1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver 4 * 5 * Copyright (c) 2013 Texas Instruments Inc. 6 * David Griego, <dagriego@biglakesoftware.com> 7 * Dale Farnsworth, <dale@farnsworth.org> 8 * Archit Taneja, <archit@ti.com> 9 * 10 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. 11 * Pawel Osciak, <pawel@osciak.com> 12 * Marek Szyprowski, <m.szyprowski@samsung.com> 13 * 14 * Based on the virtual v4l2-mem2mem example device 15 */ 16 17 #include <linux/delay.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/err.h> 20 #include <linux/fs.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/ioctl.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/sched.h> 29 #include <linux/slab.h> 30 #include <linux/videodev2.h> 31 #include <linux/log2.h> 32 #include <linux/sizes.h> 33 34 #include <media/v4l2-common.h> 35 #include <media/v4l2-ctrls.h> 36 #include <media/v4l2-device.h> 37 #include <media/v4l2-event.h> 38 #include <media/v4l2-ioctl.h> 39 #include <media/v4l2-mem2mem.h> 40 #include <media/videobuf2-v4l2.h> 41 #include <media/videobuf2-dma-contig.h> 42 43 #include "vpdma.h" 44 #include "vpdma_priv.h" 45 #include "vpe_regs.h" 46 #include "sc.h" 47 #include "csc.h" 48 49 #define VPE_MODULE_NAME "vpe" 50 51 /* minimum and maximum frame sizes */ 52 #define MIN_W 32 53 #define MIN_H 32 54 #define MAX_W 2048 55 #define MAX_H 2048 56 57 /* required alignments */ 58 #define S_ALIGN 0 /* multiple of 1 */ 59 #define H_ALIGN 1 /* multiple of 2 */ 60 61 /* flags that indicate a format can be used for capture/output */ 62 #define VPE_FMT_TYPE_CAPTURE (1 << 0) 63 #define VPE_FMT_TYPE_OUTPUT (1 << 1) 64 65 /* used as plane indices */ 66 #define VPE_MAX_PLANES 2 67 #define VPE_LUMA 0 68 #define VPE_CHROMA 1 69 70 /* per m2m context info */ 71 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */ 72 73 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */ 74 75 /* 76 * each VPE context can need up to 3 config descriptors, 7 input descriptors, 77 * 3 output descriptors, and 10 control descriptors 78 */ 79 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \ 80 13 * VPDMA_CFD_CTD_DESC_SIZE) 81 82 #define vpe_dbg(vpedev, fmt, arg...) \ 83 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg) 84 #define vpe_err(vpedev, fmt, arg...) \ 85 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg) 86 87 struct vpe_us_coeffs { 88 unsigned short anchor_fid0_c0; 89 unsigned short anchor_fid0_c1; 90 unsigned short anchor_fid0_c2; 91 unsigned short anchor_fid0_c3; 92 unsigned short interp_fid0_c0; 93 unsigned short interp_fid0_c1; 94 unsigned short interp_fid0_c2; 95 unsigned short interp_fid0_c3; 96 unsigned short anchor_fid1_c0; 97 unsigned short anchor_fid1_c1; 98 unsigned short anchor_fid1_c2; 99 unsigned short anchor_fid1_c3; 100 unsigned short interp_fid1_c0; 101 unsigned short interp_fid1_c1; 102 unsigned short interp_fid1_c2; 103 unsigned short interp_fid1_c3; 104 }; 105 106 /* 107 * Default upsampler coefficients 108 */ 109 static const struct vpe_us_coeffs us_coeffs[] = { 110 { 111 /* Coefficients for progressive input */ 112 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8, 113 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8, 114 }, 115 { 116 /* Coefficients for Top Field Interlaced input */ 117 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3, 118 /* Coefficients for Bottom Field Interlaced input */ 119 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9, 120 }, 121 }; 122 123 /* 124 * the following registers are for configuring some of the parameters of the 125 * motion and edge detection blocks inside DEI, these generally remain the same, 126 * these could be passed later via userspace if some one needs to tweak these. 127 */ 128 struct vpe_dei_regs { 129 unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */ 130 unsigned long edi_config_reg; /* VPE_DEI_REG3 */ 131 unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */ 132 unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */ 133 unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */ 134 unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */ 135 }; 136 137 /* 138 * default expert DEI register values, unlikely to be modified. 139 */ 140 static const struct vpe_dei_regs dei_regs = { 141 .mdt_spacial_freq_thr_reg = 0x020C0804u, 142 .edi_config_reg = 0x0118100Cu, 143 .edi_lut_reg0 = 0x08040200u, 144 .edi_lut_reg1 = 0x1010100Cu, 145 .edi_lut_reg2 = 0x10101010u, 146 .edi_lut_reg3 = 0x10101010u, 147 }; 148 149 /* 150 * The port_data structure contains per-port data. 151 */ 152 struct vpe_port_data { 153 enum vpdma_channel channel; /* VPDMA channel */ 154 u8 vb_index; /* input frame f, f-1, f-2 index */ 155 u8 vb_part; /* plane index for co-panar formats */ 156 }; 157 158 /* 159 * Define indices into the port_data tables 160 */ 161 #define VPE_PORT_LUMA1_IN 0 162 #define VPE_PORT_CHROMA1_IN 1 163 #define VPE_PORT_LUMA2_IN 2 164 #define VPE_PORT_CHROMA2_IN 3 165 #define VPE_PORT_LUMA3_IN 4 166 #define VPE_PORT_CHROMA3_IN 5 167 #define VPE_PORT_MV_IN 6 168 #define VPE_PORT_MV_OUT 7 169 #define VPE_PORT_LUMA_OUT 8 170 #define VPE_PORT_CHROMA_OUT 9 171 #define VPE_PORT_RGB_OUT 10 172 173 static const struct vpe_port_data port_data[11] = { 174 [VPE_PORT_LUMA1_IN] = { 175 .channel = VPE_CHAN_LUMA1_IN, 176 .vb_index = 0, 177 .vb_part = VPE_LUMA, 178 }, 179 [VPE_PORT_CHROMA1_IN] = { 180 .channel = VPE_CHAN_CHROMA1_IN, 181 .vb_index = 0, 182 .vb_part = VPE_CHROMA, 183 }, 184 [VPE_PORT_LUMA2_IN] = { 185 .channel = VPE_CHAN_LUMA2_IN, 186 .vb_index = 1, 187 .vb_part = VPE_LUMA, 188 }, 189 [VPE_PORT_CHROMA2_IN] = { 190 .channel = VPE_CHAN_CHROMA2_IN, 191 .vb_index = 1, 192 .vb_part = VPE_CHROMA, 193 }, 194 [VPE_PORT_LUMA3_IN] = { 195 .channel = VPE_CHAN_LUMA3_IN, 196 .vb_index = 2, 197 .vb_part = VPE_LUMA, 198 }, 199 [VPE_PORT_CHROMA3_IN] = { 200 .channel = VPE_CHAN_CHROMA3_IN, 201 .vb_index = 2, 202 .vb_part = VPE_CHROMA, 203 }, 204 [VPE_PORT_MV_IN] = { 205 .channel = VPE_CHAN_MV_IN, 206 }, 207 [VPE_PORT_MV_OUT] = { 208 .channel = VPE_CHAN_MV_OUT, 209 }, 210 [VPE_PORT_LUMA_OUT] = { 211 .channel = VPE_CHAN_LUMA_OUT, 212 .vb_part = VPE_LUMA, 213 }, 214 [VPE_PORT_CHROMA_OUT] = { 215 .channel = VPE_CHAN_CHROMA_OUT, 216 .vb_part = VPE_CHROMA, 217 }, 218 [VPE_PORT_RGB_OUT] = { 219 .channel = VPE_CHAN_RGB_OUT, 220 .vb_part = VPE_LUMA, 221 }, 222 }; 223 224 225 /* driver info for each of the supported video formats */ 226 struct vpe_fmt { 227 u32 fourcc; /* standard format identifier */ 228 u8 types; /* CAPTURE and/or OUTPUT */ 229 u8 coplanar; /* set for unpacked Luma and Chroma */ 230 /* vpdma format info for each plane */ 231 struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES]; 232 }; 233 234 static struct vpe_fmt vpe_formats[] = { 235 { 236 .fourcc = V4L2_PIX_FMT_NV16, 237 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, 238 .coplanar = 1, 239 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444], 240 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444], 241 }, 242 }, 243 { 244 .fourcc = V4L2_PIX_FMT_NV12, 245 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, 246 .coplanar = 1, 247 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420], 248 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420], 249 }, 250 }, 251 { 252 .fourcc = V4L2_PIX_FMT_NV21, 253 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, 254 .coplanar = 1, 255 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420], 256 &vpdma_yuv_fmts[VPDMA_DATA_FMT_CB420], 257 }, 258 }, 259 { 260 .fourcc = V4L2_PIX_FMT_YUYV, 261 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, 262 .coplanar = 0, 263 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422], 264 }, 265 }, 266 { 267 .fourcc = V4L2_PIX_FMT_UYVY, 268 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT, 269 .coplanar = 0, 270 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422], 271 }, 272 }, 273 { 274 .fourcc = V4L2_PIX_FMT_RGB24, 275 .types = VPE_FMT_TYPE_CAPTURE, 276 .coplanar = 0, 277 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24], 278 }, 279 }, 280 { 281 .fourcc = V4L2_PIX_FMT_RGB32, 282 .types = VPE_FMT_TYPE_CAPTURE, 283 .coplanar = 0, 284 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32], 285 }, 286 }, 287 { 288 .fourcc = V4L2_PIX_FMT_BGR24, 289 .types = VPE_FMT_TYPE_CAPTURE, 290 .coplanar = 0, 291 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24], 292 }, 293 }, 294 { 295 .fourcc = V4L2_PIX_FMT_BGR32, 296 .types = VPE_FMT_TYPE_CAPTURE, 297 .coplanar = 0, 298 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32], 299 }, 300 }, 301 { 302 .fourcc = V4L2_PIX_FMT_RGB565, 303 .types = VPE_FMT_TYPE_CAPTURE, 304 .coplanar = 0, 305 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565], 306 }, 307 }, 308 { 309 .fourcc = V4L2_PIX_FMT_RGB555, 310 .types = VPE_FMT_TYPE_CAPTURE, 311 .coplanar = 0, 312 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551], 313 }, 314 }, 315 }; 316 317 /* 318 * per-queue, driver-specific private data. 319 * there is one source queue and one destination queue for each m2m context. 320 */ 321 struct vpe_q_data { 322 /* current v4l2 format info */ 323 struct v4l2_format format; 324 unsigned int flags; 325 struct v4l2_rect c_rect; /* crop/compose rectangle */ 326 struct vpe_fmt *fmt; /* format info */ 327 }; 328 329 /* vpe_q_data flag bits */ 330 #define Q_DATA_FRAME_1D BIT(0) 331 #define Q_DATA_MODE_TILED BIT(1) 332 #define Q_DATA_INTERLACED_ALTERNATE BIT(2) 333 #define Q_DATA_INTERLACED_SEQ_TB BIT(3) 334 #define Q_DATA_INTERLACED_SEQ_BT BIT(4) 335 336 #define Q_IS_SEQ_XX (Q_DATA_INTERLACED_SEQ_TB | \ 337 Q_DATA_INTERLACED_SEQ_BT) 338 339 #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \ 340 Q_DATA_INTERLACED_SEQ_TB | \ 341 Q_DATA_INTERLACED_SEQ_BT) 342 343 enum { 344 Q_DATA_SRC = 0, 345 Q_DATA_DST = 1, 346 }; 347 348 /* find our format description corresponding to the passed v4l2_format */ 349 static struct vpe_fmt *__find_format(u32 fourcc) 350 { 351 struct vpe_fmt *fmt; 352 unsigned int k; 353 354 for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) { 355 fmt = &vpe_formats[k]; 356 if (fmt->fourcc == fourcc) 357 return fmt; 358 } 359 360 return NULL; 361 } 362 363 static struct vpe_fmt *find_format(struct v4l2_format *f) 364 { 365 return __find_format(f->fmt.pix.pixelformat); 366 } 367 368 /* 369 * there is one vpe_dev structure in the driver, it is shared by 370 * all instances. 