1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * isp.c 4 * 5 * TI OMAP3 ISP - Core 6 * 7 * Copyright (C) 2006-2010 Nokia Corporation 8 * Copyright (C) 2007-2009 Texas Instruments, Inc. 9 * 10 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 11 * Sakari Ailus <sakari.ailus@iki.fi> 12 * 13 * Contributors: 14 * Laurent Pinchart <laurent.pinchart@ideasonboard.com> 15 * Sakari Ailus <sakari.ailus@iki.fi> 16 * David Cohen <dacohen@gmail.com> 17 * Stanimir Varbanov <svarbanov@mm-sol.com> 18 * Vimarsh Zutshi <vimarsh.zutshi@gmail.com> 19 * Tuukka Toivonen <tuukkat76@gmail.com> 20 * Sergio Aguirre <saaguirre@ti.com> 21 * Antti Koskipaa <akoskipa@gmail.com> 22 * Ivan T. Ivanov <iivanov@mm-sol.com> 23 * RaniSuneela <r-m@ti.com> 24 * Atanas Filipov <afilipov@mm-sol.com> 25 * Gjorgji Rosikopulos <grosikopulos@mm-sol.com> 26 * Hiroshi DOYU <hiroshi.doyu@nokia.com> 27 * Nayden Kanchev <nkanchev@mm-sol.com> 28 * Phil Carmody <ext-phil.2.carmody@nokia.com> 29 * Artem Bityutskiy <artem.bityutskiy@nokia.com> 30 * Dominic Curran <dcurran@ti.com> 31 * Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi> 32 * Pallavi Kulkarni <p-kulkarni@ti.com> 33 * Vaibhav Hiremath <hvaibhav@ti.com> 34 * Mohit Jalori <mjalori@ti.com> 35 * Sameer Venkatraman <sameerv@ti.com> 36 * Senthilvadivu Guruswamy <svadivu@ti.com> 37 * Thara Gopinath <thara@ti.com> 38 * Toni Leinonen <toni.leinonen@nokia.com> 39 * Troy Laramy <t-laramy@ti.com> 40 */ 41 42 #include <linux/clk.h> 43 #include <linux/clkdev.h> 44 #include <linux/delay.h> 45 #include <linux/device.h> 46 #include <linux/dma-mapping.h> 47 #include <linux/i2c.h> 48 #include <linux/interrupt.h> 49 #include <linux/mfd/syscon.h> 50 #include <linux/module.h> 51 #include <linux/omap-iommu.h> 52 #include <linux/platform_device.h> 53 #include <linux/property.h> 54 #include <linux/regulator/consumer.h> 55 #include <linux/slab.h> 56 #include <linux/sched.h> 57 #include <linux/vmalloc.h> 58 59 #ifdef CONFIG_ARM_DMA_USE_IOMMU 60 #include <asm/dma-iommu.h> 61 #endif 62 63 #include <media/v4l2-common.h> 64 #include <media/v4l2-fwnode.h> 65 #include <media/v4l2-device.h> 66 #include <media/v4l2-mc.h> 67 68 #include "isp.h" 69 #include "ispreg.h" 70 #include "ispccdc.h" 71 #include "isppreview.h" 72 #include "ispresizer.h" 73 #include "ispcsi2.h" 74 #include "ispccp2.h" 75 #include "isph3a.h" 76 #include "isphist.h" 77 78 static unsigned int autoidle; 79 module_param(autoidle, int, 0444); 80 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support"); 81 82 static void isp_save_ctx(struct isp_device *isp); 83 84 static void isp_restore_ctx(struct isp_device *isp); 85 86 static const struct isp_res_mapping isp_res_maps[] = { 87 { 88 .isp_rev = ISP_REVISION_2_0, 89 .offset = { 90 /* first MMIO area */ 91 0x0000, /* base, len 0x0070 */ 92 0x0400, /* ccp2, len 0x01f0 */ 93 0x0600, /* ccdc, len 0x00a8 */ 94 0x0a00, /* hist, len 0x0048 */ 95 0x0c00, /* h3a, len 0x0060 */ 96 0x0e00, /* preview, len 0x00a0 */ 97 0x1000, /* resizer, len 0x00ac */ 98 0x1200, /* sbl, len 0x00fc */ 99 /* second MMIO area */ 100 0x0000, /* csi2a, len 0x0170 */ 101 0x0170, /* csiphy2, len 0x000c */ 102 }, 103 .phy_type = ISP_PHY_TYPE_3430, 104 }, 105 { 106 .isp_rev = ISP_REVISION_15_0, 107 .offset = { 108 /* first MMIO area */ 109 0x0000, /* base, len 0x0070 */ 110 0x0400, /* ccp2, len 0x01f0 */ 111 0x0600, /* ccdc, len 0x00a8 */ 112 0x0a00, /* hist, len 0x0048 */ 113 0x0c00, /* h3a, len 0x0060 */ 114 0x0e00, /* preview, len 0x00a0 */ 115 0x1000, /* resizer, len 0x00ac */ 116 0x1200, /* sbl, len 0x00fc */ 117 /* second MMIO area */ 118 0x0000, /* csi2a, len 0x0170 (1st area) */ 119 0x0170, /* csiphy2, len 0x000c */ 120 0x01c0, /* csi2a, len 0x0040 (2nd area) */ 121 0x0400, /* csi2c, len 0x0170 (1st area) */ 122 0x0570, /* csiphy1, len 0x000c */ 123 0x05c0, /* csi2c, len 0x0040 (2nd area) */ 124 }, 125 .phy_type = ISP_PHY_TYPE_3630, 126 }, 127 }; 128 129 /* Structure for saving/restoring ISP module registers */ 130 static struct isp_reg isp_reg_list[] = { 131 {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0}, 132 {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0}, 133 {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0}, 134 {0, ISP_TOK_TERM, 0} 135 }; 136 137 /* 138 * omap3isp_flush - Post pending L3 bus writes by doing a register readback 139 * @isp: OMAP3 ISP device 140 * 141 * In order to force posting of pending writes, we need to write and 142 * readback the same register, in this case the revision register. 143 * 144 * See this link for reference: 145 * https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html 146 */ 147 void omap3isp_flush(struct isp_device *isp) 148 { 149 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); 150 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); 151 } 152 153 /* ----------------------------------------------------------------------------- 154 * XCLK 155 */ 156 157 #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw) 158 159 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider) 160 { 161 switch (xclk->id) { 162 case ISP_XCLK_A: 163 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 164 ISPTCTRL_CTRL_DIVA_MASK, 165 divider << ISPTCTRL_CTRL_DIVA_SHIFT); 166 break; 167 case ISP_XCLK_B: 168 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 169 ISPTCTRL_CTRL_DIVB_MASK, 170 divider << ISPTCTRL_CTRL_DIVB_SHIFT); 171 break; 172 } 173 } 174 175 static int isp_xclk_prepare(struct clk_hw *hw) 176 { 177 struct isp_xclk *xclk = to_isp_xclk(hw); 178 179 omap3isp_get(xclk->isp); 180 181 return 0; 182 } 183 184 static void isp_xclk_unprepare(struct clk_hw *hw) 185 { 186 struct isp_xclk *xclk = to_isp_xclk(hw); 187 188 omap3isp_put(xclk->isp); 189 } 190 191 static int isp_xclk_enable(struct clk_hw *hw) 192 { 193 struct isp_xclk *xclk = to_isp_xclk(hw); 194 unsigned long flags; 195 196 spin_lock_irqsave(&xclk->lock, flags); 197 isp_xclk_update(xclk, xclk->divider); 198 xclk->enabled = true; 199 spin_unlock_irqrestore(&xclk->lock, flags); 200 201 return 0; 202 } 203 204 static void isp_xclk_disable(struct clk_hw *hw) 205 { 206 struct isp_xclk *xclk = to_isp_xclk(hw); 207 unsigned long flags; 208 209 spin_lock_irqsave(&xclk->lock, flags); 210 isp_xclk_update(xclk, 0); 211 xclk->enabled = false; 212 spin_unlock_irqrestore(&xclk->lock, flags); 213 } 214 215 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw, 216 unsigned long parent_rate) 217 { 218 struct isp_xclk *xclk = to_isp_xclk(hw); 219 220 return parent_rate / xclk->divider; 221 } 222 223 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate) 224 { 225 u32 divider; 226 227 if (*rate >= parent_rate) { 228 *rate = parent_rate; 229 return ISPTCTRL_CTRL_DIV_BYPASS; 230 } 231 232 if (*rate == 0) 233 *rate = 1; 234 235 divider = DIV_ROUND_CLOSEST(parent_rate, *rate); 236 if (divider >= ISPTCTRL_CTRL_DIV_BYPASS) 237 divider = ISPTCTRL_CTRL_DIV_BYPASS - 1; 238 239 *rate = parent_rate / divider; 240 return divider; 241 } 242 243 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate, 244 unsigned long *parent_rate) 245 { 246 isp_xclk_calc_divider(&rate, *parent_rate); 247 return rate; 248 } 249 250 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate, 251 unsigned long parent_rate) 252 { 253 struct isp_xclk *xclk = to_isp_xclk(hw); 254 unsigned long flags; 255 u32 divider; 256 257 divider = isp_xclk_calc_divider(&rate, parent_rate); 258 259 spin_lock_irqsave(&xclk->lock, flags); 260 261 xclk->divider = divider; 262 if (xclk->enabled) 263 isp_xclk_update(xclk, divider); 264 265 spin_unlock_irqrestore(&xclk->lock, flags); 266 267 dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n", 268 __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider); 269 return 0; 270 } 271 272 static const struct clk_ops isp_xclk_ops = { 273 .prepare = isp_xclk_prepare, 274 .unprepare = isp_xclk_unprepare, 275 .enable = isp_xclk_enable, 276 .disable = isp_xclk_disable, 277 .recalc_rate = isp_xclk_recalc_rate, 278 .round_rate = isp_xclk_round_rate, 279 .set_rate = isp_xclk_set_rate, 280 }; 281 282 static const char *isp_xclk_parent_name = "cam_mclk"; 283 284 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data) 285 { 286 unsigned int idx = clkspec->args[0]; 287 struct isp_device *isp = data; 288 289 if (idx >= ARRAY_SIZE(isp->xclks)) 290 return ERR_PTR(-ENOENT); 291 292 return isp->xclks[idx].clk; 293 } 294 295 static int isp_xclk_init(struct isp_device *isp) 296 { 297 struct device_node *np = isp->dev->of_node; 298 struct clk_init_data init = {}; 299 unsigned int i; 300 301 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) 302 isp->xclks[i].clk = ERR_PTR(-EINVAL); 303 304 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) { 305 struct isp_xclk *xclk = &isp->xclks[i]; 306 307 xclk->isp = isp; 308 xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B; 309 xclk->divider = 1; 310 spin_lock_init(&xclk->lock); 311 312 init.name = i == 0 ? "cam_xclka" : "cam_xclkb"; 313 init.ops = &isp_xclk_ops; 314 init.parent_names = &isp_xclk_parent_name; 315 init.num_parents = 1; 316 317 xclk->hw.init = &init; 318 /* 319 * The first argument is NULL in order to avoid circular 320 * reference, as this driver takes reference on the 321 * sensor subdevice modules and the sensors would take 322 * reference on this module through clk_get(). 