xref: /openbmc/linux/drivers/media/platform/ti/vpe/vpdma.c (revision f052febd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VPDMA helper library
4  *
5  * Copyright (c) 2013 Texas Instruments Inc.
6  *
7  * David Griego, <dagriego@biglakesoftware.com>
8  * Dale Farnsworth, <dale@farnsworth.org>
9  * Archit Taneja, <archit@ti.com>
10  */
11 
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/firmware.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/videodev2.h>
22 
23 #include "vpdma.h"
24 #include "vpdma_priv.h"
25 
26 #define VPDMA_FIRMWARE	"vpdma-1b8.bin"
27 
28 const struct vpdma_data_format vpdma_yuv_fmts[] = {
29 	[VPDMA_DATA_FMT_Y444] = {
30 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
31 		.data_type	= DATA_TYPE_Y444,
32 		.depth		= 8,
33 	},
34 	[VPDMA_DATA_FMT_Y422] = {
35 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
36 		.data_type	= DATA_TYPE_Y422,
37 		.depth		= 8,
38 	},
39 	[VPDMA_DATA_FMT_Y420] = {
40 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
41 		.data_type	= DATA_TYPE_Y420,
42 		.depth		= 8,
43 	},
44 	[VPDMA_DATA_FMT_C444] = {
45 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
46 		.data_type	= DATA_TYPE_C444,
47 		.depth		= 8,
48 	},
49 	[VPDMA_DATA_FMT_C422] = {
50 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
51 		.data_type	= DATA_TYPE_C422,
52 		.depth		= 8,
53 	},
54 	[VPDMA_DATA_FMT_C420] = {
55 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
56 		.data_type	= DATA_TYPE_C420,
57 		.depth		= 4,
58 	},
59 	[VPDMA_DATA_FMT_CB420] = {
60 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
61 		.data_type	= DATA_TYPE_CB420,
62 		.depth		= 4,
63 	},
64 	[VPDMA_DATA_FMT_YCR422] = {
65 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
66 		.data_type	= DATA_TYPE_YCR422,
67 		.depth		= 16,
68 	},
69 	[VPDMA_DATA_FMT_YC444] = {
70 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
71 		.data_type	= DATA_TYPE_YC444,
72 		.depth		= 24,
73 	},
74 	[VPDMA_DATA_FMT_CRY422] = {
75 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
76 		.data_type	= DATA_TYPE_CRY422,
77 		.depth		= 16,
78 	},
79 	[VPDMA_DATA_FMT_CBY422] = {
80 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
81 		.data_type	= DATA_TYPE_CBY422,
82 		.depth		= 16,
83 	},
84 	[VPDMA_DATA_FMT_YCB422] = {
85 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
86 		.data_type	= DATA_TYPE_YCB422,
87 		.depth		= 16,
88 	},
89 };
90 EXPORT_SYMBOL(vpdma_yuv_fmts);
91 
92 const struct vpdma_data_format vpdma_rgb_fmts[] = {
93 	[VPDMA_DATA_FMT_RGB565] = {
94 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
95 		.data_type	= DATA_TYPE_RGB16_565,
96 		.depth		= 16,
97 	},
98 	[VPDMA_DATA_FMT_ARGB16_1555] = {
99 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
100 		.data_type	= DATA_TYPE_ARGB_1555,
101 		.depth		= 16,
102 	},
103 	[VPDMA_DATA_FMT_ARGB16] = {
104 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
105 		.data_type	= DATA_TYPE_ARGB_4444,
106 		.depth		= 16,
107 	},
108 	[VPDMA_DATA_FMT_RGBA16_5551] = {
109 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
110 		.data_type	= DATA_TYPE_RGBA_5551,
111 		.depth		= 16,
112 	},
113 	[VPDMA_DATA_FMT_RGBA16] = {
114 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
115 		.data_type	= DATA_TYPE_RGBA_4444,
116 		.depth		= 16,
117 	},
118 	[VPDMA_DATA_FMT_ARGB24] = {
119 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
120 		.data_type	= DATA_TYPE_ARGB24_6666,
121 		.depth		= 24,
122 	},
123 	[VPDMA_DATA_FMT_RGB24] = {
124 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
125 		.data_type	= DATA_TYPE_RGB24_888,
126 		.depth		= 24,
127 	},
128 	[VPDMA_DATA_FMT_ARGB32] = {
129 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
130 		.data_type	= DATA_TYPE_ARGB32_8888,
131 		.depth		= 32,
132 	},
133 	[VPDMA_DATA_FMT_RGBA24] = {
134 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
135 		.data_type	= DATA_TYPE_RGBA24_6666,
136 		.depth		= 24,
137 	},
138 	[VPDMA_DATA_FMT_RGBA32] = {
139 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
