1 /* 2 * FM Driver for Connectivity chip of Texas Instruments. 3 * 4 * This sub-module of FM driver is common for FM RX and TX 5 * functionality. This module is responsible for: 6 * 1) Forming group of Channel-8 commands to perform particular 7 * functionality (eg., frequency set require more than 8 * one Channel-8 command to be sent to the chip). 9 * 2) Sending each Channel-8 command to the chip and reading 10 * response back over Shared Transport. 11 * 3) Managing TX and RX Queues and Tasklets. 12 * 4) Handling FM Interrupt packet and taking appropriate action. 13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX 14 * firmware files based on mode selection) 15 * 16 * Copyright (C) 2011 Texas Instruments 17 * Author: Raja Mani <raja_mani@ti.com> 18 * Author: Manjunatha Halli <manjunatha_halli@ti.com> 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License version 2 as 22 * published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/firmware.h> 37 #include <linux/delay.h> 38 #include "fmdrv.h" 39 #include "fmdrv_v4l2.h" 40 #include "fmdrv_common.h" 41 #include <linux/ti_wilink_st.h> 42 #include "fmdrv_rx.h" 43 #include "fmdrv_tx.h" 44 45 /* Region info */ 46 static struct region_info region_configs[] = { 47 /* Europe/US */ 48 { 49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 50 .bot_freq = 87500, /* 87.5 MHz */ 51 .top_freq = 108000, /* 108 MHz */ 52 .fm_band = 0, 53 }, 54 /* Japan */ 55 { 56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL, 57 .bot_freq = 76000, /* 76 MHz */ 58 .top_freq = 90000, /* 90 MHz */ 59 .fm_band = 1, 60 }, 61 }; 62 63 /* Band selection */ 64 static u8 default_radio_region; /* Europe/US */ 65 module_param(default_radio_region, byte, 0); 66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan"); 67 68 /* RDS buffer blocks */ 69 static u32 default_rds_buf = 300; 70 module_param(default_rds_buf, uint, 0444); 71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries"); 72 73 /* Radio Nr */ 74 static u32 radio_nr = -1; 75 module_param(radio_nr, int, 0444); 76 MODULE_PARM_DESC(radio_nr, "Radio Nr"); 77 78 /* FM irq handlers forward declaration */ 79 static void fm_irq_send_flag_getcmd(struct fmdev *); 80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *); 81 static void fm_irq_handle_hw_malfunction(struct fmdev *); 82 static void fm_irq_handle_rds_start(struct fmdev *); 83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *); 84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *); 85 static void fm_irq_handle_rds_finish(struct fmdev *); 86 static void fm_irq_handle_tune_op_ended(struct fmdev *); 87 static void fm_irq_handle_power_enb(struct fmdev *); 88 static void fm_irq_handle_low_rssi_start(struct fmdev *); 89 static void fm_irq_afjump_set_pi(struct fmdev *); 90 static void fm_irq_handle_set_pi_resp(struct fmdev *); 91 static void fm_irq_afjump_set_pimask(struct fmdev *); 92 static void fm_irq_handle_set_pimask_resp(struct fmdev *); 93 static void fm_irq_afjump_setfreq(struct fmdev *); 94 static void fm_irq_handle_setfreq_resp(struct fmdev *); 95 static void fm_irq_afjump_enableint(struct fmdev *); 96 static void fm_irq_afjump_enableint_resp(struct fmdev *); 97 static void fm_irq_start_afjump(struct fmdev *); 98 static void fm_irq_handle_start_afjump_resp(struct fmdev *); 99 static void fm_irq_afjump_rd_freq(struct fmdev *); 100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *); 101 static void fm_irq_handle_low_rssi_finish(struct fmdev *); 102 static void fm_irq_send_intmsk_cmd(struct fmdev *); 103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *); 104 105 /* 106 * When FM common module receives interrupt packet, following handlers 107 * will be executed one after another to service the interrupt(s) 108 */ 109 enum fmc_irq_handler_index { 110 FM_SEND_FLAG_GETCMD_IDX, 111 FM_HANDLE_FLAG_GETCMD_RESP_IDX, 112 113 /* HW malfunction irq handler */ 114 FM_HW_MAL_FUNC_IDX, 115 116 /* RDS threshold reached irq handler */ 117 FM_RDS_START_IDX, 118 FM_RDS_SEND_RDS_GETCMD_IDX, 119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX, 120 FM_RDS_FINISH_IDX, 121 122 /* Tune operation ended irq handler */ 123 FM_HW_TUNE_OP_ENDED_IDX, 124 125 /* TX power enable irq handler */ 126 FM_HW_POWER_ENB_IDX, 127 128 /* Low RSSI irq handler */ 129 FM_LOW_RSSI_START_IDX, 130 FM_AF_JUMP_SETPI_IDX, 131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX, 132 FM_AF_JUMP_SETPI_MASK_IDX, 133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX, 134 FM_AF_JUMP_SET_AF_FREQ_IDX, 135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX, 136 FM_AF_JUMP_ENABLE_INT_IDX, 137 FM_AF_JUMP_ENABLE_INT_RESP_IDX, 138 FM_AF_JUMP_START_AFJUMP_IDX, 139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX, 140 FM_AF_JUMP_RD_FREQ_IDX, 141 FM_AF_JUMP_RD_FREQ_RESP_IDX, 142 FM_LOW_RSSI_FINISH_IDX, 143 144 /* Interrupt process post action */ 145 FM_SEND_INTMSK_CMD_IDX, 146 FM_HANDLE_INTMSK_CMD_RESP_IDX, 147 }; 148 149 /* FM interrupt handler table */ 150 static int_handler_prototype int_handler_table[] = { 151 fm_irq_send_flag_getcmd, 152 fm_irq_handle_flag_getcmd_resp, 153 fm_irq_handle_hw_malfunction, 154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */ 155 fm_irq_send_rdsdata_getcmd, 156 fm_irq_handle_rdsdata_getcmd_resp, 157 fm_irq_handle_rds_finish, 158 fm_irq_handle_tune_op_ended, 159 fm_irq_handle_power_enb, /* TX power enable irq handler */ 160 fm_irq_handle_low_rssi_start, 161 fm_irq_afjump_set_pi, 162 fm_irq_handle_set_pi_resp, 163 fm_irq_afjump_set_pimask, 164 fm_irq_handle_set_pimask_resp, 165 fm_irq_afjump_setfreq, 166 fm_irq_handle_setfreq_resp, 167 fm_irq_afjump_enableint, 168 fm_irq_afjump_enableint_resp, 169 fm_irq_start_afjump, 170 fm_irq_handle_start_afjump_resp, 171 fm_irq_afjump_rd_freq, 172 fm_irq_afjump_rd_freq_resp, 173 fm_irq_handle_low_rssi_finish, 174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */ 175 fm_irq_handle_intmsk_cmd_resp 176 }; 177 178 static long (*g_st_write) (struct sk_buff *skb); 179 static struct completion wait_for_fmdrv_reg_comp; 180 181 static inline void fm_irq_call(struct fmdev *fmdev) 182 { 183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 184 } 185 186 /* Continue next function in interrupt handler table */ 187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage) 