xref: /openbmc/linux/drivers/media/platform/ti/vpe/vpe.c (revision 7419995a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
4  *
5  * Copyright (c) 2013 Texas Instruments Inc.
6  * David Griego, <dagriego@biglakesoftware.com>
7  * Dale Farnsworth, <dale@farnsworth.org>
8  * Archit Taneja, <archit@ti.com>
9  *
10  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
11  * Pawel Osciak, <pawel@osciak.com>
12  * Marek Szyprowski, <m.szyprowski@samsung.com>
13  *
14  * Based on the virtual v4l2-mem2mem example device
15  */
16 
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/fs.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/videodev2.h>
31 #include <linux/log2.h>
32 #include <linux/sizes.h>
33 
34 #include <media/v4l2-common.h>
35 #include <media/v4l2-ctrls.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-event.h>
38 #include <media/v4l2-ioctl.h>
39 #include <media/v4l2-mem2mem.h>
40 #include <media/videobuf2-v4l2.h>
41 #include <media/videobuf2-dma-contig.h>
42 
43 #include "vpdma.h"
44 #include "vpdma_priv.h"
45 #include "vpe_regs.h"
46 #include "sc.h"
47 #include "csc.h"
48 
49 #define VPE_MODULE_NAME "vpe"
50 
51 /* minimum and maximum frame sizes */
52 #define MIN_W		32
53 #define MIN_H		32
54 #define MAX_W		2048
55 #define MAX_H		2048
56 
57 /* required alignments */
58 #define S_ALIGN		0	/* multiple of 1 */
59 #define H_ALIGN		1	/* multiple of 2 */
60 
61 /* flags that indicate a format can be used for capture/output */
62 #define VPE_FMT_TYPE_CAPTURE	(1 << 0)
63 #define VPE_FMT_TYPE_OUTPUT	(1 << 1)
64 
65 /* used as plane indices */
66 #define VPE_MAX_PLANES	2
67 #define VPE_LUMA	0
68 #define VPE_CHROMA	1
69 
70 /* per m2m context info */
71 #define VPE_MAX_SRC_BUFS	3	/* need 3 src fields to de-interlace */
72 
73 #define VPE_DEF_BUFS_PER_JOB	1	/* default one buffer per batch job */
74 
75 /*
76  * each VPE context can need up to 3 config descriptors, 7 input descriptors,
77  * 3 output descriptors, and 10 control descriptors
78  */
79 #define VPE_DESC_LIST_SIZE	(10 * VPDMA_DTD_DESC_SIZE +	\
80 					13 * VPDMA_CFD_CTD_DESC_SIZE)
81 
82 #define vpe_dbg(vpedev, fmt, arg...)	\
83 		dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
84 #define vpe_err(vpedev, fmt, arg...)	\
85 		dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
86 
87 struct vpe_us_coeffs {
88 	unsigned short	anchor_fid0_c0;
89 	unsigned short	anchor_fid0_c1;
90 	unsigned short	anchor_fid0_c2;
91 	unsigned short	anchor_fid0_c3;
92 	unsigned short	interp_fid0_c0;
93 	unsigned short	interp_fid0_c1;
94 	unsigned short	interp_fid0_c2;
95 	unsigned short	interp_fid0_c3;
96 	unsigned short	anchor_fid1_c0;
97 	unsigned short	anchor_fid1_c1;
98 	unsigned short	anchor_fid1_c2;
99 	unsigned short	anchor_fid1_c3;
100 	unsigned short	interp_fid1_c0;
101 	unsigned short	interp_fid1_c1;
102 	unsigned short	interp_fid1_c2;
103 	unsigned short	interp_fid1_c3;
104 };
105 
106 /*
107  * Default upsampler coefficients
108  */
109 static const struct vpe_us_coeffs us_coeffs[] = {
110 	{
111 		/* Coefficients for progressive input */
112 		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
113 		0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
114 	},
115 	{
116 		/* Coefficients for Top Field Interlaced input */
117 		0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
118 		/* Coefficients for Bottom Field Interlaced input */
119 		0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
120 	},
121 };
122 
123 /*
124  * the following registers are for configuring some of the parameters of the
125  * motion and edge detection blocks inside DEI, these generally remain the same,
126  * these could be passed later via userspace if some one needs to tweak these.
127  */
128 struct vpe_dei_regs {
129 	unsigned long mdt_spacial_freq_thr_reg;		/* VPE_DEI_REG2 */
130 	unsigned long edi_config_reg;			/* VPE_DEI_REG3 */
131 	unsigned long edi_lut_reg0;			/* VPE_DEI_REG4 */
132 	unsigned long edi_lut_reg1;			/* VPE_DEI_REG5 */
133 	unsigned long edi_lut_reg2;			/* VPE_DEI_REG6 */
134 	unsigned long edi_lut_reg3;			/* VPE_DEI_REG7 */
135 };
136 
137 /*
138  * default expert DEI register values, unlikely to be modified.
139  */
140 static const struct vpe_dei_regs dei_regs = {
141 	.mdt_spacial_freq_thr_reg = 0x020C0804u,
142 	.edi_config_reg = 0x0118100Cu,
143 	.edi_lut_reg0 = 0x08040200u,
144 	.edi_lut_reg1 = 0x1010100Cu,
145 	.edi_lut_reg2 = 0x10101010u,
146 	.edi_lut_reg3 = 0x10101010u,
147 };
148 
149 /*
150  * The port_data structure contains per-port data.
151  */
152 struct vpe_port_data {
153 	enum vpdma_channel channel;	/* VPDMA channel */
154 	u8	vb_index;		/* input frame f, f-1, f-2 index */
155 	u8	vb_part;		/* plane index for co-panar formats */
156 };
157 
158 /*
159  * Define indices into the port_data tables
160  */
161 #define VPE_PORT_LUMA1_IN	0
162 #define VPE_PORT_CHROMA1_IN	1
163 #define VPE_PORT_LUMA2_IN	2
164 #define VPE_PORT_CHROMA2_IN	3
165 #define VPE_PORT_LUMA3_IN	4
166 #define VPE_PORT_CHROMA3_IN	5
167 #define VPE_PORT_MV_IN		6
168 #define VPE_PORT_MV_OUT		7
169 #define VPE_PORT_LUMA_OUT	8
170 #define VPE_PORT_CHROMA_OUT	9
171 #define VPE_PORT_RGB_OUT	10
172 
173 static const struct vpe_port_data port_data[11] = {
174 	[VPE_PORT_LUMA1_IN] = {
175 		.channel	= VPE_CHAN_LUMA1_IN,
176 		.vb_index	= 0,
177 		.vb_part	= VPE_LUMA,
178 	},
179 	[VPE_PORT_CHROMA1_IN] = {
180 		.channel	= VPE_CHAN_CHROMA1_IN,
181 		.vb_index	= 0,
182 		.vb_part	= VPE_CHROMA,
183 	},
184 	[VPE_PORT_LUMA2_IN] = {
185 		.channel	= VPE_CHAN_LUMA2_IN,
186 		.vb_index	= 1,
187 		.vb_part	= VPE_LUMA,
188 	},
189 	[VPE_PORT_CHROMA2_IN] = {
190 		.channel	= VPE_CHAN_CHROMA2_IN,
191 		.vb_index	= 1,
192 		.vb_part	= VPE_CHROMA,
193 	},
194 	[VPE_PORT_LUMA3_IN] = {
195 		.channel	= VPE_CHAN_LUMA3_IN,
196 		.vb_index	= 2,
197 		.vb_part	= VPE_LUMA,
198 	},
199 	[VPE_PORT_CHROMA3_IN] = {
200 		.channel	= VPE_CHAN_CHROMA3_IN,
201 		.vb_index	= 2,
202 		.vb_part	= VPE_CHROMA,
203 	},
204 	[VPE_PORT_MV_IN] = {
205 		.channel	= VPE_CHAN_MV_IN,
206 	},
207 	[VPE_PORT_MV_OUT] = {
208 		.channel	= VPE_CHAN_MV_OUT,
209 	},
210 	[VPE_PORT_LUMA_OUT] = {
211 		.channel	= VPE_CHAN_LUMA_OUT,
212 		.vb_part	= VPE_LUMA,
213 	},
214 	[VPE_PORT_CHROMA_OUT] = {
215 		.channel	= VPE_CHAN_CHROMA_OUT,
216 		.vb_part	= VPE_CHROMA,
217 	},
218 	[VPE_PORT_RGB_OUT] = {
219 		.channel	= VPE_CHAN_RGB_OUT,
220 		.vb_part	= VPE_LUMA,
221 	},
222 };
223 
224 
225 /* driver info for each of the supported video formats */
226 struct vpe_fmt {
227 	u32	fourcc;			/* standard format identifier */
228 	u8	types;			/* CAPTURE and/or OUTPUT */
229 	u8	coplanar;		/* set for unpacked Luma and Chroma */
230 	/* vpdma format info for each plane */
231 	struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
232 };
233 
234 static struct vpe_fmt vpe_formats[] = {
235 	{
236 		.fourcc		= V4L2_PIX_FMT_NV16,
237 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
238 		.coplanar	= 1,
239 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
240 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
241 				  },
242 	},
243 	{
244 		.fourcc		= V4L2_PIX_FMT_NV12,
245 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
246 		.coplanar	= 1,
247 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
248 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
249 				  },
250 	},
251 	{
252 		.fourcc		= V4L2_PIX_FMT_NV21,
253 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
254 		.coplanar	= 1,
255 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
256 				    &vpdma_yuv_fmts[VPDMA_DATA_FMT_CB420],
257 				  },
258 	},
259 	{
260 		.fourcc		= V4L2_PIX_FMT_YUYV,
261 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
262 		.coplanar	= 0,
263 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
264 				  },
265 	},
266 	{
267 		.fourcc		= V4L2_PIX_FMT_UYVY,
268 		.types		= VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
269 		.coplanar	= 0,
270 		.vpdma_fmt	= { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
271 				  },
272 	},
273 	{
274 		.fourcc		= V4L2_PIX_FMT_RGB24,
275 		.types		= VPE_FMT_TYPE_CAPTURE,
276 		.coplanar	= 0,
277 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
278 				  },
279 	},
280 	{
281 		.fourcc		= V4L2_PIX_FMT_RGB32,
282 		.types		= VPE_FMT_TYPE_CAPTURE,
283 		.coplanar	= 0,
284 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
285 				  },
286 	},
287 	{
288 		.fourcc		= V4L2_PIX_FMT_BGR24,
289 		.types		= VPE_FMT_TYPE_CAPTURE,
290 		.coplanar	= 0,
291 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
292 				  },
293 	},
294 	{
295 		.fourcc		= V4L2_PIX_FMT_BGR32,
296 		.types		= VPE_FMT_TYPE_CAPTURE,
297 		.coplanar	= 0,
298 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
299 				  },
300 	},
301 	{
302 		.fourcc		= V4L2_PIX_FMT_RGB565,
303 		.types		= VPE_FMT_TYPE_CAPTURE,
304 		.coplanar	= 0,
305 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
306 				  },
307 	},
308 	{
309 		.fourcc		= V4L2_PIX_FMT_RGB555,
310 		.types		= VPE_FMT_TYPE_CAPTURE,
311 		.coplanar	= 0,
312 		.vpdma_fmt	= { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
313 				  },
314 	},
315 };
316 
317 /*
318  * per-queue, driver-specific private data.
319  * there is one source queue and one destination queue for each m2m context.