140 		.data_type	= DATA_TYPE_RGBA32_8888,
141 		.depth		= 32,
142 	},
143 	[VPDMA_DATA_FMT_BGR565] = {
144 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
145 		.data_type	= DATA_TYPE_BGR16_565,
146 		.depth		= 16,
147 	},
148 	[VPDMA_DATA_FMT_ABGR16_1555] = {
149 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
150 		.data_type	= DATA_TYPE_ABGR_1555,
151 		.depth		= 16,
152 	},
153 	[VPDMA_DATA_FMT_ABGR16] = {
154 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
155 		.data_type	= DATA_TYPE_ABGR_4444,
156 		.depth		= 16,
157 	},
158 	[VPDMA_DATA_FMT_BGRA16_5551] = {
159 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
160 		.data_type	= DATA_TYPE_BGRA_5551,
161 		.depth		= 16,
162 	},
163 	[VPDMA_DATA_FMT_BGRA16] = {
164 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
165 		.data_type	= DATA_TYPE_BGRA_4444,
166 		.depth		= 16,
167 	},
168 	[VPDMA_DATA_FMT_ABGR24] = {
169 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
170 		.data_type	= DATA_TYPE_ABGR24_6666,
171 		.depth		= 24,
172 	},
173 	[VPDMA_DATA_FMT_BGR24] = {
174 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
175 		.data_type	= DATA_TYPE_BGR24_888,
176 		.depth		= 24,
177 	},
178 	[VPDMA_DATA_FMT_ABGR32] = {
179 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
180 		.data_type	= DATA_TYPE_ABGR32_8888,
181 		.depth		= 32,
182 	},
183 	[VPDMA_DATA_FMT_BGRA24] = {
184 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
185 		.data_type	= DATA_TYPE_BGRA24_6666,
186 		.depth		= 24,
187 	},
188 	[VPDMA_DATA_FMT_BGRA32] = {
189 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
190 		.data_type	= DATA_TYPE_BGRA32_8888,
191 		.depth		= 32,
192 	},
193 };
194 EXPORT_SYMBOL(vpdma_rgb_fmts);
195 
196 /*
197  * To handle RAW format we are re-using the CBY422
198  * vpdma data type so that we use the vpdma to re-order
199  * the incoming bytes, as the parser assumes that the
200  * first byte presented on the bus is the MSB of a 2
201  * bytes value.
202  * RAW8 handles from 1 to 8 bits
203  * RAW16 handles from 9 to 16 bits
204  */
205 const struct vpdma_data_format vpdma_raw_fmts[] = {
206 	[VPDMA_DATA_FMT_RAW8] = {
207 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
208 		.data_type	= DATA_TYPE_CBY422,
209 		.depth		= 8,
210 	},
211 	[VPDMA_DATA_FMT_RAW16] = {
212 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
213 		.data_type	= DATA_TYPE_CBY422,
214 		.depth		= 16,
215 	},
216 };
217 EXPORT_SYMBOL(vpdma_raw_fmts);
218 
219 const struct vpdma_data_format vpdma_misc_fmts[] = {
220 	[VPDMA_DATA_FMT_MV] = {
221 		.type		= VPDMA_DATA_FMT_TYPE_MISC,
222 		.data_type	= DATA_TYPE_MV,
223 		.depth		= 4,
224 	},
225 };
226 EXPORT_SYMBOL(vpdma_misc_fmts);
227 
228 struct vpdma_channel_info {
229 	int num;		/* VPDMA channel number */
230 	int cstat_offset;	/* client CSTAT register offset */
231 };
232 
233 static const struct vpdma_channel_info chan_info[] = {
234 	[VPE_CHAN_LUMA1_IN] = {
235 		.num		= VPE_CHAN_NUM_LUMA1_IN,
236 		.cstat_offset	= VPDMA_DEI_LUMA1_CSTAT,
237 	},
238 	[VPE_CHAN_CHROMA1_IN] = {
239 		.num		= VPE_CHAN_NUM_CHROMA1_IN,
240 		.cstat_offset	= VPDMA_DEI_CHROMA1_CSTAT,
241 	},
242 	[VPE_CHAN_LUMA2_IN] = {
243 		.num		= VPE_CHAN_NUM_LUMA2_IN,
244 		.cstat_offset	= VPDMA_DEI_LUMA2_CSTAT,
245 	},
246 	[VPE_CHAN_CHROMA2_IN] = {
247 		.num		= VPE_CHAN_NUM_CHROMA2_IN,
248 		.cstat_offset	= VPDMA_DEI_CHROMA2_CSTAT,
249 	},
250 	[VPE_CHAN_LUMA3_IN] = {
251 		.num		= VPE_CHAN_NUM_LUMA3_IN,
252 		.cstat_offset	= VPDMA_DEI_LUMA3_CSTAT,
253 	},
254 	[VPE_CHAN_CHROMA3_IN] = {
255 		.num		= VPE_CHAN_NUM_CHROMA3_IN,
256 		.cstat_offset	= VPDMA_DEI_CHROMA3_CSTAT,
257 	},
258 	[VPE_CHAN_MV_IN] = {
259 		.num		= VPE_CHAN_NUM_MV_IN,
260 		.cstat_offset	= VPDMA_DEI_MV_IN_CSTAT,
261 	},
262 	[VPE_CHAN_MV_OUT] = {
263 		.num		= VPE_CHAN_NUM_MV_OUT,
264 		.cstat_offset	= VPDMA_DEI_MV_OUT_CSTAT,
265 	},
266 	[VPE_CHAN_LUMA_OUT] = {
267 		.num		= VPE_CHAN_NUM_LUMA_OUT,
268 		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
269 	},
270 	[VPE_CHAN_CHROMA_OUT] = {
271 		.num		= VPE_CHAN_NUM_CHROMA_OUT,