371 */ 372 struct vpe_dev { 373 struct v4l2_device v4l2_dev; 374 struct video_device vfd; 375 struct v4l2_m2m_dev *m2m_dev; 376 377 atomic_t num_instances; /* count of driver instances */ 378 dma_addr_t loaded_mmrs; /* shadow mmrs in device */ 379 struct mutex dev_mutex; 380 spinlock_t lock; 381 382 int irq; 383 void __iomem *base; 384 struct resource *res; 385 386 struct vpdma_data vpdma_data; 387 struct vpdma_data *vpdma; /* vpdma data handle */ 388 struct sc_data *sc; /* scaler data handle */ 389 struct csc_data *csc; /* csc data handle */ 390 }; 391 392 /* 393 * There is one vpe_ctx structure for each m2m context. 394 */ 395 struct vpe_ctx { 396 struct v4l2_fh fh; 397 struct vpe_dev *dev; 398 struct v4l2_ctrl_handler hdl; 399 400 unsigned int field; /* current field */ 401 unsigned int sequence; /* current frame/field seq */ 402 unsigned int aborting; /* abort after next irq */ 403 404 unsigned int bufs_per_job; /* input buffers per batch */ 405 unsigned int bufs_completed; /* bufs done in this batch */ 406 407 struct vpe_q_data q_data[2]; /* src & dst queue data */ 408 struct vb2_v4l2_buffer *src_vbs[VPE_MAX_SRC_BUFS]; 409 struct vb2_v4l2_buffer *dst_vb; 410 411 dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */ 412 void *mv_buf[2]; /* virtual addrs of motion vector bufs */ 413 size_t mv_buf_size; /* current motion vector buffer size */ 414 struct vpdma_buf mmr_adb; /* shadow reg addr/data block */ 415 struct vpdma_buf sc_coeff_h; /* h coeff buffer */ 416 struct vpdma_buf sc_coeff_v; /* v coeff buffer */ 417 struct vpdma_desc_list desc_list; /* DMA descriptor list */ 418 419 bool deinterlacing; /* using de-interlacer */ 420 bool load_mmrs; /* have new shadow reg values */ 421 422 unsigned int src_mv_buf_selector; 423 }; 424 425 426 /* 427 * M2M devices get 2 queues. 428 * Return the queue given the type. 429 */ 430 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx, 431 enum v4l2_buf_type type) 432 { 433 switch (type) { 434 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE: 435 case V4L2_BUF_TYPE_VIDEO_OUTPUT: 436 return &ctx->q_data[Q_DATA_SRC]; 437 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE: 438 case V4L2_BUF_TYPE_VIDEO_CAPTURE: 439 return &ctx->q_data[Q_DATA_DST]; 440 default: 441 return NULL; 442 } 443 return NULL; 444 } 445 446 static u32 read_reg(struct vpe_dev *dev, int offset) 447 { 448 return ioread32(dev->base + offset); 449 } 450 451 static void write_reg(struct vpe_dev *dev, int offset, u32 value) 452 { 453 iowrite32(value, dev->base + offset); 454 } 455 456 /* register field read/write helpers */ 457 static int get_field(u32 value, u32 mask, int shift) 458 { 459 return (value & (mask << shift)) >> shift; 460 } 461 462 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift) 463 { 464 return get_field(read_reg(dev, offset), mask, shift); 465 } 466 467 static void write_field(u32 *valp, u32 field, u32 mask, int shift) 468 { 469 u32 val = *valp; 470 471 val &= ~(mask << shift); 472 val |= (field & mask) << shift; 473 *valp = val; 474 } 475 476 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field, 477 u32 mask, int shift) 478 { 479 u32 val = read_reg(dev, offset); 480 481 write_field(&val, field, mask, shift); 482 483 write_reg(dev, offset, val); 484 } 485 486 /* 487 * DMA address/data block for the shadow registers 488 */ 489 struct vpe_mmr_adb { 490 struct vpdma_adb_hdr out_fmt_hdr; 491 u32 out_fmt_reg[1]; 492 u32 out_fmt_pad[3]; 493 struct vpdma_adb_hdr us1_hdr; 494 u32 us1_regs[8]; 495 struct vpdma_adb_hdr us2_hdr; 496 u32 us2_regs[8]; 497 struct vpdma_adb_hdr us3_hdr; 498 u32 us3_regs[8]; 499 struct vpdma_adb_hdr dei_hdr; 500 u32 dei_regs[8]; 501 struct vpdma_adb_hdr sc_hdr0; 502 u32 sc_regs0[7]; 503 u32 sc_pad0[1]; 504 struct vpdma_adb_hdr sc_hdr8; 505 u32 sc_regs8[6]; 506 u32 sc_pad8[2]; 507 struct vpdma_adb_hdr sc_hdr17; 508 u32 sc_regs17[9]; 509 u32 sc_pad17[3]; 510 struct vpdma_adb_hdr csc_hdr; 511 u32 csc_regs[6]; 512 u32 csc_pad[2]; 513 }; 514 515 #define GET_OFFSET_TOP(ctx, obj, reg) \ 516 ((obj)->res->start - ctx->dev->res->start + reg) 517 518 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \ 519 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a) 520 /* 521 * Set the headers for all of the address/data block structures. 522 */ 523 static void init_adb_hdrs(struct vpe_ctx *ctx) 524 { 525 VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT); 526 VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0); 527 VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0); 528 VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0); 529 VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE); 530 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0, 531 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0)); 532 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8, 533 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8)); 534 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17, 535 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17)); 536 VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs, 537 GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00)); 538 }; 539 540 /* 541 * Allocate or re-allocate the motion vector DMA buffers 542 * There are two buffers, one for input and one for output. 543 * However, the roles are reversed after each field is processed. 544 * In other words, after each field is processed, the previous 545 * output (dst) MV buffer becomes the new input (src) MV buffer. 546 */ 547 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size) 548 { 549 struct device *dev = ctx->dev->v4l2_dev.dev; 550 551 if (ctx->mv_buf_size == size) 552 return 0; 553 554 if (ctx->mv_buf[0]) 555 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0], 556 ctx->mv_buf_dma[0]); 557 558 if (ctx->mv_buf[1]) 559 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1], 560 ctx->mv_buf_dma[1]); 561 562 if (size == 0) 563 return 0; 564 565 ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0], 566 GFP_KERNEL); 567 if (!ctx->mv_buf[0]) { 568 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n"); 569 return -ENOMEM; 570 } 571 572 ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1], 573 GFP_KERNEL); 574 if (!ctx->mv_buf[1]) { 575 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n"); 576 dma_free_coherent(dev, size, ctx->mv_buf[0], 577 ctx->mv_buf_dma[0]); 578 579 return -ENOMEM; 580 } 581 582 ctx->mv_buf_size = size; 583 ctx->src_mv_buf_selector = 0; 584 585 return 0; 586 } 587 588 static void free_mv_buffers(struct vpe_ctx *ctx) 589 { 590 realloc_mv_buffers(ctx, 0); 591 } 592 593 /* 594 * While de-interlacing, we keep the two most recent input buffers 595 * around. This function frees those two buffers when we have 596 * finished processing the current stream. 597 */ 598 static void free_vbs(struct vpe_ctx *ctx) 599 { 600 struct vpe_dev *dev = ctx->dev; 601 unsigned long flags; 602 603 if (ctx->src_vbs[2] == NULL) 604 return; 605 606 spin_lock_irqsave(&dev->lock, flags); 607 if (ctx->src_vbs[2]) { 608 v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE); 609 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2])) 610 v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE); 611 ctx->src_vbs[2] = NULL; 612 ctx->src_vbs[1] = NULL; 613 } 614 spin_unlock_irqrestore(&dev->lock, flags); 615 } 616 617 /* 618 * Enable or disable the VPE clocks 619 */ 620 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on) 621 { 622 u32 val = 0; 623 624 if (on) 625 val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE; 626 write_reg(dev, VPE_CLK_ENABLE, val); 627 } 628 629 static void vpe_top_reset(struct vpe_dev *dev) 630 { 631 632 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK, 633 VPE_DATA_PATH_CLK_RESET_SHIFT); 634 635 usleep_range(100, 150); 636 637 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK, 638 VPE_DATA_PATH_CLK_RESET_SHIFT); 639 } 640 641 static void vpe_top_vpdma_reset(struct vpe_dev *dev) 642 { 643 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK, 644 VPE_VPDMA_CLK_RESET_SHIFT); 645 646 usleep_range(100, 150); 647 648 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK, 649 VPE_VPDMA_CLK_RESET_SHIFT); 650 } 651 652 /* 653 * Load the correct of upsampler coefficients into the shadow MMRs 654 */ 655 static void set_us_coefficients(struct vpe_ctx *ctx) 656 { 657 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 658 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; 659 u32 *us1_reg = &mmr_adb->us1_regs[0]; 660 u32 *us2_reg = &mmr_adb->us2_regs[0]; 661 u32 *us3_reg = &mmr_adb->us3_regs[0]; 662 const unsigned short *cp, *end_cp; 663 664 cp = &us_coeffs[0].anchor_fid0_c0; 665 666 if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */ 667 cp += sizeof(us_coeffs[0]) / sizeof(*cp); 668 669 end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp); 670 671 while (cp < end_cp) { 672 write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT); 673 write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT); 674 *us2_reg++ = *us1_reg; 675 *us3_reg++ = *us1_reg++; 676 } 677 ctx->load_mmrs = true; 678 } 679 