xref: /openbmc/linux/drivers/media/radio/wl128x/fmdrv_common.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  FM Driver for Connectivity chip of Texas Instruments.
4  *
5  *  This sub-module of FM driver is common for FM RX and TX
6  *  functionality. This module is responsible for:
7  *  1) Forming group of Channel-8 commands to perform particular
8  *     functionality (eg., frequency set require more than
9  *     one Channel-8 command to be sent to the chip).
10  *  2) Sending each Channel-8 command to the chip and reading
11  *     response back over Shared Transport.
12  *  3) Managing TX and RX Queues and Tasklets.
13  *  4) Handling FM Interrupt packet and taking appropriate action.
14  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
15  *     firmware files based on mode selection)
16  *
17  *  Copyright (C) 2011 Texas Instruments
18  *  Author: Raja Mani <raja_mani@ti.com>
19  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
20  */
21 
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26 #include <linux/jiffies.h>
27 
28 #include "fmdrv.h"
29 #include "fmdrv_v4l2.h"
30 #include "fmdrv_common.h"
31 #include <linux/ti_wilink_st.h>
32 #include "fmdrv_rx.h"
33 #include "fmdrv_tx.h"
34 
35 /* Region info */
36 static struct region_info region_configs[] = {
37 	/* Europe/US */
38 	{
39 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
40 	 .bot_freq = 87500,	/* 87.5 MHz */
41 	 .top_freq = 108000,	/* 108 MHz */
42 	 .fm_band = 0,
43 	 },
44 	/* Japan */
45 	{
46 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
47 	 .bot_freq = 76000,	/* 76 MHz */
48 	 .top_freq = 90000,	/* 90 MHz */
49 	 .fm_band = 1,
50 	 },
51 };
52 
53 /* Band selection */
54 static u8 default_radio_region;	/* Europe/US */
55 module_param(default_radio_region, byte, 0);
56 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
57 
58 /* RDS buffer blocks */
59 static u32 default_rds_buf = 300;
60 module_param(default_rds_buf, uint, 0444);
61 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
62 
63 /* Radio Nr */
64 static u32 radio_nr = -1;
65 module_param(radio_nr, int, 0444);
66 MODULE_PARM_DESC(radio_nr, "Radio Nr");
67 
68 /* FM irq handlers forward declaration */
69 static void fm_irq_send_flag_getcmd(struct fmdev *);
70 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
71 static void fm_irq_handle_hw_malfunction(struct fmdev *);
72 static void fm_irq_handle_rds_start(struct fmdev *);
73 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
74 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
75 static void fm_irq_handle_rds_finish(struct fmdev *);
76 static void fm_irq_handle_tune_op_ended(struct fmdev *);
77 static void fm_irq_handle_power_enb(struct fmdev *);
78 static void fm_irq_handle_low_rssi_start(struct fmdev *);
79 static void fm_irq_afjump_set_pi(struct fmdev *);
80 static void fm_irq_handle_set_pi_resp(struct fmdev *);
81 static void fm_irq_afjump_set_pimask(struct fmdev *);
82 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
83 static void fm_irq_afjump_setfreq(struct fmdev *);
84 static void fm_irq_handle_setfreq_resp(struct fmdev *);
85 static void fm_irq_afjump_enableint(struct fmdev *);
86 static void fm_irq_afjump_enableint_resp(struct fmdev *);
87 static void fm_irq_start_afjump(struct fmdev *);
88 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
89 static void fm_irq_afjump_rd_freq(struct fmdev *);
90 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
91 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
92 static void fm_irq_send_intmsk_cmd(struct fmdev *);
93 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
94 
95 /*
96  * When FM common module receives interrupt packet, following handlers
97  * will be executed one after another to service the interrupt(s)
98  */
99 enum fmc_irq_handler_index {
100 	FM_SEND_FLAG_GETCMD_IDX,
101 	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
102 
103 	/* HW malfunction irq handler */
104 	FM_HW_MAL_FUNC_IDX,
105 
106 	/* RDS threshold reached irq handler */
107 	FM_RDS_START_IDX,
108 	FM_RDS_SEND_RDS_GETCMD_IDX,
109 	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
110 	FM_RDS_FINISH_IDX,
111 
112 	/* Tune operation ended irq handler */
113 	FM_HW_TUNE_OP_ENDED_IDX,
114 
115 	/* TX power enable irq handler */
116 	FM_HW_POWER_ENB_IDX,
117 
118 	/* Low RSSI irq handler */
119 	FM_LOW_RSSI_START_IDX,
120 	FM_AF_JUMP_SETPI_IDX,
121 	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
122 	FM_AF_JUMP_SETPI_MASK_IDX,
123 	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
124 	FM_AF_JUMP_SET_AF_FREQ_IDX,
125 	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
126 	FM_AF_JUMP_ENABLE_INT_IDX,
127 	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
128 	FM_AF_JUMP_START_AFJUMP_IDX,
129 	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
130 	FM_AF_JUMP_RD_FREQ_IDX,
131 	FM_AF_JUMP_RD_FREQ_RESP_IDX,
132 	FM_LOW_RSSI_FINISH_IDX,
133 
134 	/* Interrupt process post action */
135 	FM_SEND_INTMSK_CMD_IDX,
136 	FM_HANDLE_INTMSK_CMD_RESP_IDX,
137 };
138 
139 /* FM interrupt handler table */
140 static int_handler_prototype int_handler_table[] = {
141 	fm_irq_send_flag_getcmd,
142 	fm_irq_handle_flag_getcmd_resp,
143 	fm_irq_handle_hw_malfunction,
144 	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
145 	fm_irq_send_rdsdata_getcmd,
146 	fm_irq_handle_rdsdata_getcmd_resp,
147 	fm_irq_handle_rds_finish,
148 	fm_irq_handle_tune_op_ended,
149 	fm_irq_handle_power_enb, /* TX power enable irq handler */
150 	fm_irq_handle_low_rssi_start,
151 	fm_irq_afjump_set_pi,
152 	fm_irq_handle_set_pi_resp,
153 	fm_irq_afjump_set_pimask,