188 { 189 fmdev->irq_info.stage = stage; 190 fm_irq_call(fmdev); 191 } 192 193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage) 194 { 195 fmdev->irq_info.stage = stage; 196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 197 } 198 199 #ifdef FM_DUMP_TXRX_PKT 200 /* To dump outgoing FM Channel-8 packets */ 201 inline void dump_tx_skb_data(struct sk_buff *skb) 202 { 203 int len, len_org; 204 u8 index; 205 struct fm_cmd_msg_hdr *cmd_hdr; 206 207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data; 208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x", 209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr, 210 cmd_hdr->len, cmd_hdr->op, 211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen); 212 213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE; 214 if (len_org > 0) { 215 printk("\n data(%d): ", cmd_hdr->dlen); 216 len = min(len_org, 14); 217 for (index = 0; index < len; index++) 218 printk("%x ", 219 skb->data[FM_CMD_MSG_HDR_SIZE + index]); 220 printk("%s", (len_org > 14) ? ".." : ""); 221 } 222 printk("\n"); 223 } 224 225 /* To dump incoming FM Channel-8 packets */ 226 inline void dump_rx_skb_data(struct sk_buff *skb) 227 { 228 int len, len_org; 229 u8 index; 230 struct fm_event_msg_hdr *evt_hdr; 231 232 evt_hdr = (struct fm_event_msg_hdr *)skb->data; 233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x " 234 "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len, 235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op, 236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen); 237 238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE; 239 if (len_org > 0) { 240 printk("\n data(%d): ", evt_hdr->dlen); 241 len = min(len_org, 14); 242 for (index = 0; index < len; index++) 243 printk("%x ", 244 skb->data[FM_EVT_MSG_HDR_SIZE + index]); 245 printk("%s", (len_org > 14) ? ".." : ""); 246 } 247 printk("\n"); 248 } 249 #endif 250 251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set) 252 { 253 fmdev->rx.region = region_configs[region_to_set]; 254 } 255 256 /* 257 * FM common sub-module will schedule this tasklet whenever it receives 258 * FM packet from ST driver. 259 */ 260 static void recv_tasklet(unsigned long arg) 261 { 262 struct fmdev *fmdev; 263 struct fm_irq *irq_info; 264 struct fm_event_msg_hdr *evt_hdr; 265 struct sk_buff *skb; 266 u8 num_fm_hci_cmds; 267 unsigned long flags; 268 269 fmdev = (struct fmdev *)arg; 270 irq_info = &fmdev->irq_info; 271 /* Process all packets in the RX queue */ 272 while ((skb = skb_dequeue(&fmdev->rx_q))) { 273 if (skb->len < sizeof(struct fm_event_msg_hdr)) { 274 fmerr("skb(%p) has only %d bytes, " 275 "at least need %zu bytes to decode\n", skb, 276 skb->len, sizeof(struct fm_event_msg_hdr)); 277 kfree_skb(skb); 278 continue; 279 } 280 281 evt_hdr = (void *)skb->data; 282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; 283 284 /* FM interrupt packet? */ 285 if (evt_hdr->op == FM_INTERRUPT) { 286 /* FM interrupt handler started already? */ 287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag); 289 if (irq_info->stage != 0) { 290 fmerr("Inval stage resetting to zero\n"); 291 irq_info->stage = 0; 292 } 293 294 /* 295 * Execute first function in interrupt handler 296 * table. 297 */ 298 irq_info->handlers[irq_info->stage](fmdev); 299 } else { 300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag); 301 } 302 kfree_skb(skb); 303 } 304 /* Anyone waiting for this with completion handler? */ 305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) { 306 307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 308 fmdev->resp_skb = skb; 309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 310 complete(fmdev->resp_comp); 311 312 fmdev->resp_comp = NULL; 313 atomic_set(&fmdev->tx_cnt, 1); 314 } 315 /* Is this for interrupt handler? */ 316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) { 317 if (fmdev->resp_skb != NULL) 318 fmerr("Response SKB ptr not NULL\n"); 319 320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 321 fmdev->resp_skb = skb; 322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 323 324 /* Execute interrupt handler where state index points */ 325 irq_info->handlers[irq_info->stage](fmdev); 326 327 kfree_skb(skb); 328 atomic_set(&fmdev->tx_cnt, 1); 329 } else { 330 fmerr("Nobody claimed SKB(%p),purging\n", skb); 331 } 332 333 /* 334 * Check flow control field. If Num_FM_HCI_Commands field is 335 * not zero, schedule FM TX tasklet. 336 */ 337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt)) 338 if (!skb_queue_empty(&fmdev->tx_q)) 339 tasklet_schedule(&fmdev->tx_task); 340 } 341 } 342 343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */ 344 static void send_tasklet(unsigned long arg) 345 { 346 struct fmdev *fmdev; 347 struct sk_buff *skb; 348 int len; 349 350 fmdev = (struct fmdev *)arg; 351 352 if (!atomic_read(&fmdev->tx_cnt)) 353 return; 354 355 /* Check, is there any timeout happened to last transmitted packet */ 356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) { 357 fmerr("TX timeout occurred\n"); 358 atomic_set(&fmdev->tx_cnt, 1); 359 } 360 361 /* Send queued FM TX packets */ 362 skb = skb_dequeue(&fmdev->tx_q); 363 if (!skb) 364 return; 365 366 atomic_dec(&fmdev->tx_cnt); 367 fmdev->pre_op = fm_cb(skb)->fm_op; 368 369 if (fmdev->resp_comp != NULL) 370 fmerr("Response completion handler is not NULL\n"); 371 372 fmdev->resp_comp = fm_cb(skb)->completion; 373 374 /* Write FM packet to ST driver */ 375 len = g_st_write(skb); 376 if (len < 0) { 377 kfree_skb(skb); 378 fmdev->resp_comp = NULL; 379 fmerr("TX tasklet failed to send skb(%p)\n", skb); 380 atomic_set(&fmdev->tx_cnt, 1); 381 } else { 382 fmdev->last_tx_jiffies = jiffies; 383 } 384 } 385 386 /* 387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for 388 * transmission 389 */ 390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 391 int payload_len, struct completion *wait_completion) 392 { 393 struct sk_buff *skb; 394 struct fm_cmd_msg_hdr *hdr; 395 int size; 396 397 if (fm_op >= FM_INTERRUPT) { 398 fmerr("Invalid fm opcode - %d\n", fm_op); 399 return -EINVAL; 400 } 401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) { 402 fmerr("Payload data is NULL during fw download\n"); 403 return -EINVAL; 404 } 