323 */ 324 xclk->clk = clk_register(NULL, &xclk->hw); 325 if (IS_ERR(xclk->clk)) 326 return PTR_ERR(xclk->clk); 327 } 328 329 if (np) 330 of_clk_add_provider(np, isp_xclk_src_get, isp); 331 332 return 0; 333 } 334 335 static void isp_xclk_cleanup(struct isp_device *isp) 336 { 337 struct device_node *np = isp->dev->of_node; 338 unsigned int i; 339 340 if (np) 341 of_clk_del_provider(np); 342 343 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) { 344 struct isp_xclk *xclk = &isp->xclks[i]; 345 346 if (!IS_ERR(xclk->clk)) 347 clk_unregister(xclk->clk); 348 } 349 } 350 351 /* ----------------------------------------------------------------------------- 352 * Interrupts 353 */ 354 355 /* 356 * isp_enable_interrupts - Enable ISP interrupts. 357 * @isp: OMAP3 ISP device 358 */ 359 static void isp_enable_interrupts(struct isp_device *isp) 360 { 361 static const u32 irq = IRQ0ENABLE_CSIA_IRQ 362 | IRQ0ENABLE_CSIB_IRQ 363 | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ 364 | IRQ0ENABLE_CCDC_LSC_DONE_IRQ 365 | IRQ0ENABLE_CCDC_VD0_IRQ 366 | IRQ0ENABLE_CCDC_VD1_IRQ 367 | IRQ0ENABLE_HS_VS_IRQ 368 | IRQ0ENABLE_HIST_DONE_IRQ 369 | IRQ0ENABLE_H3A_AWB_DONE_IRQ 370 | IRQ0ENABLE_H3A_AF_DONE_IRQ 371 | IRQ0ENABLE_PRV_DONE_IRQ 372 | IRQ0ENABLE_RSZ_DONE_IRQ; 373 374 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); 375 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE); 376 } 377 378 /* 379 * isp_disable_interrupts - Disable ISP interrupts. 380 * @isp: OMAP3 ISP device 381 */ 382 static void isp_disable_interrupts(struct isp_device *isp) 383 { 384 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE); 385 } 386 387 /* 388 * isp_core_init - ISP core settings 389 * @isp: OMAP3 ISP device 390 * @idle: Consider idle state. 391 * 392 * Set the power settings for the ISP and SBL bus and configure the HS/VS 393 * interrupt source. 394 * 395 * We need to configure the HS/VS interrupt source before interrupts get 396 * enabled, as the sensor might be free-running and the ISP default setting 397 * (HS edge) would put an unnecessary burden on the CPU. 398 */ 399 static void isp_core_init(struct isp_device *isp, int idle) 400 { 401 isp_reg_writel(isp, 402 ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY : 403 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) << 404 ISP_SYSCONFIG_MIDLEMODE_SHIFT) | 405 ((isp->revision == ISP_REVISION_15_0) ? 406 ISP_SYSCONFIG_AUTOIDLE : 0), 407 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG); 408 409 isp_reg_writel(isp, 410 (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) | 411 ISPCTRL_SYNC_DETECT_VSRISE, 412 OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); 413 } 414 415 /* 416 * Configure the bridge and lane shifter. Valid inputs are 417 * 418 * CCDC_INPUT_PARALLEL: Parallel interface 419 * CCDC_INPUT_CSI2A: CSI2a receiver 420 * CCDC_INPUT_CCP2B: CCP2b receiver 421 * CCDC_INPUT_CSI2C: CSI2c receiver 422 * 423 * The bridge and lane shifter are configured according to the selected input 424 * and the ISP platform data. 425 */ 426 void omap3isp_configure_bridge(struct isp_device *isp, 427 enum ccdc_input_entity input, 428 const struct isp_parallel_cfg *parcfg, 429 unsigned int shift, unsigned int bridge) 430 { 431 u32 ispctrl_val; 432 433 ispctrl_val = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); 434 ispctrl_val &= ~ISPCTRL_SHIFT_MASK; 435 ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV; 436 ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK; 437 ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK; 438 ispctrl_val |= bridge; 439 440 switch (input) { 441 case CCDC_INPUT_PARALLEL: 442 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL; 443 ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT; 444 shift += parcfg->data_lane_shift; 445 break; 446 447 case CCDC_INPUT_CSI2A: 448 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA; 449 break; 450 451 case CCDC_INPUT_CCP2B: 452 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB; 453 break; 454 455 case CCDC_INPUT_CSI2C: 456 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC; 457 break; 458 459 default: 460 return; 461 } 462 463 ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK; 464 465 isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); 466 } 467 468 void omap3isp_hist_dma_done(struct isp_device *isp) 469 { 470 if (omap3isp_ccdc_busy(&isp->isp_ccdc) || 471 omap3isp_stat_pcr_busy(&isp->isp_hist)) { 472 /* Histogram cannot be enabled in this frame anymore */ 473 atomic_set(&isp->isp_hist.buf_err, 1); 474 dev_dbg(isp->dev, 475 "hist: Out of synchronization with CCDC. Ignoring next buffer.\n"); 476 } 477 } 478 479 static inline void __maybe_unused isp_isr_dbg(struct isp_device *isp, 480 u32 irqstatus) 481 { 482 static const char *name[] = { 483 "CSIA_IRQ", 484 "res1", 485 "res2", 486 "CSIB_LCM_IRQ", 487 "CSIB_IRQ", 488 "res5", 489 "res6", 490 "res7", 491 "CCDC_VD0_IRQ", 492 "CCDC_VD1_IRQ", 493 "CCDC_VD2_IRQ", 494 "CCDC_ERR_IRQ", 495 "H3A_AF_DONE_IRQ", 496 "H3A_AWB_DONE_IRQ", 497 "res14", 498 "res15", 499 "HIST_DONE_IRQ", 500 "CCDC_LSC_DONE", 501 "CCDC_LSC_PREFETCH_COMPLETED", 502 "CCDC_LSC_PREFETCH_ERROR", 503 "PRV_DONE_IRQ", 504 "CBUFF_IRQ", 505 "res22", 506 "res23", 507 "RSZ_DONE_IRQ", 508 "OVF_IRQ", 509 "res26", 510 "res27", 511 "MMU_ERR_IRQ", 512 "OCP_ERR_IRQ", 513 "SEC_ERR_IRQ", 514 "HS_VS_IRQ", 515 }; 516 int i; 517 518 dev_dbg(isp->dev, "ISP IRQ: "); 519 520 for (i = 0; i < ARRAY_SIZE(name); i++) { 521 if ((1 << i) & irqstatus) 522 printk(KERN_CONT "%s ", name[i]); 523 } 524 printk(KERN_CONT "\n"); 525 } 526 527 static void isp_isr_sbl(struct isp_device *isp) 528 { 529 struct device *dev = isp->dev; 530 struct isp_pipeline *pipe; 531 u32 sbl_pcr; 532 533 /* 534 * Handle shared buffer logic overflows for video buffers. 535 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored. 536 */ 537 sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR); 538 isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR); 539 sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF; 540 541 if (sbl_pcr) 542 dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr); 543 544 if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) { 545 pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity); 546 if (pipe != NULL) 547 pipe->error = true; 548 } 549 550 if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) { 551 pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity); 552 if (pipe != NULL) 553 pipe->error = true; 554 } 555 556 if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) { 557 pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity); 558 if (pipe != NULL) 559 pipe->error = true; 560 } 561 562 if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) { 563 pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity); 564 if (pipe != NULL) 565 pipe->error = true; 566 } 567 568 if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF 569 | ISPSBL_PCR_RSZ2_WBL_OVF 570 | ISPSBL_PCR_RSZ3_WBL_OVF 571 | ISPSBL_PCR_RSZ4_WBL_OVF)) { 572 pipe = to_isp_pipeline(&isp->isp_res.subdev.entity); 573 if (pipe != NULL) 574 pipe->error = true; 575 } 576 577 if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF) 578 omap3isp_stat_sbl_overflow(&isp->isp_af); 579 580 if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF) 581 omap3isp_stat_sbl_overflow(&isp->isp_aewb); 582 } 583 584 /* 585 * isp_isr - Interrupt Service Routine for Camera ISP module. 586 * @irq: Not used currently. 587 * @_isp: Pointer to the OMAP3 ISP device 588 * 589 * Handles the corresponding callback if plugged in. 590 */ 591 static irqreturn_t isp_isr(int irq, void *_isp) 592 { 593 static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ | 594 IRQ0STATUS_CCDC_LSC_DONE_IRQ | 595 IRQ0STATUS_CCDC_VD0_IRQ | 596 IRQ0STATUS_CCDC_VD1_IRQ | 597 IRQ0STATUS_HS_VS_IRQ; 598 struct isp_device *isp = _isp; 599 u32 irqstatus; 600 601 irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); 602 isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); 603 604 isp_isr_sbl(isp); 605 606 if (irqstatus & IRQ0STATUS_CSIA_IRQ) 607 omap3isp_csi2_isr(&isp->isp_csi2a); 608 609 if (irqstatus & IRQ0STATUS_CSIB_IRQ) 610 omap3isp_ccp2_isr(&isp->isp_ccp2); 611 612 if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) { 613 if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW) 614 omap3isp_preview_isr_frame_sync(&isp->isp_prev); 615 if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER) 616 omap3isp_resizer_isr_frame_sync(&isp->isp_res); 617 omap3isp_stat_isr_frame_sync(&isp->isp_aewb); 618 omap3isp_stat_isr_frame_sync(&isp->isp_af); 619 omap3isp_stat_isr_frame_sync(&isp->isp_hist); 620 } 621 622 if (irqstatus & ccdc_events) 623 omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events); 624 625 if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) { 626 if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER) 627 omap3isp_resizer_isr_frame_sync(&isp->isp_res); 628 omap3isp_preview_isr(&isp->isp_prev); 629 } 630 631 if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ) 632 omap3isp_resizer_isr(&isp->isp_res); 633 634 if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ) 635 omap3isp_stat_isr(&isp->isp_aewb); 636 637 if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ) 638 omap3isp_stat_isr(&isp->isp_af); 639 640 if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ) 641 omap3isp_stat_isr(&isp->isp_hist); 642 643 omap3isp_flush(isp); 644 645 #if defined(DEBUG) && defined(ISP_ISR_DEBUG) 646 isp_isr_dbg(isp, irqstatus); 647 #endif 648 649 return IRQ_HANDLED; 650 } 651 652 static const struct media_device_ops isp_media_ops = { 653 .link_notify = v4l2_pipeline_link_notify, 654 }; 655 656 /* ----------------------------------------------------------------------------- 657 * Pipeline stream management 658 */ 659 660 /* 661 * isp_pipeline_enable - Enable streaming on a pipeline 662 * @pipe: ISP pipeline 663 * @mode: Stream mode (single shot or continuous) 664 * 665 * Walk the entities chain starting at the pipeline output video node and start 666 * all modules in the chain in the given mode. 667 * 668 * Return 0 if successful, or the return value of the failed video::s_stream 669 * operation otherwise. 