154 	fm_irq_handle_set_pimask_resp,
155 	fm_irq_afjump_setfreq,
156 	fm_irq_handle_setfreq_resp,
157 	fm_irq_afjump_enableint,
158 	fm_irq_afjump_enableint_resp,
159 	fm_irq_start_afjump,
160 	fm_irq_handle_start_afjump_resp,
161 	fm_irq_afjump_rd_freq,
162 	fm_irq_afjump_rd_freq_resp,
163 	fm_irq_handle_low_rssi_finish,
164 	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
165 	fm_irq_handle_intmsk_cmd_resp
166 };
167 
168 static long (*g_st_write) (struct sk_buff *skb);
169 static struct completion wait_for_fmdrv_reg_comp;
170 
171 static inline void fm_irq_call(struct fmdev *fmdev)
172 {
173 	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
174 }
175 
176 /* Continue next function in interrupt handler table */
177 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
178 {
179 	fmdev->irq_info.stage = stage;
180 	fm_irq_call(fmdev);
181 }
182 
183 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
184 {
185 	fmdev->irq_info.stage = stage;
186 	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
187 }
188 
189 #ifdef FM_DUMP_TXRX_PKT
190  /* To dump outgoing FM Channel-8 packets */
191 inline void dump_tx_skb_data(struct sk_buff *skb)
192 {
193 	int len, len_org;
194 	u8 index;
195 	struct fm_cmd_msg_hdr *cmd_hdr;
196 
197 	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
198 	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
199 	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
200 	       cmd_hdr->len, cmd_hdr->op,
201 	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
202 
203 	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
204 	if (len_org > 0) {
205 		printk(KERN_CONT "\n   data(%d): ", cmd_hdr->dlen);
206 		len = min(len_org, 14);
207 		for (index = 0; index < len; index++)
208 			printk(KERN_CONT "%x ",
209 			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
210 		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
211 	}
212 	printk(KERN_CONT "\n");
213 }
214 
215  /* To dump incoming FM Channel-8 packets */
216 inline void dump_rx_skb_data(struct sk_buff *skb)
217 {
218 	int len, len_org;
219 	u8 index;
220 	struct fm_event_msg_hdr *evt_hdr;
221 
222 	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
223 	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
224 	       evt_hdr->hdr, evt_hdr->len,
225 	       evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
226 	       (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
227 
228 	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
229 	if (len_org > 0) {
230 		printk(KERN_CONT "\n   data(%d): ", evt_hdr->dlen);
231 		len = min(len_org, 14);
232 		for (index = 0; index < len; index++)
233 			printk(KERN_CONT "%x ",
234 			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
235 		printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
236 	}
237 	printk(KERN_CONT "\n");
238 }
239 #endif
240 
241 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
242 {
243 	fmdev->rx.region = region_configs[region_to_set];
244 }
245 
246 /*
247  * FM common sub-module will schedule this tasklet whenever it receives
248  * FM packet from ST driver.
249  */
250 static void recv_tasklet(struct tasklet_struct *t)
251 {
252 	struct fmdev *fmdev;
253 	struct fm_irq *irq_info;
254 	struct fm_event_msg_hdr *evt_hdr;
255 	struct sk_buff *skb;
256 	u8 num_fm_hci_cmds;
257 	unsigned long flags;
258 
259 	fmdev = from_tasklet(fmdev, t, tx_task);
260 	irq_info = &fmdev->irq_info;
261 	/* Process all packets in the RX queue */
262 	while ((skb = skb_dequeue(&fmdev->rx_q))) {
263 		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
264 			fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
265 			      skb,
266 			      skb->len, sizeof(struct fm_event_msg_hdr));
267 			kfree_skb(skb);
268 			continue;
269 		}
270 
271 		evt_hdr = (void *)skb->data;
272 		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
273 
274 		/* FM interrupt packet? */
275 		if (evt_hdr->op == FM_INTERRUPT) {
276 			/* FM interrupt handler started already? */
277 			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
278 				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
279 				if (irq_info->stage != 0) {
280 					fmerr("Inval stage resetting to zero\n");
281 					irq_info->stage = 0;
282 				}
283 
284 				/*
285 				 * Execute first function in interrupt handler
286 				 * table.
287 				 */
288 				irq_info->handlers[irq_info->stage](fmdev);
289 			} else {
290 				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
291 			}
292 			kfree_skb(skb);
293 		}
294 		/* Anyone waiting for this with completion handler? */
295 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
296 
297 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
298 			fmdev->resp_skb = skb;
299 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
300 			complete(fmdev->resp_comp);
301 
302 			fmdev->resp_comp = NULL;
303 			atomic_set(&fmdev->tx_cnt, 1);
304 		}
305 		/* Is this for interrupt handler? */
306 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
307 			if (fmdev->resp_skb != NULL)
308 				fmerr("Response SKB ptr not NULL\n");
309 
310 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
311 			fmdev->resp_skb = skb;
312 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
313 
314 			/* Execute interrupt handler where state index points */
315 			irq_info->handlers[irq_info->stage](fmdev);
316 
317 			kfree_skb(skb);
318 			atomic_set(&fmdev->tx_cnt, 1);
319 		} else {
320 			fmerr("Nobody claimed SKB(%p),purging\n", skb);
321 		}
322 
323 		/*
324 		 * Check flow control field. If Num_FM_HCI_Commands field is
325 		 * not zero, schedule FM TX tasklet.