405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag)) 406 size = 407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len); 408 else 409 size = payload_len; 410 411 skb = alloc_skb(size, GFP_ATOMIC); 412 if (!skb) { 413 fmerr("No memory to create new SKB\n"); 414 return -ENOMEM; 415 } 416 /* 417 * Don't fill FM header info for the commands which come from 418 * FM firmware file. 419 */ 420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) || 421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) { 422 /* Fill command header info */ 423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE); 424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */ 425 426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */ 427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3; 428 429 /* FM opcode */ 430 hdr->op = fm_op; 431 432 /* read/write type */ 433 hdr->rd_wr = type; 434 hdr->dlen = payload_len; 435 fm_cb(skb)->fm_op = fm_op; 436 437 /* 438 * If firmware download has finished and the command is 439 * not a read command then payload is != NULL - a write 440 * command with u16 payload - convert to be16 441 */ 442 if (payload != NULL) 443 *(u16 *)payload = cpu_to_be16(*(u16 *)payload); 444 445 } else if (payload != NULL) { 446 fm_cb(skb)->fm_op = *((u8 *)payload + 2); 447 } 448 if (payload != NULL) 449 memcpy(skb_put(skb, payload_len), payload, payload_len); 450 451 fm_cb(skb)->completion = wait_completion; 452 skb_queue_tail(&fmdev->tx_q, skb); 453 tasklet_schedule(&fmdev->tx_task); 454 455 return 0; 456 } 457 458 /* Sends FM Channel-8 command to the chip and waits for the response */ 459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload, 460 unsigned int payload_len, void *response, int *response_len) 461 { 462 struct sk_buff *skb; 463 struct fm_event_msg_hdr *evt_hdr; 464 unsigned long flags; 465 int ret; 466 467 init_completion(&fmdev->maintask_comp); 468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len, 469 &fmdev->maintask_comp); 470 if (ret) 471 return ret; 472 473 if (!wait_for_completion_timeout(&fmdev->maintask_comp, 474 FM_DRV_TX_TIMEOUT)) { 475 fmerr("Timeout(%d sec),didn't get reg" 476 "completion signal from RX tasklet\n", 477 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000); 478 return -ETIMEDOUT; 479 } 480 if (!fmdev->resp_skb) { 481 fmerr("Response SKB is missing\n"); 482 return -EFAULT; 483 } 484 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 485 skb = fmdev->resp_skb; 486 fmdev->resp_skb = NULL; 487 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 488 489 evt_hdr = (void *)skb->data; 490 if (evt_hdr->status != 0) { 491 fmerr("Received event pkt status(%d) is not zero\n", 492 evt_hdr->status); 493 kfree_skb(skb); 494 return -EIO; 495 } 496 /* Send response data to caller */ 497 if (response != NULL && response_len != NULL && evt_hdr->dlen) { 498 /* Skip header info and copy only response data */ 499 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 500 memcpy(response, skb->data, evt_hdr->dlen); 501 *response_len = evt_hdr->dlen; 502 } else if (response_len != NULL && evt_hdr->dlen == 0) { 503 *response_len = 0; 504 } 505 kfree_skb(skb); 506 507 return 0; 508 } 509 510 /* --- Helper functions used in FM interrupt handlers ---*/ 511 static inline int check_cmdresp_status(struct fmdev *fmdev, 512 struct sk_buff **skb) 513 { 514 struct fm_event_msg_hdr *fm_evt_hdr; 515 unsigned long flags; 516 517 del_timer(&fmdev->irq_info.timer); 518 519 spin_lock_irqsave(&fmdev->resp_skb_lock, flags); 520 *skb = fmdev->resp_skb; 521 fmdev->resp_skb = NULL; 522 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags); 523 524 fm_evt_hdr = (void *)(*skb)->data; 525 if (fm_evt_hdr->status != 0) { 526 fmerr("irq: opcode %x response status is not zero " 527 "Initiating irq recovery process\n", 528 fm_evt_hdr->op); 529 530 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT); 531 return -1; 532 } 533 534 return 0; 535 } 536 537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage) 538 { 539 struct sk_buff *skb; 540 541 if (!check_cmdresp_status(fmdev, &skb)) 542 fm_irq_call_stage(fmdev, stage); 543 } 544 545 /* 546 * Interrupt process timeout handler. 547 * One of the irq handler did not get proper response from the chip. So take 548 * recovery action here. FM interrupts are disabled in the beginning of 549 * interrupt process. Therefore reset stage index to re-enable default 550 * interrupts. So that next interrupt will be processed as usual. 551 */ 552 static void int_timeout_handler(unsigned long data) 553 { 554 struct fmdev *fmdev; 555 struct fm_irq *fmirq; 556 557 fmdbg("irq: timeout,trying to re-enable fm interrupts\n"); 558 fmdev = (struct fmdev *)data; 559 fmirq = &fmdev->irq_info; 560 fmirq->retry++; 561 562 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) { 563 /* Stop recovery action (interrupt reenable process) and 564 * reset stage index & retry count values */ 565 fmirq->stage = 0; 566 fmirq->retry = 0; 567 fmerr("Recovery action failed during" 568 "irq processing, max retry reached\n"); 569 return; 570 } 571 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 572 } 573 574 /* --------- FM interrupt handlers ------------*/ 575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev) 576 { 577 u16 flag; 578 579 /* Send FLAG_GET command , to know the source of interrupt */ 580 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL)) 581 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX); 582 } 583 584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev) 585 { 586 struct sk_buff *skb; 587 struct fm_event_msg_hdr *fm_evt_hdr; 588 589 if (check_cmdresp_status(fmdev, &skb)) 590 return; 591 592 fm_evt_hdr = (void *)skb->data; 593 594 /* Skip header info and copy only response data */ 595 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 596 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen); 597 598 fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag); 599 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag); 600 601 /* Continue next function in interrupt handler table */ 602 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX); 603 } 604 605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev) 606 { 607 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask) 