != 0) { 513 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n", 514 fm_evt_hdr->op); 515 516 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 517 return -1; 518 } 519 520 return 0; 521 } 522 523 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage) 524 { 525 struct sk_buff *skb; 526 527 if (!check_cmdresp_status(fmdev, &skb)) 528 fm_irq_call_stage(fmdev, stage); 529 } 530 531 /* 532 * Interrupt process timeout handler. 533 * One of the irq handler did not get proper response from the chip. So take 534 * recovery action here. FM interrupts are disabled in the beginning of 535 * interrupt process. Therefore reset stage index to re-enable default 536 * interrupts. So that next interrupt will be processed as usual. 537 */ 538 static void int_timeout_handler(struct timer_list *t) 539 { 540 struct fmdev *fmdev; 541 struct fm_irq *fmirq; 542 543 fmdbg("irq: timeout,trying to re-enable fm interrupts\n"); 544 fmdev = from_timer(fmdev, t, irq_info.timer); 545 fmirq = &fmdev->irq_info; 546 fmirq->retry++; 547 548 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) { 549 /* Stop recovery action (interrupt reenable process) and 550 * reset stage index & retry count values */ 551 fmirq->stage = 0; 552 fmirq->retry = 0; 553 fmerr("Recovery action failed duringirq processing, max retry reached\n"); 554 return; 555 } 556 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 557 } 558 559 /* --------- FM interrupt handlers ------------*/ 560 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev) 561 { 562 u16 flag; 563 564 /* Send FLAG_GET command , to know the source of interrupt */ 565 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL)) 566 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX); 567 } 568 569 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev) 570 { 571 struct sk_buff *skb; 572 struct fm_event_msg_hdr *fm_evt_hdr; 573 574 if (check_cmdresp_status(fmdev, &skb)) 575 return; 576 577 fm_evt_hdr = (void *)skb->data; 578 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag)) 579 return; 580 581 /* Skip header info and copy only response data */ 582 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 583 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen); 584 585 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag); 586 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag); 587 588 /* Continue next function in interrupt handler table */ 589 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX); 590 } 591 592 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev) 593 { 594 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask) 595 fmerr("irq: HW MAL int received - do nothing\n"); 596 597 /* Continue next function in interrupt handler table */ 598 fm_irq_call_stage(fmdev, FM_RDS_START_IDX); 599 } 600 601 static void fm_irq_handle_rds_start(struct fmdev *fmdev) 602 { 603 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) { 604 fmdbg("irq: rds threshold reached\n"); 605 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX; 606 } else { 607 /* Continue next function in interrupt handler table */ 608 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX; 609 } 610 611 fm_irq_call(fmdev); 612 } 613 614 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev) 615 { 616 /* Send the command to read RDS data from the chip */ 617 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL, 618 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL)) 619 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX); 620 } 621 622 /* Keeps track of current RX channel AF (Alternate Frequency) */ 623 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af) 624 { 625 struct tuned_station_info *stat_info = &fmdev->rx.stat_info; 626 u8 reg_idx = fmdev->rx.region.fm_band; 627 u8 index; 628 u32 freq; 629 630 /* First AF indicates the number of AF follows. Reset the list */ 631 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) { 632 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1); 633 fmdev->rx.stat_info.afcache_size = 0; 634 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max); 635 return; 636 } 637 638 if (af < FM_RDS_MIN_AF) 639 return; 640 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF) 641 