326 		 */
327 		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
328 			if (!skb_queue_empty(&fmdev->tx_q))
329 				tasklet_schedule(&fmdev->tx_task);
330 	}
331 }
332 
333 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
334 static void send_tasklet(struct tasklet_struct *t)
335 {
336 	struct fmdev *fmdev;
337 	struct sk_buff *skb;
338 	int len;
339 
340 	fmdev = from_tasklet(fmdev, t, tx_task);
341 
342 	if (!atomic_read(&fmdev->tx_cnt))
343 		return;
344 
345 	/* Check, is there any timeout happened to last transmitted packet */
346 	if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
347 		fmerr("TX timeout occurred\n");
348 		atomic_set(&fmdev->tx_cnt, 1);
349 	}
350 
351 	/* Send queued FM TX packets */
352 	skb = skb_dequeue(&fmdev->tx_q);
353 	if (!skb)
354 		return;
355 
356 	atomic_dec(&fmdev->tx_cnt);
357 	fmdev->pre_op = fm_cb(skb)->fm_op;
358 
359 	if (fmdev->resp_comp != NULL)
360 		fmerr("Response completion handler is not NULL\n");
361 
362 	fmdev->resp_comp = fm_cb(skb)->completion;
363 
364 	/* Write FM packet to ST driver */
365 	len = g_st_write(skb);
366 	if (len < 0) {
367 		kfree_skb(skb);
368 		fmdev->resp_comp = NULL;
369 		fmerr("TX tasklet failed to send skb(%p)\n", skb);
370 		atomic_set(&fmdev->tx_cnt, 1);
371 	} else {
372 		fmdev->last_tx_jiffies = jiffies;
373 	}
374 }
375 
376 /*
377  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
378  * transmission
379  */
380 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
381 		int payload_len, struct completion *wait_completion)
382 {
383 	struct sk_buff *skb;
384 	struct fm_cmd_msg_hdr *hdr;
385 	int size;
386 
387 	if (fm_op >= FM_INTERRUPT) {
388 		fmerr("Invalid fm opcode - %d\n", fm_op);
389 		return -EINVAL;
390 	}
391 	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
392 		fmerr("Payload data is NULL during fw download\n");
393 		return -EINVAL;
394 	}
395 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
396 		size =
397 		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
398 	else
399 		size = payload_len;
400 
401 	skb = alloc_skb(size, GFP_ATOMIC);
402 	if (!skb) {
403 		fmerr("No memory to create new SKB\n");
404 		return -ENOMEM;
405 	}
406 	/*
407 	 * Don't fill FM header info for the commands which come from
408 	 * FM firmware file.
409 	 */
410 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
411 			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
412 		/* Fill command header info */
413 		hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
414 		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
415 
416 		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
417 		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
418 
419 		/* FM opcode */
420 		hdr->op = fm_op;
421 
422 		/* read/write type */
423 		hdr->rd_wr = type;
424 		hdr->dlen = payload_len;
425 		fm_cb(skb)->fm_op = fm_op;
426 
427 		/*
428 		 * If firmware download has finished and the command is
429 		 * not a read command then payload is != NULL - a write
430 		 * command with u16 payload - convert to be16
431 		 */
432 		if (payload != NULL)
433 			*(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
434 
435 	} else if (payload != NULL) {
436 		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
437 	}
438 	if (payload != NULL)
439 		skb_put_data(skb, payload, payload_len);
440 
441 	fm_cb(skb)->completion = wait_completion;
442 	skb_queue_tail(&fmdev->tx_q, skb);
443 	tasklet_schedule(&fmdev->tx_task);
444 
445 	return 0;
446 }
447 
448 /* Sends FM Channel-8 command to the chip and waits for the response */
449 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
450 		unsigned int payload_len, void *response, int *response_len)
451 {
452 	struct sk_buff *skb;
453 	struct fm_event_msg_hdr *evt_hdr;
454 	unsigned long flags;
455 	int ret;
456 
457 	init_completion(&fmdev->maintask_comp);
458 	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
459 			    &fmdev->maintask_comp);
460 	if (ret)
461 		return ret;
462 
463 	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
464 					 FM_DRV_TX_TIMEOUT)) {
465 		fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
466 			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
467 		return -ETIMEDOUT;
468 	}
469 	if (!fmdev->resp_skb) {
470 		fmerr("Response SKB is missing\n");
471 		return -EFAULT;
472 	}
473 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
474 	skb = fmdev->resp_skb;
475 	fmdev->resp_skb = NULL;
476 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
477 
478 	evt_hdr = (void *)skb->data;
479 	if (evt_hdr->status != 0) {
480 		fmerr("Received event pkt status(%d) is not zero\n",
481 			   evt_hdr->status);
482 		kfree_skb(skb);
483 		return -EIO;
484 	}
485 	/* Send response data to caller */
486 	if (response != NULL && response_len != NULL && evt_hdr->dlen &&
487 	    evt_hdr->dlen <= payload_len) {
488 		/* Skip header info and copy only response data */
489 		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
490 		memcpy(response, skb->data, evt_hdr->dlen);
491 		*response_len = evt_hdr->dlen;
492 	} else if (response_len != NULL && evt_hdr->dlen == 0) {
493 		*response_len = 0;
494 	}
495 	kfree_skb(skb);
496 
497 	return 0;
498 }
499 
500 /* --- Helper functions used in FM interrupt handlers ---*/
501 static inline int check_cmdresp_status(struct fmdev *fmdev,
502 		struct sk_buff **skb)
503 {
504 	struct fm_event_msg_hdr *fm_evt_hdr;
505 	unsigned long flags;
506 
507 	del_timer(&fmdev->irq_info.timer);
508 
509 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
510 	*skb = fmdev->resp_skb;
511 	fmdev->resp_skb = NULL;
512 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
513 
514 	fm_evt_hdr = (void *)(*skb)->data;
515 	if (fm_evt_hdr->status != 0) {
516 		fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
517 				fm_evt_hdr->op);
518 
519 		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
520 		return -1;
521 	}
522 
523 	return 0;
524 }
525 
526 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
527 {
528 	struct sk_buff *skb;
529 
530 	if (!check_cmdresp_status(fmdev, &skb))
531 		fm_irq_call_stage(fmdev, stage);
532 }
533 
534 /*
535  * Interrupt process timeout handler.
536  * One of the irq handler did not get proper response from the chip. So take
537  * recovery action here. FM interrupts are disabled in the beginning of
538  * interrupt process. Therefore reset stage index to re-enable default
539  * interrupts. So that next interrupt will be processed as usual.