680 /* 681 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs. 682 */ 683 static void set_cfg_modes(struct vpe_ctx *ctx) 684 { 685 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt; 686 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 687 u32 *us1_reg0 = &mmr_adb->us1_regs[0]; 688 u32 *us2_reg0 = &mmr_adb->us2_regs[0]; 689 u32 *us3_reg0 = &mmr_adb->us3_regs[0]; 690 int cfg_mode = 1; 691 692 /* 693 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing. 694 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing. 695 */ 696 697 if (fmt->fourcc == V4L2_PIX_FMT_NV12 || 698 fmt->fourcc == V4L2_PIX_FMT_NV21) 699 cfg_mode = 0; 700 701 write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT); 702 write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT); 703 write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT); 704 705 ctx->load_mmrs = true; 706 } 707 708 static void set_line_modes(struct vpe_ctx *ctx) 709 { 710 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt; 711 int line_mode = 1; 712 713 if (fmt->fourcc == V4L2_PIX_FMT_NV12 || 714 fmt->fourcc == V4L2_PIX_FMT_NV21) 715 line_mode = 0; /* double lines to line buffer */ 716 717 /* regs for now */ 718 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN); 719 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN); 720 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN); 721 722 /* frame start for input luma */ 723 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 724 VPE_CHAN_LUMA1_IN); 725 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 726 VPE_CHAN_LUMA2_IN); 727 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 728 VPE_CHAN_LUMA3_IN); 729 730 /* frame start for input chroma */ 731 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 732 VPE_CHAN_CHROMA1_IN); 733 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 734 VPE_CHAN_CHROMA2_IN); 735 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 736 VPE_CHAN_CHROMA3_IN); 737 738 /* frame start for MV in client */ 739 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE, 740 VPE_CHAN_MV_IN); 741 } 742 743 /* 744 * Set the shadow registers that are modified when the source 745 * format changes. 746 */ 747 static void set_src_registers(struct vpe_ctx *ctx) 748 { 749 set_us_coefficients(ctx); 750 } 751 752 /* 753 * Set the shadow registers that are modified when the destination 754 * format changes. 755 */ 756 static void set_dst_registers(struct vpe_ctx *ctx) 757 { 758 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 759 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt; 760 const struct v4l2_format_info *finfo; 761 u32 val = 0; 762 763 finfo = v4l2_format_info(fmt->fourcc); 764 if (v4l2_is_format_rgb(finfo)) { 765 val |= VPE_RGB_OUT_SELECT; 766 vpdma_set_bg_color(ctx->dev->vpdma, 767 (struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff); 768 } else if (fmt->fourcc == V4L2_PIX_FMT_NV16) 769 val |= VPE_COLOR_SEPARATE_422; 770 771 /* 772 * the source of CHR_DS and CSC is always the scaler, irrespective of 773 * whether it's used or not 774 */ 775 val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER; 776 777 if (fmt->fourcc != V4L2_PIX_FMT_NV12 && 778 fmt->fourcc != V4L2_PIX_FMT_NV21) 779 val |= VPE_DS_BYPASS; 780 781 mmr_adb->out_fmt_reg[0] = val; 782 783 ctx->load_mmrs = true; 784 } 785 786 /* 787 * Set the de-interlacer shadow register values 788 */ 789 static void set_dei_regs(struct vpe_ctx *ctx) 790 { 791 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 792 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; 793 unsigned int src_h = s_q_data->c_rect.height; 794 unsigned int src_w = s_q_data->c_rect.width; 795 u32 *dei_mmr0 = &mmr_adb->dei_regs[0]; 796 bool deinterlace = true; 797 u32 val = 0; 798 799 /* 800 * according to TRM, we should set DEI in progressive bypass mode when 801 * the input content is progressive, however, DEI is bypassed correctly 802 * for both progressive and interlace content in interlace bypass mode. 803 * It has been recommended not to use progressive bypass mode. 804 */ 805 if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) { 806 deinterlace = false; 807 val = VPE_DEI_INTERLACE_BYPASS; 808 } 809 810 src_h = deinterlace ? src_h * 2 : src_h; 811 812 val |= (src_h << VPE_DEI_HEIGHT_SHIFT) | 813 (src_w << VPE_DEI_WIDTH_SHIFT) | 814 VPE_DEI_FIELD_FLUSH; 815 816 *dei_mmr0 = val; 817 818 ctx->load_mmrs = true; 819 } 820 821 static void set_dei_shadow_registers(struct vpe_ctx *ctx) 822 { 823 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 824 u32 *dei_mmr = &mmr_adb->dei_regs[0]; 825 const struct vpe_dei_regs *cur = &dei_regs; 826 827 dei_mmr[2] = cur->mdt_spacial_freq_thr_reg; 828 dei_mmr[3] = cur->edi_config_reg; 829 dei_mmr[4] = cur->edi_lut_reg0; 830 dei_mmr[5] = cur->edi_lut_reg1; 831 dei_mmr[6] = cur->edi_lut_reg2; 832 dei_mmr[7] = cur->edi_lut_reg3; 833 834 ctx->load_mmrs = true; 835 } 836 837 static void config_edi_input_mode(struct vpe_ctx *ctx, int mode) 838 { 839 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 840 u32 *edi_config_reg = &mmr_adb->dei_regs[3]; 841 842 if (mode & 0x2) 843 write_field(edi_config_reg, 1, 1, 2); /* EDI_ENABLE_3D */ 844 845 if (mode & 0x3) 846 write_field(edi_config_reg, 1, 1, 3); /* EDI_CHROMA_3D */ 847 848 write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK, 849 VPE_EDI_INP_MODE_SHIFT); 850 851 ctx->load_mmrs = true; 852 } 853 854 /* 855 * Set the shadow registers whose values are modified when either the 856 * source or destination format is changed. 857 */ 858 static int set_srcdst_params(struct vpe_ctx *ctx) 859 { 860 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; 861 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST]; 862 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr; 863 unsigned int src_w = s_q_data->c_rect.width; 864 unsigned int src_h = s_q_data->c_rect.height; 865 unsigned int dst_w = d_q_data->c_rect.width; 866 unsigned int dst_h = d_q_data->c_rect.height; 867 struct v4l2_pix_format_mplane *spix; 868 size_t mv_buf_size; 869 int ret; 870 871 ctx->sequence = 0; 872 ctx->field = V4L2_FIELD_TOP; 873 spix = &s_q_data->format.fmt.pix_mp; 874 875 if ((s_q_data->flags & Q_IS_INTERLACED) && 876 !(d_q_data->flags & Q_IS_INTERLACED)) { 877 int bytes_per_line; 878 const struct vpdma_data_format *mv = 879 &vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; 880 881 /* 882 * we make sure that the source image has a 16 byte aligned 883 * stride, we need to do the same for the motion vector buffer 884 * by aligning it's stride to the next 16 byte boundary. this 885 * extra space will not be used by the de-interlacer, but will 886 * ensure that vpdma operates correctly 887 */ 888 bytes_per_line = ALIGN((spix->width * mv->depth) >> 3, 889 VPDMA_STRIDE_ALIGN); 890 mv_buf_size = bytes_per_line * spix->height; 891 892 ctx->deinterlacing = true; 893 src_h <<= 1; 894 } else { 895 ctx->deinterlacing = false; 896 mv_buf_size = 0; 897 } 898 899 free_vbs(ctx); 900 ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL; 901 902 ret = realloc_mv_buffers(ctx, mv_buf_size); 903 if (ret) 904 return ret; 905 906 set_cfg_modes(ctx); 907 set_dei_regs(ctx); 908 909 csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0], 910 &s_q_data->format, &d_q_data->format); 911 912 sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w); 913 sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h); 914 915 sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0], 916 &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0], 917 src_w, src_h, dst_w, dst_h); 918 919 return 0; 920 } 921 922 /* 923 * mem2mem callbacks 924 */ 925 926 /* 927 * job_ready() - check whether an instance is ready to be scheduled to run 928 */ 929 static int job_ready(void *priv) 930 { 931 struct vpe_ctx *ctx = priv; 932 933 /* 934 * This check is needed as this might be called directly from driver 935 * When called by m2m framework, this will always satisfy, but when 936 * called from vpe_irq, this might fail. (src stream with zero buffers) 937 */ 938 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 || 939 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0) 940 return 0; 941 942 return 1; 943 } 944 945 static void job_abort(void *priv) 946 { 947 struct vpe_ctx *ctx = priv; 948 949 /* Will cancel the transaction in the next interrupt handler */ 950 ctx->aborting = 1; 951 } 952 953 static void vpe_dump_regs(struct vpe_dev *dev) 954 { 955 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r)) 956 957 vpe_dbg(dev, "VPE Registers:\n"); 958 959 DUMPREG(PID); 960 DUMPREG(SYSCONFIG); 961 DUMPREG(INT0_STATUS0_RAW); 962 DUMPREG(INT0_STATUS0); 963 DUMPREG(INT0_ENABLE0); 964 DUMPREG(INT0_STATUS1_RAW); 965 DUMPREG(INT0_STATUS1); 966 DUMPREG(INT0_ENABLE1); 967 DUMPREG(CLK_ENABLE); 968 DUMPREG(CLK_RESET); 969 DUMPREG(CLK_FORMAT_SELECT); 970 DUMPREG(CLK_RANGE_MAP); 971 DUMPREG(US1_R0); 972 DUMPREG(US1_R1); 973 DUMPREG(US1_R2); 974 DUMPREG(US1_R3); 975 DUMPREG(US1_R4); 976 DUMPREG(US1_R5); 977 DUMPREG(US1_R6); 978 DUMPREG(US1_R7); 979 DUMPREG(US2_R0); 980 DUMPREG(US2_R1); 981 DUMPREG(US2_R2); 982 DUMPREG(US2_R3); 983 DUMPREG(US2_R4); 984 DUMPREG(US2_R5); 985 DUMPREG(US2_R6); 986 DUMPREG(US2_R7); 987 DUMPREG(US3_R0); 988 DUMPREG(US3_R1); 989 DUMPREG(US3_R2); 990 DUMPREG(US3_R3); 991 DUMPREG(US3_R4); 992 DUMPREG(US3_R5); 993 DUMPREG(US3_R6); 994 DUMPREG(US3_R7); 995 DUMPREG(DEI_FRAME_SIZE); 996 DUMPREG(MDT_BYPASS); 997 DUMPREG(MDT_SF_THRESHOLD); 998 DUMPREG(EDI_CONFIG); 999 DUMPREG(DEI_EDI_LUT_R0); 1000 DUMPREG(DEI_EDI_LUT_R1); 1001 DUMPREG(DEI_EDI_LUT_R2); 1002 DUMPREG(DEI_EDI_LUT_R3); 1003 DUMPREG(DEI_FMD_WINDOW_R0); 1004 DUMPREG(DEI_FMD_WINDOW_R1); 1005 DUMPREG(DEI_FMD_CONTROL_R0); 1006 DUMPREG(DEI_FMD_CONTROL_R1); 1007 DUMPREG(DEI_FMD_STATUS_R0); 1008 DUMPREG(DEI_FMD_STATUS_R1); 1009 DUMPREG(DEI_FMD_STATUS_R2); 1010 #undef DUMPREG 1011 1012 sc_dump_regs(dev->sc); 1013 csc_dump_regs(dev->csc); 1014 } 1015 1016 static void add_out_dtd(struct vpe_ctx *ctx, int port) 1017 { 1018 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST]; 1019 const struct vpe_port_data *p_data = &port_data[port]; 1020 struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf; 1021 struct vpe_fmt *fmt = q_data->fmt; 1022 const struct vpdma_data_format *vpdma_fmt; 1023 int mv_buf_selector = !ctx->src_mv_buf_selector; 1024 struct v4l2_pix_format_mplane *pix; 1025 dma_addr_t dma_addr; 1026 u32 flags = 0; 1027 u32 offset = 0; 1028 u32 stride; 1029 1030 if (port == VPE_PORT_MV_OUT) { 1031 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; 1032 dma_addr = ctx->mv_buf_dma[mv_buf_selector]; 1033 q_data = &ctx->q_data[Q_DATA_SRC]; 1034 pix = &q_data->format.fmt.pix_mp; 1035 stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3, 1036 VPDMA_STRIDE_ALIGN); 1037 } else { 1038 /* to incorporate interleaved formats */ 1039 int plane = fmt->coplanar ? p_data->vb_part : 0; 1040 1041 pix = &q_data->format.fmt.pix_mp; 1042 vpdma_fmt = fmt->vpdma_fmt[plane]; 1043 /* 1044 * If we are using a single plane buffer and 1045 * we need to set a separate vpdma chroma channel. 