608 fmerr("irq: HW MAL int received - do nothing\n"); 609 610 /* Continue next function in interrupt handler table */ 611 fm_irq_call_stage(fmdev, FM_RDS_START_IDX); 612 } 613 614 static void fm_irq_handle_rds_start(struct fmdev *fmdev) 615 { 616 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) { 617 fmdbg("irq: rds threshold reached\n"); 618 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX; 619 } else { 620 /* Continue next function in interrupt handler table */ 621 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX; 622 } 623 624 fm_irq_call(fmdev); 625 } 626 627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev) 628 { 629 /* Send the command to read RDS data from the chip */ 630 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL, 631 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL)) 632 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX); 633 } 634 635 /* Keeps track of current RX channel AF (Alternate Frequency) */ 636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af) 637 { 638 struct tuned_station_info *stat_info = &fmdev->rx.stat_info; 639 u8 reg_idx = fmdev->rx.region.fm_band; 640 u8 index; 641 u32 freq; 642 643 /* First AF indicates the number of AF follows. Reset the list */ 644 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) { 645 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1); 646 fmdev->rx.stat_info.afcache_size = 0; 647 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max); 648 return; 649 } 650 651 if (af < FM_RDS_MIN_AF) 652 return; 653 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF) 654 return; 655 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN) 656 return; 657 658 freq = fmdev->rx.region.bot_freq + (af * 100); 659 if (freq == fmdev->rx.freq) { 660 fmdbg("Current freq(%d) is matching with received AF(%d)\n", 661 fmdev->rx.freq, freq); 662 return; 663 } 664 /* Do check in AF cache */ 665 for (index = 0; index < stat_info->afcache_size; index++) { 666 if (stat_info->af_cache[index] == freq) 667 break; 668 } 669 /* Reached the limit of the list - ignore the next AF */ 670 if (index == stat_info->af_list_max) { 671 fmdbg("AF cache is full\n"); 672 return; 673 } 674 /* 675 * If we reached the end of the list then this AF is not 676 * in the list - add it. 677 */ 678 if (index == stat_info->afcache_size) { 679 fmdbg("Storing AF %d to cache index %d\n", freq, index); 680 stat_info->af_cache[index] = freq; 681 stat_info->afcache_size++; 682 } 683 } 684 685 /* 686 * Converts RDS buffer data from big endian format 687 * to little endian format. 688 */ 689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev, 690 struct fm_rdsdata_format *rds_format) 691 { 692 u8 byte1; 693 u8 index = 0; 694 u8 *rds_buff; 695 696 /* 697 * Since in Orca the 2 RDS Data bytes are in little endian and 698 * in Dolphin they are in big endian, the parsing of the RDS data 699 * is chip dependent 700 */ 701 if (fmdev->asci_id != 0x6350) { 702 rds_buff = &rds_format->data.groupdatabuff.buff[0]; 703 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) { 704 byte1 = rds_buff[index]; 705 rds_buff[index] = rds_buff[index + 1]; 706 rds_buff[index + 1] = byte1; 707 index += 2; 708 } 709 } 710 } 711 712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev) 713 { 714 struct sk_buff *skb; 715 struct fm_rdsdata_format rds_fmt; 716 struct fm_rds *rds = &fmdev->rx.rds; 717 unsigned long group_idx, flags; 718 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE]; 719 u8 type, blk_idx; 720 u16 cur_picode; 721 u32 rds_len; 722 723 if (check_cmdresp_status(fmdev, &skb)) 724 return; 725 726 /* Skip header info */ 727 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 728 rds_data = skb->data; 729 rds_len = skb->len; 730 731 /* Parse the RDS data */ 732 while (rds_len >= FM_RDS_BLK_SIZE) { 733 meta_data = rds_data[2]; 734 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */ 735 type = (meta_data & 0x07); 736 737 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */ 738 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 739 fmdbg("Block index:%d(%s)\n", blk_idx, 740 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok"); 741 742 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0) 743 break; 744 745 if (blk_idx > FM_RDS_BLK_IDX_D) { 746 fmdbg("Block sequence mismatch\n"); 747 rds->last_blk_idx = -1; 748 break; 749 } 750 751 /* Skip checkword (control) byte and copy only data byte */ 752 memcpy(&rds_fmt.data.groupdatabuff. 753 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)], 754 rds_data, (FM_RDS_BLK_SIZE - 1)); 755 756 rds->last_blk_idx = blk_idx; 757 758 /* If completed a whole group then handle it */ 759 if (blk_idx == FM_RDS_BLK_IDX_D) { 760 fmdbg("Good block received\n"); 761 fm_rdsparse_swapbytes(fmdev, &rds_fmt); 762 763 /* 764 * Extract PI code and store in local cache. 765 * We need this during AF switch processing. 766 */ 767 cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata); 768 if (fmdev->rx.stat_info.picode != cur_picode) 769 fmdev->rx.stat_info.picode = cur_picode; 770 771 fmdbg("picode:%d\n", cur_picode); 772 773 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 774 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2, 775 (group_idx % 2) ? "B" : "A"); 776 777 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3); 778 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) { 779 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]); 780 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]); 781 } 782 } 783 rds_len -= FM_RDS_BLK_SIZE; 784 rds_data += FM_RDS_BLK_SIZE; 785 } 786 787 /* Copy raw rds data to internal rds buffer */ 788 rds_data = skb->data; 789 rds_len = skb->len; 790 791 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 792 while (rds_len > 0) { 793 /* 794 * Fill RDS buffer as per V4L2 specification. 