540  */
541 static void int_timeout_handler(struct timer_list *t)
542 {
543 	struct fmdev *fmdev;
544 	struct fm_irq *fmirq;
545 
546 	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
547 	fmdev = from_timer(fmdev, t, irq_info.timer);
548 	fmirq = &fmdev->irq_info;
549 	fmirq->retry++;
550 
551 	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
552 		/* Stop recovery action (interrupt reenable process) and
553 		 * reset stage index & retry count values */
554 		fmirq->stage = 0;
555 		fmirq->retry = 0;
556 		fmerr("Recovery action failed duringirq processing, max retry reached\n");
557 		return;
558 	}
559 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
560 }
561 
562 /* --------- FM interrupt handlers ------------*/
563 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
564 {
565 	u16 flag;
566 
567 	/* Send FLAG_GET command , to know the source of interrupt */
568 	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
569 		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
570 }
571 
572 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
573 {
574 	struct sk_buff *skb;
575 	struct fm_event_msg_hdr *fm_evt_hdr;
576 
577 	if (check_cmdresp_status(fmdev, &skb))
578 		return;
579 
580 	fm_evt_hdr = (void *)skb->data;
581 	if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
582 		return;
583 
584 	/* Skip header info and copy only response data */
585 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
586 	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
587 
588 	fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
589 	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
590 
591 	/* Continue next function in interrupt handler table */
592 	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
593 }
594 
595 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
596 {
597 	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
598 		fmerr("irq: HW MAL int received - do nothing\n");
599 
600 	/* Continue next function in interrupt handler table */
601 	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
602 }
603 
604 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
605 {
606 	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
607 		fmdbg("irq: rds threshold reached\n");
608 		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
609 	} else {
610 		/* Continue next function in interrupt handler table */
611 		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
612 	}
613 
614 	fm_irq_call(fmdev);
615 }
616 
617 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
618 {
619 	/* Send the command to read RDS data from the chip */
620 	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
621 			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
622 		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
623 }
624 
625 /* Keeps track of current RX channel AF (Alternate Frequency) */
626 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
627 {
628 	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
629 	u8 reg_idx = fmdev->rx.region.fm_band;
630 	u8 index;
631 	u32 freq;
632 
633 	/* First AF indicates the number of AF follows. Reset the list */
634 	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
635 		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
636 		fmdev->rx.stat_info.afcache_size = 0;
637 		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
638 		return;
639 	}
640 
641 	if (af < FM_RDS_MIN_AF)
642 		return;
643 	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
644 		return;
645 	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
646 		return;
647 
648 	freq = fmdev->rx.region.bot_freq + (af * 100);
649 	if (freq == fmdev->rx.freq) {
650 		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
651 				fmdev->rx.freq, freq);
652 		return;
653 	}
654 	/* Do check in AF cache */
655 	for (index = 0; index < stat_info->afcache_size; index++) {
656 		if (stat_info->af_cache[index] == freq)
657 			break;
658 	}
659 	/* Reached the limit of the list - ignore the next AF */
660 	if (index == stat_info->af_list_max) {
661 		fmdbg("AF cache is full\n");
662 		return;
663 	}
664 	/*
665 	 * If we reached the end of the list then this AF is not
666 	 * in the list - add it.
667 	 */
668 	if (index == stat_info->afcache_size) {
669 		fmdbg("Storing AF %d to cache index %d\n", freq, index);
670 		stat_info->af_cache[index] = freq;
671 		stat_info->afcache_size++;
672 	}
673 }
674 
675 /*
676  * Converts RDS buffer data from big endian format
677  * to little endian format.
678  */
679 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
680 		struct fm_rdsdata_format *rds_format)
681 {
682 	u8 index = 0;
683 	u8 *rds_buff;
684 
685 	/*
686 	 * Since in Orca the 2 RDS Data bytes are in little endian and
687 	 * in Dolphin they are in big endian, the parsing of the RDS data
688 	 * is chip dependent
689 	 */
690 	if (fmdev->asci_id != 0x6350) {
691 		rds_buff = &rds_format->data.groupdatabuff.buff[0];
692 		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
693 			swap(rds_buff[index], rds_buff[index + 1]);
694 			index += 2;
695 		}
696 	}
697 }
698 
699 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
700 {
701 	struct sk_buff *skb;
702 	struct fm_rdsdata_format rds_fmt;
703 	struct fm_rds *rds = &fmdev->rx.rds;
704 	unsigned long group_idx, flags;
705 	u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
706 	u8 type, blk_idx, idx;
707 	u16 cur_picode;
708 	u32 rds_len;
709 
710 	if (check_cmdresp_status(fmdev, &skb))
711 		return;
712 
713 	/* Skip header info */
714 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
715 	rds_data = skb->data;
716 	rds_len = skb->len;
717 
718 	/* Parse the RDS data */
719 	while (rds_len >= FM_RDS_BLK_SIZE) {
720 		meta_data = rds_data[2];
721 		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
722 		type = (meta_data & 0x07);
723 
724 		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
725 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
726 		fmdbg("Block index:%d(%s)\n", blk_idx,
727 			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
728 
729 		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
730 			break;
731 
732 		if (blk_idx > FM_RDS_BLK_IDX_D) {
733 			fmdbg("Block sequence mismatch\n");
734 			rds->last_blk_idx = -1;
735 			break;
736 		}
737 
738 		/* Skip checkword (control) byte and copy only data byte */
739 		idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
740 					 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
741 
742 		memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
743 		       FM_RDS_BLK_SIZE - 1);
744 
745 		rds->last_blk_idx = blk_idx;
746 
747 		/* If completed a whole group then handle it */
748 		if (blk_idx == FM_RDS_BLK_IDX_D) {
749 			fmdbg("Good block received\n");
750 			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
751 
752 			/*
753 			 * Extract PI code and store in local cache.
754 			 * We need this during AF switch processing.
755 			 */
756 			cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
757 			if (fmdev->rx.stat_info.picode != cur_picode)
758 				fmdev->rx.stat_info.picode = cur_picode;
759 
760 			fmdbg("picode:%d\n", cur_picode);
761 
762 			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
763 			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
764 					(group_idx % 2) ? "B" : "A");
765 
766 			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
767 			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
768 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
769 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
770 			}
771 		}
772 		rds_len -= FM_RDS_BLK_SIZE;
773 		rds_data += FM_RDS_BLK_SIZE;
774 	}
775 
776 	/* Copy raw rds data to internal rds buffer */
777 	rds_data = skb->data;
778 	rds_len = skb->len;
779 
780 	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
781 	while (rds_len > 0) {
782 		/*
783 		 * Fill RDS buffer as per V4L2 specification.