272 		.cstat_offset	= VPDMA_VIP_UP_UV_CSTAT,
273 	},
274 	[VPE_CHAN_RGB_OUT] = {
275 		.num		= VPE_CHAN_NUM_RGB_OUT,
276 		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
277 	},
278 };
279 
280 static u32 read_reg(struct vpdma_data *vpdma, int offset)
281 {
282 	return ioread32(vpdma->base + offset);
283 }
284 
285 static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
286 {
287 	iowrite32(value, vpdma->base + offset);
288 }
289 
290 static int read_field_reg(struct vpdma_data *vpdma, int offset,
291 		u32 mask, int shift)
292 {
293 	return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
294 }
295 
296 static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
297 		u32 mask, int shift)
298 {
299 	u32 val = read_reg(vpdma, offset);
300 
301 	val &= ~(mask << shift);
302 	val |= (field & mask) << shift;
303 
304 	write_reg(vpdma, offset, val);
305 }
306 
307 void vpdma_dump_regs(struct vpdma_data *vpdma)
308 {
309 	struct device *dev = &vpdma->pdev->dev;
310 
311 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
312 
313 	dev_dbg(dev, "VPDMA Registers:\n");
314 
315 	DUMPREG(PID);
316 	DUMPREG(LIST_ADDR);
317 	DUMPREG(LIST_ATTR);
318 	DUMPREG(LIST_STAT_SYNC);
319 	DUMPREG(BG_RGB);
320 	DUMPREG(BG_YUV);
321 	DUMPREG(SETUP);
322 	DUMPREG(MAX_SIZE1);
323 	DUMPREG(MAX_SIZE2);
324 	DUMPREG(MAX_SIZE3);
325 
326 	/*
327 	 * dumping registers of only group0 and group3, because VPE channels
328 	 * lie within group0 and group3 registers
329 	 */
330 	DUMPREG(INT_CHAN_STAT(0));
331 	DUMPREG(INT_CHAN_MASK(0));
332 	DUMPREG(INT_CHAN_STAT(3));
333 	DUMPREG(INT_CHAN_MASK(3));
334 	DUMPREG(INT_CLIENT0_STAT);
335 	DUMPREG(INT_CLIENT0_MASK);
336 	DUMPREG(INT_CLIENT1_STAT);
337 	DUMPREG(INT_CLIENT1_MASK);
338 	DUMPREG(INT_LIST0_STAT);
339 	DUMPREG(INT_LIST0_MASK);
340 
341 	/*
342 	 * these are registers specific to VPE clients, we can make this
343 	 * function dump client registers specific to VPE or VIP based on
344 	 * who is using it
345 	 */
346 	DUMPREG(DEI_CHROMA1_CSTAT);
347 	DUMPREG(DEI_LUMA1_CSTAT);
348 	DUMPREG(DEI_CHROMA2_CSTAT);
349 	DUMPREG(DEI_LUMA2_CSTAT);
350 	DUMPREG(DEI_CHROMA3_CSTAT);
351 	DUMPREG(DEI_LUMA3_CSTAT);
352 	DUMPREG(DEI_MV_IN_CSTAT);
353 	DUMPREG(DEI_MV_OUT_CSTAT);
354 	DUMPREG(VIP_UP_Y_CSTAT);
355 	DUMPREG(VIP_UP_UV_CSTAT);
356 	DUMPREG(VPI_CTL_CSTAT);
357 }
358 EXPORT_SYMBOL(vpdma_dump_regs);
359 
360 /*
361  * Allocate a DMA buffer
362  */
363 int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
364 {
365 	buf->size = size;
366 	buf->mapped = false;
367 	buf->addr = kzalloc(size, GFP_KERNEL);
368 	if (!buf->addr)
369 		return -ENOMEM;
370 
371 	WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
372 
373 	return 0;
374 }
375 EXPORT_SYMBOL(vpdma_alloc_desc_buf);
376 
377 void vpdma_free_desc_buf(struct vpdma_buf *buf)
378 {
379 	WARN_ON(buf->mapped);
380 	kfree(buf->addr);
381 	buf->addr = NULL;
382 	buf->size = 0;
383 }
384 EXPORT_SYMBOL(vpdma_free_desc_buf);
385 
386 /*
387  * map descriptor/payload DMA buffer, enabling DMA access
388  */
389 int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
390 {
391 	struct device *dev = &vpdma->pdev->dev;
392 
393 	WARN_ON(buf->mapped);
394 	buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
395 				DMA_BIDIRECTIONAL);
396 	if (dma_mapping_error(dev, buf->dma_addr)) {
397 		dev_err(dev, "failed to map buffer\n");
398 		return -EINVAL;
399 	}
400 
401 	buf->mapped = true;
402 
403 	return 0;
404 }
405 EXPORT_SYMBOL(vpdma_map_desc_buf);
406 
407 /*
408  * unmap descriptor/payload DMA buffer, disabling DMA access and
409  * allowing the main processor to access the data
410  */
411 void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
412 {
413 	struct device *dev = &vpdma->pdev->dev;
414 
415 	if (buf->mapped)
416 		dma_unmap_single(dev, buf->dma_addr, buf->size,
417 				DMA_BIDIRECTIONAL);
418 
419 	buf->mapped = false;
420 }
421 EXPORT_SYMBOL(vpdma_unmap_desc_buf);
422 
423 /*
424  * Cleanup all pending descriptors of a list
425  * First, stop the current list being processed.