670 */ 671 static int isp_pipeline_enable(struct isp_pipeline *pipe, 672 enum isp_pipeline_stream_state mode) 673 { 674 struct isp_device *isp = pipe->output->isp; 675 struct media_entity *entity; 676 struct media_pad *pad; 677 struct v4l2_subdev *subdev; 678 unsigned long flags; 679 int ret; 680 681 /* Refuse to start streaming if an entity included in the pipeline has 682 * crashed. This check must be performed before the loop below to avoid 683 * starting entities if the pipeline won't start anyway (those entities 684 * would then likely fail to stop, making the problem worse). 685 */ 686 if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed)) 687 return -EIO; 688 689 spin_lock_irqsave(&pipe->lock, flags); 690 pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT); 691 spin_unlock_irqrestore(&pipe->lock, flags); 692 693 pipe->do_propagation = false; 694 695 mutex_lock(&isp->media_dev.graph_mutex); 696 697 entity = &pipe->output->video.entity; 698 while (1) { 699 pad = &entity->pads[0]; 700 if (!(pad->flags & MEDIA_PAD_FL_SINK)) 701 break; 702 703 pad = media_pad_remote_pad_first(pad); 704 if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) 705 break; 706 707 entity = pad->entity; 708 subdev = media_entity_to_v4l2_subdev(entity); 709 710 ret = v4l2_subdev_call(subdev, video, s_stream, mode); 711 if (ret < 0 && ret != -ENOIOCTLCMD) { 712 mutex_unlock(&isp->media_dev.graph_mutex); 713 return ret; 714 } 715 716 if (subdev == &isp->isp_ccdc.subdev) { 717 v4l2_subdev_call(&isp->isp_aewb.subdev, video, 718 s_stream, mode); 719 v4l2_subdev_call(&isp->isp_af.subdev, video, 720 s_stream, mode); 721 v4l2_subdev_call(&isp->isp_hist.subdev, video, 722 s_stream, mode); 723 pipe->do_propagation = true; 724 } 725 726 /* Stop at the first external sub-device. */ 727 if (subdev->dev != isp->dev) 728 break; 729 } 730 731 mutex_unlock(&isp->media_dev.graph_mutex); 732 733 return 0; 734 } 735 736 static int isp_pipeline_wait_resizer(struct isp_device *isp) 737 { 738 return omap3isp_resizer_busy(&isp->isp_res); 739 } 740 741 static int isp_pipeline_wait_preview(struct isp_device *isp) 742 { 743 return omap3isp_preview_busy(&isp->isp_prev); 744 } 745 746 static int isp_pipeline_wait_ccdc(struct isp_device *isp) 747 { 748 return omap3isp_stat_busy(&isp->isp_af) 749 || omap3isp_stat_busy(&isp->isp_aewb) 750 || omap3isp_stat_busy(&isp->isp_hist) 751 || omap3isp_ccdc_busy(&isp->isp_ccdc); 752 } 753 754 #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000) 755 756 static int isp_pipeline_wait(struct isp_device *isp, 757 int(*busy)(struct isp_device *isp)) 758 { 759 unsigned long timeout = jiffies + ISP_STOP_TIMEOUT; 760 761 while (!time_after(jiffies, timeout)) { 762 if (!busy(isp)) 763 return 0; 764 } 765 766 return 1; 767 } 768 769 /* 770 * isp_pipeline_disable - Disable streaming on a pipeline 771 * @pipe: ISP pipeline 772 * 773 * Walk the entities chain starting at the pipeline output video node and stop 774 * all modules in the chain. Wait synchronously for the modules to be stopped if 775 * necessary. 776 * 777 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module 778 * can't be stopped (in which case a software reset of the ISP is probably 779 * necessary). 780 */ 781 static int isp_pipeline_disable(struct isp_pipeline *pipe) 782 { 783 struct isp_device *isp = pipe->output->isp; 784 struct media_entity *entity; 785 struct media_pad *pad; 786 struct v4l2_subdev *subdev; 787 int failure = 0; 788 int ret; 789 790 /* 791 * We need to stop all the modules after CCDC first or they'll 792 * never stop since they may not get a full frame from CCDC. 793 */ 794 entity = &pipe->output->video.entity; 795 while (1) { 796 pad = &entity->pads[0]; 797 if (!(pad->flags & MEDIA_PAD_FL_SINK)) 798 break; 799 800 pad = media_pad_remote_pad_first(pad); 801 if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) 802 break; 803 804 entity = pad->entity; 805 subdev = media_entity_to_v4l2_subdev(entity); 806 807 if (subdev == &isp->isp_ccdc.subdev) { 808 v4l2_subdev_call(&isp->isp_aewb.subdev, 809 video, s_stream, 0); 810 v4l2_subdev_call(&isp->isp_af.subdev, 811 video, s_stream, 0); 812 v4l2_subdev_call(&isp->isp_hist.subdev, 813 video, s_stream, 0); 814 } 815 816 ret = v4l2_subdev_call(subdev, video, s_stream, 0); 817 818 /* Stop at the first external sub-device. */ 819 if (subdev->dev != isp->dev) 820 break; 821 822 if (subdev == &isp->isp_res.subdev) 823 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer); 824 else if (subdev == &isp->isp_prev.subdev) 825 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview); 826 else if (subdev == &isp->isp_ccdc.subdev) 827 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc); 828 829 /* Handle stop failures. An entity that fails to stop can 830 * usually just be restarted. Flag the stop failure nonetheless 831 * to trigger an ISP reset the next time the device is released, 832 * just in case. 833 * 834 * The preview engine is a special case. A failure to stop can 835 * mean a hardware crash. When that happens the preview engine 836 * won't respond to read/write operations on the L4 bus anymore, 837 * resulting in a bus fault and a kernel oops next time it gets 838 * accessed. Mark it as crashed to prevent pipelines including 839 * it from being started. 840 */ 841 if (ret) { 842 dev_info(isp->dev, "Unable to stop %s\n", subdev->name); 843 isp->stop_failure = true; 844 if (subdev == &isp->isp_prev.subdev) 845 media_entity_enum_set(&isp->crashed, 846 &subdev->entity); 847 failure = -ETIMEDOUT; 848 } 849 } 850 851 return failure; 852 } 853 854 /* 855 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline 856 * @pipe: ISP pipeline 857 * @state: Stream state (stopped, single shot or continuous) 858 * 859 * Set the pipeline to the given stream state. Pipelines can be started in 860 * single-shot or continuous mode. 861 * 862 * Return 0 if successful, or the return value of the failed video::s_stream 863 * operation otherwise. The pipeline state is not updated when the operation 864 * fails, except when stopping the pipeline. 865 */ 866 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe, 867 enum isp_pipeline_stream_state state) 868 { 869 int ret; 870 871 if (state == ISP_PIPELINE_STREAM_STOPPED) 872 ret = isp_pipeline_disable(pipe); 873 else 874 ret = isp_pipeline_enable(pipe, state); 875 876 if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED) 877 pipe->stream_state = state; 878 879 return ret; 880 } 881 882 /* 883 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline 884 * @pipe: ISP pipeline 885 * 886 * Cancelling a stream mark all buffers on all video nodes in the pipeline as 887 * erroneous and makes sure no new buffer can be queued. This function is called 888 * when a fatal error that prevents any further operation on the pipeline 889 * occurs. 890 */ 891 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe) 892 { 893 if (pipe->input) 894 omap3isp_video_cancel_stream(pipe->input); 895 if (pipe->output) 896 omap3isp_video_cancel_stream(pipe->output); 897 } 898 899 /* 900 * isp_pipeline_resume - Resume streaming on a pipeline 901 * @pipe: ISP pipeline 902 * 903 * Resume video output and input and re-enable pipeline. 904 */ 905 static void isp_pipeline_resume(struct isp_pipeline *pipe) 906 { 907 int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT; 908 909 omap3isp_video_resume(pipe->output, !singleshot); 910 if (singleshot) 911 omap3isp_video_resume(pipe->input, 0); 912 isp_pipeline_enable(pipe, pipe->stream_state); 913 } 914 915 /* 916 * isp_pipeline_suspend - Suspend streaming on a pipeline 917 * @pipe: ISP pipeline 918 * 919 * Suspend pipeline. 