1046 */ 1047 if (pix->num_planes == 1 && plane) { 1048 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0); 1049 /* Compute required offset */ 1050 offset = pix->plane_fmt[0].bytesperline * pix->height; 1051 } else { 1052 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane); 1053 /* Use address as is, no offset */ 1054 offset = 0; 1055 } 1056 if (!dma_addr) { 1057 vpe_err(ctx->dev, 1058 "acquiring output buffer(%d) dma_addr failed\n", 1059 port); 1060 return; 1061 } 1062 /* Apply the offset */ 1063 dma_addr += offset; 1064 stride = pix->plane_fmt[VPE_LUMA].bytesperline; 1065 } 1066 1067 if (q_data->flags & Q_DATA_FRAME_1D) 1068 flags |= VPDMA_DATA_FRAME_1D; 1069 if (q_data->flags & Q_DATA_MODE_TILED) 1070 flags |= VPDMA_DATA_MODE_TILED; 1071 1072 vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1, 1073 MAX_W, MAX_H); 1074 1075 vpdma_add_out_dtd(&ctx->desc_list, pix->width, 1076 stride, &q_data->c_rect, 1077 vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1, 1078 MAX_OUT_HEIGHT_REG1, p_data->channel, flags); 1079 } 1080 1081 static void add_in_dtd(struct vpe_ctx *ctx, int port) 1082 { 1083 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC]; 1084 const struct vpe_port_data *p_data = &port_data[port]; 1085 struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf; 1086 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 1087 struct vpe_fmt *fmt = q_data->fmt; 1088 struct v4l2_pix_format_mplane *pix; 1089 const struct vpdma_data_format *vpdma_fmt; 1090 int mv_buf_selector = ctx->src_mv_buf_selector; 1091 int field = vbuf->field == V4L2_FIELD_BOTTOM; 1092 int frame_width, frame_height; 1093 dma_addr_t dma_addr; 1094 u32 flags = 0; 1095 u32 offset = 0; 1096 u32 stride; 1097 1098 pix = &q_data->format.fmt.pix_mp; 1099 if (port == VPE_PORT_MV_IN) { 1100 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV]; 1101 dma_addr = ctx->mv_buf_dma[mv_buf_selector]; 1102 stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3, 1103 VPDMA_STRIDE_ALIGN); 1104 } else { 1105 /* to incorporate interleaved formats */ 1106 int plane = fmt->coplanar ? p_data->vb_part : 0; 1107 1108 vpdma_fmt = fmt->vpdma_fmt[plane]; 1109 /* 1110 * If we are using a single plane buffer and 1111 * we need to set a separate vpdma chroma channel. 1112 */ 1113 if (pix->num_planes == 1 && plane) { 1114 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0); 1115 /* Compute required offset */ 1116 offset = pix->plane_fmt[0].bytesperline * pix->height; 1117 } else { 1118 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane); 1119 /* Use address as is, no offset */ 1120 offset = 0; 1121 } 1122 if (!dma_addr) { 1123 vpe_err(ctx->dev, 1124 "acquiring output buffer(%d) dma_addr failed\n", 1125 port); 1126 return; 1127 } 1128 /* Apply the offset */ 1129 dma_addr += offset; 1130 stride = pix->plane_fmt[VPE_LUMA].bytesperline; 1131 1132 /* 1133 * field used in VPDMA desc = 0 (top) / 1 (bottom) 1134 * Use top or bottom field from same vb alternately 1135 * For each de-interlacing operation, f,f-1,f-2 should be one 1136 * of TBT or BTB 1137 */ 1138 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB || 1139 q_data->flags & Q_DATA_INTERLACED_SEQ_BT) { 1140 /* Select initial value based on format */ 1141 if (q_data->flags & Q_DATA_INTERLACED_SEQ_BT) 1142 field = 1; 1143 else 1144 field = 0; 1145 1146 /* Toggle for each vb_index and each operation */ 1147 field = (field + p_data->vb_index + ctx->sequence) % 2; 1148 1149 if (field) { 1150 int height = pix->height / 2; 1151 int bpp; 1152 1153 if (fmt->fourcc == V4L2_PIX_FMT_NV12 || 1154 fmt->fourcc == V4L2_PIX_FMT_NV21) 1155 bpp = 1; 1156 else 1157 bpp = vpdma_fmt->depth >> 3; 1158 1159 if (plane) 1160 height /= 2; 1161 1162 dma_addr += pix->width * height * bpp; 1163 } 1164 } 1165 } 1166 1167 if (q_data->flags & Q_DATA_FRAME_1D) 1168 flags |= VPDMA_DATA_FRAME_1D; 1169 if (q_data->flags & Q_DATA_MODE_TILED) 1170 flags |= VPDMA_DATA_MODE_TILED; 1171 1172 frame_width = q_data->c_rect.width; 1173 frame_height = q_data->c_rect.height; 1174 1175 if (p_data->vb_part && (fmt->fourcc == V4L2_PIX_FMT_NV12 || 1176 fmt->fourcc == V4L2_PIX_FMT_NV21)) 1177 frame_height /= 2; 1178 1179 vpdma_add_in_dtd(&ctx->desc_list, pix->width, stride, 1180 &q_data->c_rect, vpdma_fmt, dma_addr, 1181 p_data->channel, field, flags, frame_width, 1182 frame_height, 0, 0); 1183 } 1184 1185 /* 1186 * Enable the expected IRQ sources 1187 */ 1188 static void enable_irqs(struct vpe_ctx *ctx) 1189 { 1190 write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE); 1191 write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT | 1192 VPE_DS1_UV_ERROR_INT); 1193 1194 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true); 1195 } 1196 1197 static void disable_irqs(struct vpe_ctx *ctx) 1198 { 1199 write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff); 1200 write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff); 1201 1202 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false); 1203 } 1204 1205 /* device_run() - prepares and starts the device 1206 * 1207 * This function is only called when both the source and destination 1208 * buffers are in place. 1209 */ 1210 static void device_run(void *priv) 1211 { 1212 struct vpe_ctx *ctx = priv; 1213 struct sc_data *sc = ctx->dev->sc; 1214 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST]; 1215 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; 1216 const struct v4l2_format_info *d_finfo; 1217 1218 d_finfo = v4l2_format_info(d_q_data->fmt->fourcc); 1219 1220 if (ctx->deinterlacing && s_q_data->flags & Q_IS_SEQ_XX && 1221 ctx->sequence % 2 == 0) { 1222 /* When using SEQ_XX type buffers, each buffer has two fields 1223 * each buffer has two fields (top & bottom) 1224 * Removing one buffer is actually getting two fields 1225 * Alternate between two operations:- 1226 * Even : consume one field but DO NOT REMOVE from queue 1227 * Odd : consume other field and REMOVE from queue 1228 */ 1229 ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); 1230 WARN_ON(ctx->src_vbs[0] == NULL); 1231 } else { 1232 ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); 1233 WARN_ON(ctx->src_vbs[0] == NULL); 1234 } 1235 1236 ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); 1237 WARN_ON(ctx->dst_vb == NULL); 1238 1239 if (ctx->deinterlacing) { 1240 1241 if (ctx->src_vbs[2] == NULL) { 1242 ctx->src_vbs[2] = ctx->src_vbs[0]; 1243 WARN_ON(ctx->src_vbs[2] == NULL); 1244 ctx->src_vbs[1] = ctx->src_vbs[0]; 1245 WARN_ON(ctx->src_vbs[1] == NULL); 1246 } 1247 1248 /* 1249 * we have output the first 2 frames through line average, we 1250 * now switch to EDI de-interlacer 1251 */ 1252 if (ctx->sequence == 2) 1253 config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */ 1254 } 1255 1256 /* config descriptors */ 1257 if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) { 1258 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb); 1259 vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb); 1260 1261 set_line_modes(ctx); 1262 1263 ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr; 1264 ctx->load_mmrs = false; 1265 } 1266 1267 if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr || 1268 sc->load_coeff_h) { 1269 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h); 1270 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT, 1271 &ctx->sc_coeff_h, 0); 1272 1273 sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr; 1274 sc->load_coeff_h = false; 1275 } 1276 1277 if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr || 1278 sc->load_coeff_v) { 1279 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v); 1280 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT, 1281 &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4); 1282 1283 sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr; 1284 sc->load_coeff_v = false; 1285 } 1286 1287 /* output data descriptors */ 1288 if (ctx->deinterlacing) 1289 add_out_dtd(ctx, VPE_PORT_MV_OUT); 1290 1291 if (v4l2_is_format_rgb(d_finfo)) { 1292 add_out_dtd(ctx, VPE_PORT_RGB_OUT); 1293 } else { 1294 add_out_dtd(ctx, VPE_PORT_LUMA_OUT); 1295 if (d_q_data->fmt->coplanar) 1296 add_out_dtd(ctx, VPE_PORT_CHROMA_OUT); 1297 } 1298 1299 /* input data descriptors */ 1300 if (ctx->deinterlacing) { 1301 add_in_dtd(ctx, VPE_PORT_LUMA3_IN); 1302 add_in_dtd(ctx, VPE_PORT_CHROMA3_IN); 1303 1304 add_in_dtd(ctx, VPE_PORT_LUMA2_IN); 1305 add_in_dtd(ctx, VPE_PORT_CHROMA2_IN); 