426  * If the VPDMA was busy, this step makes vpdma to accept post lists.
427  * To cleanup the internal FSM, post abort list descriptor for all the
428  * channels from @channels array of size @size.
429  */
430 int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
431 		int *channels, int size)
432 {
433 	struct vpdma_desc_list abort_list;
434 	int i, ret, timeout = 500;
435 
436 	write_reg(vpdma, VPDMA_LIST_ATTR,
437 			(list_num << VPDMA_LIST_NUM_SHFT) |
438 			(1 << VPDMA_LIST_STOP_SHFT));
439 
440 	if (size <= 0 || !channels)
441 		return 0;
442 
443 	ret = vpdma_create_desc_list(&abort_list,
444 		size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
445 	if (ret)
446 		return ret;
447 
448 	for (i = 0; i < size; i++)
449 		vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
450 
451 	ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
452 	if (ret)
453 		goto free_desc;
454 	ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
455 	if (ret)
456 		goto unmap_desc;
457 
458 	while (vpdma_list_busy(vpdma, list_num) && --timeout)
459 		;
460 
461 	if (timeout == 0) {
462 		dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
463 		ret = -EBUSY;
464 	}
465 
466 unmap_desc:
467 	vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
468 free_desc:
469 	vpdma_free_desc_buf(&abort_list.buf);
470 
471 	return ret;
472 }
473 EXPORT_SYMBOL(vpdma_list_cleanup);
474 
475 /*
476  * create a descriptor list, the user of this list will append configuration,
477  * control and data descriptors to this list, this list will be submitted to
478  * VPDMA. VPDMA's list parser will go through each descriptor and perform the
479  * required DMA operations
480  */
481 int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
482 {
483 	int r;
484 
485 	r = vpdma_alloc_desc_buf(&list->buf, size);
486 	if (r)
487 		return r;
488 
489 	list->next = list->buf.addr;
490 
491 	list->type = type;
492 
493 	return 0;
494 }
495 EXPORT_SYMBOL(vpdma_create_desc_list);
496 
497 /*
498  * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
499  * to allow new descriptors to be added to the list.
500  */
501 void vpdma_reset_desc_list(struct vpdma_desc_list *list)
502 {
503 	list->next = list->buf.addr;
504 }
505 EXPORT_SYMBOL(vpdma_reset_desc_list);
506 
507 /*
508  * free the buffer allocated for the VPDMA descriptor list, this should be
509  * called when the user doesn't want to use VPDMA any more.