920 */ 921 static void isp_pipeline_suspend(struct isp_pipeline *pipe) 922 { 923 isp_pipeline_disable(pipe); 924 } 925 926 /* 927 * isp_pipeline_is_last - Verify if entity has an enabled link to the output 928 * video node 929 * @me: ISP module's media entity 930 * 931 * Returns 1 if the entity has an enabled link to the output video node or 0 932 * otherwise. It's true only while pipeline can have no more than one output 933 * node. 934 */ 935 static int isp_pipeline_is_last(struct media_entity *me) 936 { 937 struct isp_pipeline *pipe; 938 struct media_pad *pad; 939 940 pipe = to_isp_pipeline(me); 941 if (!pipe || pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED) 942 return 0; 943 pad = media_pad_remote_pad_first(&pipe->output->pad); 944 return pad->entity == me; 945 } 946 947 /* 948 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module 949 * @me: ISP module's media entity 950 * 951 * Suspend the whole pipeline if module's entity has an enabled link to the 952 * output video node. It works only while pipeline can have no more than one 953 * output node. 954 */ 955 static void isp_suspend_module_pipeline(struct media_entity *me) 956 { 957 if (isp_pipeline_is_last(me)) 958 isp_pipeline_suspend(to_isp_pipeline(me)); 959 } 960 961 /* 962 * isp_resume_module_pipeline - Resume pipeline to which belongs the module 963 * @me: ISP module's media entity 964 * 965 * Resume the whole pipeline if module's entity has an enabled link to the 966 * output video node. It works only while pipeline can have no more than one 967 * output node. 968 */ 969 static void isp_resume_module_pipeline(struct media_entity *me) 970 { 971 if (isp_pipeline_is_last(me)) 972 isp_pipeline_resume(to_isp_pipeline(me)); 973 } 974 975 /* 976 * isp_suspend_modules - Suspend ISP submodules. 977 * @isp: OMAP3 ISP device 978 * 979 * Returns 0 if suspend left in idle state all the submodules properly, 980 * or returns 1 if a general Reset is required to suspend the submodules. 981 */ 982 static int __maybe_unused isp_suspend_modules(struct isp_device *isp) 983 { 984 unsigned long timeout; 985 986 omap3isp_stat_suspend(&isp->isp_aewb); 987 omap3isp_stat_suspend(&isp->isp_af); 988 omap3isp_stat_suspend(&isp->isp_hist); 989 isp_suspend_module_pipeline(&isp->isp_res.subdev.entity); 990 isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity); 991 isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity); 992 isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity); 993 isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity); 994 995 timeout = jiffies + ISP_STOP_TIMEOUT; 996 while (omap3isp_stat_busy(&isp->isp_af) 997 || omap3isp_stat_busy(&isp->isp_aewb) 998 || omap3isp_stat_busy(&isp->isp_hist) 999 || omap3isp_preview_busy(&isp->isp_prev) 1000 || omap3isp_resizer_busy(&isp->isp_res) 1001 || omap3isp_ccdc_busy(&isp->isp_ccdc)) { 1002 if (time_after(jiffies, timeout)) { 1003 dev_info(isp->dev, "can't stop modules.\n"); 1004 return 1; 1005 } 1006 msleep(1); 1007 } 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * isp_resume_modules - Resume ISP submodules. 1014 * @isp: OMAP3 ISP device 1015 */ 1016 static void __maybe_unused isp_resume_modules(struct isp_device *isp) 1017 { 1018 omap3isp_stat_resume(&isp->isp_aewb); 1019 omap3isp_stat_resume(&isp->isp_af); 1020 omap3isp_stat_resume(&isp->isp_hist); 1021 isp_resume_module_pipeline(&isp->isp_res.subdev.entity); 1022 isp_resume_module_pipeline(&isp->isp_prev.subdev.entity); 1023 isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity); 1024 isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity); 1025 isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity); 1026 } 1027 1028 /* 1029 * isp_reset - Reset ISP with a timeout wait for idle. 1030 * @isp: OMAP3 ISP device 1031 */ 1032 static int isp_reset(struct isp_device *isp) 1033 { 1034 unsigned long timeout = 0; 1035 1036 isp_reg_writel(isp, 1037 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG) 1038 | ISP_SYSCONFIG_SOFTRESET, 1039 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG); 1040 while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, 1041 ISP_SYSSTATUS) & 0x1)) { 1042 if (timeout++ > 10000) { 1043 dev_alert(isp->dev, "cannot reset ISP\n"); 1044 return -ETIMEDOUT; 1045 } 1046 udelay(1); 1047 } 1048 1049 isp->stop_failure = false; 1050 media_entity_enum_zero(&isp->crashed); 1051 return 0; 1052 } 1053 1054 /* 1055 * isp_save_context - Saves the values of the ISP module registers. 1056 * @isp: OMAP3 ISP device 1057 * @reg_list: Structure containing pairs of register address and value to 1058 * modify on OMAP. 1059 */ 1060 static void 1061 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list) 1062 { 1063 struct isp_reg *next = reg_list; 1064 1065 for (; next->reg != ISP_TOK_TERM; next++) 1066 next->val = isp_reg_readl(isp, next->mmio_range, next->reg); 1067 } 1068 1069 /* 1070 * isp_restore_context - Restores the values of the ISP module registers. 1071 * @isp: OMAP3 ISP device 1072 * @reg_list: Structure containing pairs of register address and value to 1073 * modify on OMAP. 1074 */ 1075 static void 1076 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list) 1077 { 1078 struct isp_reg *next = reg_list; 1079 1080 for (; next->reg != ISP_TOK_TERM; next++) 1081 isp_reg_writel(isp, next->val, next->mmio_range, next->reg); 1082 } 1083 1084 /* 1085 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context. 1086 * @isp: OMAP3 ISP device 1087 * 1088 * Routine for saving the context of each module in the ISP. 1089 * CCDC, HIST, H3A, PREV, RESZ and MMU. 1090 */ 1091 static void isp_save_ctx(struct isp_device *isp) 1092 { 1093 isp_save_context(isp, isp_reg_list); 1094 omap_iommu_save_ctx(isp->dev); 1095 } 1096 1097 /* 1098 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context. 1099 * @isp: OMAP3 ISP device 1100 * 1101 * Routine for restoring the context of each module in the ISP. 1102 * CCDC, HIST, H3A, PREV, RESZ and MMU. 1103 */ 1104 static void isp_restore_ctx(struct isp_device *isp) 1105 { 1106 isp_restore_context(isp, isp_reg_list); 1107 omap_iommu_restore_ctx(isp->dev); 1108 omap3isp_ccdc_restore_context(isp); 1109 omap3isp_preview_restore_context(isp); 1110 } 1111 1112 /* ----------------------------------------------------------------------------- 1113 * SBL resources management 1114 */ 1115 #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \ 1116 OMAP3_ISP_SBL_CCDC_LSC_READ | \ 1117 OMAP3_ISP_SBL_PREVIEW_READ | \ 1118 OMAP3_ISP_SBL_RESIZER_READ) 1119 #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \ 1120 OMAP3_ISP_SBL_CSI2A_WRITE | \ 1121 OMAP3_ISP_SBL_CSI2C_WRITE | \ 1122 OMAP3_ISP_SBL_CCDC_WRITE | \ 1123 OMAP3_ISP_SBL_PREVIEW_WRITE) 1124 1125 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res) 1126 { 1127 u32 sbl = 0; 1128 1129 isp->sbl_resources |= res; 1130 1131 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ) 1132 sbl |= ISPCTRL_SBL_SHARED_RPORTA; 1133 1134 if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ) 1135 sbl |= ISPCTRL_SBL_SHARED_RPORTB; 1136 1137 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE) 1138 sbl |= ISPCTRL_SBL_SHARED_WPORTC; 1139 1140 if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE) 1141 sbl |= ISPCTRL_SBL_WR0_RAM_EN; 1142 1143 if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE) 1144 sbl |= ISPCTRL_SBL_WR1_RAM_EN; 1145 1146 if (isp->sbl_resources & OMAP3_ISP_SBL_READ) 1147 sbl |= ISPCTRL_SBL_RD_RAM_EN; 1148 1149 isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl); 1150 } 1151 1152 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res) 1153 { 1154 u32 sbl = 0; 1155 1156 isp->sbl_resources &= ~res; 1157 1158 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)) 1159 sbl |= ISPCTRL_SBL_SHARED_RPORTA; 1160 1161 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)) 1162 sbl |= ISPCTRL_SBL_SHARED_RPORTB; 1163 1164 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)) 1165 sbl |= ISPCTRL_SBL_SHARED_WPORTC; 1166 1167 if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)) 1168 sbl |= ISPCTRL_SBL_WR0_RAM_EN; 1169 1170 if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE)) 1171 sbl |= ISPCTRL_SBL_WR1_RAM_EN; 1172 1173 if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ)) 1174 sbl |= ISPCTRL_SBL_RD_RAM_EN; 1175 1176 isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl); 1177 } 1178 1179 /* 1180 * isp_module_sync_idle - Helper to sync module with its idle state 1181 * @me: ISP submodule's media entity 1182 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization 1183 * @stopping: flag which tells module wants to stop 1184 * 1185 * This function checks if ISP submodule needs to wait for next interrupt. If 1186 * yes, makes the caller to sleep while waiting for such event. 1187 */ 1188 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait, 1189 atomic_t *stopping) 1190 { 1191 struct isp_pipeline *pipe = to_isp_pipeline(me); 1192 1193 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED || 1194 (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT && 1195 !isp_pipeline_ready(pipe))) 1196 return 0; 1197 1198 /* 1199 * atomic_set() doesn't include memory barrier on ARM platform for SMP 1200 * scenario. We'll call it here to avoid race conditions. 