return; 642 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN) 643 return; 644 645 freq = fmdev->rx.region.bot_freq + (af * 100); 646 if (freq == fmdev->rx.freq) { 647 fmdbg("Current freq(%d) is matching with received AF(%d)\n", 648 fmdev->rx.freq, freq); 649 return; 650 } 651 /* Do check in AF cache */ 652 for (index = 0; index < stat_info->afcache_size; index++) { 653 if (stat_info->af_cache[index] == freq) 654 break; 655 } 656 /* Reached the limit of the list - ignore the next AF */ 657 if (index == stat_info->af_list_max) { 658 fmdbg("AF cache is full\n"); 659 return; 660 } 661 /* 662 * If we reached the end of the list then this AF is not 663 * in the list - add it. 664 */ 665 if (index == stat_info->afcache_size) { 666 fmdbg("Storing AF %d to cache index %d\n", freq, index); 667 stat_info->af_cache[index] = freq; 668 stat_info->afcache_size++; 669 } 670 } 671 672 /* 673 * Converts RDS buffer data from big endian format 674 * to little endian format. 675 */ 676 static void fm_rdsparse_swapbytes(struct fmdev *fmdev, 677 struct fm_rdsdata_format *rds_format) 678 { 679 u8 index = 0; 680 u8 *rds_buff; 681 682 /* 683 * Since in Orca the 2 RDS Data bytes are in little endian and 684 * in Dolphin they are in big endian, the parsing of the RDS data 685 * is chip dependent 686 */ 687 if (fmdev->asci_id != 0x6350) { 688 rds_buff = &rds_format->data.groupdatabuff.buff[0]; 689 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) { 690 swap(rds_buff[index], rds_buff[index + 1]); 691 index += 2; 692 } 693 } 694 } 695 696 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev) 697 { 698 struct sk_buff *skb; 699 struct fm_rdsdata_format rds_fmt; 700 struct fm_rds *rds = &fmdev->rx.rds; 701 unsigned long group_idx, flags; 702 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE]; 703 u8 type, blk_idx; 704 u16 cur_picode; 705 u32 rds_len; 706 707 if (check_cmdresp_status(fmdev, &skb)) 708 return; 709 710 /* Skip header info */ 711 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 712 rds_data = skb->data; 713 rds_len = skb->len; 714 715 /* Parse the RDS data */ 716 while (rds_len >= FM_RDS_BLK_SIZE) { 717 meta_data = rds_data[2]; 718 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */ 719 type = (meta_data & 0x07); 720 721 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */ 722 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 723 fmdbg("Block index:%d(%s)\n", blk_idx, 724 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok"); 725 726 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0) 727 break; 728 729 if (blk_idx > FM_RDS_BLK_IDX_D) { 730 fmdbg("Block sequence mismatch\n"); 731 rds->last_blk_idx = -1; 732 break; 733 } 734 735 /* Skip checkword (control) byte and copy only data byte */ 736 memcpy(&rds_fmt.data.groupdatabuff. 737 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)], 738 rds_data, (FM_RDS_BLK_SIZE - 1)); 739 740 rds->last_blk_idx = blk_idx; 741 742 /* If completed a whole group then handle it */ 743 if (blk_idx == FM_RDS_BLK_IDX_D) { 744 fmdbg("Good block received\n"); 745 fm_rdsparse_swapbytes(fmdev, &rds_fmt); 746 747 /* 748 * Extract PI code and store in local cache. 749 * We need this during AF switch processing. 750 */ 751 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata); 752 if (fmdev->rx.stat_info.picode != cur_picode) 753 fmdev->rx.stat_info.picode = cur_picode; 754 755 fmdbg("picode:%d\n", cur_picode); 756 757 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 758 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2, 759 (group_idx % 2) ? "B" : "A"); 760 761 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 762 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) { 763 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]); 764 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]); 765 } 766 } 767 rds_len -= FM_RDS_BLK_SIZE; 768 rds_data += FM_RDS_BLK_SIZE; 769 } 770 771 /* Copy raw rds data to internal rds buffer */ 772 rds_data = skb->data; 773 rds_len = skb->len; 774 775 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 776 while (rds_len > 0) { 777 /* 778 * Fill RDS buffer as per V4L2 specification. 