320  */
321 struct vpe_q_data {
322 	/* current v4l2 format info */
323 	struct v4l2_format	format;
324 	unsigned int		flags;
325 	struct v4l2_rect	c_rect;				/* crop/compose rectangle */
326 	struct vpe_fmt		*fmt;				/* format info */
327 };
328 
329 /* vpe_q_data flag bits */
330 #define	Q_DATA_FRAME_1D			BIT(0)
331 #define	Q_DATA_MODE_TILED		BIT(1)
332 #define	Q_DATA_INTERLACED_ALTERNATE	BIT(2)
333 #define	Q_DATA_INTERLACED_SEQ_TB	BIT(3)
334 #define	Q_DATA_INTERLACED_SEQ_BT	BIT(4)
335 
336 #define Q_IS_SEQ_XX		(Q_DATA_INTERLACED_SEQ_TB | \
337 				Q_DATA_INTERLACED_SEQ_BT)
338 
339 #define Q_IS_INTERLACED		(Q_DATA_INTERLACED_ALTERNATE | \
340 				Q_DATA_INTERLACED_SEQ_TB | \
341 				Q_DATA_INTERLACED_SEQ_BT)
342 
343 enum {
344 	Q_DATA_SRC = 0,
345 	Q_DATA_DST = 1,
346 };
347 
348 /* find our format description corresponding to the passed v4l2_format */
349 static struct vpe_fmt *__find_format(u32 fourcc)
350 {
351 	struct vpe_fmt *fmt;
352 	unsigned int k;
353 
354 	for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
355 		fmt = &vpe_formats[k];
356 		if (fmt->fourcc == fourcc)
357 			return fmt;
358 	}
359 
360 	return NULL;
361 }
362 
363 static struct vpe_fmt *find_format(struct v4l2_format *f)
364 {
365 	return __find_format(f->fmt.pix.pixelformat);
366 }
367 
368 /*
369  * there is one vpe_dev structure in the driver, it is shared by
370  * all instances.
371  */
372 struct vpe_dev {
373 	struct v4l2_device	v4l2_dev;
374 	struct video_device	vfd;
375 	struct v4l2_m2m_dev	*m2m_dev;
376 
377 	atomic_t		num_instances;	/* count of driver instances */
378 	dma_addr_t		loaded_mmrs;	/* shadow mmrs in device */
379 	struct mutex		dev_mutex;
380 	spinlock_t		lock;
381 
382 	int			irq;
383 	void __iomem		*base;
384 	struct resource		*res;
385 
386 	struct vpdma_data	vpdma_data;
387 	struct vpdma_data	*vpdma;		/* vpdma data handle */
388 	struct sc_data		*sc;		/* scaler data handle */
389 	struct csc_data		*csc;		/* csc data handle */
390 };
391 
392 /*
393  * There is one vpe_ctx structure for each m2m context.
394  */
395 struct vpe_ctx {
396 	struct v4l2_fh		fh;
397 	struct vpe_dev		*dev;
398 	struct v4l2_ctrl_handler hdl;
399 
400 	unsigned int		field;			/* current field */
401 	unsigned int		sequence;		/* current frame/field seq */
402 	unsigned int		aborting;		/* abort after next irq */
403 
404 	unsigned int		bufs_per_job;		/* input buffers per batch */
405 	unsigned int		bufs_completed;		/* bufs done in this batch */
406 
407 	struct vpe_q_data	q_data[2];		/* src & dst queue data */
408 	struct vb2_v4l2_buffer	*src_vbs[VPE_MAX_SRC_BUFS];
409 	struct vb2_v4l2_buffer	*dst_vb;
410 
411 	dma_addr_t		mv_buf_dma[2];		/* dma addrs of motion vector in/out bufs */
412 	void			*mv_buf[2];		/* virtual addrs of motion vector bufs */
413 	size_t			mv_buf_size;		/* current motion vector buffer size */
414 	struct vpdma_buf	mmr_adb;		/* shadow reg addr/data block */
415 	struct vpdma_buf	sc_coeff_h;		/* h coeff buffer */
416 	struct vpdma_buf	sc_coeff_v;		/* v coeff buffer */
417 	struct vpdma_desc_list	desc_list;		/* DMA descriptor list */
418 
419 	bool			deinterlacing;		/* using de-interlacer */
420 	bool			load_mmrs;		/* have new shadow reg values */
421 
422 	unsigned int		src_mv_buf_selector;
423 };
424 
425 
426 /*
427  * M2M devices get 2 queues.
428  * Return the queue given the type.
429  */
430 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
431 				     enum v4l2_buf_type type)
432 {
433 	switch (type) {
434 	case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
435 	case V4L2_BUF_TYPE_VIDEO_OUTPUT:
436 		return &ctx->q_data[Q_DATA_SRC];
437 	case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
438 	case V4L2_BUF_TYPE_VIDEO_CAPTURE:
439 		return &ctx->q_data[Q_DATA_DST];
440 	default:
441 		return NULL;
442 	}
443 	return NULL;
444 }
445 
446 static u32 read_reg(struct vpe_dev *dev, int offset)
447 {
448 	return ioread32(dev->base + offset);
449 }
450 
451 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
452 {
453 	iowrite32(value, dev->base + offset);
454 }
455 
456 /* register field read/write helpers */
457 static int get_field(u32 value, u32 mask, int shift)
458 {
459 	return (value & (mask << shift)) >> shift;
460 }
461 
462 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
463 {
464 	return get_field(read_reg(dev, offset), mask, shift);
465 }
466 
467 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
468 {
469 	u32 val = *valp;
470 
471 	val &= ~(mask << shift);
472 	val |= (field & mask) << shift;
473 	*valp = val;
474 }
475 
476 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
477 		u32 mask, int shift)
478 {
479 	u32 val = read_reg(dev, offset);
480 
481 	write_field(&val, field, mask, shift);
482 
483 	write_reg(dev, offset, val);
484 }
485 
486 /*
487  * DMA address/data block for the shadow registers
488  */
489 struct vpe_mmr_adb {
490 	struct vpdma_adb_hdr	out_fmt_hdr;
491 	u32			out_fmt_reg[1];
492 	u32			out_fmt_pad[3];
493 	struct vpdma_adb_hdr	us1_hdr;
494 	u32			us1_regs[8];
495 	struct vpdma_adb_hdr	us2_hdr;
496 	u32			us2_regs[8];
497 	struct vpdma_adb_hdr	us3_hdr;
498 	u32			us3_regs[8];
499 	struct vpdma_adb_hdr	dei_hdr;
500 	u32			dei_regs[8];
501 	struct vpdma_adb_hdr	sc_hdr0;
502 	u32			sc_regs0[7];
503 	u32			sc_pad0[1];
504 	struct vpdma_adb_hdr	sc_hdr8;
505 	u32			sc_regs8[6];
506 	u32			sc_pad8[2];
507 	struct vpdma_adb_hdr	sc_hdr17;
508 	u32			sc_regs17[9];
509 	u32			sc_pad17[3];
510 	struct vpdma_adb_hdr	csc_hdr;
511 	u32			csc_regs[6];
512 	u32			csc_pad[2];
513 };
514 
515 #define GET_OFFSET_TOP(ctx, obj, reg)	\
516 	((obj)->res->start - ctx->dev->res->start + reg)
517 
518 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a)	\
519 	VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
520 /*
521  * Set the headers for all of the address/data block structures.
522  */
523 static void init_adb_hdrs(struct vpe_ctx *ctx)
524 {
525 	VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
526 	VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
527 	VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
528 	VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
529 	VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
530 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
531 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
532 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
533 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
534 	VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
535 		GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
536 	VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
537 		GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
538 };
539 
540 /*
541  * Allocate or re-allocate the motion vector DMA buffers
542  * There are two buffers, one for input and one for output.
543  * However, the roles are reversed after each field is processed.
544  * In other words, after each field is processed, the previous
545  * output (dst) MV buffer becomes the new input (src) MV buffer.
546  */
547 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
548 {
549 	struct device *dev = ctx->dev->v4l2_dev.dev;
550 
551 	if (ctx->mv_buf_size == size)
552 		return 0;
553 
554 	if (ctx->mv_buf[0])
555 		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
556 			ctx->mv_buf_dma[0]);
557 
558 	if (ctx->mv_buf[1])
559 		dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
560 			ctx->mv_buf_dma[1]);
561 
562 	if (size == 0)
563 		return 0;
564 
565 	ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
566 				GFP_KERNEL);
567 	if (!ctx->mv_buf[0]) {
568 		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
569 		return -ENOMEM;
570 	}
571 
572 	ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
573 				GFP_KERNEL);
574 	if (!ctx->mv_buf[1]) {
575 		vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
576 		dma_free_coherent(dev, size, ctx->mv_buf[0],
577 			ctx->mv_buf_dma[0]);
578 
579 		return -ENOMEM;
580 	}
581 
582 	ctx->mv_buf_size = size;
583 	ctx->src_mv_buf_selector = 0;
584 
585 	return 0;
586 }
587 
588 static void free_mv_buffers(struct vpe_ctx *ctx)
589 {
590 	realloc_mv_buffers(ctx, 0);
591 }
592 
593 /*
594  * While de-interlacing, we keep the two most recent input buffers
595  * around.  This function frees those two buffers when we have
596  * finished processing the current stream.
597  */
598 static void free_vbs(struct vpe_ctx *ctx)
599 {
600 	struct vpe_dev *dev = ctx->dev;
601 	unsigned long flags;
602 
603 	if (ctx->src_vbs[2] == NULL)
604 		return;
605 
606 	spin_lock_irqsave(&dev->lock, flags);
607 	if (ctx->src_vbs[2]) {
608 		v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
609 		if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
610 			v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
611 		ctx->src_vbs[2] = NULL;
612 		ctx->src_vbs[1] = NULL;
613 	}
614 	spin_unlock_irqrestore(&dev->lock, flags);
615 }
616 
617 /*
618  * Enable or disable the VPE clocks
619  */
620 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
621 {
622 	u32 val = 0;
623 
624 	if (on)
625 		val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
626 	write_reg(dev, VPE_CLK_ENABLE, val);
627 }
628 
629 static void vpe_top_reset(struct vpe_dev *dev)
630 {
631 
632 	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
633 		VPE_DATA_PATH_CLK_RESET_SHIFT);
634 
635 	usleep_range(100, 150);
636 
637 	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
638 		VPE_DATA_PATH_CLK_RESET_SHIFT);
639 }
640 
641 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
642 {
643 	write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
644 		VPE_VPDMA_CLK_RESET_SHIFT);
645 
646 	usleep_range(100, 150);
647 
648 	write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
649 		VPE_VPDMA_CLK_RESET_SHIFT);
650 }
651 
652 /*
653  * Load the correct of upsampler coefficients into the shadow MMRs
654  */
655 static void set_us_coefficients(struct vpe_ctx *ctx)
656 {
657 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
658 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
659 	u32 *us1_reg = &mmr_adb->us1_regs[0];
660 	u32 *us2_reg = &mmr_adb->us2_regs[0];
661 	u32 *us3_reg = &mmr_adb->us3_regs[0];
662 	const unsigned short *cp, *end_cp;
663 
664 	cp = &us_coeffs[0].anchor_fid0_c0;
665 
666 	if (s_q_data->flags & Q_IS_INTERLACED)		/* interlaced */
667 		cp += sizeof(us_coeffs[0]) / sizeof(*cp);
668 
669 	end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
670 
671 	while (cp < end_cp) {
672 		write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
673 		write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
674 		*us2_reg++ = *us1_reg;
675 		*us3_reg++ = *us1_reg++;
676 	}
677 	ctx->load_mmrs = true;
678 }
679 
680 /*
681  * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
682  */
683 static void set_cfg_modes(struct vpe_ctx *ctx)
684 {
685 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
686 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
687 	u32 *us1_reg0 = &mmr_adb->us1_regs[0];
688 	u32 *us2_reg0 = &mmr_adb->us2_regs[0];
689 	u32 *us3_reg0 = &mmr_adb->us3_regs[0];
690 	int cfg_mode = 1;
691 
692 	/*
693 	 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
694 	 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
695 	 */
696 
697 	if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
698 	    fmt->fourcc == V4L2_PIX_FMT_NV21)
699 		cfg_mode = 0;
700 
701 	write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
702 	write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
703 	write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
704 
705 	ctx->load_mmrs = true;
706 }
707 
708 static void set_line_modes(struct vpe_ctx *ctx)
709 {
710 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
711 	int line_mode = 1;
712 
713 	if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
714 	    fmt->fourcc == V4L2_PIX_FMT_NV21)
715 		line_mode = 0;		/* double lines to line buffer */
716 
717 	/* regs for now */
718 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
719 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
720 	vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
721 
722 	/* frame start for input luma */
723 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
724 		VPE_CHAN_LUMA1_IN);
725 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
726 		VPE_CHAN_LUMA2_IN);
727 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
728 		VPE_CHAN_LUMA3_IN);
729 
730 	/* frame start for input chroma */
731 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
732 		VPE_CHAN_CHROMA1_IN);
733 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
734 		VPE_CHAN_CHROMA2_IN);
735 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
736 		VPE_CHAN_CHROMA3_IN);
737 
738 	/* frame start for MV in client */
739 	vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
740 		VPE_CHAN_MV_IN);
741 }
742 
743 /*
744  * Set the shadow registers that are modified when the source
745  * format changes.