1201 */ 1202 atomic_set(stopping, 1); 1203 smp_mb(); 1204 1205 /* 1206 * If module is the last one, it's writing to memory. In this case, 1207 * it's necessary to check if the module is already paused due to 1208 * DMA queue underrun or if it has to wait for next interrupt to be 1209 * idle. 1210 * If it isn't the last one, the function won't sleep but *stopping 1211 * will still be set to warn next submodule caller's interrupt the 1212 * module wants to be idle. 1213 */ 1214 if (isp_pipeline_is_last(me)) { 1215 struct isp_video *video = pipe->output; 1216 unsigned long flags; 1217 spin_lock_irqsave(&video->irqlock, flags); 1218 if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) { 1219 spin_unlock_irqrestore(&video->irqlock, flags); 1220 atomic_set(stopping, 0); 1221 smp_mb(); 1222 return 0; 1223 } 1224 spin_unlock_irqrestore(&video->irqlock, flags); 1225 if (!wait_event_timeout(*wait, !atomic_read(stopping), 1226 msecs_to_jiffies(1000))) { 1227 atomic_set(stopping, 0); 1228 smp_mb(); 1229 return -ETIMEDOUT; 1230 } 1231 } 1232 1233 return 0; 1234 } 1235 1236 /* 1237 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping 1238 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization 1239 * @stopping: flag which tells module wants to stop 1240 * 1241 * This function checks if ISP submodule was stopping. In case of yes, it 1242 * notices the caller by setting stopping to 0 and waking up the wait queue. 1243 * Returns 1 if it was stopping or 0 otherwise. 1244 */ 1245 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait, 1246 atomic_t *stopping) 1247 { 1248 if (atomic_cmpxchg(stopping, 1, 0)) { 1249 wake_up(wait); 1250 return 1; 1251 } 1252 1253 return 0; 1254 } 1255 1256 /* -------------------------------------------------------------------------- 1257 * Clock management 1258 */ 1259 1260 #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \ 1261 ISPCTRL_HIST_CLK_EN | \ 1262 ISPCTRL_RSZ_CLK_EN | \ 1263 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \ 1264 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN)) 1265 1266 static void __isp_subclk_update(struct isp_device *isp) 1267 { 1268 u32 clk = 0; 1269 1270 /* AEWB and AF share the same clock. */ 1271 if (isp->subclk_resources & 1272 (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF)) 1273 clk |= ISPCTRL_H3A_CLK_EN; 1274 1275 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST) 1276 clk |= ISPCTRL_HIST_CLK_EN; 1277 1278 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER) 1279 clk |= ISPCTRL_RSZ_CLK_EN; 1280 1281 /* NOTE: For CCDC & Preview submodules, we need to affect internal 1282 * RAM as well. 1283 */ 1284 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC) 1285 clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN; 1286 1287 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW) 1288 clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN; 1289 1290 isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 1291 ISPCTRL_CLKS_MASK, clk); 1292 } 1293 1294 void omap3isp_subclk_enable(struct isp_device *isp, 1295 enum isp_subclk_resource res) 1296 { 1297 isp->subclk_resources |= res; 1298 1299 __isp_subclk_update(isp); 1300 } 1301 1302 void omap3isp_subclk_disable(struct isp_device *isp, 1303 enum isp_subclk_resource res) 1304 { 1305 isp->subclk_resources &= ~res; 1306 1307 __isp_subclk_update(isp); 1308 } 1309 1310 /* 1311 * isp_enable_clocks - Enable ISP clocks 1312 * @isp: OMAP3 ISP device 1313 * 1314 * Return 0 if successful, or clk_prepare_enable return value if any of them 1315 * fails. 1316 */ 1317 static int isp_enable_clocks(struct isp_device *isp) 1318 { 1319 int r; 1320 unsigned long rate; 1321 1322 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]); 1323 if (r) { 1324 dev_err(isp->dev, "failed to enable cam_ick clock\n"); 1325 goto out_clk_enable_ick; 1326 } 1327 r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ); 1328 if (r) { 1329 dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n"); 1330 goto out_clk_enable_mclk; 1331 } 1332 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]); 1333 if (r) { 1334 dev_err(isp->dev, "failed to enable cam_mclk clock\n"); 1335 goto out_clk_enable_mclk; 1336 } 1337 rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]); 1338 if (rate != CM_CAM_MCLK_HZ) 1339 dev_warn(isp->dev, "unexpected cam_mclk rate:\n" 1340 " expected : %d\n" 1341 " actual : %ld\n", CM_CAM_MCLK_HZ, rate); 1342 r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]); 1343 if (r) { 1344 dev_err(isp->dev, "failed to enable csi2_fck clock\n"); 1345 goto out_clk_enable_csi2_fclk; 1346 } 1347 return 0; 1348 1349 out_clk_enable_csi2_fclk: 1350 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]); 1351 out_clk_enable_mclk: 1352 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]); 1353 out_clk_enable_ick: 1354 return r; 1355 } 1356 1357 /* 1358 * isp_disable_clocks - Disable ISP clocks 1359 * @isp: OMAP3 ISP device 1360 */ 1361 static void isp_disable_clocks(struct isp_device *isp) 1362 { 1363 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]); 1364 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]); 1365 clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]); 1366 } 1367 1368 static const char *isp_clocks[] = { 1369 "cam_ick", 1370 "cam_mclk", 1371 "csi2_96m_fck", 1372 "l3_ick", 1373 }; 1374 1375 static int isp_get_clocks(struct isp_device *isp) 1376 { 1377 struct clk *clk; 1378 unsigned int i; 1379 1380 for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) { 1381 clk = devm_clk_get(isp->dev, isp_clocks[i]); 1382 if (IS_ERR(clk)) { 1383 dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]); 1384 return PTR_ERR(clk); 1385 } 1386 1387 isp->clock[i] = clk; 1388 } 1389 1390 return 0; 1391 } 1392 1393 /* 1394 * omap3isp_get - Acquire the ISP resource. 1395 * 1396 * Initializes the clocks for the first acquire. 1397 * 1398 * Increment the reference count on the ISP. If the first reference is taken, 1399 * enable clocks and power-up all submodules. 1400 * 1401 * Return a pointer to the ISP device structure, or NULL if an error occurred. 1402 */ 1403 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq) 1404 { 1405 struct isp_device *__isp = isp; 1406 1407 if (isp == NULL) 1408 return NULL; 1409 1410 mutex_lock(&isp->isp_mutex); 1411 if (isp->ref_count > 0) 1412 goto out; 1413 1414 if (isp_enable_clocks(isp) < 0) { 1415 __isp = NULL; 1416 goto out; 1417 } 1418 1419 /* We don't want to restore context before saving it! */ 1420 if (isp->has_context) 1421 isp_restore_ctx(isp); 1422 1423 if (irq) 1424 isp_enable_interrupts(isp); 1425 1426 out: 1427 if (__isp != NULL) 1428 isp->ref_count++; 1429 mutex_unlock(&isp->isp_mutex); 1430 1431 return __isp; 1432 } 1433 1434 struct isp_device *omap3isp_get(struct isp_device *isp) 1435 { 1436 return __omap3isp_get(isp, true); 1437 } 1438 1439 /* 1440 * omap3isp_put - Release the ISP 1441 * 1442 * Decrement the reference count on the ISP. If the last reference is released, 1443 * power-down all submodules, disable clocks and free temporary buffers. 1444 */ 1445 static void __omap3isp_put(struct isp_device *isp, bool save_ctx) 1446 { 1447 if (isp == NULL) 1448 return; 1449 1450 mutex_lock(&isp->isp_mutex); 1451 BUG_ON(isp->ref_count == 0); 1452 if (--isp->ref_count == 0) { 1453 isp_disable_interrupts(isp); 1454 if (save_ctx) { 1455 isp_save_ctx(isp); 1456 isp->has_context = 1; 1457 } 1458 /* Reset the ISP if an entity has failed to stop. This is the 1459 * only way to recover from such conditions. 1460 */ 1461 if (!media_entity_enum_empty(&isp->crashed) || 1462 isp->stop_failure) 1463 isp_reset(isp); 1464 isp_disable_clocks(isp); 1465 } 1466 mutex_unlock(&isp->isp_mutex); 1467 } 1468 1469 void omap3isp_put(struct isp_device *isp) 1470 { 1471 __omap3isp_put(isp, true); 1472 } 1473 1474 /* -------------------------------------------------------------------------- 1475 * Platform device driver 1476 */ 1477 1478 /* 1479 * omap3isp_print_status - Prints the values of the ISP Control Module registers 1480 * @isp: OMAP3 ISP device 1481 */ 1482 #define ISP_PRINT_REGISTER(isp, name)\ 1483 dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \ 1484 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name)) 1485 #define SBL_PRINT_REGISTER(isp, name)\ 1486 dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \ 1487 isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name)) 1488 1489 void omap3isp_print_status(struct isp_device *isp) 1490 { 1491 dev_dbg(isp->dev, "-------------ISP Register dump--------------\n"); 1492 1493 ISP_PRINT_REGISTER(isp, SYSCONFIG); 1494 ISP_PRINT_REGISTER(isp, SYSSTATUS); 1495 ISP_PRINT_REGISTER(isp, IRQ0ENABLE); 1496 ISP_PRINT_REGISTER(isp, IRQ0STATUS); 1497 ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH); 1498 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY); 1499 ISP_PRINT_REGISTER(isp, CTRL); 1500 ISP_PRINT_REGISTER(isp, TCTRL_CTRL); 1501 ISP_PRINT_REGISTER(isp, TCTRL_FRAME); 1502 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY); 1503 ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY); 1504 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY); 1505 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH); 1506 ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH); 1507 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH); 1508 1509 SBL_PRINT_REGISTER(isp, PCR); 1510 SBL_PRINT_REGISTER(isp, SDR_REQ_EXP); 1511 1512 dev_dbg(isp->dev, "--------------------------------------------\n"); 1513 } 1514 1515 #ifdef CONFIG_PM 1516 1517 /* 1518 * Power management support. 