779 * Store control byte 780 */ 781 type = (rds_data[2] & 0x07); 782 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 783 tmpbuf[2] = blk_idx; /* Offset name */ 784 tmpbuf[2] |= blk_idx << 3; /* Received offset */ 785 786 /* Store data byte */ 787 tmpbuf[0] = rds_data[0]; 788 tmpbuf[1] = rds_data[1]; 789 790 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE); 791 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size; 792 793 /* Check for overflow & start over */ 794 if (rds->wr_idx == rds->rd_idx) { 795 fmdbg("RDS buffer overflow\n"); 796 rds->wr_idx = 0; 797 rds->rd_idx = 0; 798 break; 799 } 800 rds_len -= FM_RDS_BLK_SIZE; 801 rds_data += FM_RDS_BLK_SIZE; 802 } 803 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 804 805 /* Wakeup read queue */ 806 if (rds->wr_idx != rds->rd_idx) 807 wake_up_interruptible(&rds->read_queue); 808 809 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX); 810 } 811 812 static void fm_irq_handle_rds_finish(struct fmdev *fmdev) 813 { 814 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX); 815 } 816 817 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev) 818 { 819 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev-> 820 irq_info.mask) { 821 fmdbg("irq: tune ended/bandlimit reached\n"); 822 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) { 823 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX; 824 } else { 825 complete(&fmdev->maintask_comp); 826 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 827 } 828 } else 829 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 830 831 fm_irq_call(fmdev); 832 } 833 834 static void fm_irq_handle_power_enb(struct fmdev *fmdev) 835 { 836 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) { 837 fmdbg("irq: Power Enabled/Disabled\n"); 838 complete(&fmdev->maintask_comp); 839 } 840 841 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX); 842 } 843 844 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev) 845 { 846 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) && 847 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) && 848 (fmdev->rx.freq != FM_UNDEFINED_FREQ) && 849 (fmdev->rx.stat_info.afcache_size != 0)) { 850 fmdbg("irq: rssi level has fallen below threshold level\n"); 851 852 /* Disable further low RSSI interrupts */ 853 fmdev->irq_info.mask &= ~FM_LEV_EVENT; 854 855 fmdev->rx.afjump_idx = 0; 856 fmdev->rx.freq_before_jump = fmdev->rx.freq; 857 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 858 } else { 859 /* Continue next function in interrupt handler table */ 860 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX; 861 } 862 863 fm_irq_call(fmdev); 864 } 865 866 static void fm_irq_afjump_set_pi(struct fmdev *fmdev) 867 { 868 u16 payload; 869 870 /* Set PI code - must be updated if the AF list is not empty */ 871 payload = fmdev->rx.stat_info.picode; 872 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL)) 873 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX); 874 } 875 876 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev) 877 { 878 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX); 879 } 880 881 /* 882 * Set PI mask. 883 * 0xFFFF = Enable PI code matching 884 * 0x0000 = Disable PI code matching 885 */ 886 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev) 887 { 888 u16 payload; 889 890 payload = 0x0000; 891 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 892 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX); 893 } 894 895 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev) 896 { 897 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX); 898 } 899 900 static void fm_irq_afjump_setfreq(struct fmdev *fmdev) 901 { 902 u16 frq_index; 903 u16 payload; 904 905 fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]); 906 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] - 907 fmdev->rx.region.bot_freq) / FM_FREQ_MUL; 908 909 payload = frq_index; 910 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL)) 911 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX); 912 } 913 914 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev) 915 { 916 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX); 917 } 918 919 static void fm_irq_afjump_enableint(struct fmdev *fmdev) 920 { 921 u16 payload; 922 923 /* Enable