746  */
747 static void set_src_registers(struct vpe_ctx *ctx)
748 {
749 	set_us_coefficients(ctx);
750 }
751 
752 /*
753  * Set the shadow registers that are modified when the destination
754  * format changes.
755  */
756 static void set_dst_registers(struct vpe_ctx *ctx)
757 {
758 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
759 	struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
760 	const struct v4l2_format_info *finfo;
761 	u32 val = 0;
762 
763 	finfo = v4l2_format_info(fmt->fourcc);
764 	if (v4l2_is_format_rgb(finfo)) {
765 		val |= VPE_RGB_OUT_SELECT;
766 		vpdma_set_bg_color(ctx->dev->vpdma,
767 			(struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
768 	} else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
769 		val |= VPE_COLOR_SEPARATE_422;
770 
771 	/*
772 	 * the source of CHR_DS and CSC is always the scaler, irrespective of
773 	 * whether it's used or not
774 	 */
775 	val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
776 
777 	if (fmt->fourcc != V4L2_PIX_FMT_NV12 &&
778 	    fmt->fourcc != V4L2_PIX_FMT_NV21)
779 		val |= VPE_DS_BYPASS;
780 
781 	mmr_adb->out_fmt_reg[0] = val;
782 
783 	ctx->load_mmrs = true;
784 }
785 
786 /*
787  * Set the de-interlacer shadow register values
788  */
789 static void set_dei_regs(struct vpe_ctx *ctx)
790 {
791 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
792 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
793 	unsigned int src_h = s_q_data->c_rect.height;
794 	unsigned int src_w = s_q_data->c_rect.width;
795 	u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
796 	bool deinterlace = true;
797 	u32 val = 0;
798 
799 	/*
800 	 * according to TRM, we should set DEI in progressive bypass mode when
801 	 * the input content is progressive, however, DEI is bypassed correctly
802 	 * for both progressive and interlace content in interlace bypass mode.
803 	 * It has been recommended not to use progressive bypass mode.
804 	 */
805 	if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
806 		deinterlace = false;
807 		val = VPE_DEI_INTERLACE_BYPASS;
808 	}
809 
810 	src_h = deinterlace ? src_h * 2 : src_h;
811 
812 	val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
813 		(src_w << VPE_DEI_WIDTH_SHIFT) |
814 		VPE_DEI_FIELD_FLUSH;
815 
816 	*dei_mmr0 = val;
817 
818 	ctx->load_mmrs = true;
819 }
820 
821 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
822 {
823 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
824 	u32 *dei_mmr = &mmr_adb->dei_regs[0];
825 	const struct vpe_dei_regs *cur = &dei_regs;
826 
827 	dei_mmr[2]  = cur->mdt_spacial_freq_thr_reg;
828 	dei_mmr[3]  = cur->edi_config_reg;
829 	dei_mmr[4]  = cur->edi_lut_reg0;
830 	dei_mmr[5]  = cur->edi_lut_reg1;
831 	dei_mmr[6]  = cur->edi_lut_reg2;
832 	dei_mmr[7]  = cur->edi_lut_reg3;
833 
834 	ctx->load_mmrs = true;
835 }
836 
837 static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
838 {
839 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
840 	u32 *edi_config_reg = &mmr_adb->dei_regs[3];
841 
842 	if (mode & 0x2)
843 		write_field(edi_config_reg, 1, 1, 2);	/* EDI_ENABLE_3D */
844 
845 	if (mode & 0x3)
846 		write_field(edi_config_reg, 1, 1, 3);	/* EDI_CHROMA_3D  */
847 
848 	write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
849 		VPE_EDI_INP_MODE_SHIFT);
850 
851 	ctx->load_mmrs = true;
852 }
853 
854 /*
855  * Set the shadow registers whose values are modified when either the
856  * source or destination format is changed.
857  */
858 static int set_srcdst_params(struct vpe_ctx *ctx)
859 {
860 	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
861 	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
862 	struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
863 	unsigned int src_w = s_q_data->c_rect.width;
864 	unsigned int src_h = s_q_data->c_rect.height;
865 	unsigned int dst_w = d_q_data->c_rect.width;
866 	unsigned int dst_h = d_q_data->c_rect.height;
867 	struct v4l2_pix_format_mplane *spix;
868 	size_t mv_buf_size;
869 	int ret;
870 
871 	ctx->sequence = 0;
872 	ctx->field = V4L2_FIELD_TOP;
873 	spix = &s_q_data->format.fmt.pix_mp;
874 
875 	if ((s_q_data->flags & Q_IS_INTERLACED) &&
876 			!(d_q_data->flags & Q_IS_INTERLACED)) {
877 		int bytes_per_line;
878 		const struct vpdma_data_format *mv =
879 			&vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
880 
881 		/*
882 		 * we make sure that the source image has a 16 byte aligned
883 		 * stride, we need to do the same for the motion vector buffer
884 		 * by aligning it's stride to the next 16 byte boundary. this
885 		 * extra space will not be used by the de-interlacer, but will
886 		 * ensure that vpdma operates correctly
887 		 */
888 		bytes_per_line = ALIGN((spix->width * mv->depth) >> 3,
889 				       VPDMA_STRIDE_ALIGN);
890 		mv_buf_size = bytes_per_line * spix->height;
891 
892 		ctx->deinterlacing = true;
893 		src_h <<= 1;
894 	} else {
895 		ctx->deinterlacing = false;
896 		mv_buf_size = 0;
897 	}
898 
899 	free_vbs(ctx);
900 	ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
901 
902 	ret = realloc_mv_buffers(ctx, mv_buf_size);
903 	if (ret)
904 		return ret;
905 
906 	set_cfg_modes(ctx);
907 	set_dei_regs(ctx);
908 
909 	csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
910 		      &s_q_data->format, &d_q_data->format);
911 
912 	sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
913 	sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
914 
915 	sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
916 		&mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
917 		src_w, src_h, dst_w, dst_h);
918 
919 	return 0;
920 }
921 
922 /*
923  * mem2mem callbacks
924  */
925 
926 /*
927  * job_ready() - check whether an instance is ready to be scheduled to run
928  */
929 static int job_ready(void *priv)
930 {
931 	struct vpe_ctx *ctx = priv;
932 
933 	/*
934 	 * This check is needed as this might be called directly from driver
935 	 * When called by m2m framework, this will always satisfy, but when
936 	 * called from vpe_irq, this might fail. (src stream with zero buffers)
937 	 */
938 	if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
939 		v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
940 		return 0;
941 
942 	return 1;
943 }
944 
945 static void job_abort(void *priv)
946 {
947 	struct vpe_ctx *ctx = priv;
948 
949 	/* Will cancel the transaction in the next interrupt handler */
950 	ctx->aborting = 1;
951 }
952 
953 static void vpe_dump_regs(struct vpe_dev *dev)
954 {
955 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
956 
957 	vpe_dbg(dev, "VPE Registers:\n");
958 
959 	DUMPREG(PID);
960 	DUMPREG(SYSCONFIG);
961 	DUMPREG(INT0_STATUS0_RAW);
962 	DUMPREG(INT0_STATUS0);
963 	DUMPREG(INT0_ENABLE0);
964 	DUMPREG(INT0_STATUS1_RAW);
965 	DUMPREG(INT0_STATUS1);
966 	DUMPREG(INT0_ENABLE1);
967 	DUMPREG(CLK_ENABLE);
968 	DUMPREG(CLK_RESET);
969 	DUMPREG(CLK_FORMAT_SELECT);
970 	DUMPREG(CLK_RANGE_MAP);
971 	DUMPREG(US1_R0);
972 	DUMPREG(US1_R1);
973 	DUMPREG(US1_R2);
974 	DUMPREG(US1_R3);
975 	DUMPREG(US1_R4);
976 	DUMPREG(US1_R5);
977 	DUMPREG(US1_R6);
978 	DUMPREG(US1_R7);
979 	DUMPREG(US2_R0);
980 	DUMPREG(US2_R1);
981 	DUMPREG(US2_R2);
982 	DUMPREG(US2_R3);
983 	DUMPREG(US2_R4);
984 	DUMPREG(US2_R5);
985 	DUMPREG(US2_R6);
986 	DUMPREG(US2_R7);
987 	DUMPREG(US3_R0);
988 	DUMPREG(US3_R1);
989 	DUMPREG(US3_R2);
990 	DUMPREG(US3_R3);
991 	DUMPREG(US3_R4);
992 	DUMPREG(US3_R5);
993 	DUMPREG(US3_R6);
994 	DUMPREG(US3_R7);
995 	DUMPREG(DEI_FRAME_SIZE);
996 	DUMPREG(MDT_BYPASS);
997 	DUMPREG(MDT_SF_THRESHOLD);
998 	DUMPREG(EDI_CONFIG);
999 	DUMPREG(DEI_EDI_LUT_R0);
1000 	DUMPREG(DEI_EDI_LUT_R1);
1001 	DUMPREG(DEI_EDI_LUT_R2);
1002 	DUMPREG(DEI_EDI_LUT_R3);
1003 	DUMPREG(DEI_FMD_WINDOW_R0);
1004 	DUMPREG(DEI_FMD_WINDOW_R1);
1005 	DUMPREG(DEI_FMD_CONTROL_R0);
1006 	DUMPREG(DEI_FMD_CONTROL_R1);
1007 	DUMPREG(DEI_FMD_STATUS_R0);
1008 	DUMPREG(DEI_FMD_STATUS_R1);
1009 	DUMPREG(DEI_FMD_STATUS_R2);
1010 #undef DUMPREG
1011 
1012 	sc_dump_regs(dev->sc);
1013 	csc_dump_regs(dev->csc);
1014 }
1015 
1016 static void add_out_dtd(struct vpe_ctx *ctx, int port)
1017 {
1018 	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
1019 	const struct vpe_port_data *p_data = &port_data[port];
1020 	struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
1021 	struct vpe_fmt *fmt = q_data->fmt;
1022 	const struct vpdma_data_format *vpdma_fmt;
1023 	int mv_buf_selector = !ctx->src_mv_buf_selector;
1024 	struct v4l2_pix_format_mplane *pix;
1025 	dma_addr_t dma_addr;
1026 	u32 flags = 0;
1027 	u32 offset = 0;
1028 	u32 stride;
1029 
1030 	if (port == VPE_PORT_MV_OUT) {
1031 		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1032 		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1033 		q_data = &ctx->q_data[Q_DATA_SRC];
1034 		pix = &q_data->format.fmt.pix_mp;
1035 		stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3,
1036 			       VPDMA_STRIDE_ALIGN);
1037 	} else {
1038 		/* to incorporate interleaved formats */
1039 		int plane = fmt->coplanar ? p_data->vb_part : 0;
1040 
1041 		pix = &q_data->format.fmt.pix_mp;
1042 		vpdma_fmt = fmt->vpdma_fmt[plane];
1043 		/*
1044 		 * If we are using a single plane buffer and
1045 		 * we need to set a separate vpdma chroma channel.