795 * Store control byte 796 */ 797 type = (rds_data[2] & 0x07); 798 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1)); 799 tmpbuf[2] = blk_idx; /* Offset name */ 800 tmpbuf[2] |= blk_idx << 3; /* Received offset */ 801 802 /* Store data byte */ 803 tmpbuf[0] = rds_data[0]; 804 tmpbuf[1] = rds_data[1]; 805 806 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE); 807 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size; 808 809 /* Check for overflow & start over */ 810 if (rds->wr_idx == rds->rd_idx) { 811 fmdbg("RDS buffer overflow\n"); 812 rds->wr_idx = 0; 813 rds->rd_idx = 0; 814 break; 815 } 816 rds_len -= FM_RDS_BLK_SIZE; 817 rds_data += FM_RDS_BLK_SIZE; 818 } 819 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 820 821 /* Wakeup read queue */ 822 if (rds->wr_idx != rds->rd_idx) 823 wake_up_interruptible(&rds->read_queue); 824 825 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX); 826 } 827 828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev) 829 { 830 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX); 831 } 832 833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev) 834 { 835 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev-> 836 irq_info.mask) { 837 fmdbg("irq: tune ended/bandlimit reached\n"); 838 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) { 839 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX; 840 } else { 841 complete(&fmdev->maintask_comp); 842 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 843 } 844 } else 845 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX; 846 847 fm_irq_call(fmdev); 848 } 849 850 static void fm_irq_handle_power_enb(struct fmdev *fmdev) 851 { 852 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) { 853 fmdbg("irq: Power Enabled/Disabled\n"); 854 complete(&fmdev->maintask_comp); 855 } 856 857 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX); 858 } 859 860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev) 861 { 862 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) && 863 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) && 864 (fmdev->rx.freq != FM_UNDEFINED_FREQ) && 865 (fmdev->rx.stat_info.afcache_size != 0)) { 866 fmdbg("irq: rssi level has fallen below threshold level\n"); 867 868 /* Disable further low RSSI interrupts */ 869 fmdev->irq_info.mask &= ~FM_LEV_EVENT; 870 871 fmdev->rx.afjump_idx = 0; 872 fmdev->rx.freq_before_jump = fmdev->rx.freq; 873 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 874 } else { 875 /* Continue next function in interrupt handler table */ 876 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX; 877 } 878 879 fm_irq_call(fmdev); 880 } 881 882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev) 883 { 884 u16 payload; 885 886 /* Set PI code - must be updated if the AF list is not empty */ 887 payload = fmdev->rx.stat_info.picode; 888 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL)) 889 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX); 890 } 891 892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev) 893 { 894 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX); 895 } 896 897 /* 898 * Set PI mask. 899 * 0xFFFF = Enable PI code matching 900 * 0x0000 = Disable PI code matching 901 */ 902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev) 903 { 904 u16 payload; 905 906 payload = 0x0000; 907 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 908 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX); 909 } 910 911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev) 912 { 913 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX); 914 } 915 916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev) 917 { 918 u16 frq_index; 919 u16 payload; 920 921 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]); 922 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] - 923 fmdev->rx.region.bot_freq) / FM_FREQ_MUL; 924 925 payload = frq_index; 926 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL)) 927 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX); 928 } 929 930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev) 931 { 932 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX); 933 } 934 935 static void fm_irq_afjump_enableint(struct fmdev *fmdev) 936 { 937 u16 payload; 938 939 /* Enable FR (tuning operation ended) interrupt */ 940 payload = FM_FR_EVENT; 941 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL)) 942 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX); 943 } 944 945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev) 946 { 947 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX); 948 } 949 950 static void fm_irq_start_afjump(struct fmdev *fmdev) 951 { 952 u16 payload; 953 954 payload = FM_TUNER_AF_JUMP_MODE; 955 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload, 956 sizeof(payload), NULL)) 957 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX); 958 } 959 960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev) 961 { 962 struct sk_buff *skb; 963 964 if (check_cmdresp_status(fmdev, &skb)) 965 return; 966 967 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 968 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag); 969 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 970 } 971 972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev) 973 { 974 u16 payload; 975 976 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL)) 977 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX); 978 } 979 980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev) 981 { 982 struct sk_buff *skb; 983 u16 read_freq; 984 u32 curr_freq, jumped_freq; 985 986 if (check_cmdresp_status(fmdev, &skb)) 987 return; 988 989 /* Skip header info and copy only response data */ 990 skb_pull(skb, sizeof(struct fm_event_msg_hdr)); 991 memcpy(&read_freq, skb->data, sizeof(read_freq)); 992 read_freq = be16_to_cpu(read_freq); 993 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL); 994 995 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]; 996 997 /* If the frequency was changed the jump succeeded */ 998 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) { 999 fmdbg("Successfully switched to alternate freq %d\n", curr_freq); 1000 fmdev->rx.freq = curr_freq; 1001 fm_rx_reset_rds_cache(fmdev); 1002 1003 /* AF feature is on, enable low level RSSI interrupt */ 1004 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) 1005 fmdev->irq_info.mask |= FM_LEV_EVENT; 1006 1007 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1008 } else { /* jump to the next freq in the AF list */ 1009 fmdev->rx.afjump_idx++; 1010 1011 /* If we reached the end of the list - stop searching */ 1012 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) { 