FR (tuning operation ended) interrupt */ 924 payload = FM_FR_EVENT; 925 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 926 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX); 927 } 928 929 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev) 930 { 931 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX); 932 } 933 934 static void fm_irq_start_afjump(struct fmdev *fmdev) 935 { 936 u16 payload; 937 938 payload = FM_TUNER_AF_JUMP_MODE; 939 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload, 940 sizeof(payload), NULL)) 941 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX); 942 } 943 944 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev) 945 { 946 struct sk_buff *skb; 947 948 if (check_cmdresp_status(fmdev, &skb)) 949 return; 950 951 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 952 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag); 953 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 954 } 955 956 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev) 957 { 958 u16 payload; 959 960 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL)) 961 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX); 962 } 963 964 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev) 965 { 966 struct sk_buff *skb; 967 u16 read_freq; 968 u32 curr_freq, jumped_freq; 969 970 if (check_cmdresp_status(fmdev, &skb)) 971 return; 972 973 /* Skip header info and copy only response data */ 974 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 975 memcpy(&read_freq, skb->data, sizeof(read_freq)); 976 read_freq = be16_to_cpu((__force __be16)read_freq); 977 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL); 978 979 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]; 980 981 /* If the frequency was changed the jump succeeded */ 982 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) { 983 fmdbg("Successfully switched to alternate freq %d\n", curr_freq); 984 fmdev->rx.freq = curr_freq; 985 fm_rx_reset_rds_cache(fmdev); 986 987 /* AF feature is on, enable low level RSSI interrupt */ 988 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) 989 fmdev->irq_info.mask |= FM_LEV_EVENT; 990 991 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 992 } else { /* jump to the next freq in the AF list */ 993 fmdev->rx.afjump_idx++; 994 995 /* If we reached the end of the list - stop searching */ 996 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) { 997 fmdbg("AF switch processing failed\n"); 998 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 999 } else { /* AF List is not over - try next one */ 1000 1001 fmdbg("Trying next freq in AF cache\n"); 1002 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 1003 } 1004 } 1005 fm_irq_call(fmdev); 1006 } 1007 1008 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev) 1009 { 1010 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 1011 } 1012 1013 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev) 1014 { 1015 u16 payload; 1016 1017 /* Re-enable FM interrupts */ 1018 payload = fmdev->irq_info.mask; 1019 1020 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, 1021 sizeof(payload), NULL)) 1022 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX); 1023 } 1024 1025 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev) 1026 { 1027 struct sk_buff *skb; 1028 1029 if (check_cmdresp_status(fmdev, &skb)) 1030 return; 1031 /* 1032 * This is last function in interrupt table to be executed. 1033 * So, reset stage index to 0. 1034 */ 1035 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 1036 1037 /* Start processing any pending interrupt */ 1038 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag)) 1039 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 1040 else 1041 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 1042 } 1043 1044 /* Returns availability of RDS data in internal buffer */ 1045 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file, 1046 struct poll_table_struct *pts) 1047 { 1048 poll_wait(file, &fmdev->rx.rds.read_queue, pts); 1049 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) 1050 return 0; 1051 1052 return -EAGAIN; 1053 } 1054 1055 /* Copies RDS data from internal buffer to user buffer */ 1056 