1046 		 */
1047 		if (pix->num_planes == 1 && plane) {
1048 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1049 			/* Compute required offset */
1050 			offset = pix->plane_fmt[0].bytesperline * pix->height;
1051 		} else {
1052 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1053 			/* Use address as is, no offset */
1054 			offset = 0;
1055 		}
1056 		if (!dma_addr) {
1057 			vpe_err(ctx->dev,
1058 				"acquiring output buffer(%d) dma_addr failed\n",
1059 				port);
1060 			return;
1061 		}
1062 		/* Apply the offset */
1063 		dma_addr += offset;
1064 		stride = pix->plane_fmt[VPE_LUMA].bytesperline;
1065 	}
1066 
1067 	if (q_data->flags & Q_DATA_FRAME_1D)
1068 		flags |= VPDMA_DATA_FRAME_1D;
1069 	if (q_data->flags & Q_DATA_MODE_TILED)
1070 		flags |= VPDMA_DATA_MODE_TILED;
1071 
1072 	vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
1073 			   MAX_W, MAX_H);
1074 
1075 	vpdma_add_out_dtd(&ctx->desc_list, pix->width,
1076 			  stride, &q_data->c_rect,
1077 			  vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
1078 			  MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
1079 }
1080 
1081 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1082 {
1083 	struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1084 	const struct vpe_port_data *p_data = &port_data[port];
1085 	struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1086 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1087 	struct vpe_fmt *fmt = q_data->fmt;
1088 	struct v4l2_pix_format_mplane *pix;
1089 	const struct vpdma_data_format *vpdma_fmt;
1090 	int mv_buf_selector = ctx->src_mv_buf_selector;
1091 	int field = vbuf->field == V4L2_FIELD_BOTTOM;
1092 	int frame_width, frame_height;
1093 	dma_addr_t dma_addr;
1094 	u32 flags = 0;
1095 	u32 offset = 0;
1096 	u32 stride;
1097 
1098 	pix = &q_data->format.fmt.pix_mp;
1099 	if (port == VPE_PORT_MV_IN) {
1100 		vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1101 		dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1102 		stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3,
1103 			       VPDMA_STRIDE_ALIGN);
1104 	} else {
1105 		/* to incorporate interleaved formats */
1106 		int plane = fmt->coplanar ? p_data->vb_part : 0;
1107 
1108 		vpdma_fmt = fmt->vpdma_fmt[plane];
1109 		/*
1110 		 * If we are using a single plane buffer and
1111 		 * we need to set a separate vpdma chroma channel.
1112 		 */
1113 		if (pix->num_planes == 1 && plane) {
1114 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1115 			/* Compute required offset */
1116 			offset = pix->plane_fmt[0].bytesperline * pix->height;
1117 		} else {
1118 			dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1119 			/* Use address as is, no offset */
1120 			offset = 0;
1121 		}
1122 		if (!dma_addr) {
1123 			vpe_err(ctx->dev,
1124 				"acquiring output buffer(%d) dma_addr failed\n",
1125 				port);
1126 			return;
1127 		}
1128 		/* Apply the offset */
1129 		dma_addr += offset;
1130 		stride = pix->plane_fmt[VPE_LUMA].bytesperline;
1131 
1132 		/*
1133 		 * field used in VPDMA desc  = 0 (top) / 1 (bottom)
1134 		 * Use top or bottom field from same vb alternately
1135 		 * For each de-interlacing operation, f,f-1,f-2 should be one
1136 		 * of TBT or BTB
1137 		 */
1138 		if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB ||
1139 		    q_data->flags & Q_DATA_INTERLACED_SEQ_BT) {
1140 			/* Select initial value based on format */
1141 			if (q_data->flags & Q_DATA_INTERLACED_SEQ_BT)
1142 				field = 1;
1143 			else
1144 				field = 0;
1145 
1146 			/* Toggle for each vb_index and each operation */
1147 			field = (field + p_data->vb_index + ctx->sequence) % 2;
1148 
1149 			if (field) {
1150 				int height = pix->height / 2;
1151 				int bpp;
1152 
1153 				if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
1154 				    fmt->fourcc == V4L2_PIX_FMT_NV21)
1155 					bpp = 1;
1156 				else
1157 					bpp = vpdma_fmt->depth >> 3;
1158 
1159 				if (plane)
1160 					height /= 2;
1161 
1162 				dma_addr += pix->width * height * bpp;
1163 			}
1164 		}
1165 	}
1166 
1167 	if (q_data->flags & Q_DATA_FRAME_1D)
1168 		flags |= VPDMA_DATA_FRAME_1D;
1169 	if (q_data->flags & Q_DATA_MODE_TILED)
1170 		flags |= VPDMA_DATA_MODE_TILED;
1171 
1172 	frame_width = q_data->c_rect.width;
1173 	frame_height = q_data->c_rect.height;
1174 
1175 	if (p_data->vb_part && (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
1176 				fmt->fourcc == V4L2_PIX_FMT_NV21))
1177 		frame_height /= 2;
1178 
1179 	vpdma_add_in_dtd(&ctx->desc_list, pix->width, stride,
1180 			 &q_data->c_rect, vpdma_fmt, dma_addr,
1181 			 p_data->channel, field, flags, frame_width,
1182 			 frame_height, 0, 0);
1183 }
1184 
1185 /*
1186  * Enable the expected IRQ sources
1187  */
1188 static void enable_irqs(struct vpe_ctx *ctx)
1189 {
1190 	write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1191 	write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1192 				VPE_DS1_UV_ERROR_INT);
1193 
1194 	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
1195 }
1196 
1197 static void disable_irqs(struct vpe_ctx *ctx)
1198 {
1199 	write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1200 	write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1201 
1202 	vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
1203 }
1204 
1205 /* device_run() - prepares and starts the device
1206  *
1207  * This function is only called when both the source and destination
1208  * buffers are in place.
1209  */
1210 static void device_run(void *priv)
1211 {
1212 	struct vpe_ctx *ctx = priv;
1213 	struct sc_data *sc = ctx->dev->sc;
1214 	struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1215 	struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
1216 	const struct v4l2_format_info *d_finfo;
1217 
1218 	d_finfo = v4l2_format_info(d_q_data->fmt->fourcc);
1219 
1220 	if (ctx->deinterlacing && s_q_data->flags & Q_IS_SEQ_XX &&
1221 	    ctx->sequence % 2 == 0) {
1222 		/* When using SEQ_XX type buffers, each buffer has two fields
1223 		 * each buffer has two fields (top & bottom)
1224 		 * Removing one buffer is actually getting two fields
1225 		 * Alternate between two operations:-
1226 		 * Even : consume one field but DO NOT REMOVE from queue
1227 		 * Odd : consume other field and REMOVE from queue
1228 		 */
1229 		ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
1230 		WARN_ON(ctx->src_vbs[0] == NULL);
1231 	} else {
1232 		ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1233 		WARN_ON(ctx->src_vbs[0] == NULL);
1234 	}
1235 
1236 	ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1237 	WARN_ON(ctx->dst_vb == NULL);
1238 
1239 	if (ctx->deinterlacing) {
1240 
1241 		if (ctx->src_vbs[2] == NULL) {
1242 			ctx->src_vbs[2] = ctx->src_vbs[0];
1243 			WARN_ON(ctx->src_vbs[2] == NULL);
1244 			ctx->src_vbs[1] = ctx->src_vbs[0];
1245 			WARN_ON(ctx->src_vbs[1] == NULL);
1246 		}
1247 
1248 		/*
1249 		 * we have output the first 2 frames through line average, we
1250 		 * now switch to EDI de-interlacer
1251 		 */
1252 		if (ctx->sequence == 2)
1253 			config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
1254 	}
1255 
1256 	/* config descriptors */
1257 	if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1258 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1259 		vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1260 
1261 		set_line_modes(ctx);
1262 
1263 		ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1264 		ctx->load_mmrs = false;
1265 	}
1266 
1267 	if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1268 			sc->load_coeff_h) {
1269 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1270 		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1271 			&ctx->sc_coeff_h, 0);
1272 
1273 		sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1274 		sc->load_coeff_h = false;
1275 	}
1276 
1277 	if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1278 			sc->load_coeff_v) {
1279 		vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1280 		vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1281 			&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1282 
1283 		sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1284 		sc->load_coeff_v = false;
1285 	}
1286 
1287 	/* output data descriptors */
1288 	if (ctx->deinterlacing)
1289 		add_out_dtd(ctx, VPE_PORT_MV_OUT);
1290 
1291 	if (v4l2_is_format_rgb(d_finfo)) {
1292 		add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1293 	} else {
1294 		add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1295 		if (d_q_data->fmt->coplanar)
1296 			add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1297 	}
1298 
1299 	/* input data descriptors */
1300 	if (ctx->deinterlacing) {
1301 		add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1302 		add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1303 
1304 		add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1305 		add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1306 	}
1307 
1308 	add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1309 	add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1310 
1311 	if (ctx->deinterlacing)
1312 		add_in_dtd(ctx, VPE_PORT_MV_IN);
1313 
1314 	/* sync on channel control descriptors for input ports */
1315 	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1316 	vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1317 
1318 	if (ctx->deinterlacing) {
1319 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1320 			VPE_CHAN_LUMA2_IN);
1321 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1322 			VPE_CHAN_CHROMA2_IN);
1323 
1324 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1325 			VPE_CHAN_LUMA3_IN);
1326 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1327 			VPE_CHAN_CHROMA3_IN);
1328 
1329 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1330 	}
1331 
1332 	/* sync on channel control descriptors for output ports */
1333 	if (v4l2_is_format_rgb(d_finfo)) {
1334 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1335 			VPE_CHAN_RGB_OUT);
1336 	} else {
1337 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1338 			VPE_CHAN_LUMA_OUT);