1013 fmdbg("AF switch processing failed\n"); 1014 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX; 1015 } else { /* AF List is not over - try next one */ 1016 1017 fmdbg("Trying next freq in AF cache\n"); 1018 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX; 1019 } 1020 } 1021 fm_irq_call(fmdev); 1022 } 1023 1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev) 1025 { 1026 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX); 1027 } 1028 1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev) 1030 { 1031 u16 payload; 1032 1033 /* Re-enable FM interrupts */ 1034 payload = fmdev->irq_info.mask; 1035 1036 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, 1037 sizeof(payload), NULL)) 1038 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX); 1039 } 1040 1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev) 1042 { 1043 struct sk_buff *skb; 1044 1045 if (check_cmdresp_status(fmdev, &skb)) 1046 return; 1047 /* 1048 * This is last function in interrupt table to be executed. 1049 * So, reset stage index to 0. 1050 */ 1051 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX; 1052 1053 /* Start processing any pending interrupt */ 1054 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag)) 1055 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev); 1056 else 1057 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag); 1058 } 1059 1060 /* Returns availability of RDS data in internel buffer */ 1061 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file, 1062 struct poll_table_struct *pts) 1063 { 1064 poll_wait(file, &fmdev->rx.rds.read_queue, pts); 1065 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) 1066 return 0; 1067 1068 return -EAGAIN; 1069 } 1070 1071 /* Copies RDS data from internal buffer to user buffer */ 1072 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file, 1073 u8 __user *buf, size_t count) 1074 { 1075 u32 block_count; 1076 u8 tmpbuf[FM_RDS_BLK_SIZE]; 1077 unsigned long flags; 1078 int ret; 1079 1080 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1081 if (file->f_flags & O_NONBLOCK) 1082 return -EWOULDBLOCK; 1083 1084 ret = wait_event_interruptible(fmdev->rx.rds.read_queue, 1085 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx)); 1086 if (ret) 1087 return -EINTR; 1088 } 1089 1090 /* Calculate block count from byte count */ 1091 count /= FM_RDS_BLK_SIZE; 1092 block_count = 0; 1093 ret = 0; 1094 1095 while (block_count < count) { 1096 spin_lock_irqsave(&fmdev->rds_buff_lock, flags); 1097 1098 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { 1099 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1100 break; 1101 } 1102 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx], 1103 FM_RDS_BLK_SIZE); 1104 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE; 1105 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) 1106 fmdev->rx.rds.rd_idx = 0; 1107 1108 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags); 1109 1110 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE)) 1111 break; 1112 1113 block_count++; 1114 buf += FM_RDS_BLK_SIZE; 1115 ret += FM_RDS_BLK_SIZE; 1116 } 1117 return ret; 1118 } 1119 1120 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set) 1121 { 1122 switch (fmdev->curr_fmmode) { 1123 case FM_MODE_RX: 1124 return fm_rx_set_freq(fmdev, freq_to_set); 1125 1126 case FM_MODE_TX: 1127 return fm_tx_set_freq(fmdev, freq_to_set); 1128 1129 default: 1130 return -EINVAL; 1131 } 1132 } 1133 1134 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq) 1135 { 1136 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) { 1137 fmerr("RX frequency is not set\n"); 1138 return -EPERM; 1139 } 1140 if (cur_tuned_frq == NULL) { 1141 fmerr("Invalid memory\n"); 1142 return -ENOMEM; 1143 } 1144 1145 switch (fmdev->curr_fmmode) { 1146 case FM_MODE_RX: 1147 *cur_tuned_frq = fmdev->rx.freq; 1148 return 0; 1149 1150 case FM_MODE_TX: 1151 *cur_tuned_frq = 0; /* TODO : Change this later */ 1152 return 0; 1153 1154 default: 1155 return -EINVAL; 1156 } 1157 1158 } 1159 1160 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set) 1161 { 1162 switch (fmdev->curr_fmmode) { 1163 case FM_MODE_RX: 1164 return fm_rx_set_region(fmdev, region_to_set); 1165 1166 case FM_MODE_TX: 1167 return fm_tx_set_region(fmdev, region_to_set); 1168 1169 default: 1170 return -EINVAL; 1171 } 1172 } 1173 1174 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset) 1175 { 1176 switch (fmdev->curr_fmmode) { 1177 case FM_MODE_RX: 1178 return fm_rx_set_mute_mode(fmdev, mute_mode_toset); 1179 1180 case FM_MODE_TX: 1181 return fm_tx_set_mute_mode(fmdev, mute_mode_toset); 1182 1183 default: 1184 return -EINVAL; 1185 } 1186 } 1187 1188 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode) 1189 { 1190 switch (fmdev->curr_fmmode) { 1191 case FM_MODE_RX: 1192 return fm_rx_set_stereo_mono(fmdev, mode); 1193 1194 case FM_MODE_TX: 1195 return fm_tx_set_stereo_mono(fmdev, mode); 1196 1197 default: 1198 return -EINVAL; 1199 } 1200 } 1201 1202 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis) 1203 { 1204 switch (fmdev->curr_fmmode) { 1205 case FM_MODE_RX: 1206 return fm_rx_set_rds_mode(fmdev, rds_en_dis); 1207 1208 case FM_MODE_TX: 1209 return fm_tx_set_rds_mode(fmdev, rds_en_dis); 1210 1211 default: 1212 return -EINVAL; 1213 } 1214 } 1215 1216 /* Sends power off command to the chip */ 1217 static int fm_power_down(struct fmdev *fmdev) 1218 { 1219 u16 payload; 1220 int ret; 1221 1222 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1223 fmerr("FM core is not ready\n"); 1224 return -EPERM; 1225 } 1226 if (fmdev->curr_fmmode == FM_MODE_OFF) { 1227 fmdbg("FM chip is already in OFF state\n"); 1228 return 0; 1229 } 1230 1231 payload = 0x0; 1232 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1233 sizeof(payload), NULL, NULL); 1234 if (ret < 0) 1235 return ret; 1236 1237 return fmc_release(fmdev); 1238 } 1239 1240 /* Reads init command from FM firmware file and loads to the chip */ 1241 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name) 1242 { 1243 const struct firmware *fw_entry; 1244 struct bts_header *fw_header; 1245 struct bts_action *action; 1246 struct bts_action_delay *delay; 1247 u8 *fw_data; 1248 int ret, fw_len, cmd_cnt; 1249 1250 cmd_cnt = 0; 1251 