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file, 1057 u8 __user *buf, size_t count) 1058 { 1059 u32 block_count; 1060 u8 tmpbuf[FM_RDS_BLK_SIZE]; 1061 unsigned long flags; 1062 int ret; 1063 1064 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1065 if (file->f_flags & O_NONBLOCK) 1066 return -EWOULDBLOCK; 1067 1068 ret = wait_event_interruptible(fmdev->rx.rds.read_queue, 1069 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx)); 1070 if (ret) 1071 return -EINTR; 1072 } 1073 1074 /* Calculate block count from byte count */ 1075 count /= FM_RDS_BLK_SIZE; 1076 block_count = 0; 1077 ret = 0; 1078 1079 while (block_count < count) { 1080 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 1081 1082 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1083 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1084 break; 1085 } 1086 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx], 1087 FM_RDS_BLK_SIZE); 1088 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE; 1089 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) 1090 fmdev->rx.rds.rd_idx = 0; 1091 1092 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1093 1094 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE)) 1095 break; 1096 1097 block_count++; 1098 buf += FM_RDS_BLK_SIZE; 1099 ret += FM_RDS_BLK_SIZE; 1100 } 1101 return ret; 1102 } 1103 1104 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set) 1105 { 1106 switch (fmdev->curr_fmmode) { 1107 case FM_MODE_RX: 1108 return fm_rx_set_freq(fmdev, freq_to_set); 1109 1110 case FM_MODE_TX: 1111 return fm_tx_set_freq(fmdev, freq_to_set); 1112 1113 default: 1114 return -EINVAL; 1115 } 1116 } 1117 1118 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq) 1119 { 1120 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) { 1121 fmerr("RX frequency is not set\n"); 1122 return -EPERM; 1123 } 1124 if (cur_tuned_frq == NULL) { 1125 fmerr("Invalid memory\n"); 1126 return -ENOMEM; 1127 } 1128 1129 switch (fmdev->curr_fmmode) { 1130 case FM_MODE_RX: 1131 *cur_tuned_frq = fmdev->rx.freq; 1132 return 0; 1133 1134 case FM_MODE_TX: 1135 *cur_tuned_frq = 0; /* TODO : Change this later */ 1136 return 0; 1137 1138 default: 1139 return -EINVAL; 1140 } 1141 1142 } 1143 1144 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set) 1145 { 1146 switch (fmdev->curr_fmmode) { 1147 case FM_MODE_RX: 1148 return fm_rx_set_region(fmdev, region_to_set); 1149 1150 case FM_MODE_TX: 1151 return fm_tx_set_region(fmdev, region_to_set); 1152 1153 default: 1154 return -EINVAL; 1155 } 1156 } 1157 1158 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset) 1159 { 1160 switch (fmdev->curr_fmmode) { 1161 case FM_MODE_RX: 1162 return fm_rx_set_mute_mode(fmdev, mute_mode_toset); 1163 1164 case FM_MODE_TX: 1165 return fm_tx_set_mute_mode(fmdev, mute_mode_toset); 1166 1167 default: 1168 return -EINVAL; 1169 } 1170 } 1171 1172 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode) 1173 { 1174 switch (fmdev->curr_fmmode) { 1175 case FM_MODE_RX: 1176 return fm_rx_set_stereo_mono(fmdev, mode); 1177 1178 case FM_MODE_TX: 1179 return fm_tx_set_stereo_mono(fmdev, mode); 1180 1181 default: 1182 return -EINVAL; 1183 } 1184 } 1185 1186 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis) 1187 { 1188 switch (fmdev->curr_fmmode) { 1189 case FM_MODE_RX: 1190 return fm_rx_set_rds_mode(fmdev, rds_en_dis); 1191 1192 case FM_MODE_TX: 1193 return fm_tx_set_rds_mode(fmdev, rds_en_dis); 1194 1195 default: 1196 return -EINVAL; 1197 } 1198 } 1199 1200 /* Sends power off command to the chip */ 1201 static int fm_power_down(struct fmdev *fmdev) 1202 { 1203 u16 payload; 1204 int ret; 1205 1206 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1207 fmerr("FM core is not ready\n"); 1208 return -EPERM; 1209 } 1210 if (fmdev->curr_fmmode == FM_MODE_OFF) { 1211 fmdbg("FM chip is already in OFF state\n"); 1212 return 0; 1213 } 1214 1215 payload = 0x0; 1216 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1217 sizeof(payload), NULL, NULL); 1218 if (ret < 0) 1219 return ret; 1220 1221 return fmc_release(fmdev); 1222 } 1223 1224 /* Reads init command from FM firmware file and loads to the chip */ 1225 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name) 1226 { 1227 