510  */
511 void vpdma_free_desc_list(struct vpdma_desc_list *list)
512 {
513 	vpdma_free_desc_buf(&list->buf);
514 
515 	list->next = NULL;
516 }
517 EXPORT_SYMBOL(vpdma_free_desc_list);
518 
519 bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
520 {
521 	return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
522 }
523 EXPORT_SYMBOL(vpdma_list_busy);
524 
525 /*
526  * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
527  */
528 int vpdma_submit_descs(struct vpdma_data *vpdma,
529 			struct vpdma_desc_list *list, int list_num)
530 {
531 	int list_size;
532 	unsigned long flags;
533 
534 	if (vpdma_list_busy(vpdma, list_num))
535 		return -EBUSY;
536 
537 	/* 16-byte granularity */
538 	list_size = (list->next - list->buf.addr) >> 4;
539 
540 	spin_lock_irqsave(&vpdma->lock, flags);
541 	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
542 
543 	write_reg(vpdma, VPDMA_LIST_ATTR,
544 			(list_num << VPDMA_LIST_NUM_SHFT) |
545 			(list->type << VPDMA_LIST_TYPE_SHFT) |
546 			list_size);
547 	spin_unlock_irqrestore(&vpdma->lock, flags);
548 
549 	return 0;
550 }
551 EXPORT_SYMBOL(vpdma_submit_descs);
552 
553 static void dump_dtd(struct vpdma_dtd *dtd);
554 
555 void vpdma_update_dma_addr(struct vpdma_data *vpdma,
556 	struct vpdma_desc_list *list, dma_addr_t dma_addr,
557 	void *write_dtd, int drop, int idx)
558 {
559 	struct vpdma_dtd *dtd = list->buf.addr;
560 	dma_addr_t write_desc_addr;
561 	int offset;
562 
563 	dtd += idx;
564 	vpdma_unmap_desc_buf(vpdma, &list->buf);
565 
566 	dtd->start_addr = dma_addr;
567 
568 	/* Calculate write address from the offset of write_dtd from start
569 	 * of the list->buf
570 	 */
571 	offset = (void *)write_dtd - list->buf.addr;
572 	write_desc_addr = list->buf.dma_addr + offset;
573 
574 	if (drop)
575 		dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
576 							   1, 1, 0);
577 	else
578 		dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
579 							   1, 0, 0);
580 
581 	vpdma_map_desc_buf(vpdma, &list->buf);
582 
583 	dump_dtd(dtd);
584 }
585 EXPORT_SYMBOL(vpdma_update_dma_addr);
586 
587 void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
588 			u32 width, u32 height)
589 {
590 	if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
591 	    reg_addr != VPDMA_MAX_SIZE3)
592 		reg_addr = VPDMA_MAX_SIZE1;
593 
594 	write_field_reg(vpdma, reg_addr, width - 1,
595 			VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
596 
597 	write_field_reg(vpdma, reg_addr, height - 1,
598 			VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
599 
600 }
601 EXPORT_SYMBOL(vpdma_set_max_size);
602 
603 static void dump_cfd(struct vpdma_cfd *cfd)
604 {
605 	int class;
606 
607 	class = cfd_get_class(cfd);
608 
609 	pr_debug("config descriptor of payload class: %s\n",
610 		class == CFD_CLS_BLOCK ? "simple block" :
611 		"address data block");
612 
613 	if (class == CFD_CLS_BLOCK)
614 		pr_debug("word0: dst_addr_offset = 0x%08x\n",
615 			cfd->dest_addr_offset);
616 
617 	if (class == CFD_CLS_BLOCK)
618 		pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
619 
620 	pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
621 
622 	pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
623 		 cfd_get_pkt_type(cfd),
624 		 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
625 		 cfd_get_payload_len(cfd));
626 }
627 
628 /*
629  * append a configuration descriptor to the given descriptor list, where the
630  * payload is in the form of a simple data block specified in the descriptor
631  * header, this is used to upload scaler coefficients to the scaler module
632  */
633 void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
634 		struct vpdma_buf *blk, u32 dest_offset)
635 {
636 	struct vpdma_cfd *cfd;
637 	int len = blk->size;
638 
639 	WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
640 
641 	cfd = list->next;
642 	WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
643 
644 	cfd->dest_addr_offset = dest_offset;
645 	cfd->block_len = len;
646 	cfd->payload_addr = (u32) blk->dma_addr;
647 	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
648 				client, len >> 4);
649 
650 	list->next = cfd + 1;
651 
652 	dump_cfd(cfd);
653 }
654 EXPORT_SYMBOL(vpdma_add_cfd_block);
655 
656 /*
657  * append a configuration descriptor to the given descriptor list, where the
658  * payload is in the address data block format, this is used to a configure a
659  * discontiguous set of MMRs
660  */
661 void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
662 		struct vpdma_buf *adb)
663 {
664 	struct vpdma_cfd *cfd;
665 	unsigned int len = adb->size;
666 
667 	WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
668 	WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
669 
670 	cfd = list->next;
671 	BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
672 
673 	cfd->w0 = 0;
674 	cfd->w1 = 0;
675 	cfd->payload_addr = (u32) adb->dma_addr;
676 	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
677 				client, len >> 4);
678 
679 	list->next = cfd + 1;
680 
681 	dump_cfd(cfd);
682 };
683 EXPORT_SYMBOL(vpdma_add_cfd_adb);
684 
685 /*
686  * control descriptor format change based on what type of control descriptor it