1306 } 1307 1308 add_in_dtd(ctx, VPE_PORT_LUMA1_IN); 1309 add_in_dtd(ctx, VPE_PORT_CHROMA1_IN); 1310 1311 if (ctx->deinterlacing) 1312 add_in_dtd(ctx, VPE_PORT_MV_IN); 1313 1314 /* sync on channel control descriptors for input ports */ 1315 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN); 1316 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN); 1317 1318 if (ctx->deinterlacing) { 1319 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1320 VPE_CHAN_LUMA2_IN); 1321 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1322 VPE_CHAN_CHROMA2_IN); 1323 1324 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1325 VPE_CHAN_LUMA3_IN); 1326 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1327 VPE_CHAN_CHROMA3_IN); 1328 1329 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN); 1330 } 1331 1332 /* sync on channel control descriptors for output ports */ 1333 if (v4l2_is_format_rgb(d_finfo)) { 1334 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1335 VPE_CHAN_RGB_OUT); 1336 } else { 1337 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1338 VPE_CHAN_LUMA_OUT); 1339 if (d_q_data->fmt->coplanar) 1340 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, 1341 VPE_CHAN_CHROMA_OUT); 1342 } 1343 1344 if (ctx->deinterlacing) 1345 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT); 1346 1347 enable_irqs(ctx); 1348 1349 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf); 1350 vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0); 1351 } 1352 1353 static void dei_error(struct vpe_ctx *ctx) 1354 { 1355 dev_warn(ctx->dev->v4l2_dev.dev, 1356 "received DEI error interrupt\n"); 1357 } 1358 1359 static void ds1_uv_error(struct vpe_ctx *ctx) 1360 { 1361 dev_warn(ctx->dev->v4l2_dev.dev, 1362 "received downsampler error interrupt\n"); 1363 } 1364 1365 static irqreturn_t vpe_irq(int irq_vpe, void *data) 1366 { 1367 struct vpe_dev *dev = (struct vpe_dev *)data; 1368 struct vpe_ctx *ctx; 1369 struct vpe_q_data *d_q_data; 1370 struct vb2_v4l2_buffer *s_vb, *d_vb; 1371 unsigned long flags; 1372 u32 irqst0, irqst1; 1373 bool list_complete = false; 1374 1375 irqst0 = read_reg(dev, VPE_INT0_STATUS0); 1376 if (irqst0) { 1377 write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0); 1378 vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0); 1379 } 1380 1381 irqst1 = read_reg(dev, VPE_INT0_STATUS1); 1382 if (irqst1) { 1383 write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1); 1384 vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1); 1385 } 1386 1387 ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev); 1388 if (!ctx) { 1389 vpe_err(dev, "instance released before end of transaction\n"); 1390 goto handled; 1391 } 1392 1393 if (irqst1) { 1394 if (irqst1 & VPE_DEI_ERROR_INT) { 1395 irqst1 &= ~VPE_DEI_ERROR_INT; 1396 dei_error(ctx); 1397 } 1398 if (irqst1 & VPE_DS1_UV_ERROR_INT) { 1399 irqst1 &= ~VPE_DS1_UV_ERROR_INT; 1400 ds1_uv_error(ctx); 1401 } 1402 } 1403 1404 if (irqst0) { 1405 if (irqst0 & VPE_INT0_LIST0_COMPLETE) 1406 vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0); 1407 1408 irqst0 &= ~(VPE_INT0_LIST0_COMPLETE); 1409 list_complete = true; 1410 } 1411 1412 if (irqst0 | irqst1) { 1413 dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n", 1414 irqst0, irqst1); 1415 } 1416 1417 /* 1418 * Setup next operation only when list complete IRQ occurs 1419 * otherwise, skip the following code 1420 */ 1421 if (!list_complete) 1422 goto handled; 1423 1424 disable_irqs(ctx); 1425 1426 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf); 1427 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb); 1428 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h); 1429 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v); 1430 1431 vpdma_reset_desc_list(&ctx->desc_list); 1432 1433 /* the previous dst mv buffer becomes the next src mv buffer */ 1434 ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector; 1435 1436 s_vb = ctx->src_vbs[0]; 1437 d_vb = ctx->dst_vb; 1438 1439 d_vb->flags = s_vb->flags; 1440 d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp; 1441 1442 if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE) 1443 d_vb->timecode = s_vb->timecode; 1444 1445 d_vb->sequence = ctx->sequence; 1446 s_vb->sequence = ctx->sequence; 1447 1448 d_q_data = &ctx->q_data[Q_DATA_DST]; 1449 if (d_q_data->flags & Q_IS_INTERLACED) { 1450 d_vb->field = ctx->field; 1451 if (ctx->field == V4L2_FIELD_BOTTOM) { 1452 ctx->sequence++; 1453 ctx->field = V4L2_FIELD_TOP; 1454 } else { 1455 WARN_ON(ctx->field != V4L2_FIELD_TOP); 1456 ctx->field = V4L2_FIELD_BOTTOM; 1457 } 1458 } else { 1459 d_vb->field = V4L2_FIELD_NONE; 1460 ctx->sequence++; 1461 } 1462 1463 if (ctx->deinterlacing) { 1464 /* 1465 * Allow source buffer to be dequeued only if it won't be used 1466 * in the next iteration. All vbs are initialized to first 1467 * buffer and we are shifting buffers every iteration, for the 1468 * first two iterations, no buffer will be dequeued. 1469 * This ensures that driver will keep (n-2)th (n-1)th and (n)th 1470 * field when deinterlacing is enabled 1471 */ 1472 if (ctx->src_vbs[2] != ctx->src_vbs[1]) 1473 s_vb = ctx->src_vbs[2]; 1474 else 1475 s_vb = NULL; 1476 } 1477 1478 spin_lock_irqsave(&dev->lock, flags); 1479 1480 if (s_vb) 1481 v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE); 1482 1483 v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE); 1484 1485 spin_unlock_irqrestore(&dev->lock, flags); 1486 1487 if (ctx->deinterlacing) { 1488 ctx->src_vbs[2] = ctx->src_vbs[1]; 1489 ctx->src_vbs[1] = ctx->src_vbs[0]; 1490 } 1491 1492 /* 1493 * Since the vb2_buf_done has already been called fir therse 1494 * buffer we can now NULL them out so that we won't try 1495 * to clean out stray pointer later on. 1496 */ 1497 ctx->src_vbs[0] = NULL; 1498 ctx->dst_vb = NULL; 1499 1500 if (ctx->aborting) 1501 goto finished; 1502 1503 ctx->bufs_completed++; 1504 if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) { 1505 device_run(ctx); 1506 goto handled; 1507 } 1508 1509 finished: 1510 vpe_dbg(ctx->dev, "finishing transaction\n"); 1511 ctx->bufs_completed = 0; 1512 v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx); 1513 handled: 1514 return IRQ_HANDLED; 1515 } 1516 1517 /* 1518 * video ioctls 1519 */ 1520 static int vpe_querycap(struct file *file, void *priv, 1521 struct v4l2_capability *cap) 1522 { 1523 strscpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver)); 1524 strscpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card)); 1525 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", 1526 VPE_MODULE_NAME); 1527 return 0; 1528 } 1529 1530 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type) 1531 { 1532 int i, index; 1533 struct vpe_fmt *fmt = NULL; 1534 1535 index = 0; 1536 for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) { 1537 if (vpe_formats[i].types & type) { 1538 if (index == f->index) { 1539 fmt = &vpe_formats[i]; 1540 break; 1541 } 1542 index++; 1543 } 1544 } 1545 1546 if (!fmt) 1547 return -EINVAL; 1548 1549 f->pixelformat = fmt->fourcc; 1550 return 0; 1551 } 1552 1553 static int vpe_enum_fmt(struct file *file, void *priv, 1554 struct v4l2_fmtdesc *f) 1555 { 1556 if (V4L2_TYPE_IS_OUTPUT(f->type)) 1557 return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT); 1558 1559 return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE); 1560 } 1561 1562 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f) 1563 { 1564 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; 1565 struct vpe_ctx *ctx = file->private_data; 1566 struct vb2_queue *vq; 1567 struct vpe_q_data *q_data; 1568 1569 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type); 1570 if (!vq) 1571 return -EINVAL; 1572 1573 q_data = get_q_data(ctx, f->type); 1574 if (!q_data) 1575 return -EINVAL; 1576 1577 *f = q_data->format; 1578 1579 if (V4L2_TYPE_IS_CAPTURE(f->type)) { 1580 struct vpe_q_data *s_q_data; 1581 struct v4l2_pix_format_mplane *spix; 1582 1583 /* get colorimetry from the source queue */ 1584 s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE); 1585 spix = &s_q_data->format.fmt.pix_mp; 1586 1587 pix->colorspace = spix->colorspace; 1588 pix->xfer_func = spix->xfer_func; 1589 pix->ycbcr_enc = spix->ycbcr_enc; 1590 pix->quantization = spix->quantization; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f, 1597 struct vpe_fmt *fmt, int type) 1598 { 1599 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; 1600 struct v4l2_plane_pix_format *plane_fmt; 1601 unsigned int w_align; 1602 int i, depth, depth_bytes, height; 1603 unsigned int stride = 0; 1604 const struct v4l2_format_info *finfo; 1605 1606 if (!fmt || !(fmt->types & type)) { 1607 vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n", 1608 pix->pixelformat); 1609 fmt = __find_format(V4L2_PIX_FMT_YUYV); 1610 } 1611 1612 if (pix->field != V4L2_FIELD_NONE && 1613 pix->field != V4L2_FIELD_ALTERNATE && 1614 pix->field != V4L2_FIELD_SEQ_TB && 1615 pix->field != V4L2_FIELD_SEQ_BT) 1616 pix->field = V4L2_FIELD_NONE; 1617 1618 depth = fmt->vpdma_fmt[VPE_LUMA]->depth; 1619 1620 /* 1621 * the line stride should 16 byte aligned for VPDMA to work, based on 1622 * the bytes per pixel, figure out how much the width should be aligned 1623 * to make sure line stride is 16 byte aligned 1624 */ 1625 depth_bytes = depth >> 3; 1626 1627 if (depth_bytes == 3) { 1628 /* 1629 * if bpp is 3(as in some RGB formats), the pixel width doesn't 1630 * really help in ensuring line stride is 16 byte aligned 1631 */ 1632 w_align = 4; 1633 } else { 1634 /* 1635 * for the remainder bpp(4, 2 and 1), the pixel width alignment 1636 * can ensure a line stride alignment of 16 bytes. For example, 1637 * if bpp is 2, then the line stride can be 16 byte aligned if 1638 * the width is 8 byte aligned 1639 */ 1640 1641 /* 1642 * HACK: using order_base_2() here causes lots of asm output 1643 * errors with smatch, on i386: 1644 * ./arch/x86/include/asm/bitops.h:457:22: 1645 * warning: asm output is not an lvalue 1646 * Perhaps some gcc optimization is doing the wrong thing 1647 * there. 