1339 		if (d_q_data->fmt->coplanar)
1340 			vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1341 				VPE_CHAN_CHROMA_OUT);
1342 	}
1343 
1344 	if (ctx->deinterlacing)
1345 		vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1346 
1347 	enable_irqs(ctx);
1348 
1349 	vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1350 	vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
1351 }
1352 
1353 static void dei_error(struct vpe_ctx *ctx)
1354 {
1355 	dev_warn(ctx->dev->v4l2_dev.dev,
1356 		"received DEI error interrupt\n");
1357 }
1358 
1359 static void ds1_uv_error(struct vpe_ctx *ctx)
1360 {
1361 	dev_warn(ctx->dev->v4l2_dev.dev,
1362 		"received downsampler error interrupt\n");
1363 }
1364 
1365 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1366 {
1367 	struct vpe_dev *dev = (struct vpe_dev *)data;
1368 	struct vpe_ctx *ctx;
1369 	struct vpe_q_data *d_q_data;
1370 	struct vb2_v4l2_buffer *s_vb, *d_vb;
1371 	unsigned long flags;
1372 	u32 irqst0, irqst1;
1373 	bool list_complete = false;
1374 
1375 	irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1376 	if (irqst0) {
1377 		write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1378 		vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1379 	}
1380 
1381 	irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1382 	if (irqst1) {
1383 		write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1384 		vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1385 	}
1386 
1387 	ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1388 	if (!ctx) {
1389 		vpe_err(dev, "instance released before end of transaction\n");
1390 		goto handled;
1391 	}
1392 
1393 	if (irqst1) {
1394 		if (irqst1 & VPE_DEI_ERROR_INT) {
1395 			irqst1 &= ~VPE_DEI_ERROR_INT;
1396 			dei_error(ctx);
1397 		}
1398 		if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1399 			irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1400 			ds1_uv_error(ctx);
1401 		}
1402 	}
1403 
1404 	if (irqst0) {
1405 		if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1406 			vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
1407 
1408 		irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1409 		list_complete = true;
1410 	}
1411 
1412 	if (irqst0 | irqst1) {
1413 		dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1414 			irqst0, irqst1);
1415 	}
1416 
1417 	/*
1418 	 * Setup next operation only when list complete IRQ occurs
1419 	 * otherwise, skip the following code
1420 	 */
1421 	if (!list_complete)
1422 		goto handled;
1423 
1424 	disable_irqs(ctx);
1425 
1426 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1427 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1428 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1429 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1430 
1431 	vpdma_reset_desc_list(&ctx->desc_list);
1432 
1433 	 /* the previous dst mv buffer becomes the next src mv buffer */
1434 	ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1435 
1436 	s_vb = ctx->src_vbs[0];
1437 	d_vb = ctx->dst_vb;
1438 
1439 	d_vb->flags = s_vb->flags;
1440 	d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
1441 
1442 	if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1443 		d_vb->timecode = s_vb->timecode;
1444 
1445 	d_vb->sequence = ctx->sequence;
1446 	s_vb->sequence = ctx->sequence;
1447 
1448 	d_q_data = &ctx->q_data[Q_DATA_DST];
1449 	if (d_q_data->flags & Q_IS_INTERLACED) {
1450 		d_vb->field = ctx->field;
1451 		if (ctx->field == V4L2_FIELD_BOTTOM) {
1452 			ctx->sequence++;
1453 			ctx->field = V4L2_FIELD_TOP;
1454 		} else {
1455 			WARN_ON(ctx->field != V4L2_FIELD_TOP);
1456 			ctx->field = V4L2_FIELD_BOTTOM;
1457 		}
1458 	} else {
1459 		d_vb->field = V4L2_FIELD_NONE;
1460 		ctx->sequence++;
1461 	}
1462 
1463 	if (ctx->deinterlacing) {
1464 		/*
1465 		 * Allow source buffer to be dequeued only if it won't be used
1466 		 * in the next iteration. All vbs are initialized to first
1467 		 * buffer and we are shifting buffers every iteration, for the
1468 		 * first two iterations, no buffer will be dequeued.
1469 		 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1470 		 * field when deinterlacing is enabled
1471 		 */
1472 		if (ctx->src_vbs[2] != ctx->src_vbs[1])
1473 			s_vb = ctx->src_vbs[2];
1474 		else
1475 			s_vb = NULL;
1476 	}
1477 
1478 	spin_lock_irqsave(&dev->lock, flags);
1479 
1480 	if (s_vb)
1481 		v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1482 
1483 	v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1484 
1485 	spin_unlock_irqrestore(&dev->lock, flags);
1486 
1487 	if (ctx->deinterlacing) {
1488 		ctx->src_vbs[2] = ctx->src_vbs[1];
1489 		ctx->src_vbs[1] = ctx->src_vbs[0];
1490 	}
1491 
1492 	/*
1493 	 * Since the vb2_buf_done has already been called fir therse
1494 	 * buffer we can now NULL them out so that we won't try
1495 	 * to clean out stray pointer later on.
1496 	*/
1497 	ctx->src_vbs[0] = NULL;
1498 	ctx->dst_vb = NULL;
1499 
1500 	if (ctx->aborting)
1501 		goto finished;
1502 
1503 	ctx->bufs_completed++;
1504 	if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
1505 		device_run(ctx);
1506 		goto handled;
1507 	}
1508 
1509 finished:
1510 	vpe_dbg(ctx->dev, "finishing transaction\n");
1511 	ctx->bufs_completed = 0;
1512 	v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1513 handled:
1514 	return IRQ_HANDLED;
1515 }
1516 
1517 /*
1518  * video ioctls
1519  */
1520 static int vpe_querycap(struct file *file, void *priv,
1521 			struct v4l2_capability *cap)
1522 {
1523 	strscpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver));
1524 	strscpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card));
1525 	snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1526 		VPE_MODULE_NAME);
1527 	return 0;
1528 }
1529 
1530 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1531 {
1532 	int i, index;
1533 	struct vpe_fmt *fmt = NULL;
1534 
1535 	index = 0;
1536 	for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1537 		if (vpe_formats[i].types & type) {
1538 			if (index == f->index) {
1539 				fmt = &vpe_formats[i];
1540 				break;
1541 			}
1542 			index++;
1543 		}
1544 	}
1545 
1546 	if (!fmt)
1547 		return -EINVAL;
1548 
1549 	f->pixelformat = fmt->fourcc;
1550 	return 0;
1551 }
1552 
1553 static int vpe_enum_fmt(struct file *file, void *priv,
1554 				struct v4l2_fmtdesc *f)
1555 {
1556 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1557 		return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1558 
1559 	return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1560 }
1561 
1562 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1563 {
1564 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1565 	struct vpe_ctx *ctx = file->private_data;
1566 	struct vb2_queue *vq;
1567 	struct vpe_q_data *q_data;
1568 
1569 	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1570 	if (!vq)
1571 		return -EINVAL;
1572 
1573 	q_data = get_q_data(ctx, f->type);
1574 	if (!q_data)
1575 		return -EINVAL;
1576 
1577 	*f = q_data->format;
1578 
1579 	if (V4L2_TYPE_IS_CAPTURE(f->type)) {
1580 		struct vpe_q_data *s_q_data;
1581 		struct v4l2_pix_format_mplane *spix;
1582 
1583 		/* get colorimetry from the source queue */
1584 		s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1585 		spix = &s_q_data->format.fmt.pix_mp;
1586 
1587 		pix->colorspace = spix->colorspace;
1588 		pix->xfer_func = spix->xfer_func;
1589 		pix->ycbcr_enc = spix->ycbcr_enc;
1590 		pix->quantization = spix->quantization;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1597 		       struct vpe_fmt *fmt, int type)
1598 {
1599 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1600 	struct v4l2_plane_pix_format *plane_fmt;
1601 	unsigned int w_align;
1602 	int i, depth, depth_bytes, height;
1603 	unsigned int stride = 0;
1604 	const struct v4l2_format_info *finfo;
1605 
1606 	if (!fmt || !(fmt->types & type)) {
1607 		vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1608 			pix->pixelformat);
1609 		fmt = __find_format(V4L2_PIX_FMT_YUYV);
1610 	}
1611 
1612 	if (pix->field != V4L2_FIELD_NONE &&
1613 	    pix->field != V4L2_FIELD_ALTERNATE &&
1614 	    pix->field != V4L2_FIELD_SEQ_TB &&
1615 	    pix->field != V4L2_FIELD_SEQ_BT)
1616 		pix->field = V4L2_FIELD_NONE;
1617 
1618 	depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1619 
1620 	/*
1621 	 * the line stride should 16 byte aligned for VPDMA to work, based on
1622 	 * the bytes per pixel, figure out how much the width should be aligned
1623 	 * to make sure line stride is 16 byte aligned
1624 	 */
1625 	depth_bytes = depth >> 3;
1626 
1627 	if (depth_bytes == 3) {
1628 		/*
1629 		 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1630 		 * really help in ensuring line stride is 16 byte aligned
1631 		 */
1632 		w_align = 4;
1633 	} else {
1634 		/*
1635 		 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1636 		 * can ensure a line stride alignment of 16 bytes. For example,
1637 		 * if bpp is 2, then the line stride can be 16 byte aligned if
1638 		 * the width is 8 byte aligned
1639 		 */
1640 
1641 		/*
1642 		 * HACK: using order_base_2() here causes lots of asm output
1643 		 * errors with smatch, on i386:
1644 		 * ./arch/x86/include/asm/bitops.h:457:22:
1645 		 *		 warning: asm output is not an lvalue
1646 		 * Perhaps some gcc optimization is doing the wrong thing
1647 		 * there.
1648 		 * Let's get rid of them by doing the calculus on two steps
1649 		 */
1650 		w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
1651 		w_align = ilog2(w_align);
1652 	}
1653 
1654 	v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1655 			      &pix->height, MIN_H, MAX_H, H_ALIGN,
1656 			      S_ALIGN);
1657 
1658 	if (!pix->num_planes || pix->num_planes > 2)
1659 		pix->num_planes = fmt->coplanar ? 2 : 1;
1660 	else if (pix->num_planes > 1 && !fmt->coplanar)
1661 		pix->num_planes = 1;
1662 
1663 	pix->pixelformat = fmt->fourcc;
1664 	finfo = v4l2_format_info(fmt->fourcc);
1665 
1666 	/*
1667 	 * For the actual image parameters, we need to consider the field
1668 	 * height of the image for SEQ_XX buffers.