784 		 * Store control byte
785 		 */
786 		type = (rds_data[2] & 0x07);
787 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
788 		tmpbuf[2] = blk_idx;	/* Offset name */
789 		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
790 
791 		/* Store data byte */
792 		tmpbuf[0] = rds_data[0];
793 		tmpbuf[1] = rds_data[1];
794 
795 		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
796 		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
797 
798 		/* Check for overflow & start over */
799 		if (rds->wr_idx == rds->rd_idx) {
800 			fmdbg("RDS buffer overflow\n");
801 			rds->wr_idx = 0;
802 			rds->rd_idx = 0;
803 			break;
804 		}
805 		rds_len -= FM_RDS_BLK_SIZE;
806 		rds_data += FM_RDS_BLK_SIZE;
807 	}
808 	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
809 
810 	/* Wakeup read queue */
811 	if (rds->wr_idx != rds->rd_idx)
812 		wake_up_interruptible(&rds->read_queue);
813 
814 	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
815 }
816 
817 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
818 {
819 	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
820 }
821 
822 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
823 {
824 	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
825 	    irq_info.mask) {
826 		fmdbg("irq: tune ended/bandlimit reached\n");
827 		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
828 			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
829 		} else {
830 			complete(&fmdev->maintask_comp);
831 			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
832 		}
833 	} else
834 		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
835 
836 	fm_irq_call(fmdev);
837 }
838 
839 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
840 {
841 	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
842 		fmdbg("irq: Power Enabled/Disabled\n");
843 		complete(&fmdev->maintask_comp);
844 	}
845 
846 	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
847 }
848 
849 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
850 {
851 	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
852 	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
853 	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
854 	    (fmdev->rx.stat_info.afcache_size != 0)) {
855 		fmdbg("irq: rssi level has fallen below threshold level\n");
856 
857 		/* Disable further low RSSI interrupts */
858 		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
859 
860 		fmdev->rx.afjump_idx = 0;
861 		fmdev->rx.freq_before_jump = fmdev->rx.freq;
862 		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
863 	} else {
864 		/* Continue next function in interrupt handler table */
865 		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
866 	}
867 
868 	fm_irq_call(fmdev);
869 }
870 
871 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
872 {
873 	u16 payload;
874 
875 	/* Set PI code - must be updated if the AF list is not empty */
876 	payload = fmdev->rx.stat_info.picode;
877 	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
878 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
879 }
880 
881 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
882 {
883 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
884 }
885 
886 /*
887  * Set PI mask.
888  * 0xFFFF = Enable PI code matching
889  * 0x0000 = Disable PI code matching
890  */
891 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
892 {
893 	u16 payload;
894 
895 	payload = 0x0000;
896 	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
897 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
898 }
899 
900 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
901 {
902 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
903 }
904 
905 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
906 {
907 	u16 frq_index;
908 	u16 payload;
909 
910 	fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
911 	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
912 	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
913 
914 	payload = frq_index;
915 	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
916 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
917 }
918 
919 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
920 {
921 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
922 }
923 
924 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
925 {
926 	u16 payload;
927 
928 	/* Enable FR (tuning operation ended) interrupt */
929 	payload = FM_FR_EVENT;
930 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
931 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
932 }
933 
934 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
935 {
936 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
937 }
938 
939 static void fm_irq_start_afjump(struct fmdev *fmdev)
940 {
941 	u16 payload;
942 
943 	payload = FM_TUNER_AF_JUMP_MODE;
944 	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
945 			sizeof(payload), NULL))
946 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
947 }
948 
949 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
950 {
951 	struct sk_buff *skb;
952 
953 	if (check_cmdresp_status(fmdev, &skb))
954 		return;
955 
956 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
957 	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
958 	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
959 }
960 
961 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
962 {
963 	u16 payload;
964 
965 	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
966 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
967 }
968 
969 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
970 {
971 	struct sk_buff *skb;
972 	u16 read_freq;
973 	u32 curr_freq, jumped_freq;
974 
975 	if (check_cmdresp_status(fmdev, &skb))
976 		return;
977 
978 	/* Skip header info and copy only response data */
979 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
980 	memcpy(&read_freq, skb->data, sizeof(read_freq));
981 	read_freq = be16_to_cpu((__force __be16)read_freq);
982 	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
983 
984 	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
985 
986 	/* If the frequency was changed the jump succeeded */
987 	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
988 		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
989 		fmdev->rx.freq = curr_freq;
990 		fm_rx_reset_rds_cache(fmdev);
991 
992 		/* AF feature is on, enable low level RSSI interrupt */
993 		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
994 			fmdev->irq_info.mask |= FM_LEV_EVENT;
995 
996 		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
997 	} else {		/* jump to the next freq in the AF list */
998 		fmdev->rx.afjump_idx++;
999 
1000 		/* If we reached the end of the list - stop searching */
1001 		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1002 			fmdbg("AF switch processing failed\n");
1003 			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1004 		} else {	/* AF List is not over - try next one */
1005 
1006 			fmdbg("Trying next freq in AF cache\n");
1007 			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1008 		}
1009 	}
1010 	fm_irq_call(fmdev);
1011 }
1012 
1013 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1014 {
1015 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1016 }
1017 
1018 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1019 {
1020 	u16 payload;
1021 
1022 	/* Re-enable FM interrupts */
1023 	payload = fmdev->irq_info.mask;
1024 
1025 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1026 			sizeof(payload), NULL))
1027 		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1028 }
1029 
1030 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1031 {
1032 	struct sk_buff *skb;
1033 
1034 	if (check_cmdresp_status(fmdev, &skb))
1035 		return;
1036 	/*
1037 	 * This is last function in interrupt table to be executed.
1038 	 * So, reset stage index to 0.