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1252 1253 ret = request_firmware(&fw_entry, fw_name, 1254 &fmdev->radio_dev->dev); 1255 if (ret < 0) { 1256 fmerr("Unable to read firmware(%s) content\n", fw_name); 1257 return ret; 1258 } 1259 fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size); 1260 1261 fw_data = (void *)fw_entry->data; 1262 fw_len = fw_entry->size; 1263 1264 fw_header = (struct bts_header *)fw_data; 1265 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) { 1266 fmerr("%s not a legal TI firmware file\n", fw_name); 1267 ret = -EINVAL; 1268 goto rel_fw; 1269 } 1270 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic); 1271 1272 /* Skip file header info , we already verified it */ 1273 fw_data += sizeof(struct bts_header); 1274 fw_len -= sizeof(struct bts_header); 1275 1276 while (fw_data && fw_len > 0) { 1277 action = (struct bts_action *)fw_data; 1278 1279 switch (action->type) { 1280 case ACTION_SEND_COMMAND: /* Send */ 1281 if (fmc_send_cmd(fmdev, 0, 0, action->data, 1282 action->size, NULL, NULL)) 1283 goto rel_fw; 1284 1285 cmd_cnt++; 1286 break; 1287 1288 case ACTION_DELAY: /* Delay */ 1289 delay = (struct bts_action_delay *)action->data; 1290 mdelay(delay->msec); 1291 break; 1292 } 1293 1294 fw_data += (sizeof(struct bts_action) + (action->size)); 1295 fw_len -= (sizeof(struct bts_action) + (action->size)); 1296 } 1297 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt); 1298 rel_fw: 1299 release_firmware(fw_entry); 1300 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag); 1301 1302 return ret; 1303 } 1304 1305 /* Loads default RX configuration to the chip */ 1306 static int load_default_rx_configuration(struct fmdev *fmdev) 1307 { 1308 int ret; 1309 1310 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME); 1311 if (ret < 0) 1312 return ret; 1313 1314 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD); 1315 } 1316 1317 /* Does FM power on sequence */ 1318 static int fm_power_up(struct fmdev *fmdev, u8 mode) 1319 { 1320 u16 payload, asic_id, asic_ver; 1321 int resp_len, ret; 1322 u8 fw_name[50]; 1323 1324 if (mode >= FM_MODE_ENTRY_MAX) { 1325 fmerr("Invalid firmware download option\n"); 1326 return -EINVAL; 1327 } 1328 1329 /* 1330 * Initialize FM common module. FM GPIO toggling is 1331 * taken care in Shared Transport driver. 1332 */ 1333 ret = fmc_prepare(fmdev); 1334 if (ret < 0) { 1335 fmerr("Unable to prepare FM Common\n"); 1336 return ret; 1337 } 1338 1339 payload = FM_ENABLE; 1340 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload, 1341 sizeof(payload), NULL, NULL)) 1342 goto rel; 1343 1344 /* Allow the chip to settle down in Channel-8 mode */ 1345 msleep(20); 1346 1347 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL, 1348 sizeof(asic_id), &asic_id, &resp_len)) 1349 goto rel; 1350 1351 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL, 1352 sizeof(asic_ver), &asic_ver, &resp_len)) 1353 goto rel; 1354 1355 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n", 1356 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1357 1358 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START, 1359 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1360 1361 ret = fm_download_firmware(fmdev, fw_name); 1362 if (ret < 0) { 1363 fmdbg("Failed to download firmware file %s\n", fw_name); 1364 goto rel; 1365 } 1366 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ? 1367 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START, 1368 be16_to_cpu(asic_id), be16_to_cpu(asic_ver)); 1369 1370 ret = fm_download_firmware(fmdev, fw_name); 1371 if (ret < 0) { 1372 fmdbg("Failed to download firmware file %s\n", fw_name); 1373 goto rel; 1374 } else 1375 return ret; 1376 rel: 1377 return fmc_release(fmdev); 1378 } 1379 1380 /* Set FM Modes(TX, RX, OFF) */ 1381 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode) 1382 { 1383 int ret = 0; 1384 1385 if (fm_mode >= FM_MODE_ENTRY_MAX) { 1386 fmerr("Invalid FM mode\n"); 1387 return -EINVAL; 1388 } 1389 if (fmdev->curr_fmmode == fm_mode) { 1390 fmdbg("Already fm is in mode(%d)\n", fm_mode); 1391 return ret; 1392 } 1393 1394 switch (fm_mode) { 1395 case FM_MODE_OFF: /* OFF Mode */ 1396 ret = fm_power_down(fmdev); 1397 if (ret < 0) { 1398 fmerr("Failed to set OFF mode\n"); 1399 return ret; 1400 } 1401 break; 1402 1403 case FM_MODE_TX: /* TX Mode */ 1404 case FM_MODE_RX: /* RX Mode */ 1405 /* Power down before switching to TX or RX mode */ 1406 if (fmdev->curr_fmmode != FM_MODE_OFF) { 1407 ret = fm_power_down(fmdev); 1408 if (ret < 0) { 1409 fmerr("Failed to set OFF mode\n"); 1410 return ret; 1411 } 1412 msleep(30); 1413 } 1414 ret = fm_power_up(fmdev, fm_mode); 1415 if (ret < 0) { 1416 fmerr("Failed to load firmware\n"); 1417 return ret; 1418 } 1419 } 1420 fmdev->curr_fmmode = fm_mode; 1421 1422 /* Set default configuration */ 1423 if (fmdev->curr_fmmode == FM_MODE_RX) { 1424 fmdbg("Loading default rx configuration..\n"); 1425 ret = load_default_rx_configuration(fmdev); 1426 if (ret < 0) 1427 fmerr("Failed to load default values\n"); 1428 } 1429 1430 return ret; 1431 } 1432 1433 /* Returns current FM mode (TX, RX, OFF) */ 1434 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode) 1435 { 1436 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1437 fmerr("FM core is not ready\n"); 1438 return -EPERM; 1439 } 1440 if (fmmode == NULL) { 1441 fmerr("Invalid memory\n"); 1442 return -ENOMEM; 1443 } 1444 1445 *fmmode = fmdev->curr_fmmode; 1446 return 0; 1447 } 1448 1449 /* Called by ST layer when FM packet is available */ 1450 static long fm_st_receive(void *arg, struct sk_buff *skb) 1451 { 1452 struct fmdev *fmdev; 1453 1454 fmdev = (struct fmdev *)arg; 1455 1456 if (skb == NULL) { 1457 fmerr("Invalid SKB received from ST\n"); 1458 return -EFAULT; 1459 } 1460 1461 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) { 1462 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb); 1463 return -EINVAL; 1464 } 1465 1466 memcpy(skb_push(skb, 1), &skb->cb[0], 1); 1467 skb_queue_tail(&fmdev->rx_q, skb); 1468 tasklet_schedule(&fmdev->rx_task); 1469 1470 return 0; 1471 } 1472 1473 /* 1474 * Called by ST layer to indicate protocol registration completion 1475 * status. 