1519 * 1520 * As the ISP can't properly handle an input video stream interruption on a non 1521 * frame boundary, the ISP pipelines need to be stopped before sensors get 1522 * suspended. However, as suspending the sensors can require a running clock, 1523 * which can be provided by the ISP, the ISP can't be completely suspended 1524 * before the sensor. 1525 * 1526 * To solve this problem power management support is split into prepare/complete 1527 * and suspend/resume operations. The pipelines are stopped in prepare() and the 1528 * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in 1529 * resume(), and the pipelines are restarted in complete(). 1530 * 1531 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly 1532 * yet. 1533 */ 1534 static int isp_pm_prepare(struct device *dev) 1535 { 1536 struct isp_device *isp = dev_get_drvdata(dev); 1537 int reset; 1538 1539 WARN_ON(mutex_is_locked(&isp->isp_mutex)); 1540 1541 if (isp->ref_count == 0) 1542 return 0; 1543 1544 reset = isp_suspend_modules(isp); 1545 isp_disable_interrupts(isp); 1546 isp_save_ctx(isp); 1547 if (reset) 1548 isp_reset(isp); 1549 1550 return 0; 1551 } 1552 1553 static int isp_pm_suspend(struct device *dev) 1554 { 1555 struct isp_device *isp = dev_get_drvdata(dev); 1556 1557 WARN_ON(mutex_is_locked(&isp->isp_mutex)); 1558 1559 if (isp->ref_count) 1560 isp_disable_clocks(isp); 1561 1562 return 0; 1563 } 1564 1565 static int isp_pm_resume(struct device *dev) 1566 { 1567 struct isp_device *isp = dev_get_drvdata(dev); 1568 1569 if (isp->ref_count == 0) 1570 return 0; 1571 1572 return isp_enable_clocks(isp); 1573 } 1574 1575 static void isp_pm_complete(struct device *dev) 1576 { 1577 struct isp_device *isp = dev_get_drvdata(dev); 1578 1579 if (isp->ref_count == 0) 1580 return; 1581 1582 isp_restore_ctx(isp); 1583 isp_enable_interrupts(isp); 1584 isp_resume_modules(isp); 1585 } 1586 1587 #else 1588 1589 #define isp_pm_prepare NULL 1590 #define isp_pm_suspend NULL 1591 #define isp_pm_resume NULL 1592 #define isp_pm_complete NULL 1593 1594 #endif /* CONFIG_PM */ 1595 1596 static void isp_unregister_entities(struct isp_device *isp) 1597 { 1598 media_device_unregister(&isp->media_dev); 1599 1600 omap3isp_csi2_unregister_entities(&isp->isp_csi2a); 1601 omap3isp_ccp2_unregister_entities(&isp->isp_ccp2); 1602 omap3isp_ccdc_unregister_entities(&isp->isp_ccdc); 1603 omap3isp_preview_unregister_entities(&isp->isp_prev); 1604 omap3isp_resizer_unregister_entities(&isp->isp_res); 1605 omap3isp_stat_unregister_entities(&isp->isp_aewb); 1606 omap3isp_stat_unregister_entities(&isp->isp_af); 1607 omap3isp_stat_unregister_entities(&isp->isp_hist); 1608 1609 v4l2_device_unregister(&isp->v4l2_dev); 1610 media_device_cleanup(&isp->media_dev); 1611 } 1612 1613 static int isp_link_entity( 1614 struct isp_device *isp, struct media_entity *entity, 1615 enum isp_interface_type interface) 1616 { 1617 struct media_entity *input; 1618 unsigned int flags; 1619 unsigned int pad; 1620 unsigned int i; 1621 1622 /* Connect the sensor to the correct interface module. 1623 * Parallel sensors are connected directly to the CCDC, while 1624 * serial sensors are connected to the CSI2a, CCP2b or CSI2c 1625 * receiver through CSIPHY1 or CSIPHY2. 1626 */ 1627 switch (interface) { 1628 case ISP_INTERFACE_PARALLEL: 1629 input = &isp->isp_ccdc.subdev.entity; 1630 pad = CCDC_PAD_SINK; 1631 flags = 0; 1632 break; 1633 1634 case ISP_INTERFACE_CSI2A_PHY2: 1635 input = &isp->isp_csi2a.subdev.entity; 1636 pad = CSI2_PAD_SINK; 1637 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED; 1638 break; 1639 1640 case ISP_INTERFACE_CCP2B_PHY1: 1641 case ISP_INTERFACE_CCP2B_PHY2: 1642 input = &isp->isp_ccp2.subdev.entity; 1643 pad = CCP2_PAD_SINK; 1644 flags = 0; 1645 break; 1646 1647 case ISP_INTERFACE_CSI2C_PHY1: 1648 input = &isp->isp_csi2c.subdev.entity; 1649 pad = CSI2_PAD_SINK; 1650 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED; 1651 break; 1652 1653 default: 1654 dev_err(isp->dev, "%s: invalid interface type %u\n", __func__, 1655 interface); 1656 return -EINVAL; 1657 } 1658 1659 /* 1660 * Not all interfaces are available on all revisions of the 1661 * ISP. The sub-devices of those interfaces aren't initialised 1662 * in such a case. Check this by ensuring the num_pads is 1663 * non-zero. 1664 */ 1665 if (!input->num_pads) { 1666 dev_err(isp->dev, "%s: invalid input %u\n", entity->name, 1667 interface); 1668 return -EINVAL; 1669 } 1670 1671 for (i = 0; i < entity->num_pads; i++) { 1672 if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE) 1673 break; 1674 } 1675 if (i == entity->num_pads) { 1676 dev_err(isp->dev, "%s: no source pad in external entity %s\n", 1677 __func__, entity->name); 1678 return -EINVAL; 1679 } 1680 1681 return media_create_pad_link(entity, i, input, pad, flags); 1682 } 1683 1684 static int isp_register_entities(struct isp_device *isp) 1685 { 1686 int ret; 1687 1688 isp->media_dev.dev = isp->dev; 1689 strscpy(isp->media_dev.model, "TI OMAP3 ISP", 1690 sizeof(isp->media_dev.model)); 1691 isp->media_dev.hw_revision = isp->revision; 1692 isp->media_dev.ops = &isp_media_ops; 1693 media_device_init(&isp->media_dev); 1694 1695 isp->v4l2_dev.mdev = &isp->media_dev; 1696 ret = v4l2_device_register(isp->dev, &isp->v4l2_dev); 1697 if (ret < 0) { 1698 dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n", 1699 __func__, ret); 1700 goto done; 1701 } 1702 1703 /* Register internal entities */ 1704 ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev); 1705 if (ret < 0) 1706 goto done; 1707 1708 ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev); 1709 if (ret < 0) 1710 goto done; 1711 1712 ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev); 1713 if (ret < 0) 1714 goto done; 1715 1716 ret = omap3isp_preview_register_entities(&isp->isp_prev, 1717 &isp->v4l2_dev); 1718 if (ret < 0) 1719 goto done; 1720 1721 ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev); 1722 if (ret < 0) 1723 goto done; 1724 1725 ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev); 1726 if (ret < 0) 1727 goto done; 1728 1729 ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev); 1730 if (ret < 0) 1731 goto done; 1732 1733 ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev); 1734 if (ret < 0) 1735 goto done; 1736 1737 done: 1738 if (ret < 0) 1739 isp_unregister_entities(isp); 1740 1741 return ret; 1742 } 1743 1744 /* 1745 * isp_create_links() - Create links for internal and external ISP entities 1746 * @isp : Pointer to ISP device 1747 * 1748 * This function creates all links between ISP internal and external entities. 1749 * 1750 * Return: A negative error code on failure or zero on success. Possible error 1751 * codes are those returned by media_create_pad_link(). 1752 */ 1753 static int isp_create_links(struct isp_device *isp) 1754 { 1755 int ret; 1756 1757 /* Create links between entities and video nodes. */ 1758 ret = media_create_pad_link( 1759 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE, 1760 &isp->isp_csi2a.video_out.video.entity, 0, 0); 1761 if (ret < 0) 1762 return ret; 1763 1764 ret = media_create_pad_link( 1765 &isp->isp_ccp2.video_in.video.entity, 0, 1766 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0); 1767 if (ret < 0) 1768 return ret; 1769 1770 ret = media_create_pad_link( 1771 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF, 1772 &isp->isp_ccdc.video_out.video.entity, 0, 0); 1773 if (ret < 0) 1774 return ret; 1775 1776 ret = media_create_pad_link( 1777 &isp->isp_prev.video_in.video.entity, 0, 1778 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0); 1779 if (ret < 0) 1780 return ret; 1781 1782 ret = media_create_pad_link( 1783 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE, 1784 &isp->isp_prev.video_out.video.entity, 0, 0); 1785 if (ret < 0) 1786 return ret; 1787 1788 ret = media_create_pad_link( 1789 &isp->isp_res.video_in.video.entity, 0, 1790 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); 1791 if (ret < 0) 1792 return ret; 1793 1794 ret = media_create_pad_link( 1795 &isp->isp_res.subdev.entity, RESZ_PAD_SOURCE, 1796 &isp->isp_res.video_out.video.entity, 0, 0); 1797 1798 if (ret < 0) 1799 return ret; 1800 1801 /* Create links between entities. */ 1802 ret = media_create_pad_link( 1803 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE, 1804 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0); 1805 if (ret < 0) 1806 return ret; 1807 1808 ret = media_create_pad_link( 1809 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE, 1810 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0); 1811 if (ret < 0) 1812 return ret; 1813 1814 ret = media_create_pad_link( 1815 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1816 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0); 1817 if (ret < 0) 1818 return ret; 1819 1820 ret = media_create_pad_link( 1821 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF, 1822 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); 1823 if (ret < 0) 1824 return ret; 1825 1826 ret = media_create_pad_link( 1827 