1669 	 */
1670 	if (pix->field == V4L2_FIELD_SEQ_TB || pix->field == V4L2_FIELD_SEQ_BT)
1671 		height = pix->height / 2;
1672 	else
1673 		height = pix->height;
1674 
1675 	if (!pix->colorspace) {
1676 		if (v4l2_is_format_rgb(finfo)) {
1677 			pix->colorspace = V4L2_COLORSPACE_SRGB;
1678 		} else {
1679 			if (height > 1280)	/* HD */
1680 				pix->colorspace = V4L2_COLORSPACE_REC709;
1681 			else			/* SD */
1682 				pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1683 		}
1684 	}
1685 
1686 	for (i = 0; i < pix->num_planes; i++) {
1687 		plane_fmt = &pix->plane_fmt[i];
1688 		depth = fmt->vpdma_fmt[i]->depth;
1689 
1690 		stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
1691 		if (stride > plane_fmt->bytesperline)
1692 			plane_fmt->bytesperline = stride;
1693 
1694 		plane_fmt->bytesperline = clamp_t(u32, plane_fmt->bytesperline,
1695 						  stride,
1696 						  VPDMA_MAX_STRIDE);
1697 
1698 		plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
1699 						VPDMA_STRIDE_ALIGN);
1700 
1701 		if (i == VPE_LUMA) {
1702 			plane_fmt->sizeimage = pix->height *
1703 					       plane_fmt->bytesperline;
1704 
1705 			if (pix->num_planes == 1 && fmt->coplanar)
1706 				plane_fmt->sizeimage += pix->height *
1707 					plane_fmt->bytesperline *
1708 					fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
1709 
1710 		} else { /* i == VIP_CHROMA */
1711 			plane_fmt->sizeimage = (pix->height *
1712 					       plane_fmt->bytesperline *
1713 					       depth) >> 3;
1714 		}
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1721 {
1722 	struct vpe_ctx *ctx = file->private_data;
1723 	struct vpe_fmt *fmt = find_format(f);
1724 
1725 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1726 		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1727 	else
1728 		return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1729 }
1730 
1731 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1732 {
1733 	struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1734 	struct v4l2_pix_format_mplane *qpix;
1735 	struct vpe_q_data *q_data;
1736 	struct vb2_queue *vq;
1737 
1738 	vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1739 	if (!vq)
1740 		return -EINVAL;
1741 
1742 	if (vb2_is_busy(vq)) {
1743 		vpe_err(ctx->dev, "queue busy\n");
1744 		return -EBUSY;
1745 	}
1746 
1747 	q_data = get_q_data(ctx, f->type);
1748 	if (!q_data)
1749 		return -EINVAL;
1750 
1751 	qpix = &q_data->format.fmt.pix_mp;
1752 	q_data->fmt		= find_format(f);
1753 	q_data->format = *f;
1754 
1755 	q_data->c_rect.left	= 0;
1756 	q_data->c_rect.top	= 0;
1757 	q_data->c_rect.width	= pix->width;
1758 	q_data->c_rect.height	= pix->height;
1759 
1760 	if (qpix->field == V4L2_FIELD_ALTERNATE)
1761 		q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
1762 	else if (qpix->field == V4L2_FIELD_SEQ_TB)
1763 		q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
1764 	else if (qpix->field == V4L2_FIELD_SEQ_BT)
1765 		q_data->flags |= Q_DATA_INTERLACED_SEQ_BT;
1766 	else
1767 		q_data->flags &= ~Q_IS_INTERLACED;
1768 
1769 	/* the crop height is halved for the case of SEQ_XX buffers */
1770 	if (q_data->flags & Q_IS_SEQ_XX)
1771 		q_data->c_rect.height /= 2;
1772 
1773 	vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1774 		f->type, pix->width, pix->height, pix->pixelformat,
1775 		pix->plane_fmt[0].bytesperline);
1776 	if (pix->num_planes == 2)
1777 		vpe_dbg(ctx->dev, " bpl_uv %d\n",
1778 			pix->plane_fmt[1].bytesperline);
1779 
1780 	return 0;
1781 }
1782 
1783 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1784 {
1785 	int ret;
1786 	struct vpe_ctx *ctx = file->private_data;
1787 
1788 	ret = vpe_try_fmt(file, priv, f);
1789 	if (ret)
1790 		return ret;
1791 
1792 	ret = __vpe_s_fmt(ctx, f);
1793 	if (ret)
1794 		return ret;
1795 
1796 	if (V4L2_TYPE_IS_OUTPUT(f->type))
1797 		set_src_registers(ctx);
1798 	else
1799 		set_dst_registers(ctx);
1800 
1801 	return set_srcdst_params(ctx);
1802 }
1803 
1804 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1805 {
1806 	struct vpe_q_data *q_data;
1807 	struct v4l2_pix_format_mplane *pix;
1808 	int height;
1809 
1810 	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1811 	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1812 		return -EINVAL;
1813 
1814 	q_data = get_q_data(ctx, s->type);
1815 	if (!q_data)
1816 		return -EINVAL;
1817 
1818 	pix = &q_data->format.fmt.pix_mp;
1819 
1820 	switch (s->target) {
1821 	case V4L2_SEL_TGT_COMPOSE:
1822 		/*
1823 		 * COMPOSE target is only valid for capture buffer type, return
1824 		 * error for output buffer type
1825 		 */
1826 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1827 			return -EINVAL;
1828 		break;
1829 	case V4L2_SEL_TGT_CROP:
1830 		/*
1831 		 * CROP target is only valid for output buffer type, return
1832 		 * error for capture buffer type
1833 		 */
1834 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1835 			return -EINVAL;
1836 		break;
1837 	/*
1838 	 * bound and default crop/compose targets are invalid targets to
1839 	 * try/set
1840 	 */
1841 	default:
1842 		return -EINVAL;
1843 	}
1844 
1845 	/*
1846 	 * For SEQ_XX buffers, crop height should be less than the height of
1847 	 * the field height, not the buffer height
1848 	 */
1849 	if (q_data->flags & Q_IS_SEQ_XX)
1850 		height = pix->height / 2;
1851 	else
1852 		height = pix->height;
1853 
1854 	if (s->r.top < 0 || s->r.left < 0) {
1855 		vpe_err(ctx->dev, "negative values for top and left\n");
1856 		s->r.top = s->r.left = 0;
1857 	}
1858 
1859 	v4l_bound_align_image(&s->r.width, MIN_W, pix->width, 1,
1860 		&s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
1861 
1862 	/* adjust left/top if cropping rectangle is out of bounds */
1863 	if (s->r.left + s->r.width > pix->width)
1864 		s->r.left = pix->width - s->r.width;
1865 	if (s->r.top + s->r.height > pix->height)
1866 		s->r.top = pix->height - s->r.height;
1867 
1868 	return 0;
1869 }
1870 
1871 static int vpe_g_selection(struct file *file, void *fh,
1872 		struct v4l2_selection *s)
1873 {
1874 	struct vpe_ctx *ctx = file->private_data;
1875 	struct vpe_q_data *q_data;
1876 	struct v4l2_pix_format_mplane *pix;
1877 	bool use_c_rect = false;
1878 
1879 	if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1880 	    (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1881 		return -EINVAL;
1882 
1883 	q_data = get_q_data(ctx, s->type);
1884 	if (!q_data)
1885 		return -EINVAL;
1886 
1887 	pix = &q_data->format.fmt.pix_mp;
1888 
1889 	switch (s->target) {
1890 	case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1891 	case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1892 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1893 			return -EINVAL;
1894 		break;
1895 	case V4L2_SEL_TGT_CROP_BOUNDS:
1896 	case V4L2_SEL_TGT_CROP_DEFAULT:
1897 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1898 			return -EINVAL;
1899 		break;
1900 	case V4L2_SEL_TGT_COMPOSE:
1901 		if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1902 			return -EINVAL;
1903 		use_c_rect = true;
1904 		break;
1905 	case V4L2_SEL_TGT_CROP:
1906 		if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1907 			return -EINVAL;
1908 		use_c_rect = true;
1909 		break;
1910 	default:
1911 		return -EINVAL;
1912 	}
1913 
1914 	if (use_c_rect) {
1915 		/*
1916 		 * for CROP/COMPOSE target type, return c_rect params from the
1917 		 * respective buffer type
1918 		 */
1919 		s->r = q_data->c_rect;
1920 	} else {
1921 		/*
1922 		 * for DEFAULT/BOUNDS target type, return width and height from
1923 		 * S_FMT of the respective buffer type
1924 		 */
1925 		s->r.left = 0;
1926 		s->r.top = 0;
1927 		s->r.width = pix->width;
1928 		s->r.height = pix->height;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 
1935 static int vpe_s_selection(struct file *file, void *fh,
1936 		struct v4l2_selection *s)
1937 {
1938 	struct vpe_ctx *ctx = file->private_data;
1939 	struct vpe_q_data *q_data;
1940 	struct v4l2_selection sel = *s;
1941 	int ret;
1942 
1943 	ret = __vpe_try_selection(ctx, &sel);
1944 	if (ret)
1945 		return ret;
1946 
1947 	q_data = get_q_data(ctx, sel.type);
1948 	if (!q_data)
1949 		return -EINVAL;
1950 
1951 	if ((q_data->c_rect.left == sel.r.left) &&
1952 			(q_data->c_rect.top == sel.r.top) &&
1953 			(q_data->c_rect.width == sel.r.width) &&
1954 			(q_data->c_rect.height == sel.r.height)) {
1955 		vpe_dbg(ctx->dev,
1956 			"requested crop/compose values are already set\n");
1957 		return 0;
1958 	}
1959 
1960 	q_data->c_rect = sel.r;
1961 
1962 	return set_srcdst_params(ctx);
1963 }
1964 
1965 /*
1966  * defines number of buffers/frames a context can process with VPE before
1967  * switching to a different context. default value is 1 buffer per context
1968  */
1969 #define V4L2_CID_VPE_BUFS_PER_JOB		(V4L2_CID_USER_TI_VPE_BASE + 0)
1970 
1971 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1972 {
1973 	struct vpe_ctx *ctx =
1974 		container_of(ctrl->handler, struct vpe_ctx, hdl);
1975 
1976 	switch (ctrl->id) {
1977 	case V4L2_CID_VPE_BUFS_PER_JOB:
1978 		ctx->bufs_per_job = ctrl->val;
1979 		break;
1980 
1981 	default:
1982 		vpe_err(ctx->dev, "Invalid control\n");
1983 		return -EINVAL;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1990 	.s_ctrl = vpe_s_ctrl,
1991 };
1992 
1993 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1994 	.vidioc_querycap		= vpe_querycap,
1995 
1996 	.vidioc_enum_fmt_vid_cap	= vpe_enum_fmt,
1997 	.vidioc_g_fmt_vid_cap_mplane	= vpe_g_fmt,
1998 	.vidioc_try_fmt_vid_cap_mplane	= vpe_try_fmt,
1999 	.vidioc_s_fmt_vid_cap_mplane	= vpe_s_fmt,
2000 
2001 	.vidioc_enum_fmt_vid_out	= vpe_enum_fmt,
2002 	.vidioc_g_fmt_vid_out_mplane	= vpe_g_fmt,
2003 	.vidioc_try_fmt_vid_out_mplane	= vpe_try_fmt,
2004 	.vidioc_s_fmt_vid_out_mplane	= vpe_s_fmt,
2005 