1039 	 */
1040 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1041 
1042 	/* Start processing any pending interrupt */
1043 	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1044 		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1045 	else
1046 		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1047 }
1048 
1049 /* Returns availability of RDS data in internal buffer */
1050 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1051 				struct poll_table_struct *pts)
1052 {
1053 	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1054 	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1055 		return 0;
1056 
1057 	return -EAGAIN;
1058 }
1059 
1060 /* Copies RDS data from internal buffer to user buffer */
1061 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1062 		u8 __user *buf, size_t count)
1063 {
1064 	u32 block_count;
1065 	u8 tmpbuf[FM_RDS_BLK_SIZE];
1066 	unsigned long flags;
1067 	int ret;
1068 
1069 	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1070 		if (file->f_flags & O_NONBLOCK)
1071 			return -EWOULDBLOCK;
1072 
1073 		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1074 				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1075 		if (ret)
1076 			return -EINTR;
1077 	}
1078 
1079 	/* Calculate block count from byte count */
1080 	count /= FM_RDS_BLK_SIZE;
1081 	block_count = 0;
1082 	ret = 0;
1083 
1084 	while (block_count < count) {
1085 		spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1086 
1087 		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1088 			spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1089 			break;
1090 		}
1091 		memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1092 					FM_RDS_BLK_SIZE);
1093 		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1094 		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1095 			fmdev->rx.rds.rd_idx = 0;
1096 
1097 		spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1098 
1099 		if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1100 			break;
1101 
1102 		block_count++;
1103 		buf += FM_RDS_BLK_SIZE;
1104 		ret += FM_RDS_BLK_SIZE;
1105 	}
1106 	return ret;
1107 }
1108 
1109 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1110 {
1111 	switch (fmdev->curr_fmmode) {
1112 	case FM_MODE_RX:
1113 		return fm_rx_set_freq(fmdev, freq_to_set);
1114 
1115 	case FM_MODE_TX:
1116 		return fm_tx_set_freq(fmdev, freq_to_set);
1117 
1118 	default:
1119 		return -EINVAL;
1120 	}
1121 }
1122 
1123 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1124 {
1125 	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1126 		fmerr("RX frequency is not set\n");
1127 		return -EPERM;
1128 	}
1129 	if (cur_tuned_frq == NULL) {
1130 		fmerr("Invalid memory\n");
1131 		return -ENOMEM;
1132 	}
1133 
1134 	switch (fmdev->curr_fmmode) {
1135 	case FM_MODE_RX:
1136 		*cur_tuned_frq = fmdev->rx.freq;
1137 		return 0;
1138 
1139 	case FM_MODE_TX:
1140 		*cur_tuned_frq = 0;	/* TODO : Change this later */
1141 		return 0;
1142 
1143 	default:
1144 		return -EINVAL;
1145 	}
1146 
1147 }
1148 
1149 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1150 {
1151 	switch (fmdev->curr_fmmode) {
1152 	case FM_MODE_RX:
1153 		return fm_rx_set_region(fmdev, region_to_set);
1154 
1155 	case FM_MODE_TX:
1156 		return fm_tx_set_region(fmdev, region_to_set);
1157 
1158 	default:
1159 		return -EINVAL;
1160 	}
1161 }
1162 
1163 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1164 {
1165 	switch (fmdev->curr_fmmode) {
1166 	case FM_MODE_RX:
1167 		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1168 
1169 	case FM_MODE_TX:
1170 		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1171 
1172 	default:
1173 		return -EINVAL;
1174 	}
1175 }
1176 
1177 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1178 {
1179 	switch (fmdev->curr_fmmode) {
1180 	case FM_MODE_RX:
1181 		return fm_rx_set_stereo_mono(fmdev, mode);
1182 
1183 	case FM_MODE_TX:
1184 		return fm_tx_set_stereo_mono(fmdev, mode);
1185 
1186 	default:
1187 		return -EINVAL;
1188 	}
1189 }
1190 
1191 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1192 {
1193 	switch (fmdev->curr_fmmode) {
1194 	case FM_MODE_RX:
1195 		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1196 
1197 	case FM_MODE_TX:
1198 		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1199 
1200 	default:
1201 		return -EINVAL;
1202 	}
1203 }
1204 
1205 /* Sends power off command to the chip */
1206 static int fm_power_down(struct fmdev *fmdev)
1207 {
1208 	u16 payload;
1209 	int ret;
1210 
1211 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1212 		fmerr("FM core is not ready\n");
1213 		return -EPERM;
1214 	}
1215 	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1216 		fmdbg("FM chip is already in OFF state\n");
1217 		return 0;
1218 	}
1219 
1220 	payload = 0x0;
1221 	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1222 		sizeof(payload), NULL, NULL);
1223 	if (ret < 0)
1224 		return ret;
1225 
1226 	return fmc_release(fmdev);
1227 }
1228 
1229 /* Reads init command from FM firmware file and loads to the chip */
1230 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1231 {
1232 	const struct firmware *fw_entry;
1233 	struct bts_header *fw_header;
1234 	struct bts_action *action;
1235 	struct bts_action_delay *delay;
1236 	u8 *fw_data;
1237 	int ret, fw_len;
1238 
1239 	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1240 
1241 	ret = request_firmware(&fw_entry, fw_name,
1242 				&fmdev->radio_dev->dev);
1243 	if (ret < 0) {
1244 		fmerr("Unable to read firmware(%s) content\n", fw_name);
1245 		return ret;
1246 	}
1247 	fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1248 
1249 	fw_data = (void *)fw_entry->data;
1250 	fw_len = fw_entry->size;
1251 
1252 	fw_header = (struct bts_header *)fw_data;
1253 	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1254 		fmerr("%s not a legal TI firmware file\n", fw_name);
1255 		ret = -EINVAL;
1256 		goto rel_fw;
1257 	}
1258 	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1259 
1260 	/* Skip file header info , we already verified it */
1261 	fw_data += sizeof(struct bts_header);
1262 	fw_len -= sizeof(struct bts_header);
1263 
1264 	while (fw_data && fw_len > 0) {
1265 		action = (struct bts_action *)fw_data;
1266 
1267 		switch (action->type) {
1268 		case ACTION_SEND_COMMAND:	/* Send */
1269 			ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1270 					   action->size, NULL, NULL);
1271 			if (ret)
1272 				goto rel_fw;
1273 
1274 			break;
1275 
1276 		case ACTION_DELAY:	/* Delay */
1277 			delay = (struct bts_action_delay *)action->data;
1278 			mdelay(delay->msec);
1279 			break;
1280 		}
1281 
1282 		fw_data += (sizeof(struct bts_action) + (action->size));
1283 		fw_len -= (sizeof(struct bts_action) + (action->size));
1284 	}
1285 	fmdbg("Transfered only %d of %d bytes of the firmware to chip\n", fw_entry->size - fw_len, fw_entry->size);
1286 rel_fw:
1287 	release_firmware(fw_entry);
1288 	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1289 
1290 	return ret;
1291 }
1292 
1293 /* Loads default RX configuration to the chip */
1294 static int load_default_rx_configuration(struct fmdev *fmdev)
1295 {
1296 	int ret;
1297 
1298 	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1303 }
1304 
1305 /* Does FM power on sequence */
1306 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1307 {
1308 	u16 payload;
1309 	__be16 asic_id = 0, asic_ver = 0;
1310 	int resp_len, ret;
1311 	u8 fw_name[50];
1312 
1313 	if (mode >= FM_MODE_ENTRY_MAX) {
1314 		fmerr("Invalid firmware download option\n");
1315 		return -EINVAL;
1316 	}
1317 
1318 	/*
1319 	 * Initialize FM common module. FM GPIO toggling is
1320 	 * taken care in Shared Transport driver.