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE, 1828 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); 1829 if (ret < 0) 1830 return ret; 1831 1832 ret = media_create_pad_link( 1833 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1834 &isp->isp_aewb.subdev.entity, 0, 1835 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); 1836 if (ret < 0) 1837 return ret; 1838 1839 ret = media_create_pad_link( 1840 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1841 &isp->isp_af.subdev.entity, 0, 1842 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); 1843 if (ret < 0) 1844 return ret; 1845 1846 ret = media_create_pad_link( 1847 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, 1848 &isp->isp_hist.subdev.entity, 0, 1849 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); 1850 if (ret < 0) 1851 return ret; 1852 1853 return 0; 1854 } 1855 1856 static void isp_cleanup_modules(struct isp_device *isp) 1857 { 1858 omap3isp_h3a_aewb_cleanup(isp); 1859 omap3isp_h3a_af_cleanup(isp); 1860 omap3isp_hist_cleanup(isp); 1861 omap3isp_resizer_cleanup(isp); 1862 omap3isp_preview_cleanup(isp); 1863 omap3isp_ccdc_cleanup(isp); 1864 omap3isp_ccp2_cleanup(isp); 1865 omap3isp_csi2_cleanup(isp); 1866 omap3isp_csiphy_cleanup(isp); 1867 } 1868 1869 static int isp_initialize_modules(struct isp_device *isp) 1870 { 1871 int ret; 1872 1873 ret = omap3isp_csiphy_init(isp); 1874 if (ret < 0) { 1875 dev_err(isp->dev, "CSI PHY initialization failed\n"); 1876 return ret; 1877 } 1878 1879 ret = omap3isp_csi2_init(isp); 1880 if (ret < 0) { 1881 dev_err(isp->dev, "CSI2 initialization failed\n"); 1882 goto error_csi2; 1883 } 1884 1885 ret = omap3isp_ccp2_init(isp); 1886 if (ret < 0) { 1887 if (ret != -EPROBE_DEFER) 1888 dev_err(isp->dev, "CCP2 initialization failed\n"); 1889 goto error_ccp2; 1890 } 1891 1892 ret = omap3isp_ccdc_init(isp); 1893 if (ret < 0) { 1894 dev_err(isp->dev, "CCDC initialization failed\n"); 1895 goto error_ccdc; 1896 } 1897 1898 ret = omap3isp_preview_init(isp); 1899 if (ret < 0) { 1900 dev_err(isp->dev, "Preview initialization failed\n"); 1901 goto error_preview; 1902 } 1903 1904 ret = omap3isp_resizer_init(isp); 1905 if (ret < 0) { 1906 dev_err(isp->dev, "Resizer initialization failed\n"); 1907 goto error_resizer; 1908 } 1909 1910 ret = omap3isp_hist_init(isp); 1911 if (ret < 0) { 1912 dev_err(isp->dev, "Histogram initialization failed\n"); 1913 goto error_hist; 1914 } 1915 1916 ret = omap3isp_h3a_aewb_init(isp); 1917 if (ret < 0) { 1918 dev_err(isp->dev, "H3A AEWB initialization failed\n"); 1919 goto error_h3a_aewb; 1920 } 1921 1922 ret = omap3isp_h3a_af_init(isp); 1923 if (ret < 0) { 1924 dev_err(isp->dev, "H3A AF initialization failed\n"); 1925 goto error_h3a_af; 1926 } 1927 1928 return 0; 1929 1930 error_h3a_af: 1931 omap3isp_h3a_aewb_cleanup(isp); 1932 error_h3a_aewb: 1933 omap3isp_hist_cleanup(isp); 1934 error_hist: 1935 omap3isp_resizer_cleanup(isp); 1936 error_resizer: 1937 omap3isp_preview_cleanup(isp); 1938 error_preview: 1939 omap3isp_ccdc_cleanup(isp); 1940 error_ccdc: 1941 omap3isp_ccp2_cleanup(isp); 1942 error_ccp2: 1943 omap3isp_csi2_cleanup(isp); 1944 error_csi2: 1945 omap3isp_csiphy_cleanup(isp); 1946 1947 return ret; 1948 } 1949 1950 static void isp_detach_iommu(struct isp_device *isp) 1951 { 1952 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1953 arm_iommu_detach_device(isp->dev); 1954 arm_iommu_release_mapping(isp->mapping); 1955 isp->mapping = NULL; 1956 #endif 1957 } 1958 1959 static int isp_attach_iommu(struct isp_device *isp) 1960 { 1961 #ifdef CONFIG_ARM_DMA_USE_IOMMU 1962 struct dma_iommu_mapping *mapping; 1963 int ret; 1964 1965 /* 1966 * Create the ARM mapping, used by the ARM DMA mapping core to allocate 1967 * VAs. This will allocate a corresponding IOMMU domain. 1968 */ 1969 mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G); 1970 if (IS_ERR(mapping)) { 1971 dev_err(isp->dev, "failed to create ARM IOMMU mapping\n"); 1972 return PTR_ERR(mapping); 1973 } 1974 1975 isp->mapping = mapping; 1976 1977 /* Attach the ARM VA mapping to the device. */ 1978 ret = arm_iommu_attach_device(isp->dev, mapping); 1979 if (ret < 0) { 1980 dev_err(isp->dev, "failed to attach device to VA mapping\n"); 1981 goto error; 1982 } 1983 1984 return 0; 1985 1986 error: 1987 arm_iommu_release_mapping(isp->mapping); 1988 isp->mapping = NULL; 1989 return ret; 1990 #else 1991 return -ENODEV; 1992 #endif 1993 } 1994 1995 /* 1996 * isp_remove - Remove ISP platform device 1997 * @pdev: Pointer to ISP platform device 1998 * 1999 * Always returns 0. 2000 */ 2001 static int isp_remove(struct platform_device *pdev) 2002 { 2003 struct isp_device *isp = platform_get_drvdata(pdev); 2004 2005 v4l2_async_nf_unregister(&isp->notifier); 2006 isp_unregister_entities(isp); 2007 isp_cleanup_modules(isp); 2008 isp_xclk_cleanup(isp); 2009 2010 __omap3isp_get(isp, false); 2011 isp_detach_iommu(isp); 2012 __omap3isp_put(isp, false); 2013 2014 media_entity_enum_cleanup(&isp->crashed); 2015 v4l2_async_nf_cleanup(&isp->notifier); 2016 2017 kfree(isp); 2018 2019 return 0; 2020 } 2021 2022 enum isp_of_phy { 2023 ISP_OF_PHY_PARALLEL = 0, 2024 ISP_OF_PHY_CSIPHY1, 2025 ISP_OF_PHY_CSIPHY2, 2026 }; 2027 2028 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async) 2029 { 2030 struct isp_device *isp = container_of(async, struct isp_device, 2031 notifier); 2032 struct v4l2_device *v4l2_dev = &isp->v4l2_dev; 2033 struct v4l2_subdev *sd; 2034 int ret; 2035 2036 mutex_lock(&isp->media_dev.graph_mutex); 2037 2038 ret = media_entity_enum_init(&isp->crashed, &isp->media_dev); 2039 if (ret) { 2040 mutex_unlock(&isp->media_dev.graph_mutex); 2041 return ret; 2042 } 2043 2044 list_for_each_entry(sd, &v4l2_dev->subdevs, list) { 2045 if (sd->notifier != &isp->notifier) 2046 continue; 2047 2048 ret = isp_link_entity(isp, &sd->entity, 2049 v4l2_subdev_to_bus_cfg(sd)->interface); 2050 if (ret < 0) { 2051 mutex_unlock(&isp->media_dev.graph_mutex); 2052 return ret; 2053 } 2054 } 2055 2056 mutex_unlock(&isp->media_dev.graph_mutex); 2057 2058 ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev); 2059 if (ret < 0) 2060 return ret; 2061 2062 return media_device_register(&isp->media_dev); 2063 } 2064 2065 static void isp_parse_of_parallel_endpoint(struct device *dev, 2066 struct v4l2_fwnode_endpoint *vep, 2067 struct isp_bus_cfg *buscfg) 2068 { 2069 buscfg->interface = ISP_INTERFACE_PARALLEL; 2070 buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift; 2071 buscfg->bus.parallel.clk_pol = 2072 !!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING); 2073 buscfg->bus.parallel.hs_pol = 2074 !!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW); 2075 buscfg->bus.parallel.vs_pol = 2076 !!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW); 2077 buscfg->bus.parallel.fld_pol = 2078 !!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW); 2079 buscfg->bus.parallel.data_pol = 2080 !!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW); 2081 buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656; 2082 } 2083 2084 static void isp_parse_of_csi2_endpoint(struct device *dev, 2085 struct v4l2_fwnode_endpoint *vep, 2086 struct isp_bus_cfg *buscfg) 2087 { 2088 unsigned int i; 2089 2090 buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane; 2091 buscfg->bus.csi2.lanecfg.clk.pol = 2092 vep->bus.mipi_csi2.lane_polarities[0]; 2093 dev_dbg(dev, "clock lane polarity %u, pos %u\n", 2094 buscfg->bus.csi2.lanecfg.clk.pol, 2095 buscfg->bus.csi2.lanecfg.clk.pos); 2096 2097 buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes; 2098 2099 for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) { 2100 buscfg->bus.csi2.lanecfg.data[i].pos = 2101 vep->bus.mipi_csi2.data_lanes[i]; 2102 buscfg->bus.csi2.lanecfg.data[i].pol = 2103 vep->bus.mipi_csi2.lane_polarities[i + 1]; 2104 dev_dbg(dev, 2105 "data lane %u polarity %u, pos %u\n", i, 2106 buscfg->bus.csi2.lanecfg.data[i].pol, 2107 buscfg->bus.csi2.lanecfg.data[i].pos); 2108 } 2109 /* 2110 * FIXME: now we assume the CRC is always there. Implement a way to 2111 * obtain this information from the sensor. Frame descriptors, perhaps? 