1476 */ 1477 static void fm_st_reg_comp_cb(void *arg, char data) 1478 { 1479 struct fmdev *fmdev; 1480 1481 fmdev = (struct fmdev *)arg; 1482 fmdev->streg_cbdata = data; 1483 complete(&wait_for_fmdrv_reg_comp); 1484 } 1485 1486 /* 1487 * This function will be called from FM V4L2 open function. 1488 * Register with ST driver and initialize driver data. 1489 */ 1490 int fmc_prepare(struct fmdev *fmdev) 1491 { 1492 static struct st_proto_s fm_st_proto; 1493 int ret; 1494 1495 if (test_bit(FM_CORE_READY, &fmdev->flag)) { 1496 fmdbg("FM Core is already up\n"); 1497 return 0; 1498 } 1499 1500 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1501 fm_st_proto.recv = fm_st_receive; 1502 fm_st_proto.match_packet = NULL; 1503 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb; 1504 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */ 1505 fm_st_proto.priv_data = fmdev; 1506 fm_st_proto.chnl_id = 0x08; 1507 fm_st_proto.max_frame_size = 0xff; 1508 fm_st_proto.hdr_len = 1; 1509 fm_st_proto.offset_len_in_hdr = 0; 1510 fm_st_proto.len_size = 1; 1511 fm_st_proto.reserve = 1; 1512 1513 ret = st_register(&fm_st_proto); 1514 if (ret == -EINPROGRESS) { 1515 init_completion(&wait_for_fmdrv_reg_comp); 1516 fmdev->streg_cbdata = -EINPROGRESS; 1517 fmdbg("%s waiting for ST reg completion signal\n", __func__); 1518 1519 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp, 1520 FM_ST_REG_TIMEOUT)) { 1521 fmerr("Timeout(%d sec), didn't get reg " 1522 "completion signal from ST\n", 1523 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000); 1524 return -ETIMEDOUT; 1525 } 1526 if (fmdev->streg_cbdata != 0) { 1527 fmerr("ST reg comp CB called with error " 1528 "status %d\n", fmdev->streg_cbdata); 1529 return -EAGAIN; 1530 } 1531 1532 ret = 0; 1533 } else if (ret == -1) { 1534 fmerr("st_register failed %d\n", ret); 1535 return -EAGAIN; 1536 } 1537 1538 if (fm_st_proto.write != NULL) { 1539 g_st_write = fm_st_proto.write; 1540 } else { 1541 fmerr("Failed to get ST write func pointer\n"); 1542 ret = st_unregister(&fm_st_proto); 1543 if (ret < 0) 1544 fmerr("st_unregister failed %d\n", ret); 1545 return -EAGAIN; 1546 } 1547 1548 spin_lock_init(&fmdev->rds_buff_lock); 1549 spin_lock_init(&fmdev->resp_skb_lock); 1550 1551 /* Initialize TX queue and TX tasklet */ 1552 skb_queue_head_init(&fmdev->tx_q); 1553 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev); 1554 1555 /* Initialize RX Queue and RX tasklet */ 1556 skb_queue_head_init(&fmdev->rx_q); 1557 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev); 1558 1559 fmdev->irq_info.stage = 0; 1560 atomic_set(&fmdev->tx_cnt, 1); 1561 fmdev->resp_comp = NULL; 1562 1563 init_timer(&fmdev->irq_info.timer); 1564 fmdev->irq_info.timer.function = &int_timeout_handler; 1565 fmdev->irq_info.timer.data = (unsigned long)fmdev; 1566 /*TODO: add FM_STIC_EVENT later */ 1567 fmdev->irq_info.mask = FM_MAL_EVENT; 1568 1569 /* Region info */ 1570 fmdev->rx.region = region_configs[default_radio_region]; 1571 1572 fmdev->rx.mute_mode = FM_MUTE_OFF; 1573 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF; 1574 fmdev->rx.rds.flag = FM_RDS_DISABLE; 1575 fmdev->rx.freq = FM_UNDEFINED_FREQ; 1576 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS; 1577 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF; 1578 fmdev->irq_info.retry = 0; 1579 1580 fm_rx_reset_rds_cache(fmdev); 1581 init_waitqueue_head(&fmdev->rx.rds.read_queue); 1582 1583 fm_rx_reset_station_info(fmdev); 1584 set_bit(FM_CORE_READY, &fmdev->flag); 1585 1586 return ret; 1587 } 1588 1589 /* 1590 * This function will be called from FM V4L2 release function. 1591 * Unregister from ST driver. 1592 */ 1593 int fmc_release(struct fmdev *fmdev) 1594 { 1595 static struct st_proto_s fm_st_proto; 1596 int ret; 1597 1598 if (!test_bit(FM_CORE_READY, &fmdev->flag)) { 1599 fmdbg("FM Core is already down\n"); 1600 return 0; 1601 } 1602 /* Service pending read */ 1603 wake_up_interruptible(&fmdev->rx.rds.read_queue); 1604 1605 tasklet_kill(&fmdev->tx_task); 1606 tasklet_kill(&fmdev->rx_task); 1607 1608 skb_queue_purge(&fmdev->tx_q); 1609 skb_queue_purge(&fmdev->rx_q); 1610 1611 fmdev->resp_comp = NULL; 1612 fmdev->rx.freq = 0; 1613 1614 memset(&fm_st_proto, 0, sizeof(fm_st_proto)); 1615 fm_st_proto.chnl_id = 0x08; 1616 1617 ret = st_unregister(&fm_st_proto); 1618 1619 if (ret < 0) 1620 fmerr("Failed to de-register FM from ST %d\n", ret); 1621 else 1622 fmdbg("Successfully unregistered from ST\n"); 1623 1624 clear_bit(FM_CORE_READY, &fmdev->flag); 1625 return ret; 1626 } 1627 1628 /* 1629 * Module init function. Ask FM V4L module to register video device. 1630 * Allocate memory for FM driver context and RX RDS buffer. 1631 */ 1632 static int __init fm_drv_init(void) 1633 { 1634 struct fmdev *fmdev = NULL; 1635 int ret = -ENOMEM; 1636 1637 fmdbg("FM driver version %s\n", FM_DRV_VERSION); 1638 1639 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL); 1640 if (NULL == fmdev) { 1641 fmerr("Can't allocate operation structure memory\n"); 1642 return ret; 1643 } 1644 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE; 1645 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL); 1646 if (NULL == fmdev->rx.rds.buff) { 1647 fmerr("Can't allocate rds ring buffer\n"); 1648 goto rel_dev; 1649 } 1650 1651 ret = fm_v4l2_init_video_device(fmdev, radio_nr); 1652 if (ret < 0) 1653 goto rel_rdsbuf; 1654 1655 fmdev->irq_info.handlers = int_handler_table; 1656 fmdev->curr_fmmode = FM_MODE_OFF; 1657 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF; 1658 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US; 1659 return ret; 1660 1661 rel_rdsbuf: 1662 kfree(fmdev->rx.rds.buff); 1663 rel_dev: 1664 kfree(fmdev); 1665 1666 return ret; 1667 } 1668 1669 /* Module exit function. Ask FM V4L module to unregister video device */ 1670 static void __exit fm_drv_exit(void) 1671 { 1672 struct fmdev *fmdev = NULL; 1673 1674 fmdev = fm_v4l2_deinit_video_device(); 1675 if (fmdev != NULL) { 1676 kfree(fmdev->rx.rds.buff); 1677 kfree(fmdev); 1678 } 1679 } 1680 1681 module_init(fm_drv_init); 1682 module_exit(fm_drv_exit); 1683 1684 /* ------------- Module Info ------------- */ 1685 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>"); 1686 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION); 1687 MODULE_VERSION(FM_DRV_VERSION); 1688 MODULE_LICENSE("GPL"); 1689