2006 	.vidioc_g_selection		= vpe_g_selection,
2007 	.vidioc_s_selection		= vpe_s_selection,
2008 
2009 	.vidioc_reqbufs			= v4l2_m2m_ioctl_reqbufs,
2010 	.vidioc_querybuf		= v4l2_m2m_ioctl_querybuf,
2011 	.vidioc_qbuf			= v4l2_m2m_ioctl_qbuf,
2012 	.vidioc_dqbuf			= v4l2_m2m_ioctl_dqbuf,
2013 	.vidioc_expbuf			= v4l2_m2m_ioctl_expbuf,
2014 	.vidioc_streamon		= v4l2_m2m_ioctl_streamon,
2015 	.vidioc_streamoff		= v4l2_m2m_ioctl_streamoff,
2016 
2017 	.vidioc_subscribe_event		= v4l2_ctrl_subscribe_event,
2018 	.vidioc_unsubscribe_event	= v4l2_event_unsubscribe,
2019 };
2020 
2021 /*
2022  * Queue operations
2023  */
2024 static int vpe_queue_setup(struct vb2_queue *vq,
2025 			   unsigned int *nbuffers, unsigned int *nplanes,
2026 			   unsigned int sizes[], struct device *alloc_devs[])
2027 {
2028 	int i;
2029 	struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
2030 	struct vpe_q_data *q_data;
2031 	struct v4l2_pix_format_mplane *pix;
2032 
2033 	q_data = get_q_data(ctx, vq->type);
2034 	if (!q_data)
2035 		return -EINVAL;
2036 
2037 	pix = &q_data->format.fmt.pix_mp;
2038 	*nplanes = pix->num_planes;
2039 
2040 	for (i = 0; i < *nplanes; i++)
2041 		sizes[i] = pix->plane_fmt[i].sizeimage;
2042 
2043 	vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
2044 		sizes[VPE_LUMA]);
2045 	if (*nplanes == 2)
2046 		vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
2047 
2048 	return 0;
2049 }
2050 
2051 static int vpe_buf_prepare(struct vb2_buffer *vb)
2052 {
2053 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2054 	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2055 	struct vpe_q_data *q_data;
2056 	struct v4l2_pix_format_mplane *pix;
2057 	int i;
2058 
2059 	vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
2060 
2061 	q_data = get_q_data(ctx, vb->vb2_queue->type);
2062 	if (!q_data)
2063 		return -EINVAL;
2064 
2065 	pix = &q_data->format.fmt.pix_mp;
2066 
2067 	if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
2068 		if (!(q_data->flags & Q_IS_INTERLACED)) {
2069 			vbuf->field = V4L2_FIELD_NONE;
2070 		} else {
2071 			if (vbuf->field != V4L2_FIELD_TOP &&
2072 			    vbuf->field != V4L2_FIELD_BOTTOM &&
2073 			    vbuf->field != V4L2_FIELD_SEQ_TB &&
2074 			    vbuf->field != V4L2_FIELD_SEQ_BT)
2075 				return -EINVAL;
2076 		}
2077 	}
2078 
2079 	for (i = 0; i < pix->num_planes; i++) {
2080 		if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) {
2081 			vpe_err(ctx->dev,
2082 				"data will not fit into plane (%lu < %lu)\n",
2083 				vb2_plane_size(vb, i),
2084 				(long)pix->plane_fmt[i].sizeimage);
2085 			return -EINVAL;
2086 		}
2087 	}
2088 
2089 	for (i = 0; i < pix->num_planes; i++)
2090 		vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage);
2091 
2092 	return 0;
2093 }
2094 
2095 static void vpe_buf_queue(struct vb2_buffer *vb)
2096 {
2097 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2098 	struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2099 
2100 	v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
2101 }
2102 
2103 static int check_srcdst_sizes(struct vpe_ctx *ctx)
2104 {
2105 	struct vpe_q_data *s_q_data =  &ctx->q_data[Q_DATA_SRC];
2106 	struct vpe_q_data *d_q_data =  &ctx->q_data[Q_DATA_DST];
2107 	unsigned int src_w = s_q_data->c_rect.width;
2108 	unsigned int src_h = s_q_data->c_rect.height;
2109 	unsigned int dst_w = d_q_data->c_rect.width;
2110 	unsigned int dst_h = d_q_data->c_rect.height;
2111 
2112 	if (src_w == dst_w && src_h == dst_h)
2113 		return 0;
2114 
2115 	if (src_h <= SC_MAX_PIXEL_HEIGHT &&
2116 	    src_w <= SC_MAX_PIXEL_WIDTH &&
2117 	    dst_h <= SC_MAX_PIXEL_HEIGHT &&
2118 	    dst_w <= SC_MAX_PIXEL_WIDTH)
2119 		return 0;
2120 
2121 	return -1;
2122 }
2123 
2124 static void vpe_return_all_buffers(struct vpe_ctx *ctx,  struct vb2_queue *q,
2125 				   enum vb2_buffer_state state)
2126 {
2127 	struct vb2_v4l2_buffer *vb;
2128 	unsigned long flags;
2129 
2130 	for (;;) {
2131 		if (V4L2_TYPE_IS_OUTPUT(q->type))
2132 			vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
2133 		else
2134 			vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
2135 		if (!vb)
2136 			break;
2137 		spin_lock_irqsave(&ctx->dev->lock, flags);
2138 		v4l2_m2m_buf_done(vb, state);
2139 		spin_unlock_irqrestore(&ctx->dev->lock, flags);
2140 	}
2141 
2142 	/*
2143 	 * Cleanup the in-transit vb2 buffers that have been
2144 	 * removed from their respective queue already but for
2145 	 * which procecessing has not been completed yet.
2146 	 */
2147 	if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2148 		spin_lock_irqsave(&ctx->dev->lock, flags);
2149 
2150 		if (ctx->src_vbs[2])
2151 			v4l2_m2m_buf_done(ctx->src_vbs[2], state);
2152 
2153 		if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
2154 			v4l2_m2m_buf_done(ctx->src_vbs[1], state);
2155 
2156 		if (ctx->src_vbs[0] &&
2157 		    (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
2158 		    (ctx->src_vbs[0] != ctx->src_vbs[2]))
2159 			v4l2_m2m_buf_done(ctx->src_vbs[0], state);
2160 
2161 		ctx->src_vbs[2] = NULL;
2162 		ctx->src_vbs[1] = NULL;
2163 		ctx->src_vbs[0] = NULL;
2164 
2165 		spin_unlock_irqrestore(&ctx->dev->lock, flags);
2166 	} else {
2167 		if (ctx->dst_vb) {
2168 			spin_lock_irqsave(&ctx->dev->lock, flags);
2169 
2170 			v4l2_m2m_buf_done(ctx->dst_vb, state);
2171 			ctx->dst_vb = NULL;
2172 			spin_unlock_irqrestore(&ctx->dev->lock, flags);
2173 		}
2174 	}
2175 }
2176 
2177 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
2178 {
2179 	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2180 
2181 	/* Check any of the size exceed maximum scaling sizes */
2182 	if (check_srcdst_sizes(ctx)) {
2183 		vpe_err(ctx->dev,
2184 			"Conversion setup failed, check source and destination parameters\n"
2185 			);
2186 		vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
2187 		return -EINVAL;
2188 	}
2189 
2190 	if (ctx->deinterlacing)
2191 		config_edi_input_mode(ctx, 0x0);
2192 
2193 	if (ctx->sequence != 0)
2194 		set_srcdst_params(ctx);
2195 
2196 	return 0;
2197 }
2198 
2199 static void vpe_stop_streaming(struct vb2_queue *q)
2200 {
2201 	struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2202 
2203 	vpe_dump_regs(ctx->dev);
2204 	vpdma_dump_regs(ctx->dev->vpdma);
2205 
2206 	vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
2207 }
2208 
2209 static const struct vb2_ops vpe_qops = {
2210 	.queue_setup	 = vpe_queue_setup,
2211 	.buf_prepare	 = vpe_buf_prepare,
2212 	.buf_queue	 = vpe_buf_queue,
2213 	.wait_prepare	 = vb2_ops_wait_prepare,
2214 	.wait_finish	 = vb2_ops_wait_finish,
2215 	.start_streaming = vpe_start_streaming,
2216 	.stop_streaming  = vpe_stop_streaming,
2217 };
2218 
2219 static int queue_init(void *priv, struct vb2_queue *src_vq,
2220 		      struct vb2_queue *dst_vq)
2221 {
2222 	struct vpe_ctx *ctx = priv;
2223 	struct vpe_dev *dev = ctx->dev;
2224 	int ret;
2225 
2226 	memset(src_vq, 0, sizeof(*src_vq));
2227 	src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2228 	src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2229 	src_vq->drv_priv = ctx;
2230 	src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2231 	src_vq->ops = &vpe_qops;
2232 	src_vq->mem_ops = &vb2_dma_contig_memops;
2233 	src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2234 	src_vq->lock = &dev->dev_mutex;
2235 	src_vq->dev = dev->v4l2_dev.dev;
2236 
2237 	ret = vb2_queue_init(src_vq);
2238 	if (ret)
2239 		return ret;
2240 
2241 	memset(dst_vq, 0, sizeof(*dst_vq));
2242 	dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2243 	dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2244 	dst_vq->drv_priv = ctx;
2245 	dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2246 	dst_vq->ops = &vpe_qops;
2247 	dst_vq->mem_ops = &vb2_dma_contig_memops;
2248 	dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2249 	dst_vq->lock = &dev->dev_mutex;
2250 	dst_vq->dev = dev->v4l2_dev.dev;
2251 
2252 	return vb2_queue_init(dst_vq);
2253 }
2254 
2255 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
2256 	.ops = &vpe_ctrl_ops,
2257 	.id = V4L2_CID_VPE_BUFS_PER_JOB,
2258 	.name = "Buffers Per Transaction",
2259 	.type = V4L2_CTRL_TYPE_INTEGER,
2260 	.def = VPE_DEF_BUFS_PER_JOB,
2261 	.min = 1,
2262 	.max = VIDEO_MAX_FRAME,
2263 	.step = 1,
2264 };
2265 
2266 /*
2267  * File operations
2268  */
2269 static int vpe_open(struct file *file)
2270 {
2271 	struct vpe_dev *dev = video_drvdata(file);
2272 	struct vpe_q_data *s_q_data;
2273 	struct v4l2_ctrl_handler *hdl;
2274 	struct vpe_ctx *ctx;
2275 	struct v4l2_pix_format_mplane *pix;
2276 	int ret;
2277 
2278 	vpe_dbg(dev, "vpe_open\n");
2279 
2280 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2281 	if (!ctx)
2282 		return -ENOMEM;
2283 
2284 	ctx->dev = dev;
2285 
2286 	if (mutex_lock_interruptible(&dev->dev_mutex)) {
2287 		ret = -ERESTARTSYS;
2288 		goto free_ctx;
2289 	}
2290 
2291 	ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
2292 			VPDMA_LIST_TYPE_NORMAL);
2293 	if (ret != 0)
2294 		goto unlock;
2295 
2296 	ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
2297 	if (ret != 0)
2298 		goto free_desc_list;
2299 
2300 	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
2301 	if (ret != 0)
2302 		goto free_mmr_adb;
2303 
2304 	ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
2305 	if (ret != 0)
2306 		goto free_sc_h;
2307 
2308 	init_adb_hdrs(ctx);
2309 
2310 	v4l2_fh_init(&ctx->fh, video_devdata(file));
2311 	file->private_data = ctx;
2312 
2313 	hdl = &ctx->hdl;
2314 	v4l2_ctrl_handler_init(hdl, 1);
2315 	v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
2316 	if (hdl->error) {
2317 		ret = hdl->error;
2318 		goto exit_fh;
2319 	}
2320 	ctx->fh.ctrl_handler = hdl;
2321 	v4l2_ctrl_handler_setup(hdl);
2322 
2323 	s_q_data = &ctx->q_data[Q_DATA_SRC];