1648 * Let's get rid of them by doing the calculus on two steps 1649 */ 1650 w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes); 1651 w_align = ilog2(w_align); 1652 } 1653 1654 v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align, 1655 &pix->height, MIN_H, MAX_H, H_ALIGN, 1656 S_ALIGN); 1657 1658 if (!pix->num_planes || pix->num_planes > 2) 1659 pix->num_planes = fmt->coplanar ? 2 : 1; 1660 else if (pix->num_planes > 1 && !fmt->coplanar) 1661 pix->num_planes = 1; 1662 1663 pix->pixelformat = fmt->fourcc; 1664 finfo = v4l2_format_info(fmt->fourcc); 1665 1666 /* 1667 * For the actual image parameters, we need to consider the field 1668 * height of the image for SEQ_XX buffers. 1669 */ 1670 if (pix->field == V4L2_FIELD_SEQ_TB || pix->field == V4L2_FIELD_SEQ_BT) 1671 height = pix->height / 2; 1672 else 1673 height = pix->height; 1674 1675 if (!pix->colorspace) { 1676 if (v4l2_is_format_rgb(finfo)) { 1677 pix->colorspace = V4L2_COLORSPACE_SRGB; 1678 } else { 1679 if (height > 1280) /* HD */ 1680 pix->colorspace = V4L2_COLORSPACE_REC709; 1681 else /* SD */ 1682 pix->colorspace = V4L2_COLORSPACE_SMPTE170M; 1683 } 1684 } 1685 1686 for (i = 0; i < pix->num_planes; i++) { 1687 plane_fmt = &pix->plane_fmt[i]; 1688 depth = fmt->vpdma_fmt[i]->depth; 1689 1690 stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3; 1691 if (stride > plane_fmt->bytesperline) 1692 plane_fmt->bytesperline = stride; 1693 1694 plane_fmt->bytesperline = clamp_t(u32, plane_fmt->bytesperline, 1695 stride, 1696 VPDMA_MAX_STRIDE); 1697 1698 plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline, 1699 VPDMA_STRIDE_ALIGN); 1700 1701 if (i == VPE_LUMA) { 1702 plane_fmt->sizeimage = pix->height * 1703 plane_fmt->bytesperline; 1704 1705 if (pix->num_planes == 1 && fmt->coplanar) 1706 plane_fmt->sizeimage += pix->height * 1707 plane_fmt->bytesperline * 1708 fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3; 1709 1710 } else { /* i == VIP_CHROMA */ 1711 plane_fmt->sizeimage = (pix->height * 1712 plane_fmt->bytesperline * 1713 depth) >> 3; 1714 } 1715 } 1716 1717 return 0; 1718 } 1719 1720 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f) 1721 { 1722 struct vpe_ctx *ctx = file->private_data; 1723 struct vpe_fmt *fmt = find_format(f); 1724 1725 if (V4L2_TYPE_IS_OUTPUT(f->type)) 1726 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT); 1727 else 1728 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE); 1729 } 1730 1731 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f) 1732 { 1733 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp; 1734 struct v4l2_pix_format_mplane *qpix; 1735 struct vpe_q_data *q_data; 1736 struct vb2_queue *vq; 1737 1738 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type); 1739 if (!vq) 1740 return -EINVAL; 1741 1742 if (vb2_is_busy(vq)) { 1743 vpe_err(ctx->dev, "queue busy\n"); 1744 return -EBUSY; 1745 } 1746 1747 q_data = get_q_data(ctx, f->type); 1748 if (!q_data) 1749 return -EINVAL; 1750 1751 qpix = &q_data->format.fmt.pix_mp; 1752 q_data->fmt = find_format(f); 1753 q_data->format = *f; 1754 1755 q_data->c_rect.left = 0; 1756 q_data->c_rect.top = 0; 1757 q_data->c_rect.width = pix->width; 1758 q_data->c_rect.height = pix->height; 1759 1760 if (qpix->field == V4L2_FIELD_ALTERNATE) 1761 q_data->flags |= Q_DATA_INTERLACED_ALTERNATE; 1762 else if (qpix->field == V4L2_FIELD_SEQ_TB) 1763 q_data->flags |= Q_DATA_INTERLACED_SEQ_TB; 1764 else if (qpix->field == V4L2_FIELD_SEQ_BT) 1765 q_data->flags |= Q_DATA_INTERLACED_SEQ_BT; 1766 else 1767 q_data->flags &= ~Q_IS_INTERLACED; 1768 1769 /* the crop height is halved for the case of SEQ_XX buffers */ 1770 if (q_data->flags & Q_IS_SEQ_XX) 1771 q_data->c_rect.height /= 2; 1772 1773 vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d", 1774 f->type, pix->width, pix->height, pix->pixelformat, 1775 pix->plane_fmt[0].bytesperline); 1776 if (pix->num_planes == 2) 1777 vpe_dbg(ctx->dev, " bpl_uv %d\n", 1778 pix->plane_fmt[1].bytesperline); 1779 1780 return 0; 1781 } 1782 1783 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f) 1784 { 1785 int ret; 1786 struct vpe_ctx *ctx = file->private_data; 1787 1788 ret = vpe_try_fmt(file, priv, f); 1789 if (ret) 1790 return ret; 1791 1792 ret = __vpe_s_fmt(ctx, f); 1793 if (ret) 1794 return ret; 1795 1796 if (V4L2_TYPE_IS_OUTPUT(f->type)) 1797 set_src_registers(ctx); 1798 else 1799 set_dst_registers(ctx); 1800 1801 return set_srcdst_params(ctx); 1802 } 1803 1804 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s) 1805 { 1806 struct vpe_q_data *q_data; 1807 struct v4l2_pix_format_mplane *pix; 1808 int height; 1809 1810 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) && 1811 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)) 1812 return -EINVAL; 1813 1814 q_data = get_q_data(ctx, s->type); 1815 if (!q_data) 1816 return -EINVAL; 1817 1818 pix = &q_data->format.fmt.pix_mp; 1819 1820 switch (s->target) { 1821 case V4L2_SEL_TGT_COMPOSE: 1822 /* 1823 * COMPOSE target is only valid for capture buffer type, return 1824 * error for output buffer type 1825 */ 1826 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1827 return -EINVAL; 1828 break; 1829 case V4L2_SEL_TGT_CROP: 1830 /* 1831 * CROP target is only valid for output buffer type, return 1832 * error for capture buffer type 1833 */ 1834 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1835 return -EINVAL; 1836 break; 1837 /* 1838 * bound and default crop/compose targets are invalid targets to 1839 * try/set 1840 */ 1841 default: 1842 return -EINVAL; 1843 } 1844 1845 /* 1846 * For SEQ_XX buffers, crop height should be less than the height of 1847 * the field height, not the buffer height 1848 */ 1849 if (q_data->flags & Q_IS_SEQ_XX) 1850 height = pix->height / 2; 1851 else 1852 height = pix->height; 1853 1854 if (s->r.top < 0 || s->r.left < 0) { 1855 vpe_err(ctx->dev, "negative values for top and left\n"); 1856 s->r.top = s->r.left = 0; 1857 } 1858 1859 v4l_bound_align_image(&s->r.width, MIN_W, pix->width, 1, 1860 &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN); 1861 1862 /* adjust left/top if cropping rectangle is out of bounds */ 1863 if (s->r.left + s->r.width > pix->width) 1864 s->r.left = pix->width - s->r.width; 1865 if (s->r.top + s->r.height > pix->height) 1866 s->r.top = pix->height - s->r.height; 1867 1868 return 0; 1869 } 1870 1871 static int vpe_g_selection(struct file *file, void *fh, 1872 struct v4l2_selection *s) 1873 { 1874 struct vpe_ctx *ctx = file->private_data; 1875 struct vpe_q_data *q_data; 1876 struct v4l2_pix_format_mplane *pix; 1877 bool use_c_rect = false; 1878 1879 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) && 1880 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)) 1881 return -EINVAL; 1882 1883 q_data = get_q_data(ctx, s->type); 1884 if (!q_data) 1885 return -EINVAL; 1886 1887 pix = &q_data->format.fmt.pix_mp; 1888 1889 switch (s->target) { 1890 case V4L2_SEL_TGT_COMPOSE_DEFAULT: 1891 case V4L2_SEL_TGT_COMPOSE_BOUNDS: 1892 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1893 return -EINVAL; 1894 break; 1895 case V4L2_SEL_TGT_CROP_BOUNDS: 1896 case V4L2_SEL_TGT_CROP_DEFAULT: 1897 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1898 return -EINVAL; 1899 break; 1900 case V4L2_SEL_TGT_COMPOSE: 1901 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1902 return -EINVAL; 1903 use_c_rect = true; 1904 break; 1905 case V4L2_SEL_TGT_CROP: 1906 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1907 return -EINVAL; 1908 use_c_rect = true; 1909 break; 1910 default: 1911 return -EINVAL; 1912 } 1913 1914 if (use_c_rect) { 1915 /* 1916 * for CROP/COMPOSE target type, return c_rect params from the 1917 * respective buffer type 1918 */ 1919 s->r = q_data->c_rect; 1920 } else { 1921 /* 1922 * for DEFAULT/BOUNDS target type, return width and height from 1923 * S_FMT of the respective buffer type 1924 */ 1925 s->r.left = 0; 1926 s->r.top = 0; 1927 s->r.width = pix->width; 1928 s->r.height = pix->height; 1929 } 1930 1931 return 0; 1932 } 1933 1934 1935 static int vpe_s_selection(struct file *file, void *fh, 1936 struct v4l2_selection *s) 1937 { 1938 struct vpe_ctx *ctx = file->private_data; 1939 struct vpe_q_data *q_data; 1940 struct v4l2_selection sel = *s; 1941 int ret; 1942 1943 ret = __vpe_try_selection(ctx, &sel); 1944 if (ret) 1945 return ret; 1946 1947 q_data = get_q_data(ctx, sel.type); 1948 if (!q_data) 1949 return -EINVAL; 1950 1951 if ((q_data->c_rect.left == sel.r.left) && 1952 (q_data->c_rect.top == sel.r.top) && 1953 (q_data->c_rect.width == sel.r.width) && 1954 (q_data->c_rect.height == sel.r.height)) { 1955 vpe_dbg(ctx->dev, 1956 "requested crop/compose values are already set\n"); 1957 return 0; 1958 } 1959 1960 q_data->c_rect = sel.r; 1961 1962 return set_srcdst_params(ctx); 1963 } 1964 1965 /* 1966 * defines number of buffers/frames a context can process with VPE before 1967 * switching to a different context. default value is 1 buffer per context 1968 */ 1969 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0) 1970 1971 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl) 1972 { 1973 struct vpe_ctx *ctx = 1974 container_of(ctrl->handler, struct vpe_ctx, hdl); 1975 1976 switch (ctrl->id) { 1977 case V4L2_CID_VPE_BUFS_PER_JOB: 1978 ctx->bufs_per_job = ctrl->val; 1979 break; 1980 1981 default: 1982 vpe_err(ctx->dev, "Invalid control\n"); 1983 return -EINVAL; 1984 } 1985 1986 return 0; 1987 } 1988 1989 static