1321 	 */
1322 	ret = fmc_prepare(fmdev);
1323 	if (ret < 0) {
1324 		fmerr("Unable to prepare FM Common\n");
1325 		return ret;
1326 	}
1327 
1328 	payload = FM_ENABLE;
1329 	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1330 			sizeof(payload), NULL, NULL))
1331 		goto rel;
1332 
1333 	/* Allow the chip to settle down in Channel-8 mode */
1334 	msleep(20);
1335 
1336 	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1337 			sizeof(asic_id), &asic_id, &resp_len))
1338 		goto rel;
1339 
1340 	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1341 			sizeof(asic_ver), &asic_ver, &resp_len))
1342 		goto rel;
1343 
1344 	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1345 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1346 
1347 	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1348 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1349 
1350 	ret = fm_download_firmware(fmdev, fw_name);
1351 	if (ret < 0) {
1352 		fmdbg("Failed to download firmware file %s\n", fw_name);
1353 		goto rel;
1354 	}
1355 	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1356 			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1357 			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1358 
1359 	ret = fm_download_firmware(fmdev, fw_name);
1360 	if (ret < 0) {
1361 		fmdbg("Failed to download firmware file %s\n", fw_name);
1362 		goto rel;
1363 	} else
1364 		return ret;
1365 rel:
1366 	return fmc_release(fmdev);
1367 }
1368 
1369 /* Set FM Modes(TX, RX, OFF) */
1370 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1371 {
1372 	int ret = 0;
1373 
1374 	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1375 		fmerr("Invalid FM mode\n");
1376 		return -EINVAL;
1377 	}
1378 	if (fmdev->curr_fmmode == fm_mode) {
1379 		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1380 		return ret;
1381 	}
1382 
1383 	switch (fm_mode) {
1384 	case FM_MODE_OFF:	/* OFF Mode */
1385 		ret = fm_power_down(fmdev);
1386 		if (ret < 0) {
1387 			fmerr("Failed to set OFF mode\n");
1388 			return ret;
1389 		}
1390 		break;
1391 
1392 	case FM_MODE_TX:	/* TX Mode */
1393 	case FM_MODE_RX:	/* RX Mode */
1394 		/* Power down before switching to TX or RX mode */
1395 		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1396 			ret = fm_power_down(fmdev);
1397 			if (ret < 0) {
1398 				fmerr("Failed to set OFF mode\n");
1399 				return ret;
1400 			}
1401 			msleep(30);
1402 		}
1403 		ret = fm_power_up(fmdev, fm_mode);
1404 		if (ret < 0) {
1405 			fmerr("Failed to load firmware\n");
1406 			return ret;
1407 		}
1408 	}
1409 	fmdev->curr_fmmode = fm_mode;
1410 
1411 	/* Set default configuration */
1412 	if (fmdev->curr_fmmode == FM_MODE_RX) {
1413 		fmdbg("Loading default rx configuration..\n");
1414 		ret = load_default_rx_configuration(fmdev);
1415 		if (ret < 0)
1416 			fmerr("Failed to load default values\n");
1417 	}
1418 
1419 	return ret;
1420 }
1421 
1422 /* Returns current FM mode (TX, RX, OFF) */
1423 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1424 {
1425 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1426 		fmerr("FM core is not ready\n");
1427 		return -EPERM;
1428 	}
1429 	if (fmmode == NULL) {
1430 		fmerr("Invalid memory\n");
1431 		return -ENOMEM;
1432 	}
1433 
1434 	*fmmode = fmdev->curr_fmmode;
1435 	return 0;
1436 }
1437 
1438 /* Called by ST layer when FM packet is available */
1439 static long fm_st_receive(void *arg, struct sk_buff *skb)
1440 {
1441 	struct fmdev *fmdev;
1442 
1443 	fmdev = arg;
1444 
1445 	if (skb == NULL) {
1446 		fmerr("Invalid SKB received from ST\n");
1447 		return -EFAULT;
1448 	}
1449 
1450 	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1451 		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1452 		return -EINVAL;
1453 	}
1454 
1455 	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1456 	skb_queue_tail(&fmdev->rx_q, skb);
1457 	tasklet_schedule(&fmdev->rx_task);
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * Called by ST layer to indicate protocol registration completion
1464  * status.
1465  */
1466 static void fm_st_reg_comp_cb(void *arg, int data)
1467 {
1468 	struct fmdev *fmdev;
1469 
1470 	fmdev = (struct fmdev *)arg;
1471 	fmdev->streg_cbdata = data;
1472 	complete(&wait_for_fmdrv_reg_comp);
1473 }
1474 
1475 /*
1476  * This function will be called from FM V4L2 open function.
1477  * Register with ST driver and initialize driver data.