2324 	pix = &s_q_data->format.fmt.pix_mp;
2325 	s_q_data->fmt = __find_format(V4L2_PIX_FMT_YUYV);
2326 	pix->pixelformat = s_q_data->fmt->fourcc;
2327 	s_q_data->format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2328 	pix->width = 1920;
2329 	pix->height = 1080;
2330 	pix->num_planes = 1;
2331 	pix->plane_fmt[VPE_LUMA].bytesperline = (pix->width *
2332 			s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2333 	pix->plane_fmt[VPE_LUMA].sizeimage =
2334 			pix->plane_fmt[VPE_LUMA].bytesperline *
2335 			pix->height;
2336 	pix->colorspace = V4L2_COLORSPACE_REC709;
2337 	pix->xfer_func = V4L2_XFER_FUNC_DEFAULT;
2338 	pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
2339 	pix->quantization = V4L2_QUANTIZATION_DEFAULT;
2340 	pix->field = V4L2_FIELD_NONE;
2341 	s_q_data->c_rect.left = 0;
2342 	s_q_data->c_rect.top = 0;
2343 	s_q_data->c_rect.width = pix->width;
2344 	s_q_data->c_rect.height = pix->height;
2345 	s_q_data->flags = 0;
2346 
2347 	ctx->q_data[Q_DATA_DST] = *s_q_data;
2348 	ctx->q_data[Q_DATA_DST].format.type =
2349 			V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2350 
2351 	set_dei_shadow_registers(ctx);
2352 	set_src_registers(ctx);
2353 	set_dst_registers(ctx);
2354 	ret = set_srcdst_params(ctx);
2355 	if (ret)
2356 		goto exit_fh;
2357 
2358 	ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2359 
2360 	if (IS_ERR(ctx->fh.m2m_ctx)) {
2361 		ret = PTR_ERR(ctx->fh.m2m_ctx);
2362 		goto exit_fh;
2363 	}
2364 
2365 	v4l2_fh_add(&ctx->fh);
2366 
2367 	/*
2368 	 * for now, just report the creation of the first instance, we can later
2369 	 * optimize the driver to enable or disable clocks when the first
2370 	 * instance is created or the last instance released
2371 	 */
2372 	if (atomic_inc_return(&dev->num_instances) == 1)
2373 		vpe_dbg(dev, "first instance created\n");
2374 
2375 	ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2376 
2377 	ctx->load_mmrs = true;
2378 
2379 	vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2380 		ctx, ctx->fh.m2m_ctx);
2381 
2382 	mutex_unlock(&dev->dev_mutex);
2383 
2384 	return 0;
2385 exit_fh:
2386 	v4l2_ctrl_handler_free(hdl);
2387 	v4l2_fh_exit(&ctx->fh);
2388 	vpdma_free_desc_buf(&ctx->sc_coeff_v);
2389 free_sc_h:
2390 	vpdma_free_desc_buf(&ctx->sc_coeff_h);
2391 free_mmr_adb:
2392 	vpdma_free_desc_buf(&ctx->mmr_adb);
2393 free_desc_list:
2394 	vpdma_free_desc_list(&ctx->desc_list);
2395 unlock:
2396 	mutex_unlock(&dev->dev_mutex);
2397 free_ctx:
2398 	kfree(ctx);
2399 	return ret;
2400 }
2401 
2402 static int vpe_release(struct file *file)
2403 {
2404 	struct vpe_dev *dev = video_drvdata(file);
2405 	struct vpe_ctx *ctx = file->private_data;
2406 
2407 	vpe_dbg(dev, "releasing instance %p\n", ctx);
2408 
2409 	mutex_lock(&dev->dev_mutex);
2410 	free_mv_buffers(ctx);
2411 
2412 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
2413 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
2414 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
2415 	vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
2416 
2417 	vpdma_free_desc_list(&ctx->desc_list);
2418 	vpdma_free_desc_buf(&ctx->mmr_adb);
2419 
2420 	vpdma_free_desc_buf(&ctx->sc_coeff_v);
2421 	vpdma_free_desc_buf(&ctx->sc_coeff_h);
2422 
2423 	v4l2_fh_del(&ctx->fh);
2424 	v4l2_fh_exit(&ctx->fh);
2425 	v4l2_ctrl_handler_free(&ctx->hdl);
2426 	v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2427 
2428 	kfree(ctx);
2429 
2430 	/*
2431 	 * for now, just report the release of the last instance, we can later
2432 	 * optimize the driver to enable or disable clocks when the first
2433 	 * instance is created or the last instance released
2434 	 */
2435 	if (atomic_dec_return(&dev->num_instances) == 0)
2436 		vpe_dbg(dev, "last instance released\n");
2437 
2438 	mutex_unlock(&dev->dev_mutex);
2439 
2440 	return 0;
2441 }
2442 
2443 static const struct v4l2_file_operations vpe_fops = {
2444 	.owner		= THIS_MODULE,
2445 	.open		= vpe_open,
2446 	.release	= vpe_release,
2447 	.poll		= v4l2_m2m_fop_poll,
2448 	.unlocked_ioctl	= video_ioctl2,
2449 	.mmap		= v4l2_m2m_fop_mmap,
2450 };
2451 
2452 static const struct video_device vpe_videodev = {
2453 	.name		= VPE_MODULE_NAME,
2454 	.fops		= &vpe_fops,
2455 	.ioctl_ops	= &vpe_ioctl_ops,
2456 	.minor		= -1,
2457 	.release	= video_device_release_empty,
2458 	.vfl_dir	= VFL_DIR_M2M,
2459 	.device_caps	= V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2460 };
2461 
2462 static const struct v4l2_m2m_ops m2m_ops = {
2463 	.device_run	= device_run,
2464 	.job_ready	= job_ready,
2465 	.job_abort	= job_abort,
2466 };
2467 
2468 static int vpe_runtime_get(struct platform_device *pdev)
2469 {
2470 	int r;
2471 
2472 	dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2473 
2474 	r = pm_runtime_resume_and_get(&pdev->dev);
2475 	WARN_ON(r < 0);
2476 	return r;
2477 }
2478 
2479 static void vpe_runtime_put(struct platform_device *pdev)
2480 {
2481 
2482 	int r;
2483 
2484 	dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2485 
2486 	r = pm_runtime_put_sync(&pdev->dev);
2487 	WARN_ON(r < 0 && r != -ENOSYS);
2488 }
2489 
2490 static void vpe_fw_cb(struct platform_device *pdev)
2491 {
2492 	struct vpe_dev *dev = platform_get_drvdata(pdev);
2493 	struct video_device *vfd;
2494 	int ret;
2495 
2496 	vfd = &dev->vfd;
2497 	*vfd = vpe_videodev;
2498 	vfd->lock = &dev->dev_mutex;
2499 	vfd->v4l2_dev = &dev->v4l2_dev;
2500 
2501 	ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
2502 	if (ret) {
2503 		vpe_err(dev, "Failed to register video device\n");
2504 
2505 		vpe_set_clock_enable(dev, 0);
2506 		vpe_runtime_put(pdev);
2507 		pm_runtime_disable(&pdev->dev);
2508 		v4l2_m2m_release(dev->m2m_dev);
2509 		v4l2_device_unregister(&dev->v4l2_dev);
2510 
2511 		return;
2512 	}
2513 
2514 	video_set_drvdata(vfd, dev);
2515 	dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2516 		vfd->num);
2517 }
2518 
2519 static int vpe_probe(struct platform_device *pdev)
2520 {
2521 	struct vpe_dev *dev;
2522 	int ret, irq, func;
2523 
2524 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2525 	if (ret) {
2526 		dev_err(&pdev->dev,
2527 			"32-bit consistent DMA enable failed\n");
2528 		return ret;
2529 	}
2530 
2531 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2532 	if (!dev)
2533 		return -ENOMEM;
2534 
2535 	spin_lock_init(&dev->lock);
2536 
2537 	ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2538 	if (ret)
2539 		return ret;
2540 
2541 	atomic_set(&dev->num_instances, 0);
2542 	mutex_init(&dev->dev_mutex);
2543 
2544 	dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2545 						"vpe_top");
2546 	if (!dev->res) {
2547 		dev_err(&pdev->dev, "missing 'vpe_top' resources data\n");
2548 		return -ENODEV;
2549 	}
2550 
2551 	/*
2552 	 * HACK: we get resource info from device tree in the form of a list of
2553 	 * VPE sub blocks, the driver currently uses only the base of vpe_top
2554 	 * for register access, the driver should be changed later to access
2555 	 * registers based on the sub block base addresses
2556 	 */
2557 	dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2558 	if (!dev->base) {
2559 		ret = -ENOMEM;
2560 		goto v4l2_dev_unreg;
2561 	}
2562 
2563 	irq = platform_get_irq(pdev, 0);
2564 	ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2565 			dev);
2566 	if (ret)
2567 		goto v4l2_dev_unreg;
2568 
2569 	platform_set_drvdata(pdev, dev);
2570 
2571 	dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2572 	if (IS_ERR(dev->m2m_dev)) {
2573 		vpe_err(dev, "Failed to init mem2mem device\n");
2574 		ret = PTR_ERR(dev->m2m_dev);
2575 		goto v4l2_dev_unreg;
2576 	}
2577 
2578 	pm_runtime_enable(&pdev->dev);
2579 
2580 	ret = vpe_runtime_get(pdev);
2581 	if (ret < 0)
2582 		goto rel_m2m;
2583 
2584 	/* Perform clk enable followed by reset */
2585 	vpe_set_clock_enable(dev, 1);
2586 
2587 	vpe_top_reset(dev);
2588 
2589 	func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2590 		VPE_PID_FUNC_SHIFT);
2591 	vpe_dbg(dev, "VPE PID function %x\n", func);
2592 
2593 	vpe_top_vpdma_reset(dev);
2594 
2595 	dev->sc = sc_create(pdev, "sc");
2596 	if (IS_ERR(dev->sc)) {
2597 		ret = PTR_ERR(dev->sc);
2598 		goto runtime_put;
2599 	}
2600 
2601 	dev->csc = csc_create(pdev, "csc");
2602 	if (IS_ERR(dev->csc)) {
2603 		ret = PTR_ERR(dev->csc);
2604 		goto runtime_put;
2605 	}
2606 
2607 	dev->vpdma = &dev->vpdma_data;
2608 	ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
2609 	if (ret)
2610 		goto runtime_put;
2611 
2612 	return 0;
2613 
2614 runtime_put:
2615 	vpe_runtime_put(pdev);
2616 rel_m2m:
2617 	pm_runtime_disable(&pdev->dev);
2618 	v4l2_m2m_release(dev->m2m_dev);
2619 v4l2_dev_unreg:
2620 	v4l2_device_unregister(&dev->v4l2_dev);
2621 
2622 	return ret;
2623 }
2624 
2625 static int vpe_remove(struct platform_device *pdev)
2626 {
2627 	struct vpe_dev *dev = platform_get_drvdata(pdev);
2628 
2629 	v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2630 
2631 	v4l2_m2m_release(dev->m2m_dev);
2632 	video_unregister_device(&dev->vfd);
2633 	v4l2_device_unregister(&dev->v4l2_dev);
2634 
2635 	vpe_set_clock_enable(dev, 0);
2636 	vpe_runtime_put(pdev);
2637 	pm_runtime_disable(&pdev->dev);
2638 
2639 	return 0;
2640 }
2641 
2642 #if defined(CONFIG_OF)
2643 static const struct of_device_id vpe_of_match[] = {
2644 	{
2645 		.compatible = "ti,dra7-vpe",
2646 	},
2647 	{},
2648 };
2649 MODULE_DEVICE_TABLE(of, vpe_of_match);
2650 #endif
2651 
2652 static struct platform_driver vpe_pdrv = {
2653 	.probe		= vpe_probe,
2654 	.remove		= vpe_remove,
2655 	.driver		= {
2656 		.name	= VPE_MODULE_NAME,
2657 		.of_match_table = of_match_ptr(vpe_of_match),
2658 	},
2659 };
2660 
2661 module_platform_driver(vpe_pdrv);
2662 
2663 MODULE_DESCRIPTION("TI VPE driver");
2664 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2665 MODULE_LICENSE("GPL");
2666