const struct v4l2_ctrl_ops vpe_ctrl_ops = { 1990 .s_ctrl = vpe_s_ctrl, 1991 }; 1992 1993 static const struct v4l2_ioctl_ops vpe_ioctl_ops = { 1994 .vidioc_querycap = vpe_querycap, 1995 1996 .vidioc_enum_fmt_vid_cap = vpe_enum_fmt, 1997 .vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt, 1998 .vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt, 1999 .vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt, 2000 2001 .vidioc_enum_fmt_vid_out = vpe_enum_fmt, 2002 .vidioc_g_fmt_vid_out_mplane = vpe_g_fmt, 2003 .vidioc_try_fmt_vid_out_mplane = vpe_try_fmt, 2004 .vidioc_s_fmt_vid_out_mplane = vpe_s_fmt, 2005 2006 .vidioc_g_selection = vpe_g_selection, 2007 .vidioc_s_selection = vpe_s_selection, 2008 2009 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, 2010 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, 2011 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf, 2012 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf, 2013 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, 2014 .vidioc_streamon = v4l2_m2m_ioctl_streamon, 2015 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, 2016 2017 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, 2018 .vidioc_unsubscribe_event = v4l2_event_unsubscribe, 2019 }; 2020 2021 /* 2022 * Queue operations 2023 */ 2024 static int vpe_queue_setup(struct vb2_queue *vq, 2025 unsigned int *nbuffers, unsigned int *nplanes, 2026 unsigned int sizes[], struct device *alloc_devs[]) 2027 { 2028 int i; 2029 struct vpe_ctx *ctx = vb2_get_drv_priv(vq); 2030 struct vpe_q_data *q_data; 2031 struct v4l2_pix_format_mplane *pix; 2032 2033 q_data = get_q_data(ctx, vq->type); 2034 if (!q_data) 2035 return -EINVAL; 2036 2037 pix = &q_data->format.fmt.pix_mp; 2038 *nplanes = pix->num_planes; 2039 2040 for (i = 0; i < *nplanes; i++) 2041 sizes[i] = pix->plane_fmt[i].sizeimage; 2042 2043 vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers, 2044 sizes[VPE_LUMA]); 2045 if (*nplanes == 2) 2046 vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]); 2047 2048 return 0; 2049 } 2050 2051 static int vpe_buf_prepare(struct vb2_buffer *vb) 2052 { 2053 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 2054 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); 2055 struct vpe_q_data *q_data; 2056 struct v4l2_pix_format_mplane *pix; 2057 int i; 2058 2059 vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type); 2060 2061 q_data = get_q_data(ctx, vb->vb2_queue->type); 2062 if (!q_data) 2063 return -EINVAL; 2064 2065 pix = &q_data->format.fmt.pix_mp; 2066 2067 if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { 2068 if (!(q_data->flags & Q_IS_INTERLACED)) { 2069 vbuf->field = V4L2_FIELD_NONE; 2070 } else { 2071 if (vbuf->field != V4L2_FIELD_TOP && 2072 vbuf->field != V4L2_FIELD_BOTTOM && 2073 vbuf->field != V4L2_FIELD_SEQ_TB && 2074 vbuf->field != V4L2_FIELD_SEQ_BT) 2075 return -EINVAL; 2076 } 2077 } 2078 2079 for (i = 0; i < pix->num_planes; i++) { 2080 if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) { 2081 vpe_err(ctx->dev, 2082 "data will not fit into plane (%lu < %lu)\n", 2083 vb2_plane_size(vb, i), 2084 (long)pix->plane_fmt[i].sizeimage); 2085 return -EINVAL; 2086 } 2087 } 2088 2089 for (i = 0; i < pix->num_planes; i++) 2090 vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage); 2091 2092 return 0; 2093 } 2094 2095 static void vpe_buf_queue(struct vb2_buffer *vb) 2096 { 2097 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); 2098 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); 2099 2100 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); 2101 } 2102 2103 static int check_srcdst_sizes(struct vpe_ctx *ctx) 2104 { 2105 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC]; 2106 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST]; 2107 unsigned int src_w = s_q_data->c_rect.width; 2108 unsigned int src_h = s_q_data->c_rect.height; 2109 unsigned int dst_w = d_q_data->c_rect.width; 2110 unsigned int dst_h = d_q_data->c_rect.height; 2111 2112 if (src_w == dst_w && src_h == dst_h) 2113 return 0; 2114 2115 if (src_h <= SC_MAX_PIXEL_HEIGHT && 2116 src_w <= SC_MAX_PIXEL_WIDTH && 2117 dst_h <= SC_MAX_PIXEL_HEIGHT && 2118 dst_w <= SC_MAX_PIXEL_WIDTH) 2119 return 0; 2120 2121 return -1; 2122 } 2123 2124 static void vpe_return_all_buffers(struct vpe_ctx *ctx, struct vb2_queue *q, 2125 enum vb2_buffer_state state) 2126 { 2127 struct vb2_v4l2_buffer *vb; 2128 unsigned long flags; 2129 2130 for (;;) { 2131 if (V4L2_TYPE_IS_OUTPUT(q->type)) 2132 vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); 2133 else 2134 vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); 2135 if (!vb) 2136 break; 2137 spin_lock_irqsave(&ctx->dev->lock, flags); 2138 v4l2_m2m_buf_done(vb, state); 2139 spin_unlock_irqrestore(&ctx->dev->lock, flags); 2140 } 2141 2142 /* 2143 * Cleanup the in-transit vb2 buffers that have been 2144 * removed from their respective queue already but for 2145 * which procecessing has not been completed yet. 2146 */ 2147 if (V4L2_TYPE_IS_OUTPUT(q->type)) { 2148 spin_lock_irqsave(&ctx->dev->lock, flags); 2149 2150 if (ctx->src_vbs[2]) 2151 v4l2_m2m_buf_done(ctx->src_vbs[2], state); 2152 2153 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2])) 2154 v4l2_m2m_buf_done(ctx->src_vbs[1], state); 2155 2156 if (ctx->src_vbs[0] && 2157 (ctx->src_vbs[0] != ctx->src_vbs[1]) && 2158 (ctx->src_vbs[0] != ctx->src_vbs[2])) 2159 v4l2_m2m_buf_done(ctx->src_vbs[0], state); 2160 2161 ctx->src_vbs[2] = NULL; 2162 ctx->src_vbs[1] = NULL; 2163 ctx->src_vbs[0] = NULL; 2164 2165 spin_unlock_irqrestore(&ctx->dev->lock, flags); 2166 } else { 2167 if (ctx->dst_vb) { 2168 spin_lock_irqsave(&ctx->dev->lock, flags); 2169 2170 v4l2_m2m_buf_done(ctx->dst_vb, state); 2171 ctx->dst_vb = NULL; 2172 spin_unlock_irqrestore(&ctx->dev->lock, flags); 2173 } 2174 } 2175 } 2176 2177 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count) 2178 { 2179 struct vpe_ctx *ctx = vb2_get_drv_priv(q); 2180 2181 /* Check any of the size exceed maximum scaling sizes */ 2182 if (check_srcdst_sizes(ctx)) { 2183 vpe_err(ctx->dev, 2184 "Conversion setup failed, check source and destination parameters\n" 2185 ); 2186 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED); 2187 return -EINVAL; 2188 } 2189 2190 if (ctx->deinterlacing) 2191 config_edi_input_mode(ctx, 0x0); 2192 2193 if (ctx->sequence != 0) 2194 set_srcdst_params(ctx); 2195 2196 return 0; 2197 } 2198 2199 static void vpe_stop_streaming(struct vb2_queue *q) 2200 { 2201 struct vpe_ctx *ctx = vb2_get_drv_priv(q); 2202 2203 vpe_dump_regs(ctx->dev); 2204 vpdma_dump_regs(ctx->dev->vpdma); 2205 2206 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR); 2207 } 2208 2209 static const struct vb2_ops vpe_qops = { 2210 .queue_setup = vpe_queue_setup, 2211 .buf_prepare = vpe_buf_prepare, 2212 .buf_queue = vpe_buf_queue, 2213 .wait_prepare = vb2_ops_wait_prepare, 2214 .wait_finish = vb2_ops_wait_finish, 2215 .start_streaming = vpe_start_streaming, 2216 .stop_streaming = vpe_stop_streaming, 2217 }; 2218 2219 static int queue_init(void *priv, struct vb2_queue *src_vq, 2220 struct vb2_queue *dst_vq) 2221 { 2222 struct vpe_ctx *ctx = priv; 2223 struct vpe_dev *dev = ctx->dev; 2224 int ret; 2225 2226 memset(src_vq, 0, sizeof(*src_vq)); 2227 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; 2228 src_vq->io_modes = VB2_MMAP | VB2_DMABUF; 2229 src_vq->drv_priv = ctx; 2230 src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); 2231 src_vq->ops = &vpe_qops; 2232 src_vq->mem_ops = &vb2_dma_contig_memops; 2233 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; 2234 src_vq->lock = &dev->dev_mutex; 2235 src_vq->dev = dev->v4l2_dev.dev; 2236 2237 ret = vb2_queue_init(src_vq); 2238 if (ret) 2239 return ret; 2240 2241 memset(dst_vq, 0, sizeof(*dst_vq)); 2242 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; 2243 dst_vq->io_modes = VB2_MMAP | VB2_DMABUF; 2244 dst_vq->drv_priv = ctx; 2245 dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); 2246 dst_vq->ops = &vpe_qops; 2247 dst_vq->mem_ops = &vb2_dma_contig_memops; 2248 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; 2249 dst_vq->lock = &dev->dev_mutex; 2250 dst_vq->dev = dev->v4l2_dev.dev; 2251 2252 return vb2_queue_init(dst_vq); 2253 } 2254 2255 static const struct v4l2_ctrl_config vpe_bufs_per_job = { 2256 .ops = &vpe_ctrl_ops, 2257 .id = V4L2_CID_VPE_BUFS_PER_JOB, 2258 .name = "Buffers Per Transaction", 2259 .type = V4L2_CTRL_TYPE_INTEGER, 2260 .def = VPE_DEF_BUFS_PER_JOB, 2261 .min = 1, 2262 .max = VIDEO_MAX_FRAME, 2263 .step = 1, 2264 }; 2265 2266 /* 2267 * File operations 2268 */ 2269 static int vpe_open(struct file *file) 2270 { 2271 struct vpe_dev *dev = video_drvdata(file); 2272 struct vpe_q_data *s_q_data; 2273 struct v4l2_ctrl_handler *hdl; 2274 struct vpe_ctx *ctx; 2275 struct v4l2_pix_format_mplane *pix; 2276 int ret; 2277 2278 vpe_dbg(dev, "vpe_open\n"); 2279 2280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2281 if (!ctx) 2282 return -ENOMEM; 2283 2284 ctx->dev = dev; 2285 2286 if (mutex_lock_interruptible(&dev->dev_mutex)) { 2287 ret = -ERESTARTSYS; 2288 goto free_ctx; 2289 } 2290 2291 ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE, 2292 VPDMA_LIST_TYPE_NORMAL); 2293 if (ret != 0) 2294 goto unlock; 2295 2296 ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb)); 2297 if (ret != 0) 2298 goto free_desc_list; 2299 2300 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE); 2301 if (ret != 0) 2302 goto free_mmr_adb; 2303 2304 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE); 2305 if (ret != 0) 2306 goto free_sc_h; 2307 2308 init_adb_hdrs(ctx); 2309 2310 v4l2_fh_init(&ctx->fh, video_devdata(file)); 2311 file->private_data = ctx; 2312 2313 hdl = &ctx->hdl; 2314 