687  * is, we only use 'sync on channel' control descriptors for now, so assume it's
688  * that
689  */
690 static void dump_ctd(struct vpdma_ctd *ctd)
691 {
692 	pr_debug("control descriptor\n");
693 
694 	pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
695 		ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
696 }
697 
698 /*
699  * append a 'sync on channel' type control descriptor to the given descriptor
700  * list, this descriptor stalls the VPDMA list till the time DMA is completed
701  * on the specified channel
702  */
703 void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
704 		enum vpdma_channel chan)
705 {
706 	struct vpdma_ctd *ctd;
707 
708 	ctd = list->next;
709 	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
710 
711 	ctd->w0 = 0;
712 	ctd->w1 = 0;
713 	ctd->w2 = 0;
714 	ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
715 				CTD_TYPE_SYNC_ON_CHANNEL);
716 
717 	list->next = ctd + 1;
718 
719 	dump_ctd(ctd);
720 }
721 EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
722 
723 /*
724  * append an 'abort_channel' type control descriptor to the given descriptor
725  * list, this descriptor aborts any DMA transaction happening using the
726  * specified channel
727  */
728 void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
729 		int chan_num)
730 {
731 	struct vpdma_ctd *ctd;
732 
733 	ctd = list->next;
734 	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
735 
736 	ctd->w0 = 0;
737 	ctd->w1 = 0;
738 	ctd->w2 = 0;
739 	ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
740 				CTD_TYPE_ABORT_CHANNEL);
741 
742 	list->next = ctd + 1;
743 
744 	dump_ctd(ctd);
745 }
746 EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
747 
748 static void dump_dtd(struct vpdma_dtd *dtd)
749 {
750 	int dir, chan;
751 
752 	dir = dtd_get_dir(dtd);
753 	chan = dtd_get_chan(dtd);
754 
755 	pr_debug("%s data transfer descriptor for channel %d\n",
756 		dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
757 
758 	pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
759 		dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
760 		dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
761 		dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
762 
763 	if (dir == DTD_DIR_IN)
764 		pr_debug("word1: line_length = %d, xfer_height = %d\n",
765 			dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
766 
767 	pr_debug("word2: start_addr = %x\n", dtd->start_addr);
768 
769 	pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
770 		 dtd_get_pkt_type(dtd),
771 		 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
772 		 dtd_get_next_chan(dtd));
773 
774 	if (dir == DTD_DIR_IN)
775 		pr_debug("word4: frame_width = %d, frame_height = %d\n",
776 			dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
777 	else
778 		pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
779 			dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
780 			dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
781 
782 	if (dir == DTD_DIR_IN)
783 		pr_debug("word5: hor_start = %d, ver_start = %d\n",
784 			dtd_get_h_start(dtd), dtd_get_v_start(dtd));
785 	else
786 		pr_debug("word5: max_width %d, max_height %d\n",
787 			dtd_get_max_width(dtd), dtd_get_max_height(dtd));
788 
789 	pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
790 	pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
791 }
792 
793 /*
794  * append an outbound data transfer descriptor to the given descriptor list,
795  * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
796  *
797  * @list: vpdma desc list to which we add this descriptor
798  * @width: width of the image in pixels in memory
799  * @c_rect: compose params of output image
800  * @fmt: vpdma data format of the buffer
801  * dma_addr: dma address as seen by VPDMA
802  * max_width: enum for maximum width of data transfer
803  * max_height: enum for maximum height of data transfer
804  * chan: VPDMA channel
805  * flags: VPDMA flags to configure some descriptor fields
806  */
807 void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
808 		int stride, const struct v4l2_rect *c_rect,
809 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
810 		int max_w, int max_h, enum vpdma_channel chan, u32 flags)
811 {
812 	vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
813 				  max_w, max_h, chan_info[chan].num, flags);
814 }
815 EXPORT_SYMBOL(vpdma_add_out_dtd);
816 
817 void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
818 		int stride, const struct v4l2_rect *c_rect,
819 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
820 		int max_w, int max_h, int raw_vpdma_chan, u32 flags)
821 {
822 	int priority = 0;
823 	int field = 0;
824 	int notify = 1;
825 	int channel, next_chan;
826 	struct v4l2_rect rect = *c_rect;
827 	int depth = fmt->depth;
828 	struct vpdma_dtd *dtd;
829 
830 	channel = next_chan = raw_vpdma_chan;
831 
832 	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
833 	    (fmt->data_type == DATA_TYPE_C420 ||
834 	     fmt->data_type == DATA_TYPE_CB420)) {
835 		rect.height >>= 1;
836 		rect.top >>= 1;
837 		depth = 8;
838 	}
839 
840 	dma_addr += rect.top * stride + (rect.left * depth >> 3);