2112 */ 2113 buscfg->bus.csi2.crc = 1; 2114 } 2115 2116 static void isp_parse_of_csi1_endpoint(struct device *dev, 2117 struct v4l2_fwnode_endpoint *vep, 2118 struct isp_bus_cfg *buscfg) 2119 { 2120 buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane; 2121 buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0]; 2122 dev_dbg(dev, "clock lane polarity %u, pos %u\n", 2123 buscfg->bus.ccp2.lanecfg.clk.pol, 2124 buscfg->bus.ccp2.lanecfg.clk.pos); 2125 2126 buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane; 2127 buscfg->bus.ccp2.lanecfg.data[0].pol = 2128 vep->bus.mipi_csi1.lane_polarity[1]; 2129 2130 dev_dbg(dev, "data lane polarity %u, pos %u\n", 2131 buscfg->bus.ccp2.lanecfg.data[0].pol, 2132 buscfg->bus.ccp2.lanecfg.data[0].pos); 2133 2134 buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv; 2135 buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe; 2136 buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2; 2137 buscfg->bus.ccp2.vp_clk_pol = 1; 2138 2139 buscfg->bus.ccp2.crc = 1; 2140 } 2141 2142 static struct { 2143 u32 phy; 2144 u32 csi2_if; 2145 u32 csi1_if; 2146 } isp_bus_interfaces[2] = { 2147 { ISP_OF_PHY_CSIPHY1, 2148 ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 }, 2149 { ISP_OF_PHY_CSIPHY2, 2150 ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 }, 2151 }; 2152 2153 static int isp_parse_of_endpoints(struct isp_device *isp) 2154 { 2155 struct fwnode_handle *ep; 2156 struct isp_async_subdev *isd = NULL; 2157 unsigned int i; 2158 2159 ep = fwnode_graph_get_endpoint_by_id( 2160 dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0, 2161 FWNODE_GRAPH_ENDPOINT_NEXT); 2162 2163 if (ep) { 2164 struct v4l2_fwnode_endpoint vep = { 2165 .bus_type = V4L2_MBUS_PARALLEL 2166 }; 2167 int ret; 2168 2169 dev_dbg(isp->dev, "parsing parallel interface\n"); 2170 2171 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2172 2173 if (!ret) { 2174 isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier, 2175 ep, struct 2176 isp_async_subdev); 2177 if (!IS_ERR(isd)) 2178 isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus); 2179 } 2180 2181 fwnode_handle_put(ep); 2182 } 2183 2184 for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) { 2185 struct v4l2_fwnode_endpoint vep = { 2186 .bus_type = V4L2_MBUS_CSI2_DPHY 2187 }; 2188 int ret; 2189 2190 ep = fwnode_graph_get_endpoint_by_id( 2191 dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0, 2192 FWNODE_GRAPH_ENDPOINT_NEXT); 2193 2194 if (!ep) 2195 continue; 2196 2197 dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i, 2198 to_of_node(ep)); 2199 2200 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2201 if (ret == -ENXIO) { 2202 vep = (struct v4l2_fwnode_endpoint) 2203 { .bus_type = V4L2_MBUS_CSI1 }; 2204 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2205 2206 if (ret == -ENXIO) { 2207 vep = (struct v4l2_fwnode_endpoint) 2208 { .bus_type = V4L2_MBUS_CCP2 }; 2209 ret = v4l2_fwnode_endpoint_parse(ep, &vep); 2210 } 2211 } 2212 2213 if (!ret) { 2214 isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier, 2215 ep, 2216 struct 2217 isp_async_subdev); 2218 2219 if (!IS_ERR(isd)) { 2220 switch (vep.bus_type) { 2221 case V4L2_MBUS_CSI2_DPHY: 2222 isd->bus.interface = 2223 isp_bus_interfaces[i].csi2_if; 2224 isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus); 2225 break; 2226 case V4L2_MBUS_CSI1: 2227 case V4L2_MBUS_CCP2: 2228 isd->bus.interface = 2229 isp_bus_interfaces[i].csi1_if; 2230 isp_parse_of_csi1_endpoint(isp->dev, &vep, 2231 &isd->bus); 2232 break; 2233 default: 2234 break; 2235 } 2236 } 2237 } 2238 2239 fwnode_handle_put(ep); 2240 } 2241 2242 return 0; 2243 } 2244 2245 static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = { 2246 .complete = isp_subdev_notifier_complete, 2247 }; 2248 2249 /* 2250 * isp_probe - Probe ISP platform device 2251 * @pdev: Pointer to ISP platform device 2252 * 2253 * Returns 0 if successful, 2254 * -ENOMEM if no memory available, 2255 * -ENODEV if no platform device resources found 2256 * or no space for remapping registers, 2257 * -EINVAL if couldn't install ISR, 2258 * or clk_get return error value. 2259 */ 2260 static int isp_probe(struct platform_device *pdev) 2261 { 2262 struct isp_device *isp; 2263 struct resource *mem; 2264 int ret; 2265 int i, m; 2266 2267 isp = kzalloc(sizeof(*isp), GFP_KERNEL); 2268 if (!isp) { 2269 dev_err(&pdev->dev, "could not allocate memory\n"); 2270 return -ENOMEM; 2271 } 2272 2273 ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node), 2274 "ti,phy-type", &isp->phy_type); 2275 if (ret) 2276 goto error_release_isp; 2277 2278 isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 2279 "syscon"); 2280 if (IS_ERR(isp->syscon)) { 2281 ret = PTR_ERR(isp->syscon); 2282 goto error_release_isp; 2283 } 2284 2285 ret = of_property_read_u32_index(pdev->dev.of_node, 2286 "syscon", 1, &isp->syscon_offset); 2287 if (ret) 2288 goto error_release_isp; 2289 2290 isp->autoidle = autoidle; 2291 2292 mutex_init(&isp->isp_mutex); 2293 spin_lock_init(&isp->stat_lock); 2294 v4l2_async_nf_init(&isp->notifier); 2295 isp->dev = &pdev->dev; 2296 2297 ret = isp_parse_of_endpoints(isp); 2298 if (ret < 0) 2299 goto error; 2300 2301 isp->ref_count = 0; 2302 2303 ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32)); 2304 if (ret) 2305 goto error; 2306 2307 platform_set_drvdata(pdev, isp); 2308 2309 /* Regulators */ 2310 isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1"); 2311 isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2"); 2312 2313 /* Clocks 2314 * 2315 * The ISP clock tree is revision-dependent. We thus need to enable ICLK 2316 * manually to read the revision before calling __omap3isp_get(). 2317 * 2318 * Start by mapping the ISP MMIO area, which is in two pieces. 2319 * The ISP IOMMU is in between. Map both now, and fill in the 2320 * ISP revision specific portions a little later in the 2321 * function. 2322 */ 2323 for (i = 0; i < 2; i++) { 2324 unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0; 2325 2326 mem = platform_get_resource(pdev, IORESOURCE_MEM, i); 2327 isp->mmio_base[map_idx] = 2328 devm_ioremap_resource(isp->dev, mem); 2329 if (IS_ERR(isp->mmio_base[map_idx])) { 2330 ret = PTR_ERR(isp->mmio_base[map_idx]); 2331 goto error; 2332 } 2333 } 2334 2335 ret = isp_get_clocks(isp); 2336 if (ret < 0) 2337 goto error; 2338 2339 ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]); 2340 if (ret < 0) 2341 goto error; 2342 2343 isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); 2344 dev_info(isp->dev, "Revision %d.%d found\n", 2345 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f); 2346 2347 clk_disable(isp->clock[ISP_CLK_CAM_ICK]); 2348 2349 if (__omap3isp_get(isp, false) == NULL) { 2350 ret = -ENODEV; 2351 goto error; 2352 } 2353 2354 ret = isp_reset(isp); 2355 if (ret < 0) 2356 goto error_isp; 2357 2358 ret = isp_xclk_init(isp); 2359 if (ret < 0) 2360 goto error_isp; 2361 2362 /* Memory resources */ 2363 for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++) 2364 if (isp->revision == isp_res_maps[m].isp_rev) 2365 break; 2366 2367 if (m == ARRAY_SIZE(isp_res_maps)) { 2368 dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n", 2369 (isp->revision & 0xf0) >> 4, isp->revision & 0xf); 2370 ret = -ENODEV; 2371 goto error_isp; 2372 } 2373 2374 for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++) 2375 isp->mmio_base[i] = 2376 isp->mmio_base[0] + isp_res_maps[m].offset[i]; 2377 2378 for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++) 2379 isp->mmio_base[i] = 2380 isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1] 2381 + isp_res_maps[m].offset[i]; 2382 2383 isp->mmio_hist_base_phys = 2384 mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST]; 2385 2386 /* IOMMU */ 2387 ret = isp_attach_iommu(isp); 2388 if (ret < 0) { 2389 dev_err(&pdev->dev, "unable to attach to IOMMU\n"); 2390 goto error_isp; 2391 } 2392 2393 /* Interrupt */ 2394 ret = platform_get_irq(pdev, 0); 2395 if (ret <= 0) { 2396 ret = -ENODEV; 2397 goto error_iommu; 2398 } 2399 isp->irq_num = ret; 2400 2401 if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED, 2402 "OMAP3 ISP", isp)) { 2403 dev_err(isp->dev, "Unable to request IRQ\n"); 2404 ret = -EINVAL; 2405 goto error_iommu; 2406 } 2407 2408 /* Entities */ 2409 ret = isp_initialize_modules(isp); 2410 if (ret < 0) 2411 goto error_iommu; 2412 2413 ret = isp_register_entities(isp); 2414 if (ret < 0) 2415 goto error_modules; 2416 2417 ret = isp_create_links(isp); 2418 if (ret < 0) 2419 goto error_register_entities; 2420 2421 isp->notifier.ops = &isp_subdev_notifier_ops; 2422 2423 ret = v4l2_async_nf_register(&isp->v4l2_dev, &isp->notifier); 2424 if (ret) 2425 goto error_register_entities; 2426 2427 isp_core_init(isp, 1); 2428 omap3isp_put(isp); 2429 2430 return 0; 2431 2432 error_register_entities: 2433 isp_unregister_entities(isp); 2434 error_modules: 2435 isp_cleanup_modules(isp); 2436 error_iommu: 2437 isp_detach_iommu(isp); 2438 error_isp: 2439 isp_xclk_cleanup(isp); 2440 __omap3isp_put(isp, false); 2441 error: 2442 v4l2_async_nf_cleanup(&isp->notifier); 2443 mutex_destroy(&isp->isp_mutex); 2444 error_release_isp: 2445 kfree(isp); 2446 2447 return ret; 2448 } 2449 2450 static const struct dev_pm_ops omap3isp_pm_ops = { 2451 .prepare = isp_pm_prepare, 2452 .suspend = isp_pm_suspend, 2453 .resume = isp_pm_resume, 2454 .complete = isp_pm_complete, 2455 }; 2456 2457 static const struct platform_device_id omap3isp_id_table[] = { 2458 { "omap3isp", 0 }, 2459 { }, 2460 }; 2461 MODULE_DEVICE_TABLE(platform, omap3isp_id_table); 2462 2463 static const struct of_device_id omap3isp_of_table[] = { 2464 { .compatible = "ti,omap3-isp" }, 2465 { }, 2466 }; 2467 MODULE_DEVICE_TABLE(of, omap3isp_of_table); 2468 2469 static struct platform_driver omap3isp_driver = { 2470 .probe = isp_probe, 2471 .remove = isp_remove, 2472 .id_table = omap3isp_id_table, 2473 .driver = { 2474 .name = "omap3isp", 2475 .pm = &omap3isp_pm_ops, 2476 .of_match_table = omap3isp_of_table, 2477 }, 2478 }; 2479 2480 module_platform_driver(omap3isp_driver); 2481 2482 MODULE_AUTHOR("Nokia Corporation"); 2483 MODULE_DESCRIPTION("TI OMAP3 ISP driver"); 2484 MODULE_LICENSE("GPL"); 2485 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION); 2486