v4l2_ctrl_handler_init(hdl, 1); 2315 v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL); 2316 if (hdl->error) { 2317 ret = hdl->error; 2318 goto exit_fh; 2319 } 2320 ctx->fh.ctrl_handler = hdl; 2321 v4l2_ctrl_handler_setup(hdl); 2322 2323 s_q_data = &ctx->q_data[Q_DATA_SRC]; 2324 pix = &s_q_data->format.fmt.pix_mp; 2325 s_q_data->fmt = __find_format(V4L2_PIX_FMT_YUYV); 2326 pix->pixelformat = s_q_data->fmt->fourcc; 2327 s_q_data->format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; 2328 pix->width = 1920; 2329 pix->height = 1080; 2330 pix->num_planes = 1; 2331 pix->plane_fmt[VPE_LUMA].bytesperline = (pix->width * 2332 s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3; 2333 pix->plane_fmt[VPE_LUMA].sizeimage = 2334 pix->plane_fmt[VPE_LUMA].bytesperline * 2335 pix->height; 2336 pix->colorspace = V4L2_COLORSPACE_REC709; 2337 pix->xfer_func = V4L2_XFER_FUNC_DEFAULT; 2338 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; 2339 pix->quantization = V4L2_QUANTIZATION_DEFAULT; 2340 pix->field = V4L2_FIELD_NONE; 2341 s_q_data->c_rect.left = 0; 2342 s_q_data->c_rect.top = 0; 2343 s_q_data->c_rect.width = pix->width; 2344 s_q_data->c_rect.height = pix->height; 2345 s_q_data->flags = 0; 2346 2347 ctx->q_data[Q_DATA_DST] = *s_q_data; 2348 ctx->q_data[Q_DATA_DST].format.type = 2349 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; 2350 2351 set_dei_shadow_registers(ctx); 2352 set_src_registers(ctx); 2353 set_dst_registers(ctx); 2354 ret = set_srcdst_params(ctx); 2355 if (ret) 2356 goto exit_fh; 2357 2358 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init); 2359 2360 if (IS_ERR(ctx->fh.m2m_ctx)) { 2361 ret = PTR_ERR(ctx->fh.m2m_ctx); 2362 goto exit_fh; 2363 } 2364 2365 v4l2_fh_add(&ctx->fh); 2366 2367 /* 2368 * for now, just report the creation of the first instance, we can later 2369 * optimize the driver to enable or disable clocks when the first 2370 * instance is created or the last instance released 2371 */ 2372 if (atomic_inc_return(&dev->num_instances) == 1) 2373 vpe_dbg(dev, "first instance created\n"); 2374 2375 ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB; 2376 2377 ctx->load_mmrs = true; 2378 2379 vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n", 2380 ctx, ctx->fh.m2m_ctx); 2381 2382 mutex_unlock(&dev->dev_mutex); 2383 2384 return 0; 2385 exit_fh: 2386 v4l2_ctrl_handler_free(hdl); 2387 v4l2_fh_exit(&ctx->fh); 2388 vpdma_free_desc_buf(&ctx->sc_coeff_v); 2389 free_sc_h: 2390 vpdma_free_desc_buf(&ctx->sc_coeff_h); 2391 free_mmr_adb: 2392 vpdma_free_desc_buf(&ctx->mmr_adb); 2393 free_desc_list: 2394 vpdma_free_desc_list(&ctx->desc_list); 2395 unlock: 2396 mutex_unlock(&dev->dev_mutex); 2397 free_ctx: 2398 kfree(ctx); 2399 return ret; 2400 } 2401 2402 static int vpe_release(struct file *file) 2403 { 2404 struct vpe_dev *dev = video_drvdata(file); 2405 struct vpe_ctx *ctx = file->private_data; 2406 2407 vpe_dbg(dev, "releasing instance %p\n", ctx); 2408 2409 mutex_lock(&dev->dev_mutex); 2410 free_mv_buffers(ctx); 2411 2412 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf); 2413 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb); 2414 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h); 2415 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v); 2416 2417 vpdma_free_desc_list(&ctx->desc_list); 2418 vpdma_free_desc_buf(&ctx->mmr_adb); 2419 2420 vpdma_free_desc_buf(&ctx->sc_coeff_v); 2421 vpdma_free_desc_buf(&ctx->sc_coeff_h); 2422 2423 v4l2_fh_del(&ctx->fh); 2424 v4l2_fh_exit(&ctx->fh); 2425 v4l2_ctrl_handler_free(&ctx->hdl); 2426 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); 2427 2428 kfree(ctx); 2429 2430 /* 2431 * for now, just report the release of the last instance, we can later 2432 * optimize the driver to enable or disable clocks when the first 2433 * instance is created or the last instance released 2434 */ 2435 if (atomic_dec_return(&dev->num_instances) == 0) 2436 vpe_dbg(dev, "last instance released\n"); 2437 2438 mutex_unlock(&dev->dev_mutex); 2439 2440 return 0; 2441 } 2442 2443 static const struct v4l2_file_operations vpe_fops = { 2444 .owner = THIS_MODULE, 2445 .open = vpe_open, 2446 .release = vpe_release, 2447 .poll = v4l2_m2m_fop_poll, 2448 .unlocked_ioctl = video_ioctl2, 2449 .mmap = v4l2_m2m_fop_mmap, 2450 }; 2451 2452 static const struct video_device vpe_videodev = { 2453 .name = VPE_MODULE_NAME, 2454 .fops = &vpe_fops, 2455 .ioctl_ops = &vpe_ioctl_ops, 2456 .minor = -1, 2457 .release = video_device_release_empty, 2458 .vfl_dir = VFL_DIR_M2M, 2459 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING, 2460 }; 2461 2462 static const struct v4l2_m2m_ops m2m_ops = { 2463 .device_run = device_run, 2464 .job_ready = job_ready, 2465 .job_abort = job_abort, 2466 }; 2467 2468 static int vpe_runtime_get(struct platform_device *pdev) 2469 { 2470 int r; 2471 2472 dev_dbg(&pdev->dev, "vpe_runtime_get\n"); 2473 2474 r = pm_runtime_resume_and_get(&pdev->dev); 2475 WARN_ON(r < 0); 2476 return r; 2477 } 2478 2479 static void vpe_runtime_put(struct platform_device *pdev) 2480 { 2481 2482 int r; 2483 2484 dev_dbg(&pdev->dev, "vpe_runtime_put\n"); 2485 2486 r = pm_runtime_put_sync(&pdev->dev); 2487 WARN_ON(r < 0 && r != -ENOSYS); 2488 } 2489 2490 static void vpe_fw_cb(struct platform_device *pdev) 2491 { 2492 struct vpe_dev *dev = platform_get_drvdata(pdev); 2493 struct video_device *vfd; 2494 int ret; 2495 2496 vfd = &dev->vfd; 2497 *vfd = vpe_videodev; 2498 vfd->lock = &dev->dev_mutex; 2499 vfd->v4l2_dev = &dev->v4l2_dev; 2500 2501 ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0); 2502 if (ret) { 2503 vpe_err(dev, "Failed to register video device\n"); 2504 2505 vpe_set_clock_enable(dev, 0); 2506 vpe_runtime_put(pdev); 2507 pm_runtime_disable(&pdev->dev); 2508 v4l2_m2m_release(dev->m2m_dev); 2509 v4l2_device_unregister(&dev->v4l2_dev); 2510 2511 return; 2512 } 2513 2514 video_set_drvdata(vfd, dev); 2515 dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n", 2516 vfd->num); 2517 } 2518 2519 static int vpe_probe(struct platform_device *pdev) 2520 { 2521 struct vpe_dev *dev; 2522 int ret, irq, func; 2523 2524 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2525 if (ret) { 2526 dev_err(&pdev->dev, 2527 "32-bit consistent DMA enable failed\n"); 2528 return ret; 2529 } 2530 2531 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); 2532 if (!dev) 2533 return -ENOMEM; 2534 2535 spin_lock_init(&dev->lock); 2536 2537 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev); 2538 if (ret) 2539 return ret; 2540 2541 atomic_set(&dev->num_instances, 0); 2542 mutex_init(&dev->dev_mutex); 2543 2544 dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2545 "vpe_top"); 2546 if (!dev->res) { 2547 dev_err(&pdev->dev, "missing 'vpe_top' resources data\n"); 2548 return -ENODEV; 2549 } 2550 2551 /* 2552 * HACK: we get resource info from device tree in the form of a list of 2553 * VPE sub blocks, the driver currently uses only the base of vpe_top 2554 * for register access, the driver should be changed later to access 2555 * registers based on the sub block base addresses 2556 */ 2557 dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K); 2558 if (!dev->base) { 2559 ret = -ENOMEM; 2560 goto v4l2_dev_unreg; 2561 } 2562 2563 irq = platform_get_irq(pdev, 0); 2564 ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME, 2565 dev); 2566 if (ret) 2567 goto v4l2_dev_unreg; 2568 2569 platform_set_drvdata(pdev, dev); 2570 2571 dev->m2m_dev = v4l2_m2m_init(&m2m_ops); 2572 if (IS_ERR(dev->m2m_dev)) { 2573 vpe_err(dev, "Failed to init mem2mem device\n"); 2574 ret = PTR_ERR(dev->m2m_dev); 2575 goto v4l2_dev_unreg; 2576 } 2577 2578 pm_runtime_enable(&pdev->dev); 2579 2580 ret = vpe_runtime_get(pdev); 2581 if (ret < 0) 2582 goto rel_m2m; 2583 2584 /* Perform clk enable followed by reset */ 2585 vpe_set_clock_enable(dev, 1); 2586 2587 vpe_top_reset(dev); 2588 2589 func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK, 2590 VPE_PID_FUNC_SHIFT); 2591 vpe_dbg(dev, "VPE PID function %x\n", func); 2592 2593 vpe_top_vpdma_reset(dev); 2594 2595 dev->sc = sc_create(pdev, "sc"); 2596 if (IS_ERR(dev->sc)) { 2597 ret = PTR_ERR(dev->sc); 2598 goto runtime_put; 2599 } 2600 2601 dev->csc = csc_create(pdev, "csc"); 2602 if (IS_ERR(dev->csc)) { 2603 ret = PTR_ERR(dev->csc); 2604 goto runtime_put; 2605 } 2606 2607 dev->vpdma = &dev->vpdma_data; 2608 ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb); 2609 if (ret) 2610 goto runtime_put; 2611 2612 return 0; 2613 2614 runtime_put: 2615 vpe_runtime_put(pdev); 2616 rel_m2m: 2617 pm_runtime_disable(&pdev->dev); 2618 v4l2_m2m_release(dev->m2m_dev); 2619 v4l2_dev_unreg: 2620 v4l2_device_unregister(&dev->v4l2_dev); 2621 2622 return ret; 2623 } 2624 2625 static void vpe_remove(struct platform_device *pdev) 2626 { 2627 struct vpe_dev *dev = platform_get_drvdata(pdev); 2628 2629 v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME); 2630 2631 v4l2_m2m_release(dev->m2m_dev); 2632 video_unregister_device(&dev->vfd); 2633 v4l2_device_unregister(&dev->v4l2_dev); 2634 2635 vpe_set_clock_enable(dev, 0); 2636 vpe_runtime_put(pdev); 2637 pm_runtime_disable(&pdev->dev); 2638 } 2639 2640 #if defined(CONFIG_OF) 2641 static const struct of_device_id vpe_of_match[] = { 2642 { 2643 .compatible = "ti,dra7-vpe", 2644 }, 2645 {}, 2646 }; 2647 MODULE_DEVICE_TABLE(of, vpe_of_match); 2648 #endif 2649 2650 static struct platform_driver vpe_pdrv = { 2651 .probe = vpe_probe, 2652 .remove_new = vpe_remove, 2653 .driver = { 2654 .name = VPE_MODULE_NAME, 2655 .of_match_table = of_match_ptr(vpe_of_match), 2656 }, 2657 }; 2658 2659 module_platform_driver(vpe_pdrv); 2660 2661 MODULE_DESCRIPTION("TI VPE driver"); 2662 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>"); 2663 MODULE_LICENSE("GPL"); 2664