841 
842 	dtd = list->next;
843 	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
844 
845 	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
846 					notify,
847 					field,
848 					!!(flags & VPDMA_DATA_FRAME_1D),
849 					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
850 					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
851 					stride);
852 	dtd->w1 = 0;
853 	dtd->start_addr = (u32) dma_addr;
854 	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
855 				DTD_DIR_OUT, channel, priority, next_chan);
856 	dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
857 	dtd->max_width_height = dtd_max_width_height(max_w, max_h);
858 	dtd->client_attr0 = 0;
859 	dtd->client_attr1 = 0;
860 
861 	list->next = dtd + 1;
862 
863 	dump_dtd(dtd);
864 }
865 EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
866 
867 /*
868  * append an inbound data transfer descriptor to the given descriptor list,
869  * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
870  *
871  * @list: vpdma desc list to which we add this descriptor
872  * @width: width of the image in pixels in memory(not the cropped width)
873  * @c_rect: crop params of input image
874  * @fmt: vpdma data format of the buffer
875  * dma_addr: dma address as seen by VPDMA
876  * chan: VPDMA channel
877  * field: top or bottom field info of the input image
878  * flags: VPDMA flags to configure some descriptor fields
879  * frame_width/height: the complete width/height of the image presented to the
880  *			client (this makes sense when multiple channels are
881  *			connected to the same client, forming a larger frame)
882  * start_h, start_v: position where the given channel starts providing pixel
883  *			data to the client (makes sense when multiple channels
884  *			contribute to the client)
885  */
886 void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
887 		int stride, const struct v4l2_rect *c_rect,
888 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
889 		enum vpdma_channel chan, int field, u32 flags, int frame_width,
890 		int frame_height, int start_h, int start_v)
891 {
892 	int priority = 0;
893 	int notify = 1;
894 	int depth = fmt->depth;
895 	int channel, next_chan;
896 	struct v4l2_rect rect = *c_rect;
897 	struct vpdma_dtd *dtd;
898 
899 	channel = next_chan = chan_info[chan].num;
900 
901 	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
902 	    (fmt->data_type == DATA_TYPE_C420 ||
903 	     fmt->data_type == DATA_TYPE_CB420)) {
904 		rect.height >>= 1;
905 		rect.top >>= 1;
906 		depth = 8;
907 	}
908 
909 	dma_addr += rect.top * stride + (rect.left * depth >> 3);
910 
911 	dtd = list->next;
912 	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
913 
914 	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
915 					notify,
916 					field,
917 					!!(flags & VPDMA_DATA_FRAME_1D),
918 					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
919 					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
920 					stride);
921 
922 	dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
923 					rect.height);
924 	dtd->start_addr = (u32) dma_addr;
925 	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
926 				DTD_DIR_IN, channel, priority, next_chan);
927 	dtd->frame_width_height = dtd_frame_width_height(frame_width,
928 					frame_height);
929 	dtd->start_h_v = dtd_start_h_v(start_h, start_v);
930 	dtd->client_attr0 = 0;
931 	dtd->client_attr1 = 0;
932 
933 	list->next = dtd + 1;
934 
935 	dump_dtd(dtd);
936 }
937 EXPORT_SYMBOL(vpdma_add_in_dtd);
938 
939 int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
940 {
941 	int i, list_num = -1;
942 	unsigned long flags;
943 
944 	spin_lock_irqsave(&vpdma->lock, flags);
945 	for (i = 0; i < VPDMA_MAX_NUM_LIST && vpdma->hwlist_used[i]; i++)
946 		;
947 
948 	if (i < VPDMA_MAX_NUM_LIST) {
949 		list_num = i;
950 		vpdma->hwlist_used[i] = true;
951 		vpdma->hwlist_priv[i] = priv;
952 	}
953 	spin_unlock_irqrestore(&vpdma->lock, flags);
954 
955 	return list_num;
956 }
957 EXPORT_SYMBOL(vpdma_hwlist_alloc);
958 
959 void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
960 {
961 	if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
962 		return NULL;
963 
964 	return vpdma->hwlist_priv[list_num];
965 }
966 EXPORT_SYMBOL(vpdma_hwlist_get_priv);
967 
968 void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
969 {
970 	void *priv;
971 	unsigned long flags;
972 
973 	spin_lock_irqsave(&vpdma->lock, flags);
974 	vpdma->hwlist_used[list_num] = false;
975 	priv = vpdma->hwlist_priv;
976 	spin_unlock_irqrestore(&vpdma->lock, flags);
977 
978 	return priv;
979 }
980 EXPORT_SYMBOL(vpdma_hwlist_release);
981 
982 /* set or clear the mask for list complete interrupt */
983 void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
984 		int list_num, bool enable)
985 {
986 	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
987 	u32 val;
988 
989 	val = read_reg(vpdma, reg_addr);
990 	if (enable)
991 		val |= (1 << (list_num * 2));
992 	else
993 		val &= ~(1 << (list_num * 2));
994 	write_reg(vpdma, reg_addr, val);
995 }
996 EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