1478  */
1479 int fmc_prepare(struct fmdev *fmdev)
1480 {
1481 	static struct st_proto_s fm_st_proto;
1482 	int ret;
1483 
1484 	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1485 		fmdbg("FM Core is already up\n");
1486 		return 0;
1487 	}
1488 
1489 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1490 	fm_st_proto.recv = fm_st_receive;
1491 	fm_st_proto.match_packet = NULL;
1492 	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1493 	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1494 	fm_st_proto.priv_data = fmdev;
1495 	fm_st_proto.chnl_id = 0x08;
1496 	fm_st_proto.max_frame_size = 0xff;
1497 	fm_st_proto.hdr_len = 1;
1498 	fm_st_proto.offset_len_in_hdr = 0;
1499 	fm_st_proto.len_size = 1;
1500 	fm_st_proto.reserve = 1;
1501 
1502 	ret = st_register(&fm_st_proto);
1503 	if (ret == -EINPROGRESS) {
1504 		init_completion(&wait_for_fmdrv_reg_comp);
1505 		fmdev->streg_cbdata = -EINPROGRESS;
1506 		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1507 
1508 		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1509 						 FM_ST_REG_TIMEOUT)) {
1510 			fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1511 					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1512 			return -ETIMEDOUT;
1513 		}
1514 		if (fmdev->streg_cbdata != 0) {
1515 			fmerr("ST reg comp CB called with error status %d\n",
1516 			      fmdev->streg_cbdata);
1517 			return -EAGAIN;
1518 		}
1519 
1520 		ret = 0;
1521 	} else if (ret < 0) {
1522 		fmerr("st_register failed %d\n", ret);
1523 		return -EAGAIN;
1524 	}
1525 
1526 	if (fm_st_proto.write != NULL) {
1527 		g_st_write = fm_st_proto.write;
1528 	} else {
1529 		fmerr("Failed to get ST write func pointer\n");
1530 		ret = st_unregister(&fm_st_proto);
1531 		if (ret < 0)
1532 			fmerr("st_unregister failed %d\n", ret);
1533 		return -EAGAIN;
1534 	}
1535 
1536 	spin_lock_init(&fmdev->rds_buff_lock);
1537 	spin_lock_init(&fmdev->resp_skb_lock);
1538 
1539 	/* Initialize TX queue and TX tasklet */
1540 	skb_queue_head_init(&fmdev->tx_q);
1541 	tasklet_setup(&fmdev->tx_task, send_tasklet);
1542 
1543 	/* Initialize RX Queue and RX tasklet */
1544 	skb_queue_head_init(&fmdev->rx_q);
1545 	tasklet_setup(&fmdev->rx_task, recv_tasklet);
1546 
1547 	fmdev->irq_info.stage = 0;
1548 	atomic_set(&fmdev->tx_cnt, 1);
1549 	fmdev->resp_comp = NULL;
1550 
1551 	timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1552 	/*TODO: add FM_STIC_EVENT later */
1553 	fmdev->irq_info.mask = FM_MAL_EVENT;
1554 
1555 	/* Region info */
1556 	fmdev->rx.region = region_configs[default_radio_region];
1557 
1558 	fmdev->rx.mute_mode = FM_MUTE_OFF;
1559 	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1560 	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1561 	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1562 	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1563 	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1564 	fmdev->irq_info.retry = 0;
1565 
1566 	fm_rx_reset_rds_cache(fmdev);
1567 	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1568 
1569 	fm_rx_reset_station_info(fmdev);
1570 	set_bit(FM_CORE_READY, &fmdev->flag);
1571 
1572 	return ret;
1573 }
1574 
1575 /*
1576  * This function will be called from FM V4L2 release function.
1577  * Unregister from ST driver.
1578  */
1579 int fmc_release(struct fmdev *fmdev)
1580 {
1581 	static struct st_proto_s fm_st_proto;
1582 	int ret;
1583 
1584 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1585 		fmdbg("FM Core is already down\n");
1586 		return 0;
1587 	}
1588 	/* Service pending read */
1589 	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1590 
1591 	tasklet_kill(&fmdev->tx_task);
1592 	tasklet_kill(&fmdev->rx_task);
1593 
1594 	skb_queue_purge(&fmdev->tx_q);
1595 	skb_queue_purge(&fmdev->rx_q);
1596 
1597 	fmdev->resp_comp = NULL;
1598 	fmdev->rx.freq = 0;
1599 
1600 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1601 	fm_st_proto.chnl_id = 0x08;
1602 
1603 	ret = st_unregister(&fm_st_proto);
1604 
1605 	if (ret < 0)
1606 		fmerr("Failed to de-register FM from ST %d\n", ret);
1607 	else
1608 		fmdbg("Successfully unregistered from ST\n");
1609 
1610 	clear_bit(FM_CORE_READY, &fmdev->flag);
1611 	return ret;
1612 }
1613 
1614 /*
1615  * Module init function. Ask FM V4L module to register video device.
1616  * Allocate memory for FM driver context and RX RDS buffer.
1617  */
1618 static int __init fm_drv_init(void)
1619 {
1620 	struct fmdev *fmdev = NULL;
1621 	int ret = -ENOMEM;
1622 
1623 	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1624 
1625 	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1626 	if (NULL == fmdev) {
1627 		fmerr("Can't allocate operation structure memory\n");
1628 		return ret;
1629 	}
1630 	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1631 	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1632 	if (NULL == fmdev->rx.rds.buff) {
1633 		fmerr("Can't allocate rds ring buffer\n");
1634 		goto rel_dev;
1635 	}
1636 
1637 	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1638 	if (ret < 0)
1639 		goto rel_rdsbuf;
1640 
1641 	fmdev->irq_info.handlers = int_handler_table;
1642 	fmdev->curr_fmmode = FM_MODE_OFF;
1643 	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1644 	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1645 	return ret;
1646 
1647 rel_rdsbuf:
1648 	kfree(fmdev->rx.rds.buff);
1649 rel_dev:
1650 	kfree(fmdev);
1651 
1652 	return ret;
1653 }
1654 
1655 /* Module exit function. Ask FM V4L module to unregister video device */
1656 static void __exit fm_drv_exit(void)
1657 {
1658 	struct fmdev *fmdev = NULL;
1659 
1660 	fmdev = fm_v4l2_deinit_video_device();
1661 	if (fmdev != NULL) {
1662 		kfree(fmdev->rx.rds.buff);
1663 		kfree(fmdev);
1664 	}
1665 }
1666 
1667 module_init(fm_drv_init);
1668 module_exit(fm_drv_exit);
1669 
1670 /* ------------- Module Info ------------- */
1671 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1672 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1673 MODULE_VERSION(FM_DRV_VERSION);
1674 MODULE_LICENSE("GPL");
1675