const struct firmware *fw_entry; 1228 struct bts_header *fw_header; 1229 struct bts_action *action; 1230 struct bts_action_delay *delay; 1231 u8 *fw_data; 1232 int ret, fw_len, cmd_cnt; 1233 1234 cmd_cnt = 0; 1235 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1236 1237 ret = request_firmware(&fw_entry, fw_name, 1238 &fmdev->radio_dev->dev); 1239 if (ret < 0) { 1240 fmerr("Unable to read firmware(%s) content\n", fw_name); 1241 return ret; 1242 } 1243 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size); 1244 1245 fw_data = (void *)fw_entry->data; 1246 fw_len = fw_entry->size; 1247 1248 fw_header = (struct bts_header *)fw_data; 1249 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) { 1250 fmerr("%s not a legal TI firmware file\n", fw_name); 1251 ret = -EINVAL; 1252 goto rel_fw; 1253 } 1254 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic); 1255 1256 /* Skip file header info , we already verified it */ 1257 fw_data += sizeof(struct bts_header); 1258 fw_len -= sizeof(struct bts_header); 1259 1260 while (fw_data && fw_len > 0) { 1261 action = (struct bts_action *)fw_data; 1262 1263 switch (action->type) { 1264 case ACTION_SEND_COMMAND: /* Send */ 1265 ret = fmc_send_cmd(fmdev, 0, 0, action->data, 1266 action->size, NULL, NULL); 1267 if (ret) 1268 goto rel_fw; 1269 1270 cmd_cnt++; 1271 break; 1272 1273 case ACTION_DELAY: /* Delay */ 1274 delay = (struct bts_action_delay *)action->data; 1275 mdelay(delay->msec); 1276 break; 1277 } 1278 1279 fw_data += (sizeof(struct bts_action) + (action->size)); 1280 fw_len -= (sizeof(struct bts_action) + (action->size)); 1281 } 1282 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt); 1283 rel_fw: 1284 release_firmware(fw_entry); 1285 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1286 1287 return ret; 1288 } 1289 1290 /* Loads default RX configuration to the chip */ 1291 static int load_default_rx_configuration(struct fmdev *fmdev) 1292 { 1293 int ret; 1294 1295 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME); 1296 if (ret < 0) 1297 return ret; 1298 1299 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD); 1300 } 1301 1302 /* Does FM power on sequence */ 1303 static int fm_power_up(struct fmdev *fmdev, u8 mode) 1304 { 1305 u16 payload; 1306 __be16 asic_id = 0, asic_ver = 0; 1307 int resp_len, ret; 1308 u8 fw_name[50]; 1309 1310 if (mode >= FM_MODE_ENTRY_MAX) { 1311 fmerr("Invalid firmware download option\n"); 1312 return -EINVAL; 1313 } 1314 1315 /* 1316 * Initialize FM common module. FM GPIO toggling is 1317 * taken care in Shared Transport driver. 1318 */ 1319 ret = fmc_prepare(fmdev); 1320 if (ret < 0) { 1321 fmerr("Unable to prepare FM Common\n"); 1322 return ret; 1323 } 1324 1325 payload = FM_ENABLE; 1326 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1327 sizeof(payload), NULL, NULL)) 1328 goto rel; 1329 1330 /* Allow the chip to settle down in Channel-8 mode */ 1331 msleep(20); 1332 1333 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL, 1334 sizeof(asic_id), &asic_id, &resp_len)) 1335 goto rel; 1336 1337 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL, 1338 sizeof(asic_ver), &asic_ver, &resp_len)) 1339 goto rel; 1340 1341 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n", 1342 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1343 1344 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START, 1345 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1346 1347 ret = fm_download_firmware(fmdev, fw_name); 1348 if (ret < 0) { 1349 fmdbg("Failed to download firmware file %s\n", fw_name); 1350 goto rel; 1351 } 1352 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ? 1353 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START, 1354 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1355 1356 ret = fm_download_firmware(fmdev, fw_name); 1357 if (ret < 0) { 1358 fmdbg("Failed to download firmware file %s\n", fw_name); 1359 goto rel; 1360 } else 1361 return ret; 1362 rel: 1363 return fmc_release(fmdev); 1364 } 1365 1366 /* Set FM Modes(TX, RX, OFF) */ 1367 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode) 1368 { 1369 int ret = 0; 1370 1371 if (fm_mode >= FM_MODE_ENTRY_MAX) { 1372 fmerr("Invalid FM mode\n"); 1373 return -EINVAL; 1374 } 1375 if (fmdev->curr_fmmode == fm_mode) { 1376 fmdbg("Already fm is in mode(%d)\n", fm_mode); 1377 return ret; 1378 } 1379 1380 switch (fm_mode) { 1381 case FM_MODE_OFF: /* OFF Mode */ 1382 ret = fm_power_down(fmdev); 1383 if (ret < 0) { 1384 fmerr("Failed to set OFF mode\n"); 1385 return ret; 1386 } 1387 break; 1388 1389 case FM_MODE_TX: /* TX Mode */ 1390 case FM_MODE_RX: /* RX Mode */ 1391 /* Power down before switching to TX or RX mode */ 1392 if (fmdev->curr_fmmode != FM_MODE_OFF) { 1393 ret = fm_power_down(fmdev); 1394 if (ret < 0) { 1395 fmerr("Failed to set OFF mode\n"); 1396 return ret; 1397 } 1398 msleep(30); 1399 } 1400 ret = fm_power_up(fmdev, fm_mode); 1401 if (ret < 0) { 1402 fmerr("Failed to load firmware\n"); 1403 return ret; 1404 } 1405 } 1406 fmdev->curr_fmmode = fm_mode; 1407 1408 /* Set default configuration */ 1409 if (fmdev->curr_fmmode == FM_MODE_RX) { 1410 fmdbg("Loading default rx configuration..\n"); 1411 ret = load_default_rx_configuration(fmdev); 1412 if (ret < 0) 1413 fmerr("Failed to load default values\n"); 1414 } 1415 1416 return ret; 1417 } 1418 1419 /* Returns current FM mode (TX, RX, OFF) */ 1420 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode) 1421 { 1422 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1423 fmerr("FM core is not ready\n"); 1424 return -EPERM; 1425 } 1426 if (fmmode == NULL) { 1427 fmerr("Invalid memory\n"); 1428 return -ENOMEM; 1429 } 1430 1431 *fmmode = fmdev->curr_fmmode; 1432 return 0; 1433 } 1434 1435 /* Called by ST layer when FM packet is available */ 1436 static long fm_st_receive(void *arg, struct sk_buff *skb) 1437 { 1438 struct fmdev *fmdev; 1439 1440 fmdev = (struct fmdev *)arg; 1441 1442 if (skb == NULL) { 1443 fmerr("Invalid SKB received from ST\n"); 1444 return -EFAULT; 1445 } 1446 1447 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) { 1448 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb); 1449 return -EINVAL; 1450 } 1451 1452 memcpy(skb_push(skb, 1), &skb->cb[0], 1); 1453 skb_queue_tail(&fmdev->rx_q, skb); 1454 tasklet_schedule(&fmdev->rx_task); 1455 1456 return 0; 1457 } 1458 1459 /* 1460 * Called by ST layer to indicate protocol registration completion 1461 * status. 1462 */ 1463 static void fm_st_reg_comp_cb(void *arg, int data) 1464 { 1465 struct fmdev *fmdev; 1466 1467 fmdev = (struct fmdev *)arg; 1468 fmdev->streg_cbdata = data; 1469 complete(&wait_for_fmdrv_reg_comp); 1470 } 1471 1472 /* 1473 * This function will be called from FM V4L2 open function. 1474 * Register with ST driver and initialize driver data. 1475 */ 1476 int fmc_prepare(struct fmdev *fmdev) 1477 { 1478 static struct st_proto_s fm_st_proto; 1479 int ret; 1480 1481 if (test_bit(FM_CORE_READY, &fmdev->flag)) { 1482 fmdbg("FM Core is already up\n"); 1483 return 0; 1484 } 1485 1486 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1487 fm_st_proto.recv = fm_st_receive; 1488 fm_st_proto.match_packet = NULL; 1489 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb; 1490 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */ 1491 fm_st_proto.priv_data = fmdev; 1492 fm_st_proto.chnl_id = 0x08; 1493 fm_st_proto.max_frame_size = 0xff; 1494 fm_st_proto.hdr_len = 1; 1495 fm_st_proto.offset_len_in_hdr = 0; 1496 fm_st_proto.len_size = 1; 1497 fm_st_proto.reserve = 1; 1498 1499 ret = st_register(&fm_st_proto); 1500 if (ret == -EINPROGRESS) { 1501 init_completion(&wait_for_fmdrv_reg_comp); 1502 fmdev->streg_cbdata = -EINPROGRESS; 1503 fmdbg("%s waiting for ST reg completion signal\n", __func__); 1504 1505 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp, 1506 FM_ST_REG_TIMEOUT)) { 1507 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n", 1508 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000); 1509 return -ETIMEDOUT; 1510 } 1511 if (fmdev->streg_cbdata != 0) { 1512 fmerr("ST reg comp CB called with error status %d\n", 1513 fmdev->streg_cbdata); 1514 return -EAGAIN; 1515 } 1516 1517 ret = 0; 1518 } else if (ret < 0) { 1519 fmerr("st_register failed %d\n", ret); 1520 return -EAGAIN; 1521 } 1522 1523 if (fm_st_proto.write != NULL) { 1524 g_st_write = fm_st_proto.write; 1525 } else { 1526 fmerr("Failed to get ST write func pointer\n"); 1527 ret = st_unregister(&fm_st_proto); 