997 
998 /* get the LIST_STAT register */
999 unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
1000 {
1001 	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1002 
1003 	return read_reg(vpdma, reg_addr);
1004 }
1005 EXPORT_SYMBOL(vpdma_get_list_stat);
1006 
1007 /* get the LIST_MASK register */
1008 unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
1009 {
1010 	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
1011 
1012 	return read_reg(vpdma, reg_addr);
1013 }
1014 EXPORT_SYMBOL(vpdma_get_list_mask);
1015 
1016 /* clear previously occurred list interrupts in the LIST_STAT register */
1017 void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
1018 			   int list_num)
1019 {
1020 	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1021 
1022 	write_reg(vpdma, reg_addr, 3 << (list_num * 2));
1023 }
1024 EXPORT_SYMBOL(vpdma_clear_list_stat);
1025 
1026 void vpdma_set_bg_color(struct vpdma_data *vpdma,
1027 		struct vpdma_data_format *fmt, u32 color)
1028 {
1029 	if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
1030 		write_reg(vpdma, VPDMA_BG_RGB, color);
1031 	else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
1032 		write_reg(vpdma, VPDMA_BG_YUV, color);
1033 }
1034 EXPORT_SYMBOL(vpdma_set_bg_color);
1035 
1036 /*
1037  * configures the output mode of the line buffer for the given client, the
1038  * line buffer content can either be mirrored(each line repeated twice) or
1039  * passed to the client as is
1040  */
1041 void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
1042 		enum vpdma_channel chan)
1043 {
1044 	int client_cstat = chan_info[chan].cstat_offset;
1045 
1046 	write_field_reg(vpdma, client_cstat, line_mode,
1047 		VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
1048 }
1049 EXPORT_SYMBOL(vpdma_set_line_mode);
1050 
1051 /*
1052  * configures the event which should trigger VPDMA transfer for the given
1053  * client
1054  */
1055 void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
1056 		enum vpdma_frame_start_event fs_event,
1057 		enum vpdma_channel chan)
1058 {
1059 	int client_cstat = chan_info[chan].cstat_offset;
1060 
1061 	write_field_reg(vpdma, client_cstat, fs_event,
1062 		VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
1063 }
1064 EXPORT_SYMBOL(vpdma_set_frame_start_event);
1065 
1066 static void vpdma_firmware_cb(const struct firmware *f, void *context)
1067 {
1068 	struct vpdma_data *vpdma = context;
1069 	struct vpdma_buf fw_dma_buf;
1070 	int i, r;
1071 
1072 	dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
1073 
1074 	if (!f || !f->data) {
1075 		dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
1076 		return;
1077 	}
1078 
1079 	/* already initialized */
1080 	if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1081 			VPDMA_LIST_RDY_SHFT)) {
1082 		vpdma->cb(vpdma->pdev);
1083 		return;
1084 	}
1085 
1086 	r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
1087 	if (r) {
1088 		dev_err(&vpdma->pdev->dev,
1089 			"failed to allocate dma buffer for firmware\n");
1090 		goto rel_fw;
1091 	}
1092 
1093 	memcpy(fw_dma_buf.addr, f->data, f->size);
1094 
1095 	vpdma_map_desc_buf(vpdma, &fw_dma_buf);
1096 
1097 	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
1098 
1099 	for (i = 0; i < 100; i++) {		/* max 1 second */
1100 		msleep_interruptible(10);
1101 
1102 		if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1103 				VPDMA_LIST_RDY_SHFT))
1104 			break;
1105 	}
1106 
1107 	if (i == 100) {
1108 		dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
1109 		goto free_buf;
1110 	}
1111 
1112 	vpdma->cb(vpdma->pdev);
1113 
1114 free_buf:
1115 	vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
1116 
1117 	vpdma_free_desc_buf(&fw_dma_buf);
1118 rel_fw:
1119 	release_firmware(f);
1120 }
1121 
1122 static int vpdma_load_firmware(struct vpdma_data *vpdma)
1123 {
1124 	int r;
1125 	struct device *dev = &vpdma->pdev->dev;
1126 
1127 	r = request_firmware_nowait(THIS_MODULE, 1,
1128 		(const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
1129 		vpdma_firmware_cb);
1130 	if (r) {
1131 		dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
1132 		return r;
1133 	} else {
1134 		dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
1141 		void (*cb)(struct platform_device *pdev))
1142 {
1143 	struct resource *res;
1144 	int r;
1145 
1146 	dev_dbg(&pdev->dev, "vpdma_create\n");
1147 
1148 	vpdma->pdev = pdev;
1149 	vpdma->cb = cb;
1150 	spin_lock_init(&vpdma->lock);
1151 
1152 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
1153 	if (res == NULL) {
1154 		dev_err(&pdev->dev, "missing platform resources data\n");
1155 		return -ENODEV;
1156 	}
1157 
1158 	vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1159 	if (!vpdma->base) {
1160 		dev_err(&pdev->dev, "failed to ioremap\n");
1161 		return -ENOMEM;
1162 	}
1163 
1164 	r = vpdma_load_firmware(vpdma);
1165 	if (r) {
1166 		pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
1167 		return r;
1168 	}
1169 
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL(vpdma_create);
1173 
1174 MODULE_AUTHOR("Texas Instruments Inc.");
1175 MODULE_FIRMWARE(VPDMA_FIRMWARE);
1176 MODULE_LICENSE("GPL v2");
1177