1528 if (ret < 0) 1529 fmerr("st_unregister failed %d\n", ret); 1530 return -EAGAIN; 1531 } 1532 1533 spin_lock_init(&fmdev->rds_buff_lock); 1534 spin_lock_init(&fmdev->resp_skb_lock); 1535 1536 /* Initialize TX queue and TX tasklet */ 1537 skb_queue_head_init(&fmdev->tx_q); 1538 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev); 1539 1540 /* Initialize RX Queue and RX tasklet */ 1541 skb_queue_head_init(&fmdev->rx_q); 1542 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev); 1543 1544 fmdev->irq_info.stage = 0; 1545 atomic_set(&fmdev->tx_cnt, 1); 1546 fmdev->resp_comp = NULL; 1547 1548 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0); 1549 /*TODO: add FM_STIC_EVENT later */ 1550 fmdev->irq_info.mask = FM_MAL_EVENT; 1551 1552 /* Region info */ 1553 fmdev->rx.region = region_configs[default_radio_region]; 1554 1555 fmdev->rx.mute_mode = FM_MUTE_OFF; 1556 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF; 1557 fmdev->rx.rds.flag = FM_RDS_DISABLE; 1558 fmdev->rx.freq = FM_UNDEFINED_FREQ; 1559 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS; 1560 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF; 1561 fmdev->irq_info.retry = 0; 1562 1563 fm_rx_reset_rds_cache(fmdev); 1564 init_waitqueue_head(&fmdev->rx.rds.read_queue); 1565 1566 fm_rx_reset_station_info(fmdev); 1567 set_bit(FM_CORE_READY, &fmdev->flag); 1568 1569 return ret; 1570 } 1571 1572 /* 1573 * This function will be called from FM V4L2 release function. 1574 * Unregister from ST driver. 1575 */ 1576 int fmc_release(struct fmdev *fmdev) 1577 { 1578 static struct st_proto_s fm_st_proto; 1579 int ret; 1580 1581 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1582 fmdbg("FM Core is already down\n"); 1583 return 0; 1584 } 1585 /* Service pending read */ 1586 wake_up_interruptible(&fmdev->rx.rds.read_queue); 1587 1588 tasklet_kill(&fmdev->tx_task); 1589 tasklet_kill(&fmdev->rx_task); 1590 1591 skb_queue_purge(&fmdev->tx_q); 1592 skb_queue_purge(&fmdev->rx_q); 1593 1594 fmdev->resp_comp = NULL; 1595 fmdev->rx.freq = 0; 1596 1597 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1598 fm_st_proto.chnl_id = 0x08; 1599 1600 ret = st_unregister(&fm_st_proto); 1601 1602 if (ret < 0) 1603 fmerr("Failed to de-register FM from ST %d\n", ret); 1604 else 1605 fmdbg("Successfully unregistered from ST\n"); 1606 1607 clear_bit(FM_CORE_READY, &fmdev->flag); 1608 return ret; 1609 } 1610 1611 /* 1612 * Module init function. Ask FM V4L module to register video device. 1613 * Allocate memory for FM driver context and RX RDS buffer. 1614 */ 1615 static int __init fm_drv_init(void) 1616 { 1617 struct fmdev *fmdev = NULL; 1618 int ret = -ENOMEM; 1619 1620 fmdbg("FM driver version %s\n", FM_DRV_VERSION); 1621 1622 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL); 1623 if (NULL == fmdev) { 1624 fmerr("Can't allocate operation structure memory\n"); 1625 return ret; 1626 } 1627 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE; 1628 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL); 1629 if (NULL == fmdev->rx.rds.buff) { 1630 fmerr("Can't allocate rds ring buffer\n"); 1631 goto rel_dev; 1632 } 1633 1634 ret = fm_v4l2_init_video_device(fmdev, radio_nr); 1635 if (ret < 0) 1636 goto rel_rdsbuf; 1637 1638 fmdev->irq_info.handlers = int_handler_table; 1639 fmdev->curr_fmmode = FM_MODE_OFF; 1640 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF; 1641 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US; 1642 return ret; 1643 1644 rel_rdsbuf: 1645 kfree(fmdev->rx.rds.buff); 1646 rel_dev: 1647 kfree(fmdev); 1648 1649 return ret; 1650 } 1651 1652 /* Module exit function. Ask FM V4L module to unregister video device */ 1653 static void __exit fm_drv_exit(void) 1654 { 1655 struct fmdev *fmdev = NULL; 1656 1657 fmdev = fm_v4l2_deinit_video_device(); 1658 if (fmdev != NULL) { 1659 kfree(fmdev->rx.rds.buff); 1660 kfree(fmdev); 1661 } 1662 } 1663 1664 module_init(fm_drv_init); 1665 module_exit(fm_drv_exit); 1666 1667 /* ------------- Module Info ------------- */ 1668 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>"); 1669 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION); 1670 MODULE_VERSION(FM_DRV_